WorldWideScience

Sample records for energy doe developed

  1. 78 FR 23550 - Department of Energy's (DOE) Participation in Development of the International Energy...

    Science.gov (United States)

    2013-04-19

    ... building energy codes by periodically reviewing the technical and economic basis of the voluntary building... and modification of such codes. (42 U.S.C. 6836(b)) B. Background The IECC serves as a model building... building energy codes is through participation in the IECC development process. DOE participates in the ICC...

  2. DOE [Department of Energy]-Nuclear Energy Standards Program annual assessment, FY 1990

    International Nuclear Information System (INIS)

    Williams, D.L. Jr.

    1990-11-01

    To meet the objectives of the programs funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a nuclear standards program and related activities and fosters the development and application of standards. This standards program is carried out in accordance with the principles in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980. The purposes of this effort, as set forth in three subtasks, are to (1) manage the NE Standards Program, (2) manage the development and maintenance of NE standards, and (3) operate an NE Standards Information Program. This report assesses the Performance Assurance Project Office (PAPO) activities in terms of the objectives of the Department of Energy-Nuclear Energy (DOE-NE) funded programs. To meet these objectives, PAPO administers a nuclear standards program and related activities and fosters the development and application of standards. This task is carried out in accordance with the principles set forth in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980, and DOE memorandum, Implementation of DOE Orders on Quality Assurance, Standards, and Unusual Occurrence Reporting for Nuclear Energy Programs, March 3, 1982, and with guidance from the DOE-NE Technology Support Programs. 1 tab. (JF)

  3. The DOE fellows program-a workforce development initiative for the US department of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, Leonel E. [Applied Research Center, Florida International University, 10555 West Flagler St, EC2100, Miami, Florida (United States)

    2013-07-01

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student

  4. The DOE fellows program-a workforce development initiative for the US department of energy

    International Nuclear Information System (INIS)

    Lagos, Leonel E.

    2013-01-01

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student

  5. Department of Energy (DOE) summary

    International Nuclear Information System (INIS)

    2001-01-01

    An overview was provided of the Generation IV Initiative to evaluate candidate technology concepts for a new generation of nuclear power plants. DOE presented the Generation IV goals, road map effort, and concept evaluation. The formation was discussed of a Near-Term Deployment Working Group (NTDG) formed to identify actions and evaluate options necessary for DOE to support new plants. DOE has established a Nuclear Energy Research Advisory Committee (NERAC) to provide independent evaluation and feedback on the establishment of goals and objectives and progress in evaluating candidate nuclear energy concepts. DOE has also established a Generation IV Road map NERAC Subcommittee (GRNS) to serve as an advisory group in establishing the road map along with a Road map integration Team (RIT). Candidate technologies must be deployable by 2030. Nuclear systems are expected to meet sustainability goals (resource inputs, waste outputs, and nonproliferation), safety and reliability goals (operating maintainability excellence, limiting core damage risk, and reduced need for emergency response), and economic goals (reduced life-cycle costs and risk to capital). Criteria and metrics for each goal are being developed by an Evaluation Methodology Group (EMG), RIT, and the GRNS. DOE plans to evaluate ail candidate concepts equally without prejudice toward existing technologies (e.g., light-water reactors) but recognizes that most primary energy generators are likely to be fission based. DOE is presently considering 94 concepts. The output of the Generation IV Program is expected to be a research and development plan to support future commercialization of the best concepts

  6. Does energy efficiency improve technological change and economic growth in developing countries?

    International Nuclear Information System (INIS)

    Cantore, Nicola; Calì, Massimiliano; Velde, Dirk Willem te

    2016-01-01

    Does a trade-off exist between energy efficiency and economic growth? This question underlies some of the tensions between economic and environmental policies, especially in developing countries that often need to expand their industrial base to grow. This paper contributes to the debate by analyzing the relationship between energy efficiency and economic performance at the micro- (total factor productivity) and macro-level (countries' economic growth). It uses data on a large sample of manufacturing firms across 29 developing countries to find that lower levels of energy intensity are associated with higher total factor productivity for the majority of these countries. The results are robust to a variety of checks. Suggestive cross-country evidence points towards the same relation measured at the macro-level as well. - Highlights: •Total factor productivity is an accurate proxy of technological change. •Energy efficiency triggers total factor productivity especially in manufacturing. •Technological change via energy efficiency in manufacturing is an engine of growth.

  7. Wind Energy Workforce Development & Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  8. DOE-HUD initiative on energy efficiency in housing: A federal partnership

    Energy Technology Data Exchange (ETDEWEB)

    Brinch, J. [Energetics, Inc., Columbia, MD (United States); Ternes, M. [Oak Ridge National Lab., TN (United States); Myers, M. [USDOE, Washington, DC (United States)

    1996-07-01

    A five-year initiative between the US Department of Energy (DOE) and the US Department of Housing and Urban Development (HUD) demonstrated the feasibility of improving the energy efficiency of publicly-assisted housing. Twenty-seven projects and activities undertaken during 1990--95 involved research and field demonstrations, institutional and administrative changes to HUD policies and procedures, innovative financing and leveraging of federal dollars with non-federal money, and education, training, and technical assistance. With most of the 27 projects and activities completed, the two departments have initiated a five-year deployment effort, the DOE-Energy Partnerships for Affordable Homes, to achieve energy and water savings in public and assisted housing on a large scale throughout the country. A Clearinghouse for Energy Efficiency in Public and Assisted Housing managed by the National Center for Appropriate Technology (NCAT), will offer hands-on energy assistance to housing providers to complement DOE`s assistance. This paper presents the findings of the DOE-HUD Initiative, with primary attention paid to those projects which successfully integrated energy efficiency into private and public single and multifamily housing. The paper includes examples of the publications, case-study reports, exhibits and videotapes developed during the course of the Initiative. Information on the new DOE Energy Partnerships and on the NCAT Clearinghouse is also presented. New Partnership projects with the Atlanta and Chicago Housing Authorities describe the technical assistance envisioned under the Partnership.

  9. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  10. DOE Energy Challenge Project

    Energy Technology Data Exchange (ETDEWEB)

    Frank Murray; Michael Schaepe

    2009-04-24

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  11. Does trade liberalization effect energy consumption?

    International Nuclear Information System (INIS)

    Ghani, Gairuzazmi M.

    2012-01-01

    The effect of trade liberalization on the environment can be directly linked to energy consumption, because energy consumption and production are the underlying cause of most pollutants that harm the environment. The descriptive statistics show that average annual growth of energy consumption per capita after trade liberalization varies among countries; hence it is a possibility that the effect of trade liberalization is conditional on factors other than liberalization per se. The regression results show that trade liberalization per se does not affect the growth of energy consumption of the developing countries analyzed, but its interaction with capital per labor reduces the growth of energy consumption as capital per labor increases. However, the effect is only significant after a certain minimum threshold level capital per labor is reached. On the other hand, economic growth increases energy consumption and its effect is not conditioned on trade liberalization. These two different effects mean that, with regards to energy consumption, countries at a higher level of economic development are more likely to reap the benefit of liberalization relative to less developed countries. - Research highlights: ► This paper examines the effect of trade liberalization on energy consumption. ► Developed countries are more likely to reap the benefit of trade liberalization. ► Growth of energy consumption after trade liberalization varies among countries. ► Interaction of capital per labor with liberalization reduces energy consumption.

  12. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  13. Theoretical basis of the DOE-2 building energy use analysis program

    Science.gov (United States)

    Curtis, R. B.

    1981-04-01

    A user-oriented, public domain, computer program was developed that will enable architects and engineers to perform design and retrofit studies of the energy-use of buildings under realistic weather conditions. The DOE-2.1A has been named by the US DOE as the standard evaluation technique for the Congressionally mandated building energy performance standards (BEPS). A number of program design decisions were made that determine the breadth of applicability of DOE-2.1. Such design decisions are intrinsic to all building energy use analysis computer programs and determine the types of buildings or the kind of HVAC systems that can be modeled. In particular, the weighting factor method used in DOE-2 has both advantages and disadvantages relative to other computer programs.

  14. Technology development for DOE SNF management

    International Nuclear Information System (INIS)

    Hale, D.L.; Einziger, R.E.; Murphy, J.R.

    1995-01-01

    This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites

  15. Developing a model lifeline protection program for DOE facilities

    International Nuclear Information System (INIS)

    Lowing, A.N.

    1996-01-01

    A National Lifeline Standard Development Program is currently being conducted by FEMA and NIST. The Department of Energy is following these developments and supplementing them to meet Life-Safety and mission requirements for all DOE facilities as part of the Natural Phenomena Hazards Mitigation Plan. The task will be overseen by a DOE management team with technical guidance provided by a Steering Group of management and operating contractor representatives. The DOE will participate in the federal program by conducting a workshop on lifeline protection issues, developing an overall plan, organizing a Steering Group, and conducting a pilot study at a DOE facility

  16. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  17. Sustainable Energy for All - What does it mean for Water and Food Security : Seeking sustainable development CLEWS: Climate-change, Land-use, Energy and Water (CLEW) Strategies

    OpenAIRE

    Hermann, Sebastian; Howells, Mark; Welsch, Manuel; Rogner, Hans Holger; Steduto, Pasquale; Gielen, Dolf; Roehrl, Alexander; Bazilian, Morgan

    2011-01-01

    This background note serves to inform the “hot topic” session entitled ‘Sustainable Energy for All – What does it mean for Water and Food Security?’.Energy is vital for human development. This is why the United Nations proclaimed 2012 as the ‘International Year of Sustainable Energy for All’. The goal is to ensure universal access to modern energy services by 2030. Today’s energy production, however, is already putting prohibitive strain on the global environment. In support of worldwide effo...

  18. DOE-HUD Initiative on Energy Efficiency in Housing: A federal partnership. Program summary report

    Energy Technology Data Exchange (ETDEWEB)

    Brinch, J. [Energetics, Inc., Columbia, MD (United States)

    1996-06-01

    One of the primary goals of the US Department of Housing and urban Development (HUD) is the expansion of home ownership and affordable housing opportunities. Recognizing that energy efficiency is a key component in an affordable housing strategy, HUD and the US Department of Energy (DOE) created the DOE-HUD Initiative on Energy Efficiency in Housing. The DOE-HUD Initiative was designed to share the results of DOE research with housing providers throughout the nation, to reduce energy costs in federally-subsidized dwelling units and improve their affordability and comfort. This Program Summary Report provides an overview of the DOE-HUD Initiative and detailed project descriptions of the twenty-seven projects carried out with Initiative funding.

  19. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  20. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the

  1. DOE program guide for universities and other research groups. Part I. DOE Research and Development Programs; Part II. DOE Procurement and Assistance Policies/Procedures

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This guide addresses the DOE responsibility for fostering advanced research and development of all energy resources, both current and potential. It is intended to provide, in a single publication, all the fundamental information needed by an institution to develop a potential working relationship with DOE. Part I describes DOE research and development programs and facilities, and identifies areas of additional research needs and potential areas for new research opportunities. It also summarizes budget data and identifies the DOE program information contacts for each program. Part II provides researchers and research administrators with an introduction to the DOE administrative policies and procedures for submission and evaluation of proposals and the administration of resulting grants, cooperative agreements, and research contracts. (RWR)

  2. Tribal Energy Efficiency and Renewable Energy Development on Tribal Lands (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-01

    This 12-page brochure provides an overview of the U.S. Department of Energy's (DOE's) Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  3. DOE (Department of Energy) Epidemiologic Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  4. DOE [Department of Energy] Epidemiologic Research Program

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal

  5. DOE seeks applicants to develop next-generation nuclear detectors. (Sensors)

    CERN Multimedia

    2002-01-01

    "DOE's Division of High Energy Physics seeks grant applications for development of advanced detectors in the areas of high energy physics experiments, which includes accelerator-based and non-accelerator based experiments" (1/2 page).

  6. Energy transition and legal transition: renewable energies development in France

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The way to an energy transition will be reached with an integration of renewable energies in our energy mix. This development includes a legal transition because the current legal context that applies to green energies is not efficient and does not contribute to this emergency. Changing the legal frame becomes a necessity and particularly the way these energies are governed, planned and supported. It's also important that administrative procedures that regulate the implantation of energies production system are set. At last, this legal transition will have to conciliate imperatives linked to the development of renewable energies with those governing the protection of surroundings, all aiming to a sustainable development. (author) [fr

  7. Update on DOE's Nuclear Energy University Program

    International Nuclear Information System (INIS)

    Lambregts, Marsha J.

    2009-01-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  8. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  9. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    ... from the R&D conducted since 1978 in DOE's energy efficiency and fossil energy programs. In response to the congressional charge, the National Research Council formed the Committee on Benefits of DOE...

  10. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the

  11. Does the PPE choose the right way towards energy transition?

    International Nuclear Information System (INIS)

    Beutier, Didier

    2016-01-01

    In this article, the author states the PPE (the French multi-year energy planning) does not seem to be the best way to reach objectives related to the reduction of greenhouse gas emissions. He first discusses the planned evolutions for renewable, fossil and nuclear energies. He states that the development of wind energy should take some impacts into account: wind energy requires 5 times more concrete, 20 times more steel and 20 times more ground surface than a nuclear plant. He states that France cannot afford stopping a performing industrial tool (nuclear plants)

  12. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  13. DOE Heat Pump Centered Integrated Community Energy Systems Project

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J. M.

    1979-01-01

    The Heat Pump Centered Integrated Community Energy Systems (HP-ICES) Project is a multiphase undertaking seeking to demonstrate one or more operational HP-ICES by the end of 1983. The seven phases include System Development, Demonstration Design, Design Completion, HP-ICES Construction, Operation and Data Acquisition, HP-ICES Evaluation, and Upgraded Continuation. This project is sponsored by the Community Systems Branch, Office of Buildings and Community Systems, Assistant Secretary for Conservation and Solar Applicaions, U.S. Department of Energy (DOE). It is part of the Community Systems Program and is managed by the Energy and Environmental Systems Division of Argonne Natinal Laboratory.

  14. DOE EM industry programs robotics development

    International Nuclear Information System (INIS)

    Staubly, R.; Kothari, V.

    1998-01-01

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy's (DOE's) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution

  15. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  16. Department of Energy: Nuclear S&T workforce development programs

    International Nuclear Information System (INIS)

    Bingham, Michelle; Bala, Marsha; Beierschmitt, Kelly; Steele, Carolyn; Sattelberger, Alfred P.; Bruozas, Meridith A.

    2016-01-01

    The U.S. Department of Energy (DOE) national laboratories use their expertise in nuclear science and technology (S&T) to support a robust national nuclear S&T enterprise from the ground up. Traditional academic programs do not provide all the elements necessary to develop this expertise, so the DOE has initiated a number of supplemental programs to develop and support the nuclear S&T workforce pipeline. This document catalogs existing workforce development programs that are supported by a number of DOE offices (such as the Offices of Nuclear Energy, Science, Energy Efficiency, and Environmental Management), and by the National Nuclear Security Administration (NNSA) and the Naval Reactor Program. Workforce development programs in nuclear S&T administered through the Department of Homeland Security, the Nuclear Regulatory Commission, and the Department of Defense are also included. The information about these programs, which is cataloged below, is drawn from the program websites. Some programs, such as the Minority Serving Institutes Partnership Programs (MSIPPs) are available through more than one DOE office, so they appear in more than one section of this document.

  17. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  18. US DOE International energy policy on Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gale, B.G.

    1996-04-01

    This report describes the importance of the United States Department of Energy`s (US DOE) International Energy Policy to Russia. Key objectives identified include the support of the transition to democracy and a market based economy. The U.S.interests at stake, importance of energy to Russia, key institutional mechanism, energy-policy committee, joint energy activities, and the key to the success of other U.S. policy are discussed.

  19. Radiation exposures for DOE [Department of Energy] and DOE contractor employees, 1988

    International Nuclear Information System (INIS)

    Merwin, S.E.; Traub, R.J.; Millet, W.H.

    1990-12-01

    This is the 21st in a series of annual radiation exposure reports published by the Department of Energy (DOE) or its predecessors. This report summarizes the radiation exposures received at DOE and DOE contractor facilities in 1988. Radiation exposures to both employees and visitors are included. Trends in radiation exposures are evaluated by comparing the doses received in 1988 to those received in previous years. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimates from expert groups. This report represents a significant advancement from previous reports because it is the first for which detailed exposure data are available for each individual monitored at a DOE facility. This reports contains information on different types of radiation doses, such as penetrating, shallow, and neutron doses. It also contains analysis of exposures by age, sex, and occupation of the exposed individuals. This report is the first of any federal organization that presents such detailed exposure data. The purpose of this report is to disseminate information regarding radiation exposures received at US Department of Energy (DOE) and DOE contractor facilities. The primary purpose of this practice is to ensure that the DOE occupational dose limits are not exceeded and that as low as reasonably achievable (ALARA) goals are met. A secondary purpose, however, is to provide information that can be used by other organizations and individuals who wish to collect and analyze such information. This information may be useful for estimating the effect of changing dose limits on operations at DOE facilities, determining the progress of DOE with respect to the ALARA principle, or, in combination with epidemiological information, assisting researchers in determining whether or not low doses of ionizing radiation are harmful. 23 refs., 20 figs., 23 tabs

  20. Resolving environmental issues in energy development: roles for the Department of Energy and its field offices

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Merrow, E.W.

    1979-01-01

    This study asks what the Department of Energy (DOE) might do to resolve environmental conflicts that arise during the implementation of energy projects or programs. We define implementation as efforts to establish an energy facility at a specific site. The environmental concerns surrounding implementation serve as touchstones of the relevance and feasibility of national energy policies. We have analyzed geothermal development in California and oil shale development in Colorado and Utah and addressed the following questions: By what processes are energy and environmental tradeoffs made. In what circumstances can DOE participation in these processes lead to a more satisfactory outcome. What options does DOE have for resolving environmetal issues and how can it choose the best option. How can DOE establish an effective working relationship with both the governmental and private groups affected by the siting and operation of energy projects. The government's most effective role in resolving environmental conflicts and uncertainties is to improve communications among the concerned parties. This role requires flexibility and evenhandedness from the government as well as an understanding of the local conditions and a commitment to appropriate local solutions. Involving local sources at every stage of the environmental impact analysis will reduce the probability of conflicts and make those that do arise more easily resolvable.

  1. Assessing DOE`s success in implementing the FFC Act: A federal and state partnership to develop treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, M.J.; Bubar, P.M. [Dept. of Energy, Germantown, MD (United States)

    1995-12-31

    Implementation of the Federal Facility Compliance Act (FFCAct) required total cooperation among the Department of Energy (DOE), the involved States and interested stakeholders. Although the effort was time consuming, tedious and (at times) trying, the results obtained [Site Treatment Plans (STP)] were an unprecedented success. Through long-range planning, attention to details and organization of effort, a coordinated, cohesive, focused team was developed that included the DOE Headquarters, the Environmental Protection Agency (EPA), 40 DOE sites, 20 states and multiple interested stakeholders. The efforts of the FFCAct team resulted in the preparation of 37 STPs which outline the methods, locations and schedules for the treatment and disposal of DOE`s mixed wastes. The Plans provided a strong foundation upon which consent orders were prepared and approved. The FFCAct approach also resulted in the development of working relationships that will prove not only useful but vital to the planning and implementation necessary to the successful clean-up and disposal DOE`s mixed wastes.

  2. U.S. DOE driver development for ICF

    International Nuclear Information System (INIS)

    Sluyter, M.M.

    1995-01-01

    The goal of the Department of Energy (DOE) supported Inertial Confinement Fusion (ICF) Program is to produce pure fusion ignition with fusion yields of 200 to 1000 millions of joules, which could find several applications in the defence and in the electric power generation. The National Ignition Facility will operate in both direct and indirect driver modes, with a glass laser driver. However two other options have been developed to increase the energy efficiency: the Light Ion Pulsed Power program and the NIKE KrF laser. Heavy ion drivers are also investigated -Abstract only-. (TEC)

  3. Validation studies of the DOE-2 Building Energy Simulation Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.; Winkelmann, F.

    1998-06-01

    This report documents many of the validation studies (Table 1) of the DOE-2 building energy analysis simulation program that have taken place since 1981. Results for several versions of the program are presented with the most recent study conducted in 1996 on version DOE-2.1E and the most distant study conducted in 1981 on version DOE-1.3. This work is part of an effort related to continued development of DOE-2, particularly in its use as a simulation engine for new specialized versions of the program such as the recently released RESFEN 3.1. RESFEN 3.1 is a program specifically dealing with analyzing the energy performance of windows in residential buildings. The intent in providing the results of these validation studies is to give potential users of the program a high degree of confidence in the calculated results. Validation studies in which calculated simulation data is compared to measured data have been conducted throughout the development of the DOE-2 program. Discrepancies discovered during the course of such work has resulted in improvements in the simulation algorithms. Table 2 provides a listing of additions and modifications that have been made to various versions of the program since version DOE-2.1A. One of the most significant recent changes in the program occurred with version DOE-2.1E. An improved algorithm for calculating the outside surface film coefficient was implemented. In addition, integration of the WINDOW 4 program was accomplished resulting in improved ability in analyzing window energy performance. Validation and verification of a program as sophisticated as DOE-2 must necessarily be limited because of the approximations inherent in the program. For example, the most accurate model of the heat transfer processes in a building would include a three-dimensional analysis. To justify such detailed algorithmic procedures would correspondingly require detailed information describing the building and/or HVAC system and energy plant parameters

  4. Overview of DOE's field screening technology development activities

    International Nuclear Information System (INIS)

    Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T.; Erickson, M.D.

    1991-01-01

    The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R ampersand D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref

  5. Implementing Relative Ranking Evaluation Framework at Department of Energy (DOE) installations

    International Nuclear Information System (INIS)

    Sharma, S.K.; Williamson, D.; Treichel, L.C.; James, L.M.

    1996-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration (EM-40) has developed the Relative Ranking Evaluation Framework (RREF) to help categorize release sites, facilities and buildings requiring restoration or decommissioning. Based on this framework, a computer tool, the Relative Rank Evaluation Program (RREP) has been developed to evaluate release sites, facilities and buildings, and to manage information pertaining to relative ranking evaluations. The relative ranking information is being used by both Headquarters and field project managers, and other environmental personnel responsible for planning, executing and evaluation environmental restoration activities at DOE installations. External stakeholders, such as representatives of federal and state regulatory agencies, local governments and communities in the vicinity of current and formerly used DOE installations may use this data to review proposed and planned activities

  6. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.N. [Global Environment & Technology Foundation, Annandale, VA (United States)

    1995-10-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  7. DOE's energy data base (EDB) versus other energy-related data bases: a comparative analysis

    International Nuclear Information System (INIS)

    Robinson, J.; Hu, M.

    1981-02-01

    The release of the DOE Energy Data Base to commercial services in 1980 raised an immediate question in the minds of some searchers: how does this new data base fit into the spectrum of already-available data bases. Because the authors have been closely associated with the Department of Energy's RECON system and its data bases for several years, as trainers and as editor of the DOE/RECON Newsletter, the question was of great interest and we decided to investigate it

  8. Evaluating information in multiple horizon forecasts. The DOE's energy price forecasts

    International Nuclear Information System (INIS)

    Sanders, Dwight R.; Manfredo, Mark R.; Boris, Keith

    2009-01-01

    The United States Department of Energy's (DOE) quarterly price forecasts for energy commodities are examined to determine the incremental information provided at the one-through four-quarter forecast horizons. A direct test for determining information content at alternative forecast horizons, developed by Vuchelen and Gutierrez [Vuchelen, J. and Gutierrez, M.-I. 'A Direct Test of the Information Content of the OECD Growth Forecasts.' International Journal of Forecasting. 21(2005):103-117.], is used. The results suggest that the DOE's price forecasts for crude oil, gasoline, and diesel fuel do indeed provide incremental information out to three-quarters ahead, while natural gas and electricity forecasts are informative out to the four-quarter horizon. In contrast, the DOE's coal price forecasts at two-, three-, and four-quarters ahead provide no incremental information beyond that provided for the one-quarter horizon. Recommendations of how to use these results for making forecast adjustments is also provided. (author)

  9. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  10. Developing computer systems to support emergency operations: Standardization efforts by the Department of Energy and implementation at the DOE Savannah River Site

    International Nuclear Information System (INIS)

    DeBusk, R.E.; Fulton, G.J.; O'Dell, J.J.

    1990-01-01

    This paper describes the development of standards for emergency operations computer systems for the US Department of Energy (DOE). The proposed DOE computer standards prescribe the necessary power and simplicity to meet the expanding needs of emergency managers. Standards include networked UNIX workstations based on the client server model and software that presents information graphically using icons and windowing technology. DOE standards are based on those of the computer industry although Proposed DOE is implementing the latest technology to ensure a solid base for future growth. A case of how these proposed standards are being implemented is also presented. The Savannah River Site (SRS), a DOE facility near Aiken, South Carolina is automating a manual information system, proven over years of development. This system is generalized as a model that can apply to most, if not all, Emergency Operations Centers. This model can provide timely and validated information to emergency managers. By automating this proven system, the system is made easier to use. As experience in the case study demonstrates, computers are only an effective information tool when used as part of a proven process

  11. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    International Nuclear Information System (INIS)

    Boardman, Craig; Ponomariov, Branco

    2011-01-01

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: → Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. → Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. → The implementation of these and similar energy policies require further investigation.

  12. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  13. Progress in developing new commercial LLRW disposal facilities and DOE assistance

    International Nuclear Information System (INIS)

    Tait, T.D.; Hinschberger, S.T.

    1988-01-01

    This paper reports state and regional progress in developing new commercial low-level radioactive waste disposal facilities. Specifically the paper addresses DOE determination of state and regional compliance with the 1988 milestone requirements of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). In addition, the paper summarizes the assistance provided by the Department of Energy (DOE) to the states and regions in their efforts to develop new disposal facilities as mandated in the LLRWPAA

  14. Quality Assurance Grading Guidelines for Research and Development at DOE Facilities (DOE Order 5700.6C)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, T.B.

    1992-01-01

    The quality assurance (QA) requirements for the U.S. Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  15. The energy highways. The three safety barriers at nuclear power plants. Where does coal fit into the energy mix?. Sustainable urban development in Hanover. Energy in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This issue of Alternatives newsletter contains a main press-kit about the economics of interconnected power distribution systems and 4 articles dealing with reactors safety, the advantages and drawbacks of coal in the energy mix, the environmental policy of Hanover city, and the energy situation in sub-Saharan Africa: 1 - 'The energy highways': Spotlight on the electrical power grids. From the much needed modernization of existing installations to the extension of networks in developing countries, Alternatives takes a look at these infrastructures that shape our environment, which can be considered as veritable 'energy highways' ensuring the coverage of our planet. 2 - 'The three safety barriers at nuclear power plants': Review of the three protective barriers deployed in the nuclear industry to ensure reactor safety. 3 - 'Where does coal fit into the energy mix?': Two experts put into perspective the challenges related to the use of coal, its efficiency and its environmental impact, on the basis of the Chinese and Polish examples. 4 - 'Sustainable urban development in Hanover': Bringing together quality of living and energy savings, this is the challenge taken up by Hanover in the Kronsberg area. Alternatives has examined this original model, which could serve as an example for other European cities. 5 - 'Energy in sub-Saharan Africa': Relatively abundant resources but which are poorly utilized and distributed characterize the energy situation in sub-Saharan Africa. Analysis of the situation and explanation of this paradox

  16. Quality assurance grading guidelines for research and development at DOE facilities. DOE Order 5700.6C

    Energy Technology Data Exchange (ETDEWEB)

    Powell, T.B.; Morris, R.N.

    1992-10-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPS) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community. This report discusses order 5700.6C in relation to research with DOE.

  17. Development of guidance for preparing treatability variance petitions from the RCRA Land Disposal Restrictions for DOE [Department of Energy] mixed-waste streams

    International Nuclear Information System (INIS)

    Harms, T.; Scheuer, N.; Martin, R.; Van Epp, T.; Triplett, M.

    1990-01-01

    In response to the Department of Energy's (DOE) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) treatment requirements, a treatability variance guidance document is being prepared for use by DOE facilities and operations offices. The guidance document, although applicable to non-mixed hazardous waste streams, provides specific guidance regarding radioactive mixed-waste streams. Preparation of the guidance manual has involved developing an overview of the Land Disposal Restrictions, as well as an overview of the petition preparation process. The DOE internal review requirements are specifically addressed in the manual. Specific data requirements and engineering analyses are also described. A discussion of EPA's criteria for granting a treatability variance is also provided. A checklist for completeness of the petition is provided. Model language for use in DOE treatability variance petitions will be provided in a petition for a DOE waste stream as an appendix to the document

  18. Energy policy. Developing strategies for energy policies in the 1990s

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Fowler, James A.; Kime, Barry R.; McLaughlin, Brian T.; Price, Margaret W.; Adams, Charles M.; Grace, Paul O.; Kruslicky, Mary Ann; McGee, William F.

    1990-06-01

    Securing sufficient and reliable future energy supplies to meet the increased U.S. energy demand projected for the 1990s is a major issue facing the nation. Since 1983, U.S. energy consumption has increased by about 16 percent, and an upward trend is expected to continue through the year 2000. Petroleum is used more than any other energy source in the United States, supplying about 41 percent of the nation's total energy needs. With the increase in total energy consumption, two potentially disturbing energy supply trends are emerging: The U.S. is becoming increasingly dependent on imported oil, particularly from the strategically sensitive Persian Gulf, to meet its petroleum energy needs. This trend increases the nation's vulnerability to potential oil supply disruptions and increased oil prices. Questions are being raised as to whether there will be adequate generating capacity to meet the nation's future electricity needs. While electricity consumption has been steadily increasing in recent years and is projected to continue through the year 2000, much of the additional generating capacity projected to come on line is in the early stages of construction and may not be completed in time to meet the nation's future electricity needs during the 1990s. It is also increasingly being recognized that energy consumption creates potentially serious environmental, health, and safety consequences, whose possible solutions can be costly to address. As indicated by our previous work, a number of options are available to improve the nation's ability to cope with the trend toward increased dependence on imported oil and to ensure adequate supplies of future electric generating capacity. These options also recognize the importance of protecting the environment. As directed by the President, DOE is developing a much needed national energy strategy that it expects will integrate and balance concerns for energy choices against other national concerns, such as environmental

  19. Selected DOE Headquarters publications received by the Energy Library

    International Nuclear Information System (INIS)

    1978-07-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the ''report code'' assigned to the major organizations at DOE Headquarters, followed by the three categories of environmental reports issued from DOE Headquarters. All of the publications listed, except for those shown as still ''in preparation,'' may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications have been omitted. They include such items as pamphlets, ''fact sheets,'' bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., ''HCP'' (Headquarters Contractor Publication) and ''CONF''

  20. Energy Innovation Portal Brings DOE Technologies to the Market (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    For venture capitalists, energy entrepreneurs, and industry veterans, finding the right renewable energy or energy efficiency solution used to be like looking for a needle in a haystack. Now, a searchable treasure trove of innovative U.S. Department of Energy (DOE) technologies is available. Created by the National Renewable Energy Laboratory (NREL), the online Energy Innovation Portal helps businesses and entrepreneurs access the intellectual property of DOE's 17 national laboratories and other research partners.

  1. Industry Stakeholder Recommendations for DOE's RD&D for Increasing Energy Efficiency in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Plympton, P.; Dagher, L.; Zwack, B.

    2007-06-01

    This technical report documents feedback for Industry Stakeholders on the direction of future U.S. Department of Energy (DOE) research and development in the area of improving energy efficiency in existing residential buildings.

  2. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  3. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  4. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    International Nuclear Information System (INIS)

    Harvey, T.N.

    1995-01-01

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE's clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies

  5. A preliminary assessment of the potential for 'team science' in DOE Energy Innovation Hubs and Energy Frontier Research Centers

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Craig, E-mail: boardman.10@osu.edu [John Glenn School of Public Affairs, Ohio State University (United States); Ponomariov, Branco, E-mail: branco.ponomariov@utsa.edu [Department of Public Administration, University of Texas at San Antonio (United States)

    2011-06-15

    President Obama has called for the development of new energy technologies to address our national energy needs and restore US economic competitiveness. In response, the Department of Energy has established new R and D modalities for energy research and development designed to facilitate collaboration across disciplinary, institutional, and sectoral boundaries. In this research note, we provide a preliminary assessment of the potential for essential mechanisms for coordinated problem solving among diverse actors within two new modalities at the DOE: Energy Innovation Hubs and Energy Frontier Research Centers. - Highlights: > Energy Frontier Research Centers may lack the basic mechanisms for coordinating diverse actors. > Divergent goals across diverse actors may hinder coordination in Energy Innovation Hubs. > The implementation of these and similar energy policies require further investigation.

  6. Development and use of consolidated criteria for evaluation of emergency preparedness plans for DOE facilities

    International Nuclear Information System (INIS)

    Lerner, K.; Kier, P.H.; Baldwin, T.E.

    1995-01-01

    Emergency preparedness at US Department of Energy (DOE) facilities is promoted by development and quality control of response plans. To promote quality control efforts, DOE has developed a review document that consolidates requirements and guidance pertaining to emergency response planning from various DOE and regulatory sources. The Criteria for Evaluation of Operational Emergency Plans (herein referred to as the Criteria document) has been constructed and arranged to maximize ease of use in reviewing DOE response plans. Although developed as a review instrument, the document also serves as a de facto guide for plan development, and could potentially be useful outside the scope of its original intended DOE clientele. As regulatory and DOE requirements are revised and added in the future, the document will be updated to stay current

  7. 75 FR 63450 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-10-15

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... 20852. FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  8. DOE and NASA joint Dark Energy mission

    CERN Multimedia

    2003-01-01

    "DOE and NASA announced their plan for a Joint Dark Energy Mission (JDEM) on October 23, 2003, at the NASA Office of Space Science Structure and Evolution of the Universe Subcommittee (SEUS) meeting" (1 paragraph).

  9. 78 FR 69839 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-11-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  10. 75 FR 57463 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  11. 77 FR 4027 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  12. 76 FR 41234 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  13. 76 FR 8358 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  14. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  15. 77 FR 64799 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25...

  16. 78 FR 46330 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-07-31

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  17. 76 FR 19986 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S...

  18. Recent developments in the DOE Waste Minimization Pollution Prevention Program

    International Nuclear Information System (INIS)

    Hancock, J.K.

    1993-01-01

    The U.S. Department of Energy (DOE) is involved in a wide variety of research and development, remediation, and production activities at more than 100 sites throughout the United States. The wastes generated cover a diverse spectrum of sanitary, hazardous, and radioactive waste streams, including typical office environments, power generation facilities, laboratories, remediation sites, production facilities, and defense facilities. The DOE's initial waste minimization activities pre-date the Pollution Prevention Act of 1990 and focused on the defense program. Little emphasis was placed on nonproduction activities. In 1991 the Office of Waste Management Operations developed the Waste Minimization Division with the intention of coordinating and expanding the waste minimization pollution prevention approach to the entire complex. The diverse nature of DOE activities has led to several unique problems in addressing the needs of waste minimization and pollution prevention. The first problem is developing a program that addresses the geographical and institutional hurdles that exist; the second is developing a monitoring and reporting mechanism that one can use to assess the overall performance of the program

  19. DOE technical standards list: Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  20. 77 FR 33449 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-06-06

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat..., Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown...

  1. Research and development for DOE environmental restoration and waste management

    International Nuclear Information System (INIS)

    Erickson, M.D.; Borys, S.S.; Bugielski, D.; Lien, S.C.T.; Hain, K.E.

    1991-01-01

    The US Department of Energy (DOE) recently consolidated its environmental restoration and waste management activities. Within that new organization, DOE has committed to support Research, Development, Demonstration, Testing and Evaluation (RDDT ampersand E) activities with the following objectives: rapidly advance beyond currently available technologies; provide solutions to key technical issues that will improve effectiveness, efficiency, and safety; and enhance DOE's ability to meet its 30-year compliance and cleanup goals. DOE has already supported a number of R ampersand D activities in this area and plans to continue that support in the future. DOE's Office of Technology Development is interested in eliciting broad participation from qualified organizations who can contribute to RDDT ampersand E activities. This presentation addresses the on-going and future R ampersand D, with an emphasis on the private sector activities. To focus private sector capabilities on the high-priority needs of DOE, a series of competitive solicitations was started in FY 1990. On May 1, 1990, on behalf of DOE's Office of Technology Development, Argonne National Laboratory issued a Request for Proposals that solicited proposals for research and development in the areas of (1) groundwater remediation, (2) soil remediation, (3) characterization of contamination and geological and hydrological features, and (4) containment of contaminated sites. In response to this solicitation, Argonne National Laboratory received 147 proposals. Fifteen of the proposals totaling $5.7 million were funded in FY 1990. The scope of work and evaluation criteria used in the procurement and the workscope of the resultant contracts are reviewed in this paper. The FY 1991 plans for competitive private sector research and development activities will also be presented at the conference. Funding levels, technical workscope, evaluation criteria, and schedule for the FY 1991 Request for Proposals will be detailed. 2

  2. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This Challenge Home is one of 42 homes in a micro-community of ultra-modern, energy-efficient homes built by Dwell Development on an urban gray-field site in South Seattle. Every home will achieve a 5-Star Built Green rating from the regional master builders association and meet the criteria of the Northwest ENERGY STAR program, which is more strict than the national ENERGY STAR criteria. Also, the home won a 2013 Housing Innovation Award in the "systems builder" category.

  3. A DOE Perspective

    Science.gov (United States)

    Bennett, Kristin

    2004-03-01

    As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.

  4. Facilitating new and renewable energy development in the ASEAN region

    International Nuclear Information System (INIS)

    Balce, G.R.

    2000-01-01

    This report briefly discussed the following subjects - why new and renewable energy (NRE) ?, where does ASEAN centre of energy (ACE) stand ?, ASEAN plan of action on NRE, Innovative approaches of the NRE development programme

  5. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia

    International Nuclear Information System (INIS)

    Shahbaz, Muhammad; Lean, Hooi Hooi

    2012-01-01

    This paper assesses the relationship among energy consumption, financial development, economic growth, industrialization and urbanization in Tunisia from 1971 to 2008. The autoregressive distributed lag bounds testing approach to cointegration and Granger causality tests is employed for the analysis. The result confirms the existence of long-run relationship among energy consumption, economic growth, financial development, industrialization and urbanization in Tunisia. Long-run bidirectional causalities are found between financial development and energy consumption, financial development and industrialization, and industrialization and energy consumption. Hence, sound and developed financial system that can attract investors, boost the stock market and improve the efficiency of economic activities should be encouraged in the country. Nevertheless, promoting industrialization and urbanization can never be left out from the process of development. We add light to policy makers with the role of financial development, industrialization and urbanization in the process of economic development. - Highlights: ► We find the existence of long-run relationship among variables. ► Financial development is positively related to energy consumption. ► Bidirectional causal relationship between financial development and energy consumption. ► Sound and developed financial system should be encouraged.

  6. Market analysis, energy savings potential, and future development requirements for Radiance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Department of Energy (DOE) Office of Conservation and Renewable Energy (CE), Building Equipment Division has funded the development of a sophisticated computer rendering program called Radiance at Lawrence Berkeley Laboratories (LBL). The project review study included: (1) Surveys of the lighting profession to determine how designers would use an improved, user-friendly Radiance, (2) Elucidation of features, including how Radiance could be used to save energy, which could be incorporated into Radiance to facilitate its more widespread use, (3) Outline of a development plan and determination of what costs the DOE might incur if it were to proceed with the development of an improved version, and (4) Weighing the anticipated development costs against anticipated energy-saving benefits.

  7. 78 FR 12043 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of...

  8. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NJ (United States)

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  9. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  10. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  11. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  12. The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL

    2006-05-01

    Energy technology R&D is a cornerstone of U.S. energy policy. Understanding the potential for energy technology R&D to solve the nation's energy problems is critical to formulating a successful R&D program. In light of this, the U.S. Congress requested the National Research Council (NRC) to undertake both retrospective and prospective assessments of the Department of Energy's (DOE's) Energy Efficiency and Fossil Energy Research programs (NRC, 2001; NRC, 2005). ("The Congress continued to express its interest in R&D benefits assessment by providing funds for the NRC to build on the retrospective methodology to develop a methodology for assessing prospective benefits." NRC, 2005, p. ES-2) In 2004, the NRC Committee on Prospective Benefits of DOE's Energy Efficiency and Fossil Energy R&D Programs published a report recommending a new framework and principles for prospective benefits assessment. The Committee explicitly deferred the issue of estimating security benefits to future work. Recognizing the need for a rigorous framework for assessing the energy security benefits of its R&D programs, the DOE's Office of Energy Efficiency and Renewable Energy (EERE) developed a framework and approach for defining energy security metrics for R&D programs to use in gauging the energy security benefits of their programs (Lee, 2005). This report describes methods for estimating the prospective oil security benefits of EERE's R&D programs that are consistent with the methodologies of the NRC (2005) Committee and that build on Lee's (2005) framework. Its objective is to define and implement a method that makes use of the NRC's typology of prospective benefits and methodological framework, satisfies the NRC's criteria for prospective benefits evaluation, and permits measurement of that portion of the prospective energy security benefits of EERE's R&D portfolio related to oil. While the Oil Security Metrics (OSM) methodology described

  13. Quality assurance grading guidelines for research and development at DOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    Powell, T.B.; Morris, R.N.

    1993-01-01

    The quality assurance (QA) requirements for the US Department of Energy (DOE) are established in DOE Order 5700.6C. This order is applicable for all DOE departmental elements, management, and maintenance and operating contractors and requires that documented Quality Assurance Programs (QAPs) are prepared at all levels; it has one attachment. The DOE Office of Energy Research (DOE-ER) has issued a standard to ensure implementation of the full intent of this order in the ER community.

  14. Old Wine in New Bottles? Does Climate Policy Determine Bilateral Development Aid for Renewable Energy and Energy Efficiency?

    OpenAIRE

    Axel Michaelowa; Katharina Michaelowa

    2011-01-01

    Published by Palgrave Macmillan Since the UN Conference on Environment and Development in Rio de Janeiro in 1992 bilateral and multilateral donors have stressed that development assistance has increasingly been oriented towards climate-friendly interventions. With respect to energy aid, this should lead to a substantial increase in projects related to renewable energy and energy efficiency. Given a new database of hundreds of thousands of bilateral development assistance projects, we can asse...

  15. Evidence Base for the Development of an Enduring DND/CAF Operational Energy Strategy (DOES): Expressing Canadian Values Through Defence Operational Energy Stewardship Here and Abroad

    Science.gov (United States)

    2014-12-01

    exceptional energy densities. When including internal plus external components the volumetric 46 https://www.gov.uk/government/ publications /dcdc-global...and Hebabi, M. (2010), Canadian Energy Security: What Does Energy Security Mean for Canada?, Graduate School of Public and International Affairs...as represented by the Minister of National Defence, 2014 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la

  16. EVALUATION OF ENERGY PERFORMANCE USING DOE-2 ENERGY SIMULATION PROGRAM IN SINGAPORE

    Directory of Open Access Journals (Sweden)

    Po Seng Kian

    2000-01-01

    Full Text Available Recently, due to worldwide energy cost rising significantly, there has been an essential need to minimize the energy consumption. This global warning address many countries including Singapore realizing the important of energy efficiency in industries and buildings. This paper deals with analyzing the energy consumption of an 11-storey commercial building in Singapore using DOE-2 Energy Simulation Program. A study is made on the benefits derived from modifying the building envelope, space system setting, air-conditioning plant, and lighting. This encompasses a description of its quantitative impact on cooling load, energy consumption and energy saving achieved as compared with the original building. Following this, a life cycle costing is done to determine the economic benefits attained from this modification. This study shows that some alternative solutions can be achieved using energy simulation program to conserve the energy consumption.

  17. Research and development needs in the Department of Energy. Interim report

    International Nuclear Information System (INIS)

    1980-01-01

    In April 1980, the Deputy Secretary requested that the Board participate in the Department's review of the technology base component of DOE's R and D programs and that the Board address the following broad concerns: (1) The adequacy of the research underpinning for technology development programs; (2) Possible gaps or duplications of effort; (3) The balance among research performers (universities, laboratories, industry); (4) Significant R and D opportunities that DOE's programs may be missing. The Board offered the following recommendations to the Secretary: (1) Place greater research emphasis on environmental and health issues to ensure the success of the national synfuels program. (2) Provide more research in energy use and productivity projects. (3) Increase the level of effort in basic research. (4) Place higher priority for high-level radioactive waste disposal R and D. (5) Evaluate the various energy technology options on a common comparison basis to clearly identify the costs, benefits and risks of each option. (6) Develop more effective DOE procurement practices. Additional recommendations were directed to the Under Secretary and Assistant Secretaries of Energy reviewing specific issues in conservation, fossil, nuclear and solar energy, resource applications, environment, and energy research

  18. Prospective benefits analysis of the DOE Nuclear Energy portfolio: NE R&D program data assumptions, approach, & results

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Vatsal [Brookhaven National Lab. (BNL), Upton, NY (United States); Friley, Paul [Brookhaven National Lab. (BNL), Upton, NY (United States); Lee, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Reisman, Ann [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2006-10-31

    The Office of Nuclear Energy (NE) leads the U.S. Government’s efforts to develop new nuclear energy generation technologies to meet energy and climate goals, and to develop advanced proliferation-resistant nuclear fuel technologies that maximize energy from nuclear fuel; contributes to the R&D for a possible transition to a hydrogen economy; and maintains and enhances the national nuclear technology infrastructure. NE serves the present and future energy needs of the Nation by managing the safe operation and maintenance of the Department of Energy (DOE) critical nuclear in frastructure, providing nuclear technology goods and services, and conducting R&D.

  19. Experimental program to stimulate competitive energy research in North Dakota: Summary and significance of DOE Trainee research

    Energy Technology Data Exchange (ETDEWEB)

    Boudjouk, Philip

    1999-07-01

    The general goals of the North Dakota DOE/EPSCoR Program are to enhance the capabilities of North Dakota's researchers to conduct nationally competitive energy-related research and to develop science and engineering human resources to meet current and future needs in energy-related areas. Doctoral students were trained and energy research was conducted.

  20. National Energy Audit Tool for Multifamily Buildings Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; MacDonald, Michael [Sentech, Inc.; Accawi, Gina K [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2012-03-01

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) enables low-income families to reduce their energy costs by providing funds to make their homes more energy efficient. In addition, the program funds Weatherization Training and Technical Assistance (T and TA) activities to support a range of program operations. These activities include measuring and documenting performance, monitoring programs, promoting advanced techniques and collaborations to further improve program effectiveness, and training, including developing tools and information resources. The T and TA plan outlines the tasks, activities, and milestones to support the weatherization network with the program implementation ramp up efforts. Weatherization of multifamily buildings has been recognized as an effective way to ramp up weatherization efforts. To support this effort, the 2009 National Weatherization T and TA plan includes the task of expanding the functionality of the Weatherization Assistant, a DOE-sponsored family of energy audit computer programs, to perform audits for large and small multifamily buildings This report describes the planning effort for a new multifamily energy audit tool for DOE's WAP. The functionality of the Weatherization Assistant is being expanded to also perform energy audits of small multifamily and large multifamily buildings. The process covers an assessment of needs that includes input from national experts during two national Web conferences. The assessment of needs is then translated into capability and performance descriptions for the proposed new multifamily energy audit, with some description of what might or should be provided in the new tool. The assessment of needs is combined with our best judgment to lay out a strategy for development of the multifamily tool that proceeds in stages, with features of an initial tool (version 1) and a more capable version 2 handled with currently available resources. Additional

  1. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  2. Determination of the absolute jet energy scale in the DOe calorimeters

    International Nuclear Information System (INIS)

    Abbott, B.; Abolins, M.; Acharya, B.S.; Adam, I.; Adams, D.L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G.A.; Amos, N.; Anderson, E.W.; Astur, R.; Baarmand, M.M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J.F.; Belyaev, A.; Beri, S.B.; Bertram, I.; Bezzubov, V.A.; Bhat, P.C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N.I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V.S.; Butler, J.M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S.V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B.C.; Christenson, J.H.; Chung, M.; Claes, D.; Clark, A.R.; Cobau, W.G.; Cochran, J.; Coney, L.; Cooper, W.E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.A.C.; Cutts, D.; Dahl, O.I.; Davis, K.; De, K.; Signore, K. Del; Demarteau, M.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Diesburg, M.; Loreto, G. Di; Draper, P.; Ducros, Y.; Dudko, L.V.; Dugad, S.R.; Edmunds, D.; Ellison, J.; Elvira, V.D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O.V.; Evdokimov, V.N.; Fahland, T.; Fatyga, M.K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H.E.; Fisyak, Y.; Flattum, E.; Forden, G.E.; Fortner, M.; Frame, K.C.; Fuess, S.; Gallas, E.; Galyaev, A.N.; Gartung, P.; Gavrilov, V.; Geld, T.L.; II, R.J. Genik; Genser, K.; Gerber, C.E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gomez, B.; Gomez, G.; Goncharov, P.I.; GonzalezSolis, J.L.; Gordon, H.; Goss, L.T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P.D.; Green, D.R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Gruenendahl, S.; Guglielmo, G.; Guida, J.A.; Guida, J.M.; Gupta, A.; Gurzhiev, S.N.; Gutierrez, G.; Gutierrez, P.; Hadley, N.J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K.S.; Hall, R.E.; Hanlet, P.; Hansen, S.; Hauptman, J.M.; Hedin, D.; Heinson, A.P.; Heintz, U.; Hernandez-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J.D.; Hoeneisen, B.; Hoftun, J.S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A.S.; James, E.; Jaques, J.; Jerger, S.A.; Jesik, R.; Jiang, J.Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Joestlein, H.; Jun, S.Y.; Jung, C.K.; Kahn, S.; Kalbfleisch, G.; Kang, J.S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M.L.; Kim, C.L.; Kim, S.K.; Klima, B.; Klopfenstein, C.; Kohli, J.M.; Koltick, D.; Kostritskiy, A.V.; Kotcher, J.; Kotwal, A.V.; Kourlas, J.; Kozelov, A.V.; Kozlovsky, E.A.; Krane, J.; Krishnaswamy, M.R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q.Z.; Lima, J.G.R.; Lincoln, D.; Linn, S.L.; Linnemann, J.; Lipton, R.; Liu, Y.C.; Lobkowicz, F.; Loken, S.C.; Loekoes, S.; Lueking, L.; Lyon, A.L.; Maciel, A.K.A.; Madaras, R.J.; Madden, R.; Magan#=tilde#a-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H.S.; Markeloff, R.; Marshall, T.; Martin, M.I.; Mauritz, K.M.; May, B.; Mayorov, A.A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H.L.; Merkin, M.; Merritt, K.W.; Miettinen, H.; Mincer, A.; Mishra, C.S.; Mokhov, N.; Mondal, N.K.; Montgomery, H.E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V.S.; Narayanan, A.; Neal, H.A.; Negret, J.P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y.M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B.G.; Prosper, H.B.; Protopopescu, S.; Qian, J.; Quintas, P.Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sanchez-Hernandez, A.; Santoro, A.; Sawyer, L.; Schamberger, R.D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H.C.; Shivpuri, R.K.; Shupe, M.; Singh, H.; Singh, J.B.; Siroten ko, V.; Smart, W.; Smith, E.; Smith, R.P.; Snihur, R.; Snow, G.R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A.L.; Steinbrueck, G.; Stephens, R.W.; Stevenson, M.L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D.A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T.L.T.; Thompson, J.; Trippe, T.G.; Tuts, P.M.; Varelas, N.; Varnes, E.W.; Vititoe, D.; Volkov, A.A.; Vorobiev, A.P.; Wahl, H.D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J.T.; Wightman, J.A.; Willis, S.; Wimpenny, S.J.; Wirjawan, J.V.D.; Womersley, J.; Won, E.; Wood, D.R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z.H.; Zieminska, D.; Zieminski, A.; Zverev, E.G.; Zylberstejn, A.

    1999-01-01

    The DOe detector is used to study pp-bar collisions at the 1800 and 630 GeV center-of-mass energies available at the Fermilab Tevatron. To measure jets, the detector uses a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. Understanding the jet energy calibration is not only crucial for precision tests of QCD, but also for the measurement of particle masses and the determination of physics backgrounds associated with new phenomena. This paper describes the energy calibration of jets observed with the DOe detector at the two pp-bar center-of-mass energies in the transverse energy and pseudorapidity range E T >8 GeV and vertical bar η vertical bar <3

  3. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO2 emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  4. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. D.; Baechler, H. C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has sponsored a study to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration study was conducted by DOE and the Pacific Northwest Laboratory (PNL). The demonstration is the second step in a three-step process: I) development of interim standards, 2) demonstration of the interim standards, and 3) development of final standards. The standards are mandatory for federal agency housing procurements. Nevertheless, PNL found at the start of the demonstration that agency use of the interim standards had been minimal. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. To fulfill this aspect of the legislation, the standards use a computer software program called COSTSAFR which generates a point system that individualizes the standards to specific projects based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects. For the demonstration, PNL and DOE chose five federal agency housing projects which had been built in diverse geographic and climate regions. Participating agencies were the Air Force, the Army (which provided two case studies), the Navy, and the Department of Health and Human Services. PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to the procurement and design of each housing project. The demonstration started at the point in the project where agencies would establish their energyefficiency requirements for the project and followed the procurement process through the designers' use of the point

  5. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  6. Federal role in energy research and development

    International Nuclear Information System (INIS)

    1983-02-01

    The appropriateness of the federal role in each of DOE's major energy R and D programs was evaluated. Several subcriteria were identified by which each program would be judged: (1) the current and expected future scope and amount of private-sector funding relative to requirements for an orderly R and D program; (2) amount of development time to first commercial payoff; (3) degree of market, technical, and policy risks of R and D to private sector development; (4) need for federal energy R and D involvement to support regulatory, environmental, or policy responsibilities. Appropriate primary, complementary, or minimal roles were assigned in each of the energy technology programs: electric-related supply, liquids and gas related supply, conservation and improved end-use utilization, and technology base

  7. Spain and the US sign bilateral agreements for energy research and development

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    On June 6, 1986, two Spanish Governmental agencies and the US Department of Energy (DOE) signed a Memorandum of Understanding for cooperation in energy research and development. One memorandum was signed by the DOE and the Spanish Junta de Energia Nuclear, and the other with the Spanish Instituto Geologico y Minero. The fields of cooperation covered by the Memoranda of Understanding include: nuclear energy, including nuclear safety technology; radioactive waste management; high energy physics; renewable energy, including biomass and geothermal; coal and gas technologies; environmental impact of energy technologies; and energy conservation. Cooperative mechanisms may include exchanges of scientists, engineers, and other specialists for participation in research, development, analysis, design, and experimental activities conducted in research centers, laboratories, and engineering offices. Exchanges also may be conducted in such areas as samples, materials, instruments, and testing components. Exchange of information will be conducted through seminars or other meetings held alternately in the US and Spain

  8. Energy research at DOE, was it worth it?: energy efficiency and fossil energy research 1978 to 2000

    National Research Council Canada - National Science Library

    2001-01-01

    In legislation appropriating funds for DOE's fiscal year (FY) 2000 energy R&D budget, the House Interior Appropriations Subcommittee directed an evaluation of the benefits that have accrued to the nation...

  9. U.S. Department of Energy Wind Turbine Development Projects

    International Nuclear Information System (INIS)

    Migliore, P.G.; Calvert, S.D.

    1999-01-01

    This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements

  10. Old Wine in New Bottles? Does Climate Policy Determine Bilateral Development Aid for Renewable Energy and Energy Efficiency?

    Directory of Open Access Journals (Sweden)

    Axel Michaelowa

    2011-05-01

    Full Text Available Published by Palgrave MacmillanSince the UN Conference on Environment and Development in Rio de Janeiro in 1992 bilateral and multilateral donors have stressed that development assistance has increasingly been oriented towards climate-friendly interventions. With respect to energy aid, this should lead to a substantial increase in projects related to renewable energy and energy efficiency. Given a new database of hundreds of thousands of bilateral development assistance projects, we can assess whether such a reorientation has indeed taken place. We find that, contrary to expectations, the share of bilaterally-funded renewable energy and energy efficiency projects did not increase over the period from 1980 to 2008. This share fluctuated greatly, following the price of oil, peaking with the second oil crisis of the early 1980s. The impacts of global climate policy treaties are minor or inexistent. ‘Traditional’ renewable energies such as hydro and geothermal declined, while “new” renewables showed two peaks in the early 1980s and late 1990s. Differences between donor countries are huge. Several countries, including climate sceptics such as the US and Australia, but also the UK and Switzerland, saw a consistent decline. The self-proclaimed climate pioneers such as Germany, the Netherlands, Norway and Sweden show peaks related to both the oil crises and international climate policy. Only in Austria, Denmark, Finland and Spain can ‘new’ climate mitigation development assistance be found.

  11. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  12. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Science.gov (United States)

    2010-01-01

    ... facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  13. Regency Centers Develops Leadership in Energy-Efficient Renovations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Regency Centers (Regency) partnered with the Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% versus requirements set by Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  14. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  15. Empirical Evaluation of Two Best-Practices for Energy-Efficient Software Development

    NARCIS (Netherlands)

    Procaccianti, G.; Fernandez, H.J.; Lago, P.

    2016-01-01

    Background. Energy efficiency is an increasingly important property of software. A large number of empirical studies have been conducted on the topic. However, current state-of-the-Art does not provide empirically-validated guidelines for developing energy-efficient software. Aim. This study aims at

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  17. Development of DOE complexwide authorized release protocols for radioactive scrap metals

    International Nuclear Information System (INIS)

    Chen, S. Y.

    1998-01-01

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D and D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D and D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities

  18. Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM's mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST's primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries

  19. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Perez, D.A. (ed.)

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy's (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes.

  20. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    International Nuclear Information System (INIS)

    Perez, D.A.

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy's (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes

  1. Renewable Energy Policies and Market Developments

    International Nuclear Information System (INIS)

    Van Dijk, A.L.; Beurskens, L.W.M.; Boots, M.G.; Kaal, M.B.T.; De Lange, T.J.; Van Sambeek, E.J.W.; Uyterlinde, M.A.

    2003-03-01

    Reviews and an analysis of the policy support for the stimulation of renewable electricity in the current energy market are presented, and an overview is given of the main new developments influencing the renewable energy market. The report is part of the analysis phase of the project REMAC 2000, which has led to the publication of a roadmap for the acceleration of the RE market. REMAC 2000 aims to promote a sustainable growth of the renewable energy market. For such a sustainable growth, important success factors are not only effectiveness of policy, but also security for investors, which is essential for building up a sector and developing the renewable energy market. Consistency of regulations and policies at different levels and between policy fields form a condition for security, as does the active involvement of market stakeholders. Further, the increasing role of trade within the energy and renewable energy sector leads to a priority for international coherence of policies and markets. To guarantee a sustainable growth of the renewable energy sector, a broad perspective of policy makers and planners is required- to include a long time frame, a comprehensive view of related policy fields and authorities involved, and an orientation that looks beyond national borders

  2. Does moving towards renewable energy causes water and land inefficiency? An empirical investigation

    International Nuclear Information System (INIS)

    Al-mulali, Usama; Solarin, Sakiru Adebola; Sheau-Ting, Low; Ozturk, Ilhan

    2016-01-01

    This study investigates the effect of renewable energy production on water and land footprint in 58 developed and developing countries for the period of 1980–2009. Utilizing the ecological footprint as an indicator, the fixed effects, difference and system generalized method of moment (GMM) approaches were employed and eight different models were constructed to achieve robustness in the empirical outcomes. Despite the use of different methods and models, the outcome was the same whereby GDP growth, urbanization, and trade openness increase the water and land footprint. Moreover, renewable energy production increases the water and land inefficiency because of its positive effect on ecological footprint. Additionally, based on the square of GDP it is concluded that the EKC hypothesis does not exist while the square of renewable energy production indicates that renewable energy production will continue to increase water and land footprint in the future. From the outcome of this study, a number of recommendations were provided to the investigated countries. - Highlights: •The effect of renewable energy production on water and land footprint is studied. •58 developed and developing countries were examined for the period of 1980–2009. •Eight different models were constructed to achieve robustness in the outcomes. •GDP, urbanization, and trade openness increase the water and land footprint. •Renewable energy production increases the water and land inefficiency.

  3. DOE (Department of Energy) natural phenomena guidelines flood design and evaluation

    International Nuclear Information System (INIS)

    McCann, M.W.; Savy, J.B.

    1989-01-01

    Design and evaluation guidelines for DOE (Department of Energy) facilities subjected to earthquake, wind/tornado, and flood have been developed and presented in UCRL-15910 (Ref.1). This paper summarizes Chapter 6 of UCRL-15910 describing the philosophy and procedures for the design or evaluation of facilities for flood. The flood design and evaluation guidelines seek to ensure that DOE facilities satisfy the performance goals described in UCRL-15910. The guidelines are applicable to new and existing construction; however, in the evaluation of existing facilities, fewer design options may be available to satisfy the performance goals. Evaluation of the flood design for a facility consists of: (1) defining the design basis flood (DBFL), (2) evaluating site conditions (e.g., facility location, location of openings and doorways), and (3) assessing flood design strategies (e.g., build above DBFL levels, harden the site)

  4. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    For this project, Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to develop the first Zero Energy Ready Home (ZERH) in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. Along with meeting ZERH standards, Amaris also achieved certifications for Leadership in Energy & Environmental Design for Homes v4, MN Green Path Emerald, and a Builders Association of the Twin Cities Reggie Award of Excellence. The home achieves a HERS score of 41 without photovoltaics; with PV, the home achieves a HERS score of 5.

  5. DOE Zero Energy Ready Home Case Study: Weiss Building & Development, Downers Grove, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    This single-family home built in a peat bog has underground storage tanks and drainage tanks, blown fiberglass insulation, coated rigid polyisocyanurate, and flashing. The 3,600-square-foot custom home built by Weiss Building & Development LLC is the first home in Illinois certified to the DOE Challenge Home criteria, which requires that homes meet the EPA Indoor airPlus guidelines.The builder won a 2013 Housing Innovation Award in the custom builder category.

  6. US DOE Pipeline Unplugging Requirements Development

    International Nuclear Information System (INIS)

    Rivera, J.; McDaniel, D.

    2009-01-01

    Department of Energy (DOE) sites around the country have an ongoing effort to transport and process several tons of radioactive waste in the form of slurry (liquids and solids) from storage tanks to processing facilities. The system of pipes used for the transportation of this waste needs technology for maintenance and for the prevention (and correction) of pipeline plugging. The unplugging technologies that have been tested and evaluated at Florida International University include ones from NuVision Engineering, AIMM and AquaMiser. NuVision's technology acts as an ocean wave does on beach erosion. It can operate on a long pipeline that has drained down below a blockage. AIMM Technology's Hydrokinetic TM process uses a sonic resonance with a cleaning water stream. This sonic resonance travels through the water stream and transfers vibration to both the pipe and the blockage. The AquaMiser line of water blasting equipment combines 15,000- to 40,000-psi water injection technology to unplug pipelines. Some sites cannot allow this level of pressure in their pipes. After reviewing the results of every test, including the benefits, advantages and disadvantages of each technology, requirements were developed for pressure, personnel training, environmental concerns, safety, and compatibility with current systems, operability, reliability, maintainability and cost. (authors)

  7. Water Use for Unconventional Energy Development: How Much, What Kind, and to What Reaction?

    Science.gov (United States)

    Grubert, E.

    2017-12-01

    Water resources—access to water, protection of water, and allocation of water in particular—are a major priority for Americans, but water use for the energy sector has not previously been well characterized. Water use and management associated with unconventional energy development is of special interest, in part because it is often new to the locations and contexts where it occurs. This presentation focuses on three major questions about water use for unconventional energy development, drawing on both engineering and anthropological research. First, using results from a recent study of water use for energy in the entire United States, how much water does the US use for unconventional energy resources, and how does that compare with water use for more mature fuel cycles? Second, based on that same study, what kind of water is used for these unconventional energy resource fuel cycles? Specifically, where does the water come from, and what is its quality? Finally, drawing on recent case studies in the US and elsewhere, what has the reaction been to these water uses, and why does that matter? Case studies focused on oil and natural gas resources illustrate societal reactions to issues of both water management, particularly related to induced seismicity associated with produced water injection, and water allocation, particularly related to hydraulic fracturing. Overall, recent work finds that public concern about water used for unconventional energy resources is often better explained by observed or anticipated local impacts and the uncertainty surrounding these impacts than by specifics about quantities, allocation, and management techniques. This work provides both quantitative and qualitative characterization of water management and allocation for unconventional energy development.

  8. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  9. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    Science.gov (United States)

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  10. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  11. Quality assurance programs developed and implemented by the US Department of Energy`s Analytical Services Program for environmental restoration and waste management activities

    Energy Technology Data Exchange (ETDEWEB)

    Lillian, D.; Bottrell, D. [Dept. of Energy, Germntown, MD (United States)

    1993-12-31

    The U.S. Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste Management (EM) has been tasked with addressing environmental contamination and waste problems facing the Department. A key element of any environmental restoration or waste management program is environmental data. An effective and efficient sampling and analysis program is required to generate credible environmental data. The bases for DOE`s EM Analytical Services Program (ASP) are contained in the charter and commitments in Secretary of Energy Notice SEN-13-89, EM program policies and requirements, and commitments to Congress and the Office of Inspector General (IG). The Congressional commitment by DOE to develop and implement an ASP was in response to concerns raised by the Chairman of the Congressional Environment, Energy, and Natural Resources Subcommittee, and the Chairman of the Congressional Oversight and Investigations Subcommittee of the Committee on Energy and Commerce, regarding the production of analytical data. The development and implementation of an ASP also satisfies the IG`s audit report recommendations on environmental analytical support, including development and implementation of a national strategy for acquisition of quality sampling and analytical services. These recommendations were endorsed in Departmental positions, which further emphasize the importance of the ASP to EM`s programs. In September 1990, EM formed the Laboratory Management Division (LMD) in the Office of Technology Development to provide the programmatic direction needed to establish and operate an EM-wide ASP program. In January 1992, LMD issued the {open_quotes}Analytical Services Program Five-Year Plan.{close_quotes} This document described LMD`s strategy to ensure the production of timely, cost-effective, and credible environmental data. This presentation describes the overall LMD Analytical Services Program and, specifically, the various QA programs.

  12. Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells

    Science.gov (United States)

    2011-10-01

    cell research, development, and demonstration. Along with the general program overview, Dr. Satyapal highlighted the vast amount of biogas resources...Page ii DOD-DOE Workshop Summary on Converting Waste to Energy Using Fuel Cells List of Tables Table 1. Comparison by Generator Type: Based on 40...Table 2. Typical Composition of Biogas from Various Waste Streams ....................................................... 8 Table D-1

  13. Progress towards developing consistent design and evaluation guidelines for DOE facilities subjected to natural phenomena hazards

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; McDonald, J.R.; McCann, M.W. Jr.; Reed, J.W.

    1985-01-01

    Probabilistic definitions of earthquake, wind and tornado natural phenomena hazards for many Department of Energy (DOE) facilities throughout the United States have been developed. In addition, definitions of the flood hazards which might affect these locations are currently being developed. The Department of Energy Natural Phenomena Hazards Panel is now preparing a document to provide guidance and criteria for DOE facility managers to assure that DOE facilities are adequately constructed to resist the effects of natural phenomena such as earthquake, strong wind and flood. The intent of this document is to provide instruction on how to utilize the hazard definitions to evaluate existing facilities and design new facilities in a manner such that the risk of adverse consequences is consistent with the cost, function, and danger to the public or environment of the facility. Potential effects on facilities of natural phenomena hazards are emphasized in this paper. The philosophy for mitigating these effects to be employed in the design and evaluation guidelines is also presented

  14. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  15. Energy security, public policy, and the role of the DOE Office of Energy Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, D.J.; Curlee, T.R. (Oak Ridge National Lab., TN (United States)); Bohi, D.R. (Resources for the Future, Inc., Washington, DC (United States))

    1991-11-01

    This paper addresses the concept of energy security, the costs and benefits of energy security, and policies which could potentially alter these costs and benefits. These issues are considered from the perspective of the DOE's Office of Energy Emergencies, with the goal of determining if alternative or additional roles should be open to this Office. The approach taken is limited to the economic costs and benefits of energy security, reflecting our view that the bulk of important energy security issues can at least be approached from this perspective. An energy emergency results from a sudden change in the quantity, market price, and/or social value of energy, in combination with a domestic and/or world wide energy system that cannot rapidly adjust to that change. We do not believe that mitigating the impacts of such events is always necessary, nor that it is uniquely a governmental responsibility. In fact, the first recourse in emergency preparedness should always be to the private sector. Government should deal with three different aspects of emergency energy activities. First, it should condition the decision making environment by seeing that adequate information about energy conditions is available and that its own policy position is clear. Next, it should evaluate the preparedness measures undertaken by the private sector. Finally, if it finds private sector preparation to be inadequate, government has a variety of direct and indirect means with which to intervene. One direct measure currently used is the buildup and drawdown of the strategic petroleum reserve (SPR). Others include contingency plans to override market allocations during wartime, as might be developed under the graduated mobilization response (GMR). Indirect means include a variety of tax and transfer schemes that alter existing private sector incentives to prepare. Well conceived monetary and fiscal policies complete the tools. 1 fig., 1 tab.

  16. Energy security, public policy, and the role of the DOE Office of Energy Emergencies

    International Nuclear Information System (INIS)

    Bjornstad, D.J.; Curlee, T.R.; Bohi, D.R.

    1991-11-01

    This paper addresses the concept of energy security, the costs and benefits of energy security, and policies which could potentially alter these costs and benefits. These issues are considered from the perspective of the DOE's Office of Energy Emergencies, with the goal of determining if alternative or additional roles should be open to this Office. The approach taken is limited to the economic costs and benefits of energy security, reflecting our view that the bulk of important energy security issues can at least be approached from this perspective. An energy emergency results from a sudden change in the quantity, market price, and/or social value of energy, in combination with a domestic and/or world wide energy system that cannot rapidly adjust to that change. We do not believe that mitigating the impacts of such events is always necessary, nor that it is uniquely a governmental responsibility. In fact, the first recourse in emergency preparedness should always be to the private sector. Government should deal with three different aspects of emergency energy activities. First, it should condition the decision making environment by seeing that adequate information about energy conditions is available and that its own policy position is clear. Next, it should evaluate the preparedness measures undertaken by the private sector. Finally, if it finds private sector preparation to be inadequate, government has a variety of direct and indirect means with which to intervene. One direct measure currently used is the buildup and drawdown of the strategic petroleum reserve (SPR). Others include contingency plans to override market allocations during wartime, as might be developed under the graduated mobilization response (GMR). Indirect means include a variety of tax and transfer schemes that alter existing private sector incentives to prepare. Well conceived monetary and fiscal policies complete the tools. 1 fig., 1 tab

  17. The Investment Environment for Renewable Energy Development in Lithuania: The Electricity Sector

    Directory of Open Access Journals (Sweden)

    Milčiuvienė Saulė

    2014-06-01

    Full Text Available The article analyzes the investment environment in renewable electricity generation capacities, evaluating the credibility of long term renewable energy targets, the stability of promotion schemes and the impartiality of national administrative procedure. The article explores two main questions: (i are the EU and Lithuanian energy policy targets and promotion schemes credible enough to convince private investors to put their money in renewable energy development; (ii does national administrative procedure put a disproportional burden on renewable energy investors or on certain group of investors? The assessment of the investment environment includes a large number of criteria, but we analyze three of them: the stability of long term strategy; the attractiveness of promotionmeasures; and the simplicity and transparency of administrative procedure. Two further criteria are investigated: the stability of targets in renewable energy and the stability of promotional measures. The greatest uncertainty for investors occurs because of constantly changing support schemes of renewable energy sources-schemes that are not harmonized among the member States. At the national level the main driver in the development of small generators is the feed-in tariff. However, the high feed-in tariff does not always guarantee the smooth development of small scale generators of renewable energy.

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  19. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  20. Local power and land use: spatial implications for local energy development

    NARCIS (Netherlands)

    Boer, C.L.; Hewitt, Richard; Bressers, Johannes T.A.; Martínez Alonso, Patricia; Hernández Jiménez, Verónica; Diaz Pacheco, Jaime; Bermejo, Lara Roman

    2015-01-01

    Background The decentralised and private nature of small-scale renewable energy development does not fit traditional models of government planning and oversight. The land use impacts related to these developments are not well understood and data is lacking related to the environmental, social and

  1. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  3. Relationship between body weight at first mating and subsequent body development, feed intake, and reproductive performance of rabbit does

    NARCIS (Netherlands)

    Rommers, J.M.; Meijerhof, R.; Noordhuizen, J.P.T.M.; Kemp, B.

    2002-01-01

    A retrospective study was performed to evaluate the relationships between BW at first insemination and subsequent body development, feed intake, reproductive performance, and culling rate of rabbit does. Young rabbit does are vulnerable to body energy deficit in first lactation, resulting in

  4. Developing integrated benchmarks for DOE performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Barancik, J.I.; Kramer, C.F.; Thode, Jr. H.C.

    1992-09-30

    The objectives of this task were to describe and evaluate selected existing sources of information on occupational safety and health with emphasis on hazard and exposure assessment, abatement, training, reporting, and control identifying for exposure and outcome in preparation for developing DOE performance benchmarks. Existing resources and methodologies were assessed for their potential use as practical performance benchmarks. Strengths and limitations of current data resources were identified. Guidelines were outlined for developing new or improved performance factors, which then could become the basis for selecting performance benchmarks. Data bases for non-DOE comparison populations were identified so that DOE performance could be assessed relative to non-DOE occupational and industrial groups. Systems approaches were described which can be used to link hazards and exposure, event occurrence, and adverse outcome factors, as needed to generate valid, reliable, and predictive performance benchmarks. Data bases were identified which contain information relevant to one or more performance assessment categories . A list of 72 potential performance benchmarks was prepared to illustrate the kinds of information that can be produced through a benchmark development program. Current information resources which may be used to develop potential performance benchmarks are limited. There is need to develop an occupational safety and health information and data system in DOE, which is capable of incorporating demonstrated and documented performance benchmarks prior to, or concurrent with the development of hardware and software. A key to the success of this systems approach is rigorous development and demonstration of performance benchmark equivalents to users of such data before system hardware and software commitments are institutionalized.

  5. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Dimitrios C. Papageorgopoulos

    2012-12-01

    Full Text Available Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs. Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC and that reduce methanol crossover (DMFC will be discussed.

  6. Testing the rationality of DOE's energy price forecasts under asymmetric loss preferences

    International Nuclear Information System (INIS)

    Mamatzakis, E.; Koutsomanoli-Filippaki, A.

    2014-01-01

    This paper examines the rationality of the price forecasts for energy commodities of the United States Department of Energy's (DOE), departing from the common assumption in the literature that DOE's forecasts are based on a symmetric underlying loss function with respect to positive vs. negative forecast errors. Instead, we opt for the methodology of Elliott et al. (2005) that allows testing the joint hypothesis of an asymmetric loss function and rationality and reveals the underlying preferences of the forecaster. Results indicate the existence of asymmetries in the shape of the loss function for most energy categories with preferences leaning towards optimism. Moreover, we also examine whether there is a structural break in those preferences over the examined period, 1997–2012. - Highlights: • Examine the rationality of DOE energy forecasts. • Departing from a symmetric underlying loss function. • Asymmetries exist in most energy prices. • Preferences lean towards optimism. • Examine structural breaks in those preferences

  7. The growth of income and energy consumption in six developing countries

    International Nuclear Information System (INIS)

    Sari, Ramazan; Soytas, Ugur

    2007-01-01

    This paper reexamines the inter-temporal link between energy consumption and income in six developing countries with diverse economic backgrounds and energy statistics, in a production function framework. We employ the generalized variance decompositions and generalized impulse response techniques to see if the growth of income and energy consumption contains considerable information to predict each other. In all countries, energy appears as an essential factor of production. Results indicate that energy may be a relatively more important input than labor and/or capital in some countries. Hence, neutrality of energy does not seem to hold

  8. 76 FR 2903 - Interconnection of the Proposed Hyde County Wind Energy Center Project (DOE/EIS-0461), and...

    Science.gov (United States)

    2011-01-18

    ... Wind Energy Center Project (DOE/EIS-0461), and Proposed Crowned Ridge Wind Energy Center Project (DOE... to prepare environmental impact statements (EISs) for the Hyde County Wind Energy Center Project and the Crowned Ridge Wind Energy Center Project in the Federal Register on November 30, 2010. Both...

  9. TASK 2.5.4 DEVELOPMENT OF AN ENERGY SAVINGS CALCULATOR

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; New, Joshua Ryan [ORNL; Desjarlais, Andre Omer [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL); Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL)

    2010-03-01

    California s major energy utilities and the California Energy Commission (CEC) are seeking to allocate capital that yields the greatest return on investment for energy infrastructure that meets any part of the need for reliable supplies of energy. The utilities are keenly interested in knowing the amount of electrical energy savings that would occur if cool roof color materials are adopted in the building market. To meet this need the Oak Ridge National Laboratory and the Lawrence Berkeley National Laboratory (LBNL) have been collaborating on a Public Interest Energy Research (PIER) project to develop an industry-consensus energy-savings calculator. The task was coordinated with an ongoing effort supported by the DOE to develop one calculator to achieve both the DOE and the EPA objectives for deployment of cool roof products. Recent emphasis on domestic building energy use has made the work a top priority by the Department of Energy s (DOE) Building Technologies Program. The Roof Savings Calculator (RSC) tool is designed to help building owners, manufacturers, distributors, contractors and practitioners easily run complex simulations. The latest web technologies and usability design were employed to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on the best available statistical evidence and can provide energy and cost savings after the user selects nothing more than the building location. A key goal for the tool is to promote the energy benefits of cool color tile, metal and asphalt shingle roof products and other energy saving systems. The RSC tool focuses on applications for the roof and attic; however, the code conducts a whole building simulation that puts the energy and heat flows of the roof and attic into the perspective of the whole house. An annual simulation runs in about 30 sec. In addition to cool

  10. Developing Research Capabilities in Energy Biosciences

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Donald D.

    2008-01-01

    Scientists founded the Life Sciences Research Foundation (LSRF) in 1983 as a non-profit pass through foundation that awards post doctoral fellowships in all areas of the life sciences. LSRF scientists review hundreds of applications each year from PhDs seeking support. For example this year, our 26th, we received 800 applications and our peer review committee will choose about 50 finalists who are eligible for these awards. We have no endowment so we solicit sponsors each year. The fellowships are sponsored by research oriented companies, foundations, philanthropists, the Howard Hughes Medical Institute, and other organizations who believe in the value of awarding fellowships to the best and the brightest young scientists. Our web site has a complete listing of all details about LSRF (http://www.lsrf.org/). In the late 1980s the Division of Bioscience in the Office of Basic Energy Science, a granting agency of the Department of Energy, joined this partnership. Bioscience's mandate was to support non-medical microbiology and plant sciences. LSRF received a series of 5 year grants from DOE to award fellowships to our top applicants in these fields of research. We began to support DOE-Energy Bioscience post doctoral fellows in 1989. From 1989 through 2004 when DOE funding ended our partnership awarded 41 DOE-Energy Bioscience Fellows of the Life Sciences Research Foundation. Each of these was a three year fellowship. DOE-Energy Biosciences was well matched with LSRF. Our extensive peer review screened applicants in all areas of the life sciences. Most LSRF sponsors are interested in supporting fellows who work on diseases. At the time that we began our partnership with DOE we had no sponsors willing to support plant biology and non medical microbiology. For 15 years DOE played a major role in the training of the very best young scientists in these important fields of research simply through its support of LSRF post doctoral fellows. Young scientists interested in

  11. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  12. Why does the energy intensity of freight transport rise?

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, D [Scientific Council for Government Policy (Netherlands)

    1996-12-01

    In advanced economies it is normal to observe declining energy intensities. Both improvements in conversion efficiency and in organisational efficiency of energy use cause energy demand to grow at a slower pace than the economy. In this context it is somewhat particular that in the vital sector of freight transport the energy intensity does not decline, but instead increases. The energy demand of this sector only takes a small share of the total energy demand. According to the World Energy Council the transport sector takes 30 percent of world energy demand and freight transport again takes 30 percent of the transport sector share, maritime transport excluded. Despite this small share some explanation is needed why the increase in energy demand form the volume growth of freight demand is not at least partly countered by a decline in the energy intensity. The purpose of this paper is to review some of the explanations that are given in the literature and to support these explanations with empirical evidence on the case of the Netherlands. (EG)

  13. The DOE technology development programme on severe accident management

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Moore, R.A.; Theofanous, T.G.

    1998-01-01

    The US Department of Energy (DOE) is sponsoring a programme in technology development aimed at resolving the technical issues in severe accident management strategies for advanced and evolutionary light water reactors (LWRs). The key objective of this effort is to achieve a robust defense-in-depth at the interface between prevention and mitigation of severe accidents. The approach taken towards this goal is based on the Risk Oriented Accident Analysis Methodology (ROAAM). Applications of ROAAM to the severe accident management strategy for the US AP600 advanced LWR have been effective both in enhancing the design and in achieving acceptance of the conclusions and base technology developed in the course of the work. This paper presents an overview of that effort and its key technical elements

  14. Wyoming DOE EPSCoR

    Energy Technology Data Exchange (ETDEWEB)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  15. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Perez, D.A. [ed.

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy`s (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes.

  16. Geothermal Energy Geopressure Subprogram, GCO-DOE, Pleasant Bayou No. 1

    Energy Technology Data Exchange (ETDEWEB)

    none

    1978-03-01

    This Environmental Assessment (EA) has been prepared to assess the environmental implications of the Department of Energy's proposal to drill, complete, and test one geopressure well located in Brazoria County on a 2 hectares (five acre) test site 64 km (40 mi) south of Houston, Abstract 107, Perry and Austin Survey, Brazoria County, TX. The test well is herein referred to as GCO-DOE Pleasant Bayou No. 1. A maximum of four disposal wells will be located within .8 km (1/2 mi) of the proposed well. The DOE and the University of Texas Center for Energy Studies propose to operate the test facility for three years to evaluate the geopressure potential of the subsurface. Tests to be conducted include flow rates, fluid composition, temperature, gas content, geologic characteristics, and the land subsidence potential for subsequent production.

  17. Does Energy for the Sustainable Development of the World's Poor Stand a Fighting Chance?

    Energy Technology Data Exchange (ETDEWEB)

    Freudenschuss-Reichl, Irene

    2007-07-01

    Over the past few years, new developments have pushed energy even higher up the political agenda. The EU now sees energy security for its inhabitants as a main foreign policy objective. Climate change concerns have reached the political mainstream and create a push for big reduction projects that are cost effective. International institutions continue to be ineffective to support major paradigm shifts on energy efficiency and renewables. All these factors taken together may make it ever more unlikely for the poor to gain access to modern energy services in a timely and affordable manner. Yet without this access, attainment of the Millennium Development Goals will be elusive. The paper summarizes positive developments both among donors and among partner countries to bring energy to the poor despite the mounting obstacles and proposes further action.

  18. Analysis to develop a program for energy conservation in irrigated agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Brix, V.L.; Eakin, D.E.; Laughlin, B.M.

    1978-09-01

    It is estimated by the FEA that 0.26 quadrillion Btus of energy is annually required to irrigate crops in the USA. The development of a DOE program for energy conservation in irrigation is described. Information is included on: studies of how this energy consumption can be reduced and by how much; engineering and economic studies of irrigation equipment and methods; proposals for improving the efficiency of pumps and prime movers; projects selected for demonstrating irrigation energy conservation; and recommendations for further research. (LCL)

  19. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  20. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  1. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  2. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    International Nuclear Information System (INIS)

    Grove, L.K.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change

  3. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Grove, L.K. (ed.)

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  4. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  5. Problems and solutions in application of IEEE standards at Savannah River Site, Department of Energy (DOE) nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Y.S.; Bowers, T.L.; Chopra, B.J.; Thompson, T.T.; Zimmerman, E.W.

    1993-01-01

    The Department of Energy (DOE) Nuclear Material Production Facilities at the Savannah River Site (SRS) were designed, constructed, and placed into operation in the early 1950's, based on existing industry codes/standards, design criteria, analytical procedures. Since that time, DOE has developed Orders and Polices for the planning, design and construction of DOE Nuclear Reactor Facilities which invoke or reference commercial nuclear reactor codes and standards. The application of IEEE reactor design requirements such as Equipment Qualification, Seismic Qualification, Single Failure Criteria, and Separation Requirement, to non-reactor facilities has been a problem since the IEEE reactor criteria do not directly confirm to the needs of non-reactor facilities. SRS Systems Engineering is developing a methodology for the application of IEEE Standards to non-reactor facilities at SRS

  6. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    International Nuclear Information System (INIS)

    Boes, K.S.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment)

  7. Department of Energy (DOE) transportation system for nuclear materials and the role of state law enforcement agencies

    International Nuclear Information System (INIS)

    Jones, J.M.; Hoover, T.W.

    1978-01-01

    The Department of Energy has been assigned the responsibility for the safe and secure movement of strategic quantities of government-owned special nuclear material as well as classified material. To accomplish this mission, a transportation system has been developed which takes advantage of advanced technology and other features to reduce vulnerability to terrorists. The system consists of a careful balance of specially-trained personnel, procedures and sophisticated equipment. These, in combination, generally allow the system to be self-sufficient. However, should the need arise, DOE will request assistance from state law enforcement agencies. The primary contact for assistance is the state police or highway patrol. DOE, with the assistance of Sandia Laboratories, has surveyed state police agencies throughout the nation. A data base has been created which includes the results of these surveys and a numerical description of DOE transportation routes. This data base, along with a ''Response'' model developed by Sandia Laboratories, allows projections of officer availability to be made for all of DOE's routes. This paper will describe the DOE Transportation System, the role of state law enforcement agencies in support of the system, the nationwide state policy survey, and the operation of the response computer model

  8. Global energy futures and human development: a framework for analysis

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    2001-01-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  9. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  10. Particles, processes and materials for modern energy needs: Development of a DOE-EPSCoR project in Puerto Rico. Final report for September 30, 1997 - August 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Brad R.

    2000-09-29

    Twenty-eight (28) faculty researchers focused on High Energy Particle Physics, Novel Thin Film Materials for Optoelectronic Applications, and Catalytic Processes for Energy Sources and Environmental Detoxification to address problems cited as priorities by the DOE and local agencies. The High Energy Particle Physics cluster has DOE-competitive funding, and the number of cluster investigators who have competitive mainstream funding has increased from 2 to 13 since the inception of the program. In this reporting period, 8 postdoctorals, 38 graduate studnets, and 23 undergraduates were involved in DOE projects, and 191 publications and 238 presentations were generated. The UPR-Arecibo Integrated Science Multi-Use Laboratory provided workshops and other activities that directly impacted 360 teachers and 600 students and indirectly impacted over 25,000 through the enhancement of teachers' skills and knowledge.

  11. U.S. DOE’s Energy Treasure Hunt Exchange In-Plant Trainings – DOE Resources, Early Results and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [ORNL; Brockway, Walter F. [ORNL; Lung, Bruce [U.S. Department of Energy (DOE); Thirumaran, Kiran [ORNL; Wenning, Thomas J. [ORNL

    2017-06-01

    The primary objective of the Department of Energy’s (DOE) Energy Treasure Hunt In-Plant Training (INPLT) is to train Better Plants partner employees to lead and conduct future energy efficiency Treasure Hunts within their facilities without DOE assistance. By taking a “learning-by-doing” approach, this INPLT, like other DOE INPLT trainings, has the added benefit of uncovering real energy and cost-saving opportunities. This INPLT leverages DOE and Better Plants technical staff, resources and tools and the EPA “Energy Treasure Hunt Guide: Simple Steps to Finding Energy Savings” process. While Treasure Hunts are a relatively well-known approach to identifying energy-savings in manufacturing plants, DOE is adding several additional elements in its Treasure Hunt Exchanges. The first element is technical assistance and methodology. DOE provides high-quality technical resources, such as energy efficiency calculators, fact sheets, source books etc., to facilitate the Treasure Hunt process and teaches four fundamentals: 1) how to profile equipment, 2) how to collect data, and 3), data & ROI calculation methodologies. Another element is the “train the trainer” approach wherein the training facilitator will train at least one partner employee to facilitate future treasure hunts. Another element is that DOE provides energy diagnostic equipment and teaches the participants how to use them. Finally, DOE also offers partners the opportunity to exchange teams of employees either within a partners’ enterprise or with other partners to conduct the treasure hunt in each other’s facilities. This exchange of teams is important because each team can bring different insights and uncover energy-saving opportunities that would otherwise be missed. This paper will discuss DOE methodology and the early results and lessons learned from DOE’S Energy Treasure Hunt In-Plant Trainings at Better Plants Partner facilities.

  12. BALTEX water and energy budgets in the NCEP/DOE reanalysis II

    Energy Technology Data Exchange (ETDEWEB)

    Roads, J. [Experimental Climate Prediction Center, Scripps Institution of Oceanography, La Jolla, CA (United States); Raschke, E. [Meteorologisches Institut der Universitaet Hamburg (Germany); Rocke, B. [Institute for Coastal Research, GKSS Research Center, Geesthacht (Germany)

    2002-07-01

    Water and energy budgets from the National Centers for Environmental Prediction/Dept. of Energy (NCEP/DOE) reanalysis II (NCEPRII) are described for the Baltic Sea catchment and sea (BALTEX). Annually, NCEPRII shows 0.7 mm d{sup -1} of atmospheric moisture converged into the land region with a corresponding runoff of 0.7 mm d{sup -1} to the Baltic Sea, consistent with observations. However, precipitation is too low; evaporation is too large; runoff does not have an appropriate winter minimum and spring maximum; the assimilation and surface nudging are too large. Important hydroclimatic characteristics can still be discerned. During summer, atmospheric water vapor, precipitation, evaporation, and surface and atmospheric radiative heating increase and the atmospheric radiative cooling, dry static energy convergence decrease. There are large contrasts between the sea and land; during winter sensible heat is transferred from the sea to the atmosphere and sea evaporation and precipitation are largest during the fall and winter; somewhat opposite behavior occurs over land. (orig.)

  13. DOE-AVCP Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Brent

    2018-03-30

    The purpose of the Cooperative Agreement was based on the mission the two agencies have in common. The Association of Village Council Presidents (AVCP) has been a critical player in accomplishing what Alaskan Native communities need since 1964 with various programs including energy assistance. The AVCP/DOE Partnership enabled AVCP to assist 10 of 56 remote Alaska Native villages in the development of a community-led Community Energy Plan. These plans have empowered the 10 Tribes to address their own energy development needs. The community energy plans that AVCP assisted the communities with identified the community’s energy vision, goals, and a high level project timeline of each goal. The plans also include the technical potential, resource assessment, grant and technical assistance resources. The AVCP/DOE Partnership also enabled AVCP to provide tribal leaders and staff from the 56 Federally-Recognized Tribes with information about the policies and programs of the Department, support regional workshops and forums, and provide directed technical assistance for initial energy project support.

  14. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  15. Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carolyn Stewart; Tracey LeBeau

    2008-01-31

    DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing of the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.

  16. Developing inertial fusion energy - Where do we go from here?

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, G.

    1996-01-01

    Development of inertial fusion energy (IFE) will require continued R ampersand D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work

  17. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  18. USU Alternative and Unconventional Energy Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Behunin, Robert [Utah State Univ., Logan, UT (United States); Wood, Byard [Utah State Univ., Logan, UT (United States); Heaslip, Kevin [Utah State Univ., Logan, UT (United States); Zane, Regan [Utah State Univ., Logan, UT (United States); Lyman, Seth [Utah State Univ., Logan, UT (United States); Simmons, Randy [Utah State Univ., Logan, UT (United States); Christensen, David [Utah State Univ., Logan, UT (United States)

    2014-01-29

    and is poised to quickly become a multi-million dollar company with clients around the globe. Moreover, USU students and researchers alike are now on the leading edge of the electrified transportation workforce. Finally, the legacy of this DOE investment in electric transportation is continuing at USU with the formation in progress of an industry sponsored research center built around the Electric Roadway and Vehicle (EVR) research facility and test track (http://evr.usu.edu). The research conducted in unconventional energy environmental monitoring and beneficial reuse technologies experienced broad success developing experimental and modeling tools and implementing those tools to better understand environmental impacts of industrial processes used in unconventional energy development in the Utah’s Uintah Basin. Before this project began the USU Uintah Basin branch campus had minimal capability to perform this regionally critical environmental research. This research investment enabled monitoring and modeling equipment and expertise to assess impacts of energy development to all aspects of environmental quality. Laboratory capability for environmental analysis has been developed and engaged along with field testing at multiple locations. Successful campaigns to measure greenhouse gas and hydrocarbon emissions from produced water surface impoundments and leakage from subsurface oil and gas infrastructure were executed. A computer model of meteorological conditions during winter inversion episodes was created, and commercialization efforts are underway for those models. Finally, in the past 24 months, nearly $2 million in non- DOE external funding from state, local, federal and private entities has been awarded to USU Uintah Basin to continue and add to work and capability established by this task. The preceding examples represent a few highlights resulting from the USU Alternative and Unconventional Energy Research and Development project. The following report

  19. Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

  20. Simulation of the energy consumption of a skating rink using DOE-2.1E software; Simulation de la consommation d'energie d'un arena a l'aide du logiciel DOE-2.1E

    Energy Technology Data Exchange (ETDEWEB)

    Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Zelaya, E.M.; Giguere, D. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2002-07-01

    The vast majority of skating rinks in Quebec are over 20 years old, and there is a requirement to retrofit their refrigeration systems. In this paper, the authors presented the approach developed to simulate the thermal phenomena that occur within a skating rink in Canada. The simulation tool was designed by the Canada Centre for Mineral and Energy Technology (CANMET) Energy Technology Centre in cooperation with Concordia University to study the sensitivity of various eco energy technologies with a specific application to skating rinks. The originality of this work stems from the use of DOE-2.1E calculation software to simulate heat transfer. The structure of the simulation tool was presented, including a brief description of the calculation algorithms that were developed, as well as some preliminary results obtained during the validation phase. 8 refs., 1 tab., 4 figs.

  1. Cross-impacts analysis development and energy policy analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Roop, J.M.; Scheer, R.M.; Stacey, G.S.

    1986-12-01

    Purpose of this report is to describe the cross-impact analysis process and microcomputer software developed for the Office of Policy, Planning, and Analysis (PPA) of DOE. First introduced in 1968, cross-impact analysis is a technique that produces scenarios of future conditions and possibilities. Cross-impact analysis has several unique attributes that make it a tool worth examining, especially in the current climate when the outlook for the economy and several of the key energy markets is uncertain. Cross-impact analysis complements the econometric, engineering, systems dynamics, or trend approaches already in use at DOE. Cross-impact analysis produces self-consistent scenarios in the broadest sense and can include interaction between the economy, technology, society and the environment. Energy policy analyses that couple broad scenarios of the future with detailed forecasting can produce more powerful results than scenario analysis or forecasts can produce alone.

  2. Assessing DOE's success in implementing the FFC Act: A federal and state partnership to develop treatment plans

    International Nuclear Information System (INIS)

    Letourneau, M.J.; Bubar, P.M.

    1995-01-01

    Implementation of the Federal Facility Compliance Act (FFCAct) required total cooperation among the Department of Energy (DOE), the involved States and interested stakeholders. Although the effort was time consuming, tedious and (at times) trying, the results obtained [Site Treatment Plans (STP)] were an unprecedented success. Through long-range planning, attention to details and organization of effort, a coordinated, cohesive, focused team was developed that included the DOE Headquarters, the Environmental Protection Agency (EPA), 40 DOE sites, 20 states and multiple interested stakeholders. The efforts of the FFCAct team resulted in the preparation of 37 STPs which outline the methods, locations and schedules for the treatment and disposal of DOE's mixed wastes. The Plans provided a strong foundation upon which consent orders were prepared and approved. The FFCAct approach also resulted in the development of working relationships that will prove not only useful but vital to the planning and implementation necessary to the successful clean-up and disposal DOE's mixed wastes

  3. Review of the management of materials research and development in the Department of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Materials Working Group of DOE findings and recommendations of a management nature to improve the handling of materials R and D within DOE are presented. The special role of materials in the development of new energy technologies is provided. (FS)

  4. Energy taxation and the environment: A developing country perspective

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.

    1997-01-01

    Economists prefer to monitor environmental protection and sustainable development through the use o economic instruments rather than with 'command and control' mechanisms. Energy, taxes and subsidies have emerged as a standard prescription for internalizing externalities. Yet existing energy tax policies, both in developed and developing countries, show, considerable contradictions in terms of environmental considerations. The question needs to be asked why this is so. Moreover, the suitability of fiscal measures for internalizing negative externalities in developing countries needs to be questioned. The objective of this article is to reveal the inherent contradictions and ambiguities in the application of taxes or subsidies to satisfy multiple objectives. It is argued that economic theory does not provide any ready-made solution to the problem and often sociopolitical considerations determine the outcome. Similarly, certain characteristics of developing countries, such as the existence of an important informal sector and the extensive use of traditional energies, violate certain basic assumptions a the underlying theory and require special attention in the application of pricing mechanism for internalizing externalities. (author)

  5. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. (ed.)

    1993-04-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE's long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE's contribution to the US Global Change Research

  6. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  7. Development and implementation of information systems for the DOE's National Analytical Management Program (NAMP)

    International Nuclear Information System (INIS)

    Streets, W. E.

    1999-01-01

    The Department of Energy (DOE) faces a challenging environmental management effort, including environmental protection, environmental restoration, waste management, and decommissioning. This effort requires extensive sampling and analysis to determine the type and level of contamination and the appropriate technology for cleanup, and to verify compliance with environmental regulations. Data obtained from these sampling and analysis activities are used to support environmental management decisions. Confidence in the data is critical, having legal, regulatory, and therefore, economic impact. To promote quality in the planning, management, and performance of these sampling and analysis operations, DOE's Office of Environmental Management (EM) has established the National Analytical Management Program (NAMP). With a focus on reducing the estimated costs of over $200M per year for EM's analytical services, NAMP has been charged with developing products that will decrease the costs for DOE complex-wide environmental management while maintaining quality in all aspects of the analytical data generation. As part of this thrust to streamline operations, NAMP is developing centralized information systems that will allow DOE complex personnel to share information about EM contacts at the various sites, pertinent methodologies for environmental restoration and waste management, costs of analyses, and performance of contracted laboratories

  8. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  9. The DOE safeguards and security technology development program

    International Nuclear Information System (INIS)

    Cherry, R.C.; Wheelock, A.J.

    1991-01-01

    This paper reports that strategic planning for safeguards and security within the Department of Energy emphasizes the contributions of advanced technologies to the achievement of Departmental protection program goals. The Safeguards and Security Technology Development Program provides state-of-the-art technologies, systems and technical services in support of the policies and programmatic requirements for the protection of Departmental assets. The Program encompasses research and development in physical security, nuclear material control and accountability, information security and personnel security, and the integration of these disciplines in advanced applications. Technology development tasks serve goals that range from the maintenance of an effective technology base to the development, testing and evaluation of applications to meet field needs. A variety of factors, from the evolving threat to reconfiguration of the DOE complex and the technical requirements of new facilities, are expected to influence safeguards and security technology requirements and development efforts. Implementation of the Program is based on the systematic identification, prioritization and alignment of technology development tasks and needs. Initiatives currently underway are aimed at enhancing technology development project management. Increased management attention is also being placed on efforts to promote the benefits of the Program through technology transfer and interagency liaison

  10. Does wind energy mitigate market power in deregulated electricity markets?

    International Nuclear Information System (INIS)

    Ben-Moshe, Ori; Rubin, Ofir D.

    2015-01-01

    A rich body of literature suggests that there is an inverse relationship between wind power penetration rate into the electricity market and electricity prices, but it is unclear whether these observations can be generalized. Therefore, in this paper we seek to analytically characterize market conditions that give rise to this inverse relationship. For this purpose, we expand a recently developed theoretical framework to facilitate flexibility in modeling the structure of the electric industry with respect to the degree of market concentration and diversification in the ownership of wind power capacity. The analytical results and their attendant numerical illustrations indicate that the introduction of wind energy into the market does not always depress electricity prices. Such a drop in electricity prices is likely to occur when the number of firms is large enough or the ownership of wind energy is sufficiently diversified, or most often a combination of the two. Importantly, our study defines the circumstances in which the question of which type of firm invests in wind power capacity is crucial for market prices. - Highlights: • Studies show that electricity prices decrease with increased wind power capacity. • We investigate market conditions that give rise to this inverse relationship. • Average prices for wind energy are systematically lower than average market prices. • Conventional generation firms may increase market power by investing in wind farms. • Energy policy should seek to diversify the ownership of wind power capacity

  11. DOE's Tribal Energy Program Offers Resources

    Energy Technology Data Exchange (ETDEWEB)

    Douglas C. MacCourt, Chair, Indian Law Practice, Ater Wynne LLP

    2010-06-01

    This handbook is an accessible reference for those who are new to tribal energy project development or who seek a refresher on key development issues as they navigate the project development process. Building upon the wealth of feedback and experiences shared by tribal and other participants in tribal energy workshops conducted by the National Renewable Energy Laboratory, it is designed to provide tribal leaders, tribal economic and energy enterprises, and those supporting them with a general overview of the renewable energy project development process. It includes information on how to structure a renewable energy project transaction to protect tribal interests, with an emphasis on joint project development efforts undertaken with nontribal parties; a general overview of key energy development agreements, including power sale agreements, transmission and interconnection agreements, and land leases; and a detailed discussion of ways tribes can finance renewable energy projects, the sources of funding or financing that may be available, the types of investors that may be available, and federal tax incentives for renewable energy projects. The guide also includes a glossary of some of the most commonly used technical terms.

  12. Innovative environmental monitoring technologists developed by the Department of Energy

    International Nuclear Information System (INIS)

    Roelant, D.; Purdy, C.

    1995-01-01

    The US Department of Energy (DOE) is required to characterize approximately 3,700 contaminated sites, 1.5 million barrels of stored waste, 385,000 m 3 of high-level radioactive waste in tanks, and between 1,700 and 7,000 facilities before site remediation, waste treatment, and facility deactivation and decontamination (D and D) operations commence. Specifically, characterization technologies are being developed to address five major problem areas: mixed waste treatment, facility D and D, mapping and treatment of contaminant plumes in soil and groundwater, landfill stabilization, retrieval and remediation, and retrieval and treatment of high-level radioactive waste from underground storage tanks. DOE's Office of Technology Development (OTD) within the Office of Environmental Management is entirely focused on projects to address these five areas

  13. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  14. US energy policy and Arctic gas development

    International Nuclear Information System (INIS)

    Beecy, D.

    2004-01-01

    This presentation provided a perspective of Arctic energy resource development and the impact that science and technology will have on the American National Energy Policy (NEP). The role of the NEP is to provide energy security for the United States by ensuring dependable, affordable and sustainable energy for the future. The United States Department of Energy (DOE) conducts a wide range of energy and research activities that contribute to energy efficiency advances that help meet rising energy demand and reduce pollution emissions. In May 2001, the NEP proposed 100 recommendations, of which half focus on energy efficiency and developing renewable energy sources. The Clean Coal Power Initiative is also based on technological innovation and focuses on a program called FutureGen to build and operate a zero emission coal-fired power plant to produce both electricity and hydrogen. These initiatives could result in major changes in America's energy scenario. The provisions of the Energy Bill in streamlining the regulatory process for the proposed Alaska gas pipeline were outlined. The 2004 Annual Energy Outlook for the United States indicates that a pipeline from the Mackenzie Delta to Alberta would be constructed first, followed by one from Alaska. The North Slope Alaska natural gas pipeline will likely be operational by 2018 and add 4.5 BCF per day to meet growing natural gas demand in the United States. The National Petroleum Council's report on America's long-term natural gas supply and demand situation claims that lower-48 and traditional Canadian natural gas basins will be able to supply 75 per cent of the U.S. demand by the year 2025. The remainder will be made up by Alaskan natural gas, liquefied natural gas (LNG) and gas from new sources in Canada such as coalbed methane, methane hydrates, and oil sands

  15. Fossil Energy Program semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-11-01

    This report covers progress made during the period October 1, 1991, through March 31, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development. The Fossil Energy Program organization chart is shown in the appendix. Topics discussed are under the following projects: materials research and developments; environmental analysis support; coal conversion development; coal combustion research; and fossil fuels supplies modeling and research.

  16. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  17. 6. national energy symposium. Theme: solar, new and renewable energies: interface with the environment for sustainable socio-economic development in Ghana. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The publication contains abstracts of the 6th National Energy Symposium. The theme of the symposium was, solar, new and renewable energies: interface with the environment for a sustainable socio-economic development in Ghana. The abstracts have been grouped under the following sections: (A) energy and environmental policy issues; (B) application of renewable energy technologies; (C) energy conservation; (D) institutional framework and capacity building and (E) those abstracts that were received late. The sequence of the abstracts does not follow any particular order.

  18. 6. national energy symposium. Theme: solar, new and renewable energies: interface with the environment for sustainable socio-economic development in Ghana. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The publication contains abstracts of the 6th National Energy Symposium. The theme of the symposium was, solar, new and renewable energies: interface with the environment for a sustainable socio-economic development in Ghana. The abstracts have been grouped under the following sections: (A) energy and environmental policy issues; (B) application of renewable energy technologies; (C) energy conservation; (D) institutional framework and capacity building and (E) those abstracts that were received late. The sequence of the abstracts does not follow any particular order

  19. DOE Zero Energy Ready Home Case Study: Durable Energy Builders - Houston, Texas

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Houston, Texas, that scored HERS 39 without PV and HERS 29 with PV. This 5,947 ft2 custom home has 11.5-inch ICF walls. The attic is insulated along the roof line with 5 to 7 inches of open-cell spray foam. Most of the home's drinking water is supplied by a 11,500-gallon rainwater cistern. Hurricane strapping connects the roof to the walls. The triple-pane windows are impact resistant. The foundation is a raised slab.

  20. Energy and sustainable development in Nigeria. The way forward

    Energy Technology Data Exchange (ETDEWEB)

    OlayinkaOyedepo, Sunday [Covenant Univ., Ota (Nigeria). Mechanical Engineering Dept.

    2012-12-01

    Access to clean modern energy services is an enormous challenge facing the African continent because energy is fundamental for socioeconomic development and poverty eradication. Today, 60% to 70% of the Nigerian population does not have access to electricity. There is no doubt that the present power crisis afflicting Nigeria will persist unless the government diversifies the energy sources in domestic, commercial, and industrial sectors and adopts new available technologies to reduce energy wastages and to save cost. This review examines a set of energy policy interventions, which can make a major contribution to the sustainable economic, environmental, and social development of Africa's most populated country, Nigeria. Energy efficiency leads to important social benefits, such as reducing the energy bills for poor households. From an economic point of view, implementing the country's renewable energy target will have significant costs, but these can partly be offset by selling carbon credits according to the rules of the 'Clean Development Mechanism' agreed some 10 years ago, which will result in indirect health benefits. Nigeria could benefit from the targeted interventions that would reduce the local air pollution and help the country to tackle greenhouse gas emissions. Many factors that need to be considered and appropriately addressed in the shift to its sustainable energy future are examined in this article. These include a full exploitation and promotion of renewable energy resources, energy efficiency practices, as well as the application of energy conservation measures in various sectors such as in the construction of industrial, residential, and office buildings, in transportation, etc. (orig.)

  1. Low-energy heavy-ion reactions: Some recent developments

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1989-01-01

    We address three areas: behavior of the optical model at low energies and associated phenomena, fusion at near- and sub-barrier energies; where does fusion occur?, and recent examples of explicit coupled-channels effects at low energies. 74 refs., 18 figs

  2. Developing and Testing a Best Practice Framework for Energy Access Interventions

    DEFF Research Database (Denmark)

    Chen, Xiaoxiao; Narkeviciute, Rasa; Haselip, James Arthur

    2015-01-01

    , absolute, measures of best practice and highly contextual realities where baselines are often lacking. However, the methodology does offer a comparative means to highlight the relative strengths and weaknesses of any given project, enabling both ex-post assessments and project learning. The study features...... an analysis of cases selected from the Energy Access Knowledge Base, published by the Global Network on Energy for Sustainable Development (GNESD). Copyright © 2015 John Wiley & Sons, Ltd and ERP Environment...

  3. Does the energy sector call for reform?

    Energy Technology Data Exchange (ETDEWEB)

    Granic, Goran; Pesut, Damir; Jandrilovic, Nada; Jelavic, Branka; Zeljko, Mladen

    2007-07-01

    This paper discusses the course of the energy sector reforms in Europe so far, its objectives, achievements, issues, and dilemmas. In particular, long term and security aspects of energy supply of Europe are analyzed. In addition to the legislative changes regarding the open energy market regulation, and primarily the changes concerning electricity and natural gas markets, the past period saw dynamic changes of institutional framework, such as: increasing members of the european Union, increased number of countries aspiring to the EU (candidate countries or potential candidates), and changes in other European countries out of which Russia is the most significant energy producer. The paper analyzes the issue of responsibility between state - regulator - system operator - trader - energy buyer. In Europe, it is more a complex question because the system of responsibility includes the institution of the European Union. Therefore, the relations between EU - state - regulator - system operator - trader - energy buyer are especially important. The paper looks in to the issue of energy company integrations, creation of energy mega-undertakings and their influence on further market development. The question of monopolies now appears in a new form. The conclusions suggest possible measures for institutional influence on energy market development, especially in the network energy systems, which may have a positive impact on system security and stability and markets development and their long term sustainability. (auth)

  4. Final Report: African Power/Energy and Environmental Development Plan, July 1, 1994 - August 21, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Butler, John M.

    1999-08-21

    In 1994 AEF signed a Cooperative Agreement with DOE to address a program called the African Power /Energy and Environmental Development Plan. The Program initially addressed five area: (1) Historical Black Colleges and Universities Energy/Environmental Program; (2) The Department of Energy and United States Private Industry Africa Program; (3) The Annual United States Energy Study Tour; (4) South African Training Program, and (5) South African Environmental Program. The programs were implemented in conjunction with DOE, institutions, agencies and the private sector support in the USA and within African nations. AEF has worked with government and technical representatives from 13 African nations and expanded the program to address sponsorship of South African students in Historical Black Colleges and Universities, supporting DOE trade missions through participation and planning, and giving presentations in the U.S., and Africa regarding business opportunities in the African energy sector. The programs implemented have also opened doors for the US private sector to seek business opportunities in Africa and for African nations to gain exposure to US products and services.

  5. Report on the Workshop on Accelerated Nuclear Energy Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    King, Wayne E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Arsenlis, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, Graham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bulatov, Vasily [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fluss, Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klein, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMahon, Donn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Middleton, Carolin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morley, Maureen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pasamehmetoglu, Kemal [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Patrice [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2010-05-11

    This document reports on the Office of Nuclear Energy’s (NE’s) Workshop on Accelerated Nuclear Energy Materials Development held May 11, 2010, in Washington, DC. The purpose of the workshop was twofold: (1) to provide feedback on an initiative to use uncertainty quantification (UQ) to integrate theory, simulation, and modeling with accelerated experimentation to predict the behavior of materials and fuels in an irradiation environment and thereby accelerate the lengthy materials design and qualification process; and (2) to provide feedback on and refinement to five topical areas to develop predictive models for fuels and cladding and new radiation-tolerant materials. The goal of the workshop was to gather technical feedback with respect to the Office of Nuclear Energy’s research and development while also identifying and highlighting crosscutting capability and applicability of the initiative to other federal offices, including the Department of Energy’s (DOE’s) National Nuclear Security Administration (NNSA), Nuclear Regulatory Commission (NRC), DOE Office of Basic Energy Sciences (BES), DOE Office of Fusion Energy Sciences (FES), and Naval Reactors. The goals of the initiative are twofold: (1) develop time- and length-scale transcending models that predict material properties using UQ to effectively integrate theory, simulation, and modeling with accelerated experiments; and (2) design and develop new radiation-tolerant materials using the knowledge gained and methodologies created to shorten the development and qualification time and reduce cost. The initiative is crosscutting and has synergy with industry and other federal offices including Naval Reactors, NRC, FES, BES, and the Office of Advanced Scientific Computing Research (ASCR). It is distinguished by its use of uncertainty quantification to effectively integrate theory, simulation, and modeling with high-dose experimental capabilities. The initiative aims to bring the methodology that is being

  6. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    Science.gov (United States)

    2008-10-21

    transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http

  7. Renewable energy technology development at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  8. Energy strategy would slow coal's growth, says DOE

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The National Energy Strategy (NES) recently announced by the Bush Administration would slow the growth in use of coal by hundreds of millions of tons of coal by hundreds of millions of tons after 2000, according to the Department of Energy's (DOE) own figures. If today's policies are continued, coal consumption will nearly triple by 2030. Current annual consumption of more than 900 million tons (19 quadrillion Btus) would rise to 1,550 million tons in 2010 and to nearly 2,600 million tons by 2030. Coal's share of electricity generation, now about 55%, would grow to 75% by 2030 under the current policy base assumptions of the DOE. The NES, however, projects that surge of nuclear power plant construction will stem the growth of coal use. The strategy would still increase coal use, from 19 quadrillion Btus today to about 28 quads in 2010, but to only 32 quads by 2030. By 2030, coal would account for less than 50% of electricity generation under the NES. Total clean coal technologies capacity is substantially lower under the NES scenario case than under the clean coal actions alone. The strategy also contains good news for the coal industry in the short run. It holds out two main goals for coal policy: maintaining coal's competitiveness while meeting environmental, health and safety requirements; and creating a favorable export climate for US coal and coal technology

  9. Study on the current status of biomass energy development; Bio mass energy no kaihatsu jokyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted on the present status of biomass energy in Japan and abroad and the developmental trend of the latest biomass energy technology. Brazil and the U.S. are most advancing in the biomass energy utilization. Brazil uses sugar cane which is plenty in supply as a raw material, and the U.S. does corn which is the surplus crop. Both countries use the conventional ethanol fermentation technology and produce the petroleum substitution liquid fuel which is in greatest need. As to the technology to convert biomass resource into energy, attention has so far been paid to the development of the production process of the liquid fuel. The latest technology for ethanol fermentation using saccharin and starch as raw materials has already been established in Japan, and the energy-saving type alcohol recovery technology has also reached the stage of practical application. Moreover, as to the ethanol conversion technology with cellulose substrate, the development of the saccharification process will be needed in future. 15 figs., 10 tabs.

  10. Development of a treatability variance guidance document for US DOE mixed-waste streams

    International Nuclear Information System (INIS)

    Scheuer, N.; Spikula, R.; Harms, T.

    1990-03-01

    In response to the US Department of Energy's (DOE's) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs), a treatability variance guidance document was prepared. The guidance manual is for use by DOE facilities and operations offices. The manual was prepared as a part of an ongoing effort by DOE-EH to provide guidance for the operations offices and facilities to comply with the RCRA (LDRs). A treatability variance is an alternative treatment standard granted by EPA for a restricted waste. Such a variance is not an exemption from the requirements of the LDRs, but rather is an alternative treatment standard that must be met before land disposal. The manual, Guidance For Obtaining Variance From the Treatment Standards of the RCRA Land Disposal Restrictions (1), leads the reader through the process of evaluating whether a variance from the treatment standard is a viable approach and through the data-gathering and data-evaluation processes required to develop a petition requesting a variance. The DOE review and coordination process is also described and model language for use in petitions for DOE radioactive mixed waste (RMW) is provided. The guidance manual focuses on RMW streams, however the manual also is applicable to nonmixed, hazardous waste streams. 4 refs

  11. Recent developments in European energy markets

    International Nuclear Information System (INIS)

    Schubert, E.

    1981-01-01

    The industrial development in Europe which has created a remarkable prosperity was originally based on the availability of indigenous energy. At a later stage Europe accepted the offer of low cost crude from the world market. Since a few years we have lost our influence to moderately adjust prises to the changing circumstances in the world market for primary energies since - the multinationally operating companies have lost their balancing power and - the direct dialogue between producing and consuming countries has so far not resulted in any success. The use of the flowery expression energy crisis pretends that we are suffering from a lack of available primary energy. But the actual situation is more to the contrary. At the privailing energy price level there is a manifold offer. Considerable efforts, however, are necessary to create the prerequisits for an utilization of the options among different primary energies. Infrastructures have to be changed requiring impulse on the part of the state. There is no reason to assume a limited availability of crude oil and petroleum products for the use in such sectors in which an early substitution would cause an excessive economic burden. Besides lignite only nuclear energy does offer for the time beeing a remarkable contribution for a reduction of the energy bill in Europe. Starting with the power plants of the first generation which are sufficiently tested and via the breeder technology nuclear power production will most probably approach the aime of the utilization of renewable energies at reasonable costs over the long term. (orig.) [de

  12. Fossil Energy Program semiannual progress report for April 1992-- September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.

    1992-12-01

    This report covers progress made during the period April 1, 1992, through September 30, 1992, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, the DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Office of Basic Energy Sciences, the DOE Fossil Energy Office of Petroleum Reserves, the DOE Fossil Energy Office of Naval Petroleum and Oil Shale Reserves, and the US Agency for International Development.

  13. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research

    International Nuclear Information System (INIS)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs

  14. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  15. Using net energy output as the base to develop renewable energy

    International Nuclear Information System (INIS)

    Shaw Daigee; Hung Mingfeng; Lin Yihao

    2010-01-01

    In order to increase energy security, production of renewable energies has been highly promoted by governments around the world in recent years. The typical base of various policy instruments used for this purpose is gross energy output of renewable energy. However, we show that basing policy instruments on gross energy output will result in problems associated with energy waste, economic inefficiency, and negative environmental effects. We recommend using net energy output as the base to apply price or quantity measures because it is net energy output, not gross energy output, which contributes to energy security. The promotion of gross energy output does not guarantee a positive amount of net energy output. By basing policy instruments on net energy output, energy security can be enhanced and the above mentioned problems can be avoided.

  16. Reservoir Maintenance and Development Task Report for the DOE Geothermal Technologies Office GeoVision Study.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carrigan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennedy, Mack B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corbet, Thomas F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doughty, Christine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pye, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sonnenthal, Eric L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study can be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.

  17. Research and Energy Efficiency: Selected Success Stories

    Science.gov (United States)

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  18. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    International Nuclear Information System (INIS)

    1992-05-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas

  19. Development of radiological profiles for U.S. Department of Energy low-level mixed wastes

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

    1995-01-01

    Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results

  20. Energy and economic development [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Machado, G.; Schaeffer, R.

    2006-01-01

    When energy specialists discuss the relationships between energy use and economic development, the focus is usually on how energy supports economic growth, alleviates poverty and increases people's well-being. On rare occasions, though, the effect that a country's choices for promoting economic development have on energy production and use is a matter of concern. The purpose of this chapter is to evaluate the way Brazil's choices for promoting economic development over time have impacted primary and final energy use in the country. Economic growth has different levels of quality, which lead to different economic development paths. Some paths are more effective than others in creating wealth and in protecting and preserving natural resources and the environment for future generations. Quality actually matters as much for economic development as for energy. This chapter is divided into four sections covering energy and economic development relationships, the evolution of final energy use in Brazil, strategies to enhance sustainable energy development in the country and a summary of main issues. In Section 5.1, energy and economic development relationships are discussed, setting the background for the analysis of the impacts on final energy use of some of Brazil's choices for promoting economic development. The section begins by focusing on the basics of energy and economic development relationships. It should be noted that most energy specialists usually discuss only the basics of energy and economic development (the 'energy in support of economic development' theme), but this approach alone is not enough to explain differences in countries' final energy use patterns, or to identify strategies to enhance sustainable energy development. In this sense, the main contribution of this section is to further illuminate the role of social and economic choices in determining the effectiveness of a given country's economic development and that country's primary and final

  1. DOE methods compendium

    International Nuclear Information System (INIS)

    Leasure, C.S.

    1992-01-01

    The Department of Energy (DOE) has established an analytical methods compendium development program to integrate its environmental analytical methods. This program is administered through DOE's Laboratory Management Division (EM-563). The primary objective of this program is to assemble a compendium of analytical chemistry methods of known performance for use by all DOE Environmental Restoration and Waste Management program. This compendium will include methods for sampling, field screening, fixed analytical laboratory and mobile analytical laboratory analyses. It will also include specific guidance on the proper selection of appropriate sampling and analytical methods in using specific analytical requirements

  2. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Inc., Hickory Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Greenhill Contracting built this 3,912-ft2 house in Gardiner, New York, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A highly efficient air-source heat pump heats and cools the home’s interior, while the roof-mounted photovoltaic system offsets electricity usage to cut energy bills to nearly zero. Many months the home owners see a credit on their utility bill.

  3. DOE (Department of Energy) natural phenomena guidelines earthquake design and evaluation

    International Nuclear Information System (INIS)

    Short, S.A.; Murray, R.C.; Kennedy, R.P.

    1989-01-01

    Design and evaluation guidelines for DOE (Department of Energy) facilities subjected to earthquake, wind/tornado, and flood have been developed. This paper describes the philosophy and procedures fr the design or evaluation of facilities for earthquake ground shaking. The guidelines are intended to meet probabilistic-based performance goals expressed in terms of annual probability of exceedance of some level of structural damage. Meeting performance goals can be accomplished by specifying hazard probabilities of exceedance along with seismic behavior evaluation procedures in which the level of conservatism introduced is controlled such that desired performance can be achieved. Limited inelastic behavior is permitted by permitting demand determined from elastic response spectrum analyses to exceed capacity by an allowable inelastic demand-capacity ratio specified in the guidelines for different materials and construction

  4. 78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)

    Science.gov (United States)

    2013-03-22

    ... Wildlife Service Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS... Plains Wind Energy Draft Programmatic Environmental Impact Statement (Draft [[Page 17654

  5. Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE H2 Storage Program: Trends toward Future Development

    Directory of Open Access Journals (Sweden)

    Scott McWhorter

    2012-05-01

    Full Text Available Hydrogen has many positive attributes that make it a viable choice to augment the current portfolio of combustion-based fuels, especially when considering reducing pollution and greenhouse gas (GHG emissions. However, conventional methods of storing H2 via high-pressure or liquid H2 do not provide long-term economic solutions for many applications, especially emerging applications such as man-portable or stationary power. Hydrogen storage in materials has the potential to meet the performance and cost demands, however, further developments are needed to address the thermodynamics and kinetics of H2 uptake and release. Therefore, the US Department of Energy (DOE initiated three Centers of Excellence focused on developing H2 storage materials that could meet the stringent performance requirements for on-board vehicular applications. In this review, we have summarized the developments that occurred as a result of the efforts of the Metal Hydride and Chemical Hydrogen Storage Centers of Excellence on materials that bind hydrogen through ionic and covalent linkages and thus could provide moderate temperature, dense phase H2 storage options for a wide range of emerging Proton Exchange Membrane Fuel Cell (PEM FC applications.

  6. DOE Zero Energy Ready Home Case Study: One Sky Homes — Cottle Zero Net Energy Home, San Jose, CA

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    This builder took home the Grand Winner prize in the Custom Builder category in the 2014 Housing Innovation Awards for its high performance building science approach. The builder used insulated concrete form blocks to create the insulated crawlspace foundation for its first DOE Zero Energy Ready Home, the first net zero energy new home certified in the state of California.

  7. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  8. Status of the U.S. Department of Energy (DOE) Government to Government Program in Russia

    International Nuclear Information System (INIS)

    Olascoaga, M.T.

    1996-01-01

    The US-Russian Government-to-Government Program of Cooperation on Nuclear Material Protection, Control, and Accounting (MPC ampersand A) evolved from the Nunn-Lugar Cooperative Threat Reduction Program. In 1995, the US Department of Energy (DOE) assumed responsibility as the executive agent for implementation of the Government-to-Government MPC ampersand A Program, followed by the programmatic responsibility for funding. The Russian Program initially emphasized limited exchanges, demonstrations, and upgrades at low-enriched uranium (LEU) fuel fabrication facility at Elektrostal in 1994. The program has expanded to include upgrades at nuclear facilities across Russia, development of the Russian Methodological Training Center (RMTC) in Obninsk; and cooperation with Gosatomnadzor, the Russian Federal Nuclear Radiation and Safety Authority. This paper describes the overall program including program objectives, approach, and US-Russian participation, with an emphasis on DOE-GAN cooperation

  9. BASELINE DEVELOPMENT USING THE CRITICAL DECISION AND DOE ORDER 413.3 FRAMEWORKS: A CASE STUDY

    International Nuclear Information System (INIS)

    Darnell, M.L.; Duffy, M.A.; Gantos, N.J.; Zadeh, B.

    2003-01-01

    From 1943 through 1986, Battelle Memorial Institute performed nuclear research and development on behalf of various Federal government agencies, primarily for the U.S. Department of Energy (DOE) and its predecessor agencies. This work was performed in Battelle's privately owned facilities in Columbus, Ohio, and a research park located at an 11-acre facility 16 miles west of Columbus, in a rural area near the village of West Jefferson, Ohio. Under the Battelle Columbus Laboratories Decommissioning Project (BCLDP), Battelle is now engaged in cleaning up the West Jefferson site on a cost-sharing basis with the DOE. The BCLDP mission is to decontaminate Battelle facilities in a safe, environmentally sound, and cost-effective manner, returning the facilities to a condition suitable for use without radiological restriction. The Columbus Environmental Management Project (CEMP), reporting to the DOE Ohio Field Office, is the DOE organization that is responsible for overseeing the BCLDP. CEMP requested preparation of a technical baseline, suitable for independent validation, establishing the scope, cost, and schedule for completing the project. Concurrent with this request, the DOE Office of Environmental Management issued DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets, for review and, shortly thereafter, published the first drafts of companion documents titled Program and Project Management Manual and Project Management Practices. These two documents suggest or require the use of a variety of techniques and tools for planning and executing DOE cleanup programs. Accordingly, Battelle successfully developed a project baseline for obtaining approval of Critical Decision 2/3 (CD-2/3) in compliance with the requirements of DOE Order 413.3 and the technical approaches described in the companion documents. This paper addresses three fundamental questions:(1) What were the planned baseline development methodology and its implementation

  10. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program research and development technology needs assessment review meeting

    International Nuclear Information System (INIS)

    1989-01-01

    On November 1--2, 1988, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Salt Lake City, Utah, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. All Operations Offices were represented by DOE staff and by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established

  11. The Energy Messenger, Number 1, Volume 4

    International Nuclear Information System (INIS)

    Stancil, J.

    1995-01-01

    'The Energy Messenger' is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities

  12. The Energy Messenger, Number 1, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, J. [ed.

    1995-01-01

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  13. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  14. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology

  15. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  16. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  17. Evaluation and compilation of DOE [Department of Energy] waste package test data

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

    1989-10-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab

  18. Does the detection of primordial gravitational waves exclude low energy inflation?

    Directory of Open Access Journals (Sweden)

    Tomohiro Fujita

    2018-03-01

    Full Text Available We show that a detectable tensor-to-scalar ratio (r≥10−3 on the CMB scale can be generated even during extremely low energy inflation which saturates the BBN bound ρinf≈(30MeV4. The source of the gravitational waves is not quantum fluctuations of graviton but those of SU(2 gauge fields, energetically supported by coupled axion fields. The curvature perturbation, the backreaction effect and the validity of perturbative treatment are carefully checked. Our result indicates that measuring r alone does not immediately fix the inflationary energy scale.

  19. The contribution of the DOE's R ampersand D budget in natural gas to energy price security

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1992-01-01

    The energy price volatility model suggests that some of the proposed natural gas programs can contribute to energy price stability. The sector most vulnerable to fuel price variations is, of course, the transportation sector. The most effective strategy to achieve energy pace stability is to reduce petroleum consumption in this sector. The natural gas vehicle program is therefore recommended as potentially important and worthy of further consideration. At this point, distinguishing the merits of various subprograms is not feasible. This result farther supports the conclusion that the DOE's energy R ampersand D portfolio is not efficiently balanced and an increase in oil and gas research should be a high priority. The DOE has responded favorably and has significantly increased its proposed research with the explicit objective of displacing oil in the transportation sector. The enhanced research and development program for energy security, in the NES, proposes major funding, increases in this area. To recommend the further increases proposed by the industry, a careful analysis of incremental benefits and costs is required. The proposed natural as supply program is intended to enhance the future supply of natural gas. As explained above, enhanced gas supplies can reduce the volatility of gas prices and severe the link between gas and oil prices. The gas supply program is recommended as a potentially important strategy to ensure energy price stability. The importance of this point merits restatement. Oil price volatility affects directly the transportation and industrial sectors. The residential, commercial and electric utility sectors are not highly oil dependent. However, oil prices have affected gas prices and gas is used extensively the residential, commercial, industrial and electric utility sectors. Energy price stability is enhanced in these sectors by severing, the link, between oil and gas prices

  20. Final Report for NIREC Renewable Energy Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Borland, Walt [Nevada Institute for Renewable Energy Commercialization (NIREC), Las Vegas, NV (United States)

    2017-05-02

    This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption of renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.

  1. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  2. DOE-2 basics

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    DOE-2 provides the building design and research communities with an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC's. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

  3. DOE-2 basics

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    DOE-2 provides the building design and research communities with an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC`s. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

  4. Environmental Development Plan for Transportation Energy Conservation. FY 79 update

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. K.; Bernard, III, M. J.

    1978-12-15

    This is the first annual update of the Environment Development Plan (EDP) for the DOE Division of Transportation Energy Conservation program. It identifies the ecosystem, resource, physical environment, health, safety, and socioeconomic concerns associated with the division's transportation programs. These programs include the research, development, demonstration and assessment (RDD and A) of seventeen transportation technologies and several strategy and policy development and implementation projects. The transportation technologies projects deal with highway transport including electric vehicles, marine transport and pipeline transport. This EDP presents a research and assessment plan for resolving any potentially adverse environmental concerns stemming from these programs.

  5. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-12-01

    We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. HIA 2016 DOE Zero Energy Ready Home Case Study: Imery & Co, High-performance Bungalow, Roswell, GA

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2016-09-01

    Case study of a DOE 2016 Housing Innovation Award winning custom for buyer home in the mixed-humid climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 41 without PV or HERS 6 with PV.

  7. Eleventh annual report of radiation exposures for DOE and DOE contractor employees

    International Nuclear Information System (INIS)

    1978-01-01

    In 1968, the US Atomic Energy Commission (AEC) established a program for reporting certain occupationa radiation exposure information to a central radiation records repository maintained at the Union Carbide Computing Technology Center, Oak Ridge, Tennessee. Annual summaries (WASH-1350-R1 through WASH-1350-R6) were reported for the years 1968-1973 and included data on AEC contracter employees as well as employees of companies in the private sector licensed by the AEC. In January 1975, the operational functions of the AEC, including the maintenance of records on the occupational radiation exposure on contractor employees, were transferred to the Energy Research and Development Administration (ERDA) and the AEC's regulatory functions, including the reporting of information on the occupational radiation exposure of licenses, were transferred to the Nuclear Regulatory Commission (NRC). Previous AEC licenses then reported to NRC while the contractors reported to ERDA. On October 1, 1977, the Department of Energy (DOE) was formed and assumed the responsibilities of ERDA. This report contains the 1978 radiation exposure data for DOE and DOE contractors

  8. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  9. DOE acceptance of commercial mixed waste -- Studies are under way

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, T.L. [Dept. of Energy, Washington, DC (United States). Technical Support Program; Owens, C.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States). National Low-Level Waste Management Program

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  10. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  11. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    Schrempf, R.E. [ed.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  12. Micmac Strategic Energy Planning Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Fred Corey

    2007-02-02

    In February 2005 the Aroostook Band of Micmacs submitted a grant application to the U.S. Department of Energy’s (DOE) Tribal First Steps Program. The purpose of the application was to request funding and technical assistance to identify and document Tribal energy issues, develop a Tribal energy vision, evaluate potential energy opportunities, and to develop an action plan for future Tribal energy activities. The grant application was subsequently funded by DOE, and the Aroostook Band of Micmacs hired an energy consultant to assist with completion of the project. In addition to identification and documentation of Tribal energy issues, and the development of a Tribal energy vision, the potential for wind energy development on Tribal land, and residential energy efficiency issues were thoroughly evaluated.

  13. Retrospective Benefit-Cost Evaluation of U.S. DOE Wind Energy R&D Program: Impact of Selected Energy Technology Investments

    Energy Technology Data Exchange (ETDEWEB)

    Pelsoci, Thomas M. [Delta Research Co., Evanston, IL (United States)

    2010-06-01

    This benefit-cost analysis focuses on the DOE Wind Energy Program's public sector R&D investments and returns. The analysis accounts for the program's additionality – that is, comparing what has happened as a result of the program to what would have happened without it. The analysis does not address the return on the investments of private companies ("private returns"). Public returns on the program's investments from 1976 to 2008 are identified and analyzed using retrospective analysis.

  14. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Science.gov (United States)

    2010-01-01

    ... cost indexes? 591.220 Section 591.220 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post Differential-Nonforeign Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM...

  15. Deployment of energy efficient technologies in developing countries

    International Nuclear Information System (INIS)

    Koch, H.J.

    2000-01-01

    Efficient and reliable power generation and power distribution represent the engine for economic growth in developing countries. A vast majority of the population in these countries does not have access to electricity, and those that do are often faced with an unreliable power distribution system. Now is the ideal time to transfer efficient energy technologies which also adhere to environmental standards. There are a myriad of inexpensive ways to avoid energy losses, such as cogeneration, the addition of natural gas turbines to coal-fired heating boilers. Even power generation itself can be more efficient. These improvements would encourage the financing world to pay closer attention and invest more rapidly in projects aimed at improving efficient power generation. The International Energy Agency was created in 1974 with the participation of 25 countries, and its mandate was expanded to include the deployment of clean and efficient energy technologies in developing countries. Technology transfer involves more than the shipping of equipment combined with some expert assistance. It involves the active participation of several partners, from the private sector, governments, non-governmental organizations (NGO), and academic institutions. The objective is to empower the recipient population, thereby reducing the need for imports. It is a joint international effort where the results benefit all participants. The author also discussed the Climate Technology Initiative (CTI) with the aim of disseminating information concerning climate change in the hope of reducing global emissions of greenhouse gases. Discussions to assist countries in the examination of avenues open to them in the field of energy are also fostered. Training in energy efficient technologies represents an important aspect of the role of CTI. It applies to decision makers to help them establish appropriate guidelines and regulations with regard to these technologies. Sustainable development can be achieved

  16. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  17. A portfolio decision analysis approach to support energy research and development resource allocation

    International Nuclear Information System (INIS)

    Kurth, Margaret; Keisler, Jeffrey M.; Bates, Matthew E.; Bridges, Todd S.; Summers, Jeffrey; Linkov, Igor

    2017-01-01

    Research sponsored by the US Department of Energy (DOE) aims to facilitate a clean and independent energy future for the nation. Strategic planning for energy research and development (R&D) can be complex and dynamic, in part due to federal budgetary constraints and volatility. Managing R&D funding to advance energy technologies, in spite of these challenges, is a crucial component of the nation's long term energy policy. This study demonstrates a portfolio decision analysis (PDA) approach to support R&D resource allocation decisions for the DOE Office of Fossil Energy's Carbon Capture and Storage R&D program. A multi-attribute value model uses technology readiness levels (TRLs) and other metrics to represent the overall objectives of the R&D program in order to evaluate alternative research portfolios given limited funding. Mathematical optimization identifies efficient funding allocations for each technology program area to maximize the multi-attribute value generated from the total budget. This is especially useful for responding to externally imposed budget changes. As the case study demonstrates, explicitly funding the most value-generating options leads to greater expected R&D programmatic value than typical strategies of equal or proportional distributions of a budget change among technology program areas. - Highlights: • Decision analysis can minimize the effect of a budget decrement on an R&D program. • Greater expected benefits are yielded by differentially funding technologies. • Budget scenario testing illustrates factors that influence value generation. • Coordinating with US DOE bridges gap between decision research and practice.

  18. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  19. Does the Energy Sector Reform Call for Reform

    International Nuclear Information System (INIS)

    Granic, G.

    2007-01-01

    This paper discusses the course of the energy sector reforms in Europe so far, its objectives, achievements, issues, and dilemmas. In particular, long term and security aspects of energy supply of Europe are analyzed. In addition to the legislative changes regarding the open energy market regulation, and primarily the changes, concerning electricity and natural gas markets, the past period saw dynamic changes of institutional framework such as: increasing members of the European Union, increased number of countries aspiring to the EU (candidate countries and potential candidates), changes in other European countries out of which Russia is the most significant energy producer. The paper analyzes the issue of responsibility between state - regulator - system operator - trader - energy buyer. In Europe, it is more a complex question because the system of responsibility includes the institution of the European Union. Therefore, the relations between EU - state - regulator - system operator - trader - energy buyer are especially important. The paper looks in to the issue of energy company integrations, creation of energy mega-undertakings and their influence on further market development. The question of monopolies now appears in s new form. The conclusions suggest possible measures for institutional influence on energy market development, especially in the network energy systems, which may have a positive impact on system security and stability and markets development and their long term sustainability.(author)

  20. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (Deringer Group, Riva, MD (USA)); Hall, J.D. (American Inst. of Architects, Washington, DC (USA)) (comps.)

    1990-09-01

    The Whole-Building Energy Design Targets project is being conducted for the US Department of Energy (DOE) by the Pacific Northwest Laboratory (PNL). The objective of the project is to develop a flexible methodology for setting energy performance guidelines with which architects, engineers, planners, and owners can assess energy efficiency in commercial building design. This volume, the third in the four-volume report on the Targets project concept stage, contains the minutes of the workshops as well as summaries of the expert's written comments prepared at the close of each workshop. In Section 2, the building energy simulation workshop is summarized. Section 3 provides a summary of the building cost workshop.

  1. Energy Information Directory 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. The two principal functions related to this task are (1) operating a general access telephone line, and (2) responding to energy-related correspondence addressed to the Energy Information Administration (EIA). The Energy Information Directory was developed to assist the NEIC staff as well as other Department of Energy (DOE) staff, in directing inquires to the proper offices within DOE, other Federal agencies, or energy-related trade associations. The Directory is a list of most Government offices and trade associations that are involved in energy matters. It does not include those DOE offices which do not deal with the public or public information

  2. Energy information directory 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-28

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. The two principal functions related to this task are (1) operating a general access telephone line, and (2) responding to energy-related correspondence addressed to the Energy Information Administration (EIA). The Energy Information Directory was developed to assist the NEIC staff, as well as other Department of Energy (DOE) staff, in directing inquiries to the proper offices within DOE, other Federal agencies, or energy-related trade associations. The Directory is a list of most Government offices and trade associations that are involved in energy matters. It does not include those DOE offices which do not deal with the public or public information.

  3. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  4. Ecuador's energy policy mix: Development versus conservation and nationalism with Chinese loans

    International Nuclear Information System (INIS)

    Escribano, Gonzalo

    2013-01-01

    Ecuador's energy policy faces a complex variety of political and economic objectives that are difficult to reconcile in a consistent manner. Ecuador is a small oil producer and exporter with significant renewable (mainly hydropower) resources, hosting some of the richest biodiversity areas in the world, part of which are inhabited by so far indigenous un-contacted people. Being a developing country, tensions arise between conservation aims and development imperatives, as well as between resource nationalism and much-needed foreign financing. However, the really limiting factor for the country's energy development seems to be its constraints in financing the government's development and redistributive policies. Resorting to Chinese loans-for-oil may be part of the solution in the short term, but it does not substitute for a more consistent energy policy. Ecuador's case illustrates the dilemmas of energy policy in natural resource-rich developing countries when confronted with diverging political economy, social, environmental and macro-financial goals. - Highlights: ► Ecuador's energy policy lacks coherence and is plagued with inconsistencies. ► Its three main drivers are development, conservation and resource nationalism. ► Fulfilling President Correa's social agenda requires increasing oil production. ► Conservation demands have been subjected to developmental imperatives. ► Chinese loans and investments limit resource nationalism and favour pragmatism

  5. Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006

    Energy Technology Data Exchange (ETDEWEB)

    George, K.; Schweizer, T.

    2008-01-01

    This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

  6. Development of chemical profiles for U.S. Department of Energy low-level mixed wastes

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.

    1995-01-01

    Chemical and radiological profiles of waste streams from US Department of Energy (DOE) low-level mixed wastes (LLMWs) have been developed by Argonne National Laboratory (ANL) to provide technical support information for evaluating waste management alternatives in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The chemical profiles were developed for LLMW generated from both Waste Management (WM) operations and from Environmental Restoration (ER) activities at DOE facilities. Information summarized in the 1994 DOE Mixed Waste Inventory Report (MWIR-2), the Pacific Northwest Laboratory (PNL) Automated Remedial Assessment Methodology (ARAM), and associated PNL supporting data on ER secondary waste streams that will be treated in WM treatment facilities were used as the sources for developing chemical profiles. The methodology for developing the LLMW chemical profiles is discussed, and the chemical profiles developed from data for contact-handled (CH) non-alpha LLMW are presented in this paper. The hazardous chemical composition of remote-handled (RH) LLMW and alpha LLMW follow the chemical profiles developed for CH non-alpha LLMW

  7. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  8. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  9. Energy in the strategy to Sahel Development : Situation - Perspectives - Recommendations

    International Nuclear Information System (INIS)

    1995-01-01

    Burkina Faso does not have fossil energy source. The problem of energy thus arises with acuity for the rural and urban populations. The energy sources used are primarily the hydrocarbons, electrical energy, the woody fuels as new and renewable energies which are the biomass, the solar energy and the wind energy. The hydrocarbons are 100% imported, which makes the country very depend on over sea with respect to its conventional energy supply. These imports represent, for the years 1987 to 1992, 12 to 29% of the export earnings of the country. In addition to this dependence, there is a great weakness of the electrical communication and the too high cost of energy which led to the development of a strategic planning of the scientific research centered on the energy sector. In this field, research made it possible to undertake a study of the Burkina Faso energy system, to evaluate and exploit solar energy and wind mill, to develop the use of new methods allowing the energy saving in the households and the safeguard of the environment. In addition research shows that an economy is possible in the administrative buildings. Work is undertaken on air-conditioning by evaporation, the technology of the cold and the valorization of nonfood plant oils. There is also a work done on the de-pollution of industrial waste water, the energy valorization of the biomass as well as the improvement of the technology of the dolo, local beer containing sorghum. All these scientific research activities aim at the definition of a development policy on the energetic sector which takes into account the reduction of the cost of energy, the access of the populations to this resource, the reduction in the invoice of oil products imports as well as the promotion of environmental protection, the industrial development and that of the new methods of local technology as regards energy in Burkina Faso [fr

  10. REopt Screenings Catalyze Development of Hundreds of Megawatts of Renewable Energy for Federal Agencies

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-24

    The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) offers project assistance to federal agencies, which often begins with a desktop screening to develop a prioritized portfolio of renewable energy project opportunities. FEMP uses the National Renewable Energy Laboratory's (NREL) REopt energy planning platform to quickly and efficiently screen potential renewable energy opportunities at a single site or across a range of sites. REopt helps organizations prioritize the most economically and technically viable projects for further study, and identifies the size and mix of technologies that meet the organization's goals at minimum cost, along with the optimal operating strategies.

  11. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  12. Energy for sustainable development

    International Nuclear Information System (INIS)

    Toepfer, Klaus

    2003-01-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new sustainable energy enterprises

  13. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  14. Selected DOE Headquarters Publications, October 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This publication provides cumulative listings of and an index to DOE headquarters publications issued since October 1979. (Publications issued during October 1977-September 1979 are covered in DOE/AD-0010/6.) Three types of headquarters publications are included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations, reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department, and environmental development plans and impact statements. Certain publications have been omitted. They include such items as pamphlets, fact sheets, bulletins, newsletters, and telephone directories, headquarters publications issued under the DOE-tr and CONF codes, technical reports from the Jet Propulsion Laboratory and NASA issued under DOE/JPL and DOE/NASA codes, and weekly/monthly reports of the Energy Information Administration. (RWR)

  15. Selected DOE Headquarters publications, October 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This publication provides cumulative listings of and an index to DOE headquarters publications issued since October 1979. Three types of headquarters publications are included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations, reports prepared by contractors to describe research and development work they have performed for the Department, and environmental development plans and impact statements. Such items as pamphlets, fact sheets, bulletins, newsletters, telephone directories, headquarters publications issued under the DOE-tr and CONF codes, technical reports from the Jet Propulsion Laboratory and NASA issued under DOE/JPL and DOE/NASA codes, and weekly/monthly reports of the Energy Information Administration are not included. (RWR)

  16. Energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J.

    1980-03-15

    The developing countries will require higher per capita energy for improving the quality of life. This paper examines the goals and strategies for development vis-a-vis those of the developed countries. Crucial issues in India are listed. The role of technology in the utilization of energy is discussed. Difficulties in choosing the technology are pointed out. The problem of integrating several alternative energy sources in villages is mentioned. Environmental issues are considered. (DLC)

  17. Development of treatment technologies of the processing of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Backus, P.M.; Berry, J.B.; Coyle, G.J. Jr.; Lurk, P.; Wolf, S.M.

    1994-01-01

    Waste contaminated with chemically hazardous and radioactive species is defined as mixed waste. Significant technology development has been conducted for separate treatment of hazardous and radioactive waste, but technology development addressing mixed-waste treatment has been limited. In response to the need for a comprehensive and consistent approach to mixed-waste technology development, the Office of Technology Development of the US Department of Energy (DOE) has established the Mixed Waste Integrated Program. The program is identifying and evaluating treatment technologies to treat present and estimated future mixed wastes at DOE sites. The status of the technical initiatives in chemical/physical treatment, waste destruction/stabilization technology, off-gas treatment, and final waste form production/assessment is described in this paper

  18. DOE personnel neutron dosimetry evaluation and upgrade program

    International Nuclear Information System (INIS)

    Faust, L.G.; Stroud, C.M.; Vallario, E.J.

    1988-01-01

    The US Department of Energy (DOE) sponsors an extensive research program to improve the methods, dosimeters, and instruments available to DOE facilities for measuring neutron dose and assessing its effects on the work force. The Total Dose Meter was recently developed for measuring in real time the absorbed dose of mixed neutron and gamma radiation and for calculating the dose equivalent. The Field Neutron Spectrometer was developed to provide a portable instrument for determining neutron spectra in the workplace for flux-to-dose equivalent conversion and quality factor calculation. The Combination Thermoluminescence/Track Etch Dosimeter (TLD/TED) was developed to extend the effective neutron energy range of the conventional TLDs to improve detection of fast-energy neutrons. An Optically Stimulated Luminescence Dosimeter is presently being developed for application to gamma, neutron, and beta radiation. An Effective Dose Equivalent System is being developed to provide guidance in implementing the January 1987 Presidential Directive to determine effective dose equivalent. Superheated Drop Detectors are being investigated for their potential as real time neutron dosimeters. This paper includes discussions of these improvements brought about by the DOE research program

  19. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  20. Low-level waste research and development activities of the Department of Energy

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1986-01-01

    This paper presents an overview of the technical activities of the Department of Energy's Defense and Nuclear Energy Low-Level Radioactive Waste Management Programs (LLWPs). Although each Program was established with a different purpose, the technologies developed and demonstrated by each are transferable for use in both the commercial and DOE sectors. This paper presents an overview of the technical activities being pursued through both the Defense and Nuclear Energy LLWP's. These technologies have been placed in the following categories; Criteria and Standards, Systems Analysis, Information and Technology Transfer, Waste Treatment and Wast Form, Improved Near Surface Disposal, Greater Confinement Disposal, Corrective Measures, and Monitoring

  1. DOE 2010 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  2. Overview of the DOE-EM Packaging Certification Program

    International Nuclear Information System (INIS)

    Feldman, M.R.; Bennett, M.E.; Shuler, J.M.

    2009-01-01

    The U.S. Department of Transportation, in 49 CFR 173.7(d) grants the U.S. Department of Energy (DOE) the power to use 'packagings made by or under the direction of the U.S. Department of Energy... for the transportation of Class 7 materials when evaluated, approved and certified by the Department of Energy against packaging standards equivalent to those specified in 10 CFR part 71'. Via DOE Order 460.1B, DOE has established the DOE Packaging Certification Program (PCP) within the Department of Environmental Management for purposes including the certification of radioactive materials packages for DOE use. This paper will provide an overview of the programs and activities currently undertaken by the PCP in support of the safe transport of radioactive materials, including technical review of Safety Analysis Reports for Packaging, development of guidance documents and training courses, a quality assurance audit and field assessment program, database and docket management, and testing and test methodology development. The paper will also highlight the various organizations currently utilized by the PCP to meet the requirements of DOE O 460.1B, as well as some creative and effective methods that are being used to meet program objectives. The DOE Package Certification Program's primary function is to perform technical reviews of SARPs in support of the packaging certification process to ensure that the maximum protection is afforded to the public, all federal regulations are met, and the process is as time-effective and cost-effective as possible. Five additional specific functions are also supported by the PCP: development of guidance documents, training courses, a QA audit and field assessment program, database and docket management, and testing methods development. Each of these functions individually contributes to the overall mission of the PCP as defined in DOE O 460.1B. Taken as a whole, these functions represent a robust program to ensure the safety of workers

  3. Broadband laser ranging development at the DOE Labs

    Science.gov (United States)

    Bennett, Corey V.; La Lone, Brandon M.; Younk, Patrick W.; Daykin, Ed P.; Rhodes, Michelle A.

    2017-02-01

    Broadband Laser Ranging (BLR) is a new diagnostic being developed in collaboration across multiple USA Dept. of Energy (DOE) facilities. Its purpose is to measure the precise position of surfaces and particle clouds moving at speeds of a few kilometers per second. The diagnostic uses spectral interferometry to encode distance into a modulation in the spectrum of pulses from a mode-locked fiber laser and uses a dispersive Fourier transformation to map the spectral modulation into time. This combination enables recording of range information in the time domain on a fast oscilloscope every 25-80 ns. Discussed here are some of the hardware design issues, system tradeoffs, calibration issues, and experimental results. BLR is being developed as an add-on to conventional Photonic Doppler Velocimetry (PDV) systems because PDV often yields incomplete information when lateral velocity components are present, or when there are drop-outs in the signal amplitude. In these cases, integration of the velocity from PDV can give incorrect displacement results. Experiments are now regularly fielded with over 100 channels of PDV, and BLR is being developed in a modular way to enable high channel counts of BLR and PDV recorded from the same probes pointed at the same target location. In this way instruments, will independently record surface velocity and distance information along the exact same path.

  4. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.

    2011-01-01

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned

  5. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  6. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Grove, L.K. [ed.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  7. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 4: Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1990-04-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains 20 papers. Part 4 of the Pacific Northwest Laboratory Annual Report of 1989 to the DOE Office of Energy Research includes those programs funded under the title Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category and each Field Task proposal/agreement is introduced by an abstract that describes the projects reported in that section. These reports only briefly indicate progress made during 1989. 74 refs., 29 figs., 6 tabs.

  8. A New Method for Local Energy Planning in Developing Countries

    International Nuclear Information System (INIS)

    Van Beeck, N.

    2001-01-01

    Energy planning is an essential tool in the economic development of industrialized as well as developing countries. Energy planning in this paper is restricted to the selection of new energy systems for the production of proper energy forms in order to meet increased energy demand. This demand is actually the desire for certain energy services, which are the starting point of the new decision support method for local energy planning presented in this paper. In the decision making process concerning energy planning at the local level it is important to include context-related issues because the context determines for a large part the viability of the technologies or systems used. The context, in turn, is represented by the aims of the relevant actors, which are translated into measurable indicators to compare the different options. The impact assessment must allow for inclusion of all the indicators, either quantitative or qualitative in order to find the most appropriate technology for a region rather than the technically best or economically most optimal one. Appropriateness is defined by the context and is thus case specific, but the framework described in this paper is generally applicable within the given limitations. Note that the new method described in this paper is a decision support tool, implying that it does not decide for the energy planner which actions to take. The ultimate decision must be made by the planners themselves

  9. DOE Zero Energy Ready Home Case Study: Cobblestone Homes — 2014 Model Home, Midland, MI

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    This builder's first DOE Zero Energy Ready Home won a Custom Builder award in the 2014 Housing Innovation Awards, scored HERS 49 without PV or HERS 44 with 1.4 kW of PV, and served as a prototype and energy efficiency demonstration model while performance testing was conducted.

  10. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  11. The United States Department of Energy (DOE) Computerized Accident/Incident Reporting System (CAIRS)

    International Nuclear Information System (INIS)

    Briscoe, G.J.

    1993-01-01

    The Department of Energy's (DOE) Computerized Accident/Incident Reporting System (CAIRS) is a comprehensive data base containing more than 50,000 investigation reports of injury/illness, property damage and vehicle accident cases representing safety data from 1975 to the present for more than 150 DOE contractor organizations. A special feature is that the text of each accident report is translated using a controlled dictionary and rigid sentence structure called Factor Relationship and Sequence of Events (FRASE) that enhances the ability to retrieve specific types of information and to perform detailed analyses. DOE summary and individual contractor reports are prepared quarterly and annually. In addition, ''Safety Performance Profile'' reports for individual organizations are prepared to provide advance information to appraisal teams, and special topical reports are prepared for areas of concern such as an increase in the number of security injuries or environmental releases. The data base is open to all DOE and Contractor registered users with no access restrictions other than that required by the Privacy Act

  12. Perspectives of Nuclear Energy for Human Development

    International Nuclear Information System (INIS)

    Rouyer, Jean-Loup

    2002-01-01

    resources must be deployed together with the use of nuclear and renewables. CEI level is an indicator of the country structural soundness. A low level does not allow the industrial management of complex technologies such as nuclear or other complex energy systems. There is a limit for nuclear development which increases with the collective management capability of the country. But increasing efficiency index goes with more energy, which, for developing countries, means an economic access to fossil fuels. This necessitates that the fossil fuels access price, which almost entirely depends on imports from OECD countries, be low enough to allow a progression in the collective efficiency of the countries. This is where nuclear energy has a major function in lightening the burden on fossil fuels transactions by taking its full economic position in the countries with high efficiency index. The two messages of this presentation are that collective efficiencies of the countries steadily increase in the long term and that nuclear development in the most efficient countries is a necessity for efficient development of the other countries. (author)

  13. An example of a DOE [Department of Energy]/university partnership: South Carolina Pilot Center

    International Nuclear Information System (INIS)

    Albenesius, E.L.

    1990-01-01

    A consortium of educational institutions in South Carolina proposed to the U.S. Department of Energy (DOE) in July 1989 a working partnership for mutual improvement of technical capability in the environmental restoration and waste management fields. The institutions forming the consortium are Clemson University, the University of South Carolina, the Medical University of South Carolina, and South Carolina State College. A major component of the partnership is applied research closely coupled with the problems and issues of the Savannah River site regarding demonstration of waste management processes and concepts of disposal and disposal site closure. A primary benefit to DOE from this partnership is expected to be improved public perception of the actions being taken by DOE to protect the public, particularly in areas of environmental restoration and waste management. It is evident at the Savannah River site that this is a key factor in successfully achieving the site's mission. The strength of the interest of the South Carolina institutions in developing initiatives in waste management forecasts a healthy long-term prospect for the partnership. The State of South Carolina has established a hazardous waste research fund of approximately $650 thousand annually for research by the partnership universities to seek better ways to maintain a healthy environment and to reduce, dispose of, or store waste products safely

  14. Magnetic fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The efforts of the Chemical Technology Division in the area of fusion energy include fuel handling, processing, and containment. These studies are closely coordinated with the ORNL Fusion Energy Division. Current experimental studies are concerned with the development of vacuum pumps for fusion reactors, the evaluation and development of techniques for recovering tritium (fuel) from either solid or liquid lithium containing blankets, and the use of deep beds of sorbents as roughing pumps and/or transfer operations. In addition, a small effort is devoted to the support of the ORNL design of The Next Step (TNS) in tokamak reactor development. The more applied studies--vacuum pump development and TNS design--are funded by the DOE/Magnetic Fusion Energy, and the more fundamental studies--blanket recovery and sorption in deep beds--are funded by the DOE/Basic Energy Sciences

  15. Fossil Energy Program annual progress report for April 1994 through March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report covers progress made during the period April 1, 1994, through March 31, 1995, for research and development projects that contribute to the advancement of various fossil energy technologies. Projects on the Fossil Energy Program are supported by the DOE Office of Fossil Energy, and DOE Morgantown Energy Technology Center, the DOE Pittsburgh Energy Technology Center, the DOE Fossil Energy Clean Coal Technology Program, the DOE Bartlesville Project Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve. The following research areas are covered in this report: Materials research and development; Environmental analysis support; Bioprocessing research; Coal combustion research; and Fossil fuels supplies modeling and research. Selected papers have been processed separately for inclusion in the Energy Science an Technology database.

  16. Development of an Integrated Performance Evaluation Program (IPEP) for the Department of Energy's Office of Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Streets, W.E.; Ka; Lindahl, P.C.; Bottrell, D.; Newberry, R.; Morton, S.; Karp, K.

    1993-01-01

    Argonne National Laboratory (ANL), in collaboration with DOE's Radiological and Environmental Sciences Laboratory (RESL), Environmental Measurements Laboratory (EML), and Grand Junction Project Office (GJPO), is working with the Department of Energy (DOE) Headquarters and the US Environmental Protection Agency (EPA) to develop the Integrated Performance Evaluation Program (IPEP). The purpose of IPEP is to integrate performance evaluation (PE) information from existing PE programs with expanded quality assurance (QA) activities to develop information about the quality of radiological, mixed waste, and hazardous environmental sample analyses provided by all laboratories supporting DOE Environmental Restoration and Waste Management (EM) programs. The IPEP plans to utilize existing PE programs when available and appropriate for use by DOE-EM; new PE programs will be developed only when no existing program meets DOE's needs

  17. Energy information data base: subject thesaurus

    International Nuclear Information System (INIS)

    1979-10-01

    The technical staff of the DOE Technical Information Center, during its subject indexing activities, develops and structures a vocabulary that allows consistent machine storage and retrieval of information necessary to the accomplishment of the DOE mission. This thesaurus incorporates that structured vocabulary. The terminology of this thesaurus is used for the subject control of information announced in DOE Energy Research Abstracts, Energy Abstracts for Policy Analysis, Solar Energy Update, Geothermal Energy Update, Fossil Energy Update, Fusion Energy Update, and Energy Conservation Update. This terminology also facilitates subject searching of the DOE energy information data base, a research in progress data base, a general and practical energy information data base, power reactor docket information data base, nuclear science abstracts data base, and the federal energy information data base on the DOE on-line retrieval system, RECON. The rapid expansion of the DOE's activities will result in a concomitant thesaurus expansion as information relating to new activities is indexed. Only the terms used in the indexing of documents at the Technical Information Center to date are included

  18. The renewable energy development framework - II. The foundations of renewable energy development: Economic foundations of renewable energies; International foundations of renewable energies; European foundations of renewable energy development; Foundations of renewable energy development in internal law

    International Nuclear Information System (INIS)

    Combes Motel, Pascale; Thebaut, Matthieu; Loic Grard; Michallet, Isabelle

    2012-01-01

    A first article analysis the reasons for the development of renewable energies (economic and environmental reasons, European commitments in terms of production objectives), how these renewable energies can be developed (acceptation by the population, administrative, technological, and financial constraints, political instruments related to market, taxes and purchase prices). A second article proposes a discussion about the way international law deals with renewable energies as far as texts as well as actors are concerned. The third article describes the European ambitions regarding renewable energies as a product of national perspectives (national action plans and projects) as well as of European perspectives (financing, integrated actions). The last article presents and comments various legal texts dealing with the development of renewable energies in France (texts concerning the right to energy, the environment law, planning tools, incentive measures)

  19. Developing Clean Energy Projects on Tribal Lands: Data and Resources for Tribes (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential maps for various technologies, information about the activities of DOE-IE, and resources for Tribes.

  20. DOE Zero Energy Ready Home Case Study: Alliance Green Builders, Casa Aguila

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Alliance Green Builders built this 3,129-ft2 home in the hills above Ramona, California, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home should perform far better than net zero thanks to a super-efficient building shell, a wind turbine, three suntracking solar photovoltaic arrays, and solar thermal water heating.

  1. DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Boulder, Colorado, that scored HERS 38 without PV and 0 with PV. This 2,504 ft2 custom home has advanced framed walls, superior insulation a ground-source heat pump, ERV, and triple-pane windows.

  2. HIA 2016 DOE Zero Energy Ready Home Case Study: Mandalay Homes, Cathedral Point at The Dells, Prescott, AZ

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2016-09-01

    Case study of a DOE 2016 Housing Innovation Award winning production home in the mixed-dry climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 47 without PV or HERS -2 with PV.

  3. Enhancing Tribal Energy Security and Clean Energy (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  4. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

    2008-09-30

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  5. Energy Information Directory (Formerly: Energy Information Referral Directory). First quarter 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The National Energy Information Center (NEIC) provides energy information and referral assistance to federal, state, and local governments, the academic community, business and industrial organizations, and the general public. The two principal; functions related to this task are (1) operating a general access telephone line and (2) responding to energy-related correspondence addressed to the Energy Information Administration (EIA). To assist the NEIC staff, as well as other Department of Energy (DOE) staff, in directing inquiries to the proper office within DOE or other federal agencies, the Energy Information Referral Directory was developed. With this issue, the directory has a new title: the Energy Information Directory

  6. Selected DOE Headquarters publications, October 1979-

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    This publication provides a cumulative listing of and an index to DOE headquarters publications issued since October 1979. (Publications issued during October 1977 to September 1979 are covered in DOE/AD-0010/6.) Three types of headquarters publications are included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations, reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department, and environmental development plans, environmental impact statements, and environmental readiness documents. Certain publications have been omitted. They include such items as pamphlets, fact sheets, bulletins, newsletters, and telephone directories. Also omitted are weekly/monthly reports of the Energy Information Administration and headquarters publications issued under the DOE-tr and CONF codes. (RWR)

  7. Energy for sustainable development in Malaysia: Energy policy and alternative energy

    International Nuclear Information System (INIS)

    Rahman Mohamed, Abdul; Lee, Keat Teong

    2006-01-01

    Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia

  8. A History of Geothermal Energy Research and Development in the United States. Energy Conversion 1976-2006

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2010-09-01

    This report, the last in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in energy conversion and to make generation of electricity from geothermal resources more cost-competitive.

  9. Public key infrastructure for DOE security research

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R.; Foster, I.; Johnston, W.E. [and others

    1997-06-01

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  10. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  11. DOE handbook electrical safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  12. Fiscal Year 1986 Department of Energy authorization (basic research programs). Volume II-B. Hearing before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Volume II-B of the hearing record contains Appendix 3 and Appendix 4 of Volume II-A. Appendix 3 provides supporting materials on the accomplishments and project summaries of the various departments under the Office of Basic Energy Sciences. This includes DOE supported work in engineering, chemistry, biology, mathematics, geology, and the energy sciences. Appendix 4 provides summaries of DOE supported work on high energy physics, which investigates the nature of matter and the behavior of matter and energy. Over 90% of the funding for this work comes from DOE, which is responsible for national planning in the effort to develop accelerator facilities, the superconducting super collider, and other physics programs

  13. DOE Asset Revitalization: Sustainability and Waste Management Aspects - 12120

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    In February 2011 Secretary of Energy Steven Chu established a Task Force on Asset Revitalization to facilitate a discussion among the Department of Energy (DOE), communities around DOE sites, non-profits, tribal governments, the private sector, and other stakeholders to identify reuse approaches as environmental cleanup efforts at DOE sites reach completion. The Task Force was charged with exploring opportunities to reuse DOE site assets for beneficial purposes and making recommendations to the Under Secretaries of Energy, Science, and Nuclear Security on the formation of an Asset Revitalization Initiative (ARI). The ARI is a Department-wide effort to advance the beneficial reuse of the DOE's unique and diverse mix of assets including land, facilities, infrastructure, equipment, technologies, natural resources, and a highly skilled workforce. The ARI will encourage collaboration between the public and private sectors in order to achieve energy and environmental goals as well as to stimulate and diversify regional economies. The recommendations of the ARI Task Force are summarized below, focusing on the sustainability and waste management aspects. DOE's ongoing completion of cleanup efforts and modernization efforts is creating opportunities to transition under-used or excess assets to future beneficial use. The FY 2011 DOE ARI Task Force determined that DOE's assets could be reused for beneficial purposes such as clean energy production, industrial manufacturing, recreational and conversation use, and other economic development initiatives. Asset revitalization has the potential to both help achieve DOE's energy and environmental goals and diversify regional economies where the sites are located, including providing the support needed to implement large-scale projects that achieve green sustainability goals. Asset revitalization efforts could be accelerated by effectively incorporating future use plans into environmental management and

  14. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  15. Greenhouse effect. DOE's programs and activities relevant to the global warming phenomenon

    International Nuclear Information System (INIS)

    Allen, Robert E. Jr.; Iager, Richard E.; Che, Deborah

    1990-03-01

    While considerable understanding of global climate systems has been gained in the past few years, major sources of uncertainty remain, including the role played by factors such as cloud cover, oceans, and vegetation growth. To help fill these information gaps, DOE undertakes direct research and collects data needed for carbon and climate system models used to predict potential climate changes. These direct research and development efforts represent a requested $28 million in fiscal year 1990 funds, an increase of about $5 million over fiscal year 1989 funding. DOE also conducts a wide range of other research development and demonstration programs it considers indirectly related to the global warming issue, including efforts to increase energy efficiencies, promote conservation, and develop non-fossil energy technologies. For fiscal year 1990, DOE requested about $1.3 billion for these program areas, about $330 million more than the fiscal year 1989 funding level. In these program areas DOE has not established any written criteria or guidance to give special priority to projects on the basis of their relevance or potential impact on global climate change. Senior DOE officials stated that management considers the issue when making funding decisions. In July 1989, the Secretary of Energy established six principles that will form DOE's approach to the global climate change issue, and stated that the issue will be a central part of DOE's efforts to develop a new National Energy Strategy. In addition, several management initiatives have been taken that were related to the issue. These efforts have included compiling an inventory of DOE programs relevant to the issue, organizing a global warming conference, and establishing a DOE Climate Issue Response Group. Public and private organizations, including the Environmental Protection Agency and the World Resources Institute, have made many proposals to address global warming. Generally, the proposals suggested increasing

  16. DOE pushes for useful quantum computing

    Science.gov (United States)

    Cho, Adrian

    2018-01-01

    The U.S. Department of Energy (DOE) is joining the quest to develop quantum computers, devices that would exploit quantum mechanics to crack problems that overwhelm conventional computers. The initiative comes as Google and other companies race to build a quantum computer that can demonstrate "quantum supremacy" by beating classical computers on a test problem. But reaching that milestone will not mean practical uses are at hand, and the new $40 million DOE effort is intended to spur the development of useful quantum computing algorithms for its work in chemistry, materials science, nuclear physics, and particle physics. With the resources at its 17 national laboratories, DOE could play a key role in developing the machines, researchers say, although finding problems with which quantum computers can help isn't so easy.

  17. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  18. The governance of clean energy in India: The clean development mechanism (CDM) and domestic energy politics

    International Nuclear Information System (INIS)

    Phillips, Jon; Newell, Peter

    2013-01-01

    This paper explores the ways in which clean energy is being governed in India. It does so in order to improve our understanding of the potential and limitations of carbon finance in supporting lower carbon energy transitions, and to strengthen our appreciation of the role of politics in enabling or frustrating such endeavors. In particular we emphasize the importance of politics and the nature of India's political economy in understanding the development of energy sources and technologies defined as ‘clean’ both by the United Nations Clean Development Mechanism (CDM) and leading international actors. By considering the broad range of institutions that exert formal and informal political influence over how the benefits and costs of the CDM are distributed, the paper highlights shortcomings in the narrow way in which CDM governance has been conceptualized to date. This approach goes beyond analysis of technocratic aspects of governance – often reduced to a set of institutional design issues – in order to appreciate the political nature of the trade-offs that characterize debates about India's energy future and the relations of power which will determine how, and on whose terms, they are resolved. - Highlights: • Clean energy governance in practice is shaped by political power and influence. • Governance of clean energy requires strong institutions from local to global levels. • Un-governed areas of energy policy are often as revealing of the exercise of power as areas where there explicit policy is in place. • Climate and carbon finance interventions need to better understand the landscape of political power which characterises India’s energy sector

  19. Energy indicators for sustainable development

    International Nuclear Information System (INIS)

    Vera, Ivan; Langlois, Lucille

    2007-01-01

    Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies-two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development

  20. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  1. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  2. DOE 2012 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  3. DOE 2011 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  4. DOE 2013 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  5. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  6. Energy conservation. Federal shared energy savings contracting

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Milans, Flora H.; Kirk, Roy J.; Welker, Robert A.; Sparling, William J.; Butler, Sharon E.; Irwin, Susan W.

    1989-04-01

    A number of impediments have discouraged federal agencies from using shared energy savings contracts. As of November 30, 1988, only two federal agencies - the U.S. Postal Service (USPS) and the Department of the Army -had awarded such contracts even though they can yield significant energy and cost savings. The three major impediments we identified were uncertainty about the applicability of a particular procurement policy and practice, lack of management incentives, and difficulty in measuring energy and cost savings. To address the first impediment, the Department of Energy (DOE) developed a manual on shared energy savings contracting. The second impediment was addressed when the 100th Congress authorized incentives for federal agencies to enter into shared savings contracts. DOE addressed the third impediment by developing a methodology for calculating energy consumption and cost savings. However, because of differing methodological preferences, this issue will need to be addressed on a contract-by-contract basis. Some state governments and private sector firms are using performance contracts to reduce energy costs in their buildings and facilities. We were able to identify six states that were using performance contracts. Five have established programs, and all six states have projects under contract. The seven energy service companies we contacted indicated interest in federal shared energy savings contracting

  7. Energy Information Referral Directory. Fourth quarter 1980

    International Nuclear Information System (INIS)

    1980-01-01

    This directory provides the name, address, and phone number of various energy information offices within the DOE and other Federal agencies. The arrangement is topical. Each entry presents the name of the office, the address, the main contact person, and a summary of the office's primary activities. There is a comprehensive subject index to the entries as well as a name index. In addition, the publication contains several appendices in which DOE Regional Energy Information Centers, state energy offices, DOE commercialization-resource managers, and DOE research and development and field facilities are listed. Charts illustrate the DOE and the EIA organizational structure

  8. Progress in DOE high temperature superconductivity electric power applications program

    International Nuclear Information System (INIS)

    Daley, J.G.; Sheahn, T.P.

    1992-01-01

    The Department of Energy (DOE) leads national R and D effort to develop US industry's capability to produce a wide range of advanced energy-efficient electric power products. The immediate need is to make high temperature superconductivity (HTS) wire. Wire developers at the DOE National laboratories are working wit industrial partners toward this objective. In this paper, the authors describe the progress to date, citing both the difficulties associated with making wire from these ceramic materials, and achievements at several organizations. Results for progress over the next five years are stated

  9. Renewable energy policy and wind energy development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zitzer, Suzanne E [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Department Urban Ecology, Environmental Planing and Transport

    2009-07-15

    The author of the contribution under consideration reports on the renewable energy policy and wind energy development in the Federal Republic of Germany. First of all, the author describes the historical development of the renewable energy policy since the 1970ies. Then, the environmental policies of the Red-Green Coalition (till to 2005) and of the Grand Coalition (since 2005) as well as the Renewable Energy Sources Act are described. The next section of this contribution is concern to the development of wind energy in the Federal Republic of Germany under consideration of onshore wind energy and offshore wind energy.

  10. Does Renewable Energy Still Need Subsidy

    Directory of Open Access Journals (Sweden)

    Dr. Eng. Mohamed Mostafa El Khayat

    2017-12-01

    Full Text Available For many decades, it has been stated that renewable energy, RE, needs subsidy, otherwise it will not be able to compete or sustain. For a certain level, this statement was valid. In this period, the investment costs for both wind and photovoltaic, PV, were high. In other words, production costs of both of them reached around 7.0 and 13.0 Cent US$ per kWh. On the other hand, oil and natural gas, NG, prices were low; i.e. less than US$ 30.0 per oil barrel and around US$ 4.0 per million British thermal unit, MMBTU, of NG. Also, policies of promoting RE were limited; almost there are two main policies, Feed-in-Tariff, FiT, in limited developed countries and international tenders. As a result, investment in RE was usually led by developed countries and minor share from the developing countries. This was the scene of RE before around 10 years. Nowadays, the scene of RE totally differs. Starting from the policies side, through auctions in both solar and wind energies, new records of prices have been reached. In numbers, in the field of wind energy Morocco and Egypt already signed contracts with prices lower than 4.0 US$ Cents/kWh. For PV, there is a dramatic devaluation in the prices. Now we are speaking for less than 0.7 million US$ per MW for turnkey projects. As a result, during the last couple of years, the global RE market witnessed a bundle of an outstanding prices, El-Sewihan Project at Abu Dhabi, 2.42 US$ Cent/kWh. Mexico and Dubai projects, 3.6 and 3.0 US$ Cent/kWh. Few days ago, Dubai Electricity and Water Authority, DEWA, received $9.45 cents per kilowatt-hour for its 200MW concentrated solar power (CSP plant. All these figures, and others, gave us important messages; 1 Despite low prices of oil and NG, RE is able to compete and offer outstanding prices, 2 Wind and PV technologies do not need any kind of subsidy, rather than they need a real free market to compete, 3 CSP is a low hanging fruit and it will witness a frog-leap during the

  11. Resolving the impasse in American energy policy. The case for a transformational R and D strategy at the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [National University of Singapore, Lee Kuan Yew School of Public Policy Centre on Asia and Globalisation, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-02-15

    From its inception in 1977, the U.S. Department of Energy (DOE) has been responsible for maintaining the nation's nuclear stockpile, leading the country in terms of basic research, setting national energy goals, and managing thousands of individual programs. Despite these gains, however, the DOE research and development (R and D) model does not appear to offer the nation an optimal strategy for assessing long-term energy challenges. American energy policy continues to face constraints related to three I's: inconsistency, incrementalism, and inadequacy. An overly rigid management structure and loss of mission within the DOE continues to plague its programs and create inconsistencies in terms of a national energy policy. Various layers of stove-piping within and between the DOE and national laboratories continue to fracture collaboration between institutions and engender only slow, incremental progress on energy problems. And funding for energy research and development continues to remain inadequate, compromising the country's ability to address energy challenges. To address these concerns, an R and D organization dedicated to transformative, creative research is proposed. (author)

  12. Energy data base: subject thesaurus

    International Nuclear Information System (INIS)

    Redford, J.S.

    1981-10-01

    The technical staff of the DOE Technical Information Center, during its subject indexing activities, develops and structures a vocabulary that allows consistent machine storage and retrieval of information necessary to the accomplishment of the DOE mission. This thesaurus incorporates that structured vocabulary. The terminology of this thesaurus is used for the subject control of information announced in DOE Energy Research Abstracts, Energy Abstracts for Policy Analysis, and various update journals and bulletins in specialized areas. This terminology also facilitates subject searching of the DOE Energy Data Base on the DOE/RECON on-line retrieval system and on other commercial retrieval systems. The rapid expansion of the DOE's activities will result in a commitant thesaurus expansion as information relating to new activities is indexed. Only the terms used in the indexing of documents at the Technical Information Center to date are included

  13. Final report on implementation of energy conservation practices training in selected public housing developments

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report on the implementation of energy conservation practices training in selected public housing developments represents an initiative of the Research and Education Division, Office of Minority Economic Impact, US Department of Energy. The Office of Minority Economic Impact (MI) was created by Congress in 1979, within the US Department of Energy, to afford the Secretary advice on the effect policies, regulations and other actions of DOE respecting minority participation in energy programs. The Director of MI is responsible for the conduct of ongoing research into the effects, including socio-economic and environmental, of national energy programs, policies, and regulations of the Department of minorities. Public housing in the United States is dominated by minorities, public housing is a large consumer of residential energy. Consequently, this project is a logical merging of these two factors and an attempt to somehow influence energy savings through improving public housing residents` energy-consumption practices. This final report attempts to capture the results of this current demonstration, and incorporate the historical basis for today`s results by renewing the efforts that preceded the implementation of energy conservation practices training in selected public housing developments.

  14. Final report on implementation of energy conservation practices training in selected public housing developments

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report on the implementation of energy conservation practices training in selected public housing developments represents an initiative of the Research and Education Division, Office of Minority Economic Impact, US Department of Energy. The Office of Minority Economic Impact (MI) was created by Congress in 1979, within the US Department of Energy, to afford the Secretary advice on the effect policies, regulations and other actions of DOE respecting minority participation in energy programs. The Director of MI is responsible for the conduct of ongoing research into the effects, including socio-economic and environmental, of national energy programs, policies, and regulations of the Department of minorities. Public housing in the United States is dominated by minorities, public housing is a large consumer of residential energy. Consequently, this project is a logical merging of these two factors and an attempt to somehow influence energy savings through improving public housing residents' energy-consumption practices. This final report attempts to capture the results of this current demonstration, and incorporate the historical basis for today's results by renewing the efforts that preceded the implementation of energy conservation practices training in selected public housing developments.

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  17. Pollution prevention opportunity assessment approach, training, and technical assistance for DOE contractors. FY 1995 report

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, S.

    1996-02-01

    The Department of Energy and its contractors are faced with environmental concerns and large waste management costs. Federal legislation and DOE Orders require sites to develop waste minimization/pollution prevention programs. In response to these requirements, the Kansas City Plant developed a pollution prevention tool called a pollution prevention opportunity assessment (PPOA). Pilot assessments resulted in the development of a graded approach to reduce the amount of effort required for activities that utilized nonhazardous and/or low-volume waste streams. The project`s objectives in FY95 were to validate DOE`s PPOA Graded Approach methodology, provide PPOA training and technical assistance to interested DOE personnel and DOE contractors, enhance the methodology with energy analysis and tools for environmental restoration activities, implement a DOE-wide PPOA database, and provide support to DOE EM-334 in the completion of a report which estimates the future potential for pollution prevention and waste minimization in the DOE complex.

  18. 10 CFR 1021.200 - DOE planning.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false DOE planning. 1021.200 Section 1021.200 Energy DEPARTMENT... Decisionmaking § 1021.200 DOE planning. (a) DOE shall provide for adequate and timely NEPA review of DOE... accordance with 40 CFR 1501.2 and this section. In its planning for each proposal, DOE shall include adequate...

  19. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States

    International Nuclear Information System (INIS)

    Dornan, Matthew; Shah, Kalim U.

    2016-01-01

    Small Island Developing States (SIDS) have established ambitious renewable energy targets. The promotion of renewable energy has been motivated by several factors: a desire to lessen dependence on fossil fuels, to attract development assistance in the energy sector, and to strengthen the position of SIDS in climate change negotiations. Here we explore the interplay between the role of aid and energy policy in the development of renewable energy resources in SIDS. We find that the importance of development assistance has implications for the sustainability of renewable energy development, given that funding is not always accompanied by necessary energy policy reforms. We also identify energy efficiency and access to modern energy services as having received insufficient attention in the establishment and structure of renewable energy targets in SIDS, and argue that this is problematic due to the strong economic case for such investments. - Highlights: • SIDS have established the world's most ambitious renewable energy targets. • These are motivated by fossil fuel dependence and climate change vulnerability. • Aid dependence has influenced the ambition of renewable energy targets. • Energy efficiency and energy access have received insufficient attention. • Domestic policy reforms necessary for the achievement of targets has been limited.

  20. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Phillip R. [Univ. of Wisconsin, Madison, WI (United States)

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM advances a radically different approach to commercial building design, operation, maintenance, and end of life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM courses and certificates to the professional community and continuously improve TE2AM course materials. The TE2AM project supports the DOE Strategic Theme 1 Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was successful in achieving the goals and

  1. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  2. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  3. What drives renewable energy development?

    International Nuclear Information System (INIS)

    Alagappan, L.; Orans, R.; Woo, C.K.

    2011-01-01

    This viewpoint reviews renewable energy development in 14 markets that differ in market structure (restructured vs. not restructured), use of feed-in-tariff (FIT) (yes vs. no), transmission planning (anticipatory vs. reactive), and transmission interconnection cost allocated to a renewable generator (high vs. low). We find that market restructuring is not a primary driver of renewable energy development. Renewable generation has the highest percent of total installed capacity in markets that use a FIT, employ anticipatory transmission planning, and have loads or end-users paying for most, if not all, of the transmission interconnection costs. In contrast, renewable developers have been less successful in markets that do not use a FIT, employ reactive transmission planning, and have generators paying for most, if not all, of the transmission interconnection costs. While these policies can lead to higher penetration of renewable energy in the short run, their high cost to ratepayers can threaten the economic sustainability of renewable energy in the long-run. - Highlights: → Market structure seems to have little effect on renewable energy development. → Renewable energy development is more successful in markets that use a FIT. → Anticipatory transmission planning aids renewable energy development. → Low interconnection costs for developers also aids renewable energy development.

  4. Outcome of cooperative program between JAEA and US DOE on decommissioning

    International Nuclear Information System (INIS)

    Shimada, Taro; Shiraishi, Kunio; Tachibana, Mitsuo; Ishigami, Tsutomu

    2009-07-01

    The Japan Atomic Energy Agency (JAEA: the former Japan Atomic Energy Research Institute) has been collecting wide variety of information on decommissioning nuclear facilities by the cooperative program with US Department of Energy (DOE) since 1988. In the course of the cooperation, the cooperative program has continued under the newly established specific memorandum in the field of decontamination and decommissioning nuclear facilities since 2001 on the framework agreement of USDOE and JAERI. On the other hand, the US DOE environmental management program, which was initiated in 1989, has developed resulting in achievement of dismantlement and decontamination and cleanup of nuclear facilities mainly used for Manhattan project and demonstration of various technologies developed for this program. In the cooperative activities, information on decommissioning activities including innovated technology developments has been exchanged with CP-5 and Mound plant as designated main facilities of DOE, and with JRR-2 and the reprocessing test facility of JAERI. The experiences and technologies applied in the environmental management program are expected to contribute to planning and implementing decommissioning nuclear facilities in JAEA. This report describes the summary of the information on decommissioning activities and technology development and deployment of the environmental management program in DOE obtained through the cooperation under the specific memorandum agreement. (author)

  5. Energy information directory 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, state, and local governments, the academic community, business and industrial organizations, and the general public. The two principal functions related to this task are: (1) operating a general access telephone line, and (2) responding to energy-related correspondence addressed to the Energy Information Administration (EIA). The Energy Information Directory was developed to assist the NEIC staff, as well as other Department of Energy (DOE) staff, in directing inquiries to the proper offices within DOE, other Federal agencies, or energy-related trade associations. The Directory lists some of the Government offices and trade associations that are involved in energy matters. It includes those DOE offices which deal with the public or public information. For the purposes of this publication, each entry has been given a numeric identification symbol. The index found in the back of this publication uses these identification numbers to refer the reader to relevant entries.

  6. DOE technical standards list. Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listing of current DOE technical standards, non-Government standards that have been adopted by DOE, other Government documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  7. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  8. The embodied energy in trade: What role does specialization play?

    International Nuclear Information System (INIS)

    Gasim, Anwar A.

    2015-01-01

    Many industrialized countries are net importers of embodied energy and emissions, while many developing countries are net exporters. We examine the role of specialization in driving these trade patterns by conducting a spatial index decomposition analysis on the embodied energy in net exports for 41 economies. The results reveal that industrialized countries have generally offshored energy intensive production, which many developing countries specialize in. We find that specialization, on average, makes the biggest contribution, accounting for roughly 50% of a country's embodied energy in net exports. However, other factors, namely energy intensity and the trade balance, combine to make an equally important contribution. In summary, specialization, despite its significant role, is not the only cause of the embodied energy trade patterns observed between industrialized and developing countries. - Highlights: • The embodied energy in net exports is decomposed into three contributors. • The three contributors are intensity, specialization, and the trade balance. • On average, specialization accounts for roughly 50% of embodied energy flows. • The combination of intensity and trade balance effects is equally important.

  9. Energy information directory 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. The two principal functions related to this task are: (1) operating a general access telephone line, and (2) responding to energy-related correspondence addressed to the Energy Information Administration (EIA). The Energy Information Directory was developed to assist the NEIC staff, as well as other Department of Energy (DOE) staff, in directing inquiries to the proper offices within DOE, other Federal agencies, or energy-related trade associations. The Directory lists most Government offices and trade associations that are involved in energy matters.

  10. DOE standard: Filter test facility quality program plan

    International Nuclear Information System (INIS)

    1999-02-01

    This standard was developed primarily for application in US Department of Energy programs. It contains specific direction for HEPA filter testing performed at a DOE-accepted HEPA Filter Test Facility (FTF). Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to the Office of Nuclear Safety Policy and Standards (EH-31), US Department of Energy, Washington, DC 20585, by letter or by using the self-addressed Document Improvement Proposal form (DOE F 1300.3) appearing at the end of this document

  11. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  12. Human factors methods in DOE nuclear facilities

    International Nuclear Information System (INIS)

    Bennett, C.T.; Banks, W.W.; Waters, R.J.

    1993-01-01

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle

  13. Status and prospects of nuclear energy development in Vietnam

    International Nuclear Information System (INIS)

    Tan, Vuong Huu

    2006-01-01

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  14. Status and prospects of nuclear energy development in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2006-04-15

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  15. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  16. Radiation exposures for DOE and DOE contractor employees, 1987

    International Nuclear Information System (INIS)

    1989-10-01

    This report is one of series of annual reports provided by the US Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year, as well as identification of trends in exposures being experienced over the years. 5 figs., 30 tabs

  17. Does the Equivalence between Gravitational Mass and Energy Survive for a Quantum Body?

    Directory of Open Access Journals (Sweden)

    Lebed A. G.

    2012-10-01

    Full Text Available We consider the simplest quantum composite body, a hydrogen atom, in the presence of a weak external gravitational field. We show that passive gravitational mass operator of the atom in the post-Newtonian approximation of general relativity does not commute with its energy operator, taken in the absence of the field. Nevertheless, the equivalence between the expectations values of passive gravitational mass and energy is shown to survive at a macroscopic level for stationary quantum states. Breakdown of the equiva- lence between passive gravitational mass and energy at a microscopic level for station- ary quantum states can be experimentally detected by studying unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity, using spacecraft or satellite.

  18. Magnetic fusion energy. Part VI

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The first chapter of this part describes briefly the DOE policy for fusion energy. Subsequent chapters include: FY 1980 overview - activities of the Office of Fusion Energy; subactivity descriptions (confinement systems, development and technology, applied plasma physics, and reactor projects); field activities (DOE laboratories, educational institutions, nonprofit organizations, and commercial firms); commercialization; environmental implications; regional activities; and international programs

  19. The Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Alonso, A.

    2005-01-01

    Current nuclear energy represents 23.5% of the total electrical power available within the OECD countries. This is the energy offering the lowest costs to generate, it does not emit greenhouse-effect fumes nor does it contribute to global warming, however, it does generate radioactive and toxic waste which society perceives as an unacceptable risk. For this reason the development of new nuclear installation in Europe is at a stand still or moving backward. Truthful information and social participation in decisions is the best way to achieve the eradication of the social phobia produced by this energy source. (Author)

  20. Present developmental conditions of petroleum substituting energies in the U.S.A; Sekiyu daitai energy no kaihatsu no genjo (Beikoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The present developmental conditions of petroleum substituting energies in the U.S.A. were surveyed. The budget related to energy saving and petroleum substituting energies in the U.S.A. is on the increase. DOE`s expenditure on petroleum substituting energies increased from $6.8 billion in 1993 to $8.1 billion in 1995 (from 29.6% to 34.6% of DOE`s expenditure), showing the positive approach to development of petroleum substituting energies. Approaches to environmental protection are also in promotion such as positive use of electrical vehicles by U.S. government and emission regulation of specific pollutants by EPA. The state of California withdrew the regulation which prescribes that 2% of passenger cars sold in the state should be zero emission vehicles after 1998, because development of the battery with both sufficient mileage and output is impossible by 1998 in the present stage. The prospect of practical use of new batteries such as lithium battery is still far from certain for some years. Development of petroleum substituting energies in the U.S.A. is still insufficient. 17 refs., 1 fig., 4 tabs.

  1. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    International Nuclear Information System (INIS)

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  2. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  3. Overview of the applications of cement-based immobilization technologies developed at US DOE facilities

    International Nuclear Information System (INIS)

    Dole, L.R.

    1985-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25-mm-(1-in.-) diam pellets in a glove box to producing 240-m-(800-ft-) diam grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of immobilization materials. The US DOE sites and their programs are: (1) Oak Ridge National Laboratory (ORNL), Hydrofracture Grout; (2) Hanford, Transportable Grout Facility (TGF); (3) Savannah River Plant (SRP), Nitrate Saltcrete; (4) EG and G Idaho, Process Experimental Pilot Plant (PREPP); (5) Mound Laboratory (ML), Waste Pelletization Process; (6) ORNL, FUETAP Concretes, and (7) Rocky Flats Plant (RFP), Inert Carrier Concrete Process (ICCP). The major issues regarding the application of cement-based waste forms to radioactive waste management problems are also presented. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is included along with a discussion of future trends in cement-based waste form developments and applications. 35 refs., 12 figs

  4. New Stream-reach Development (NSD): A Comprehensive Assessment of Hydropower Energy Potential in the United States Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-25

    The U.S. Department of Energy (DOE) Water Power Program tasked Oak Ridge National Laboratory with evaluating the new stream-reach development (NSD) resource potential of more than 3 million U.S. streams in order to help individuals and organizations evaluate the feasibility of developing new hydropower sources in the United States.

  5. 75 FR 2133 - Construction and Operation of the Quartzsite Solar Energy Project, La Paz County, AZ (DOE/EIS-0440)

    Science.gov (United States)

    2010-01-14

    ... Quartzsite Solar Energy Project, La Paz County, AZ (DOE/EIS-0440) AGENCY: Western Area Power Administration... proposed Quartzsite Solar Energy Project (Project) in La Paz County, near Quartzsite, Arizona. Quartzsite Solar Energy, LLC (QSE) has applied to Western to interconnect the proposed Project to Western's power...

  6. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  7. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    International Nuclear Information System (INIS)

    Sinclair, K.C.; Morrison, M.L.

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects

  8. Overview of the U.S. Department of Energy/National Renewable Energy Laboratory avian research program

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.C. [National Renewable Energy Lab., Golden, CO (United States); Morrison, M.L. [California State Univ., Sacramento, CA (United States). Dept. of Biological Sciences

    1997-06-01

    As wind energy use continues to expand, concern over the possible impacts of wind farms on birds continues to be an issue. The concern includes two primary areas: the effect of avian mortality on bird populations, and possible litigation over the killing of even one bird if it is protected by the Migratory Bird Treaty Act or the Endangered Species Act or both. In order to address these concerns, the US Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), working collaboratively with all stakeholders including utilities, environmental groups, consumer advocates, utility regulators, government officials, and the wind industry, has an active avian-wind power research program. DOE/NREL is conducting and sponsoring research with the expectation of developing solutions to educe or avoid avian mortality due to wind energy development throughout the US. This paper outlines the DOE/NREL approach and summarizes completed, current, and planned projects.

  9. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  10. Pollution prevention opportunity assessment approach, training, and technical assistance for DOE contractors. FY 1995 report

    International Nuclear Information System (INIS)

    Pemberton, S.

    1996-02-01

    The Department of Energy and its contractors are faced with environmental concerns and large waste management costs. Federal legislation and DOE Orders require sites to develop waste minimization/pollution prevention programs. In response to these requirements, the Kansas City Plant developed a pollution prevention tool called a pollution prevention opportunity assessment (PPOA). Pilot assessments resulted in the development of a graded approach to reduce the amount of effort required for activities that utilized nonhazardous and/or low-volume waste streams. The project's objectives in FY95 were to validate DOE's PPOA Graded Approach methodology, provide PPOA training and technical assistance to interested DOE personnel and DOE contractors, enhance the methodology with energy analysis and tools for environmental restoration activities, implement a DOE-wide PPOA database, and provide support to DOE EM-334 in the completion of a report which estimates the future potential for pollution prevention and waste minimization in the DOE complex

  11. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  12. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  13. Energy Security and Renewable Energy in Least Developed Countries

    International Nuclear Information System (INIS)

    Wohlgemuth, N.

    2006-01-01

    The Programme of Action for the Least Developed Countries (UN, 2001) states: The levels of production and consumption of energy in the majority of Least Developed Countries (LDCs) are inadequate and unstable. This clearly indicates a situation of energy insecurity. Starting from an encompassing definition of energy security (a country's ability to expand and optimise its energy resource portfolio and achieve a level of services that will sustain economic growth and poverty reduction), it becomes quickly clear that energy security in LDCs is a complex topic with numerous interlinkages to other sustainable development objectives. This paper attempts to give an overview of issues related to energy security in LDCs by focusing on the role renewable energy can play in that context.(author)

  14. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  15. Fasting ghrelin does not predict food intake after short-term energy restriction.

    Science.gov (United States)

    Blom, Wendy A M; Mars, Monica; Hendriks, Henk F J; de Groot, Lisette C P G M; Stafleu, Annette; Kok, Frans J; de Graaf, Cees

    2006-05-01

    To study the role of ghrelin as a hunger signal during energy restriction and to test the hypothesis that changes in fasting leptin concentrations during energy restriction are associated with changes in fasting ghrelin concentrations. Thirty-five healthy, lean men (23 +/- 3 years of age; BMI: 22.3 +/- 1.6 kg/m(2)) participated in a controlled intervention study. Fasting ghrelin and leptin concentrations were measured before and after 2 days of 62% energy restriction and after a 2-day period of ad libitum food intake. Energy intake during the latter period was assessed. On average, ghrelin concentrations did not change (0.05 mug/liter; 95% confidence interval, -0.03; 0.12) during energy restriction. Changes in ghrelin concentration during energy restriction were not associated with energy intake during the ad libitum period (r = 0.07; not significant). Ad libitum energy intake was, however, associated with the change in ghrelin concentrations during the same period (r = -0.34; p = 0.05). Ghrelin and leptin concentrations were not associated. In addition, the ratio of percentage changes in ghrelin and leptin during energy restriction was not correlated with ad libitum food intake after energy restriction (r = -0.26; p = 0.14). Fasting ghrelin concentrations did not rise after a 2-day energy restriction regimen. Moreover, changes in ghrelin concentrations during energy restriction were not associated with subsequent ad libitum food intake, suggesting that fasting ghrelin does not act as a hunger signal to the brain. The data did not support our hypothesis that leptin suppresses ghrelin levels.

  16. Photovoltaics as a worldwide energy option: A case study in development strategy

    International Nuclear Information System (INIS)

    Jones, G.; Pate, R.; Hill, R.

    1991-01-01

    Renewable energy technologies, such as solar thermal electric, photovoltaics (PV), and wind energy have made significant gains in cost and performance in the past decades. As a result, there have been high expectations on the part of the public for these sources to play a major role in future energy supply, especially as environmental concerns about conventional sources increase. Despite these past gains and high expectations, the global potential of renewable energy technologies still remains largely untapped, principally because of issues of industrialization and user acceptance. There is increasing recognition that government energy programs must incorporate a broader strategy than the traditional basic research role if they are to address these issues. Essential elements of this strategy are affordable technology, a healthy industry, sustained market growth, user acceptance, and equitable policy and financial environments. The US Department of Energy (DOE) programs in solar electric conversion have already started the development of the required broader-based effort. This paper presents the status of that work, utilizing the US National Photovoltaic Program as a case study

  17. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  18. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2001-06-14

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support to the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.

  19. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  20. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  1. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  2. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  3. DOE Radiological Control Manual Core Training Program

    International Nuclear Information System (INIS)

    Scott, H.L.; Maisler, J.

    1993-01-01

    Over the past year, the Department of Energy (DOE) Office of Health (EH-40) has taken a leading role in the development of new standardized radiological control training programs for use throughout the DOE complex. The Department promulgated its Radiological Control (RadCon) Manual in June 1992. To ensure consistent application of the criteria presented in the RadCon Manual, standardized radiological control core training courses and training materials have been developed for implementation at all DOE facilities. In producing local training programs, standardized core courses are to be supplemented with site-specific lesson plans, viewgraphs, student handbooks, qualification standards, question banks, and wallet-sized training certificates. Training programs for General Employee Radiological Training, Radiological Worker I and II Training, and Radiological Control Technician Training have been disseminated. Also, training committees under the direction of the Office of Health (EH-40) have been established for the development of additional core training courses, development of examination banks, and the update of the existing core training courses. This paper discusses the current activities and future direction of the DOE radiological control core training program

  4. Fire protection research for DOE facilities: FY 83 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.; Stagge, K.

    1984-01-01

    We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  5. Fire-protection research for DOE facilities: FY 82 year-end report

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

    1983-01-01

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models

  6. Energy, environment and development

    Energy Technology Data Exchange (ETDEWEB)

    El-Hinnawi, E

    1977-01-01

    Energy is one of the most important prerequisites of life. The growing socio-economic activities and the rising standard of living have led to a rapid increase in energy consumption. The limited resources of fossil fuels and the recent geopolitical developments activated the exploration of ways and means for energy conservation and exploitation of unconventional renewable sources of energy. Of the renewable energy sources (geothermal, solar, tidal, hydropower, etc), hydro-power production has some potential environmental effects. Man-made lakes have several physical, biological, geochemical and biogeochemical impacts on the environment both in the area of the lake and downstream. From the socio-economic point of view, the harnessing of renewable sources of energy will not only lead to the enhancement of the human environment, particularly in remote rural areas in developing countries, but will also lead to substantial savings in the use of non-renewable sources of energy.

  7. Ecological risks of DOE`s programmatic environmental restoration alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  8. Development of new business opportunities for minorities in nuclear energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spight, C.

    1980-12-15

    In Part I of this report the basis for the optimal development of new business opportunities for minorities in nuclear energy programs is defined within the successful completion of all contract tasks. The basis presented consists of an identification of a set of qualified minority-owned small businesses, a defined reservoir of highly trained minorities with applicable expertise, a policy context for the development of opportunities, and a proposed networking structure for information transfer/professional development. In Part II a contractor-focused analysis of the structure of the nuclear industry, a breakdown of the DOE nuclear program by region and functional area, and a directory of minority-owned small businesses by region are presented.

  9. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  10. Clean Energy for Development

    OpenAIRE

    Wolfowitz, Paul

    2006-01-01

    Paul Wolfowitz, President of the World Bank, in the development community, the interaction of energy, environment, and poverty have emerged as a central challenge. Lack of consistent electricity in developing countries is a severe obstacle to doing business. It is also affecting school attendance, particularly among girls. Inefficient energy sources can also pose health problems—as many as 1.6 million deaths per year due to indoor smoke. Rich and poor countries alike need to apply energy-effi...

  11. Achieving energy efficiency through behaviour change: what does it take?

    Energy Technology Data Exchange (ETDEWEB)

    Barbu, A.-D. [European Environment Agency (EEA), Copenhagen (Denmark); Griffiths, N.; Morton, G. [Ricardo-AEA (United Kingdom)

    2013-04-15

    On October 2012, the European Union adopted the Energy Efficiency Directive in reaction to the fact that EU Member States were not on track to reduce primary energy consumption by 20 % by 2020. The implementation of this directive, and other policies that have been adopted in recent years, will require a change in consumer behaviour and energy consumption practices. Within this context, and related to on-going debates on the same subject, a new European Environment Agency (EEA) report argues that correctly navigating the interface between policymaking and human behaviour is key to achieving sustained reductions in energy consumption. As such, the report provides timely and reliable information and analysis to those involved in designing policy measures to reduce energy consumption which target the end consumer. A growing body of evidence in academic literature demonstrates that there is potential for energy savings due to measures targeting behaviour. There is, however, one issue that has not been covered by previous studies, and which the EEA report directly addresses, namely the distinction between consumer behaviour and consumption practices. Most recent academic literature argues that it is the consumption practices themselves that need careful scrutiny as they tend to lock consumers into patterns that are more and more energy intensive and they involve a wide range of actors. From the energy efficiency policy design perspective, this is relevant because these actors need to be involved from the outset of the policy process. The report also argues that a whole range of changes need to take place in the way energy markets function and are regulated in order to enable the consumer to actively engage with these markets. The report however does not include a discussion on the socio-economic implications of these structural changes. During 2013, the EEA will launch a survey via social media and its own website to follow up on conclusions of the report. The aim will

  12. DOE methods for evaluating environmental and waste management samples

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K.

    1993-03-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others

  13. DOE methods for evaluating environmental and waste management samples.

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  14. Energy Informatics Panel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2012-06-01

    Designed to be the world's most comprehensive, open, and collaborative energy information network, Open Energy Information (OpenEI - openei.org) supplies essential energy data to decision makers and supports a global energy transformation. The platform, sponsored by the U.S. Department of Energy (DOE) and developed by the National Renewable Energy Laboratory (NREL), is intended for global contribution and collaboration.

  15. South Carolina DOE/EPSCoR energy-related graduate research traineeships. Progress performance report, September 30, 1991--September 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Durig, J.R.

    1992-09-01

    The three primary objectives of the DOE/EPSCOR Traineeship Grant are to increase the number of US graduates with training in energy-related disciplines; to provide training and research experience through active participation in on-going energy research programs; and to ensure that the trainees obtain a broader understanding of energy-related research and technology.

  16. DOE Occupational Radiation Exposure, 2001 report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  17. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  18. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  19. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    International Nuclear Information System (INIS)

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage

  20. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  1. Energy for sustainable rural development

    NARCIS (Netherlands)

    Hulscher, W.S.; Hulscher, W.S.; Hommes, E.W.; Hommes, E.W.

    1992-01-01

    Rural energy in developing countries is discussed with a view to sustainable development. The project-oriented approach in rural energy which has often dominated in the past, is contrasted with an overall strategy for sustainable rural energy demand and supply. An outline for a demand-oriented

  2. Natural hazard losses: A DOE (Department of Energy) perspective. Injury and property damage experience from natural phenomena hazards Department of Energy 1943-1989

    International Nuclear Information System (INIS)

    Hill, J.R.

    1989-01-01

    This presentation provides a perspective of DOE losses during the past 46 years even though loss data was not readily available for all DOE operations. As such this paper is considered preliminary and more work is needed to provide an informed view of all DOE losses. Review of the reported historical losses has provided an opportunity to create an awareness of the extent and location of a wide variety of natural phenomena hazards that have caused damage at most DOE sites. Some suggestions and observations to consider are: (1) mitigation strategies may achieve greatest reductions in wind damage; (2) most damage has occurred to conventional construction; (3) lightning damage review may provide insight for design standards change; (4) flood damage occurred where least expected. Through this awareness, the author hopes we are encouraged to provide our ideas and our professional skills for a Decade of Natural Hazard Reduction in the Department of Energy

  3. Reports to the DOE Nuclear Data Committee

    International Nuclear Information System (INIS)

    1988-05-01

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program

  4. Reports to the DOE Nuclear Data Committee

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

  5. Nuclear Energy Development and New Build Expansion

    International Nuclear Information System (INIS)

    Stosic, Z. V.

    2012-01-01

    Early afternoon on March 11th, 2011, a devastating earthquake hit Japan, causing a powerful tsunami which had catastrophic consequences in the Tohoku District. A nuclear accident followed with core meltdowns at the Fukushima Daiichi NPPs (Nuclear Power Plants) at an unprecedented scale and over a lengthy period of time. The findings so far suggest that the insufficient design for tsunamis of the reactor units was responsible for the accident that occurred in the Japanese Fukushima Daiichi NPP. Thus the accident does not fall into the category of residual risk; rather it was due to the fact that the basic design for external impact was insufficient in this case. This is why the design and the safety concept of NPPs around the world had to be reviewed with respect to possible improvement potential. The impact of the Tohoku natural disaster is present not only in Japan but world-wide. The context post-Fukushima creates new challenges, but nuclear perspectives remain solid despite shaken public acceptance and the fundamentals driving nuclear role in sustainable energy mix remain. These are: GROWING DEMAND: Need for new capacity is unchanged to meet growing energy demand (multiplied by two in overall consumption and an 80% increase in global electricity consumption by 2050); REDUCTION OF CO 2 EMISSIONS: Although 50% of world electricity today is generated from burning coal, combating climate change remains a priority and greenhouse gas emissions are to be cut by half by 2050; SECURITY OF SUPPLY: Need for an increased security of supply in a changing geopolitical environment; FOSSIL ENERGY: Fossil resources are dwindling, remain uncertain and are volatile in prices; COMPETITIVENESS: Nuclear remains one of the most competitive low-carbon energy sources and will remain an important option for many countries for a sustainable energy mix. To supply seven billion people (nine billion in 2030) with secure energy needs infrastructure development. This means huge investments

  6. Using GIS to develop socio-economic profiles of areas adjacent to DOE facilities

    International Nuclear Information System (INIS)

    Stewart, J.C.; Saraswatula, S.

    1994-01-01

    The objective of the research addressed in this paper is to identify and analyze the offsite effects of DOE activities at the Savannah River Site. The paper presents the socio-economic conditions of the areas surrounding the site in order to evaluate the possible effects of DOE activities. The study employed a geographic information system (GIS) in order to evaluate spatial relationships between otherwise unrelated factors. Socio-economic data used in the study are publicly available and were obtained mainly from the Bureau of the Census. The Department of Energy (DOE), currently dealing with the environmental management of a large number of sites throughout the United States, must consider the effects of its activities on surrounding populations and ensure compliance with the various federal regulations, such as the executive order on environmental justice. Environmental justice is the process of studying and achieving equal distribution of the effects of environmental pollution on populations across social and economic lines. An executive order signed by the President has directed federal agencies, including the Department of Energy, to make achieving environmental justice a part of the agency's mission by identifying and addressing disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations

  7. Development of Quebec's energy in a sustainable development context : summary; Le developpement energetique du Quebec dans un contexte de developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, K.; Lemieux, D.; Lambert, N.; Lachance, J.G. [Eco Ressources Consultants, Montreal, PQ (Canada); Bourque, F.; Benoit, P.A. [Reseau des ingenieurs du Quebec, Montreal, PQ (Canada)

    2009-04-30

    As a net energy importer, issues of energy security are becoming increasingly important in Quebec. Since Quebec's energy policy is largely based on the development of hydropower, its energy development has already been consistent with sustainable development. Industry remains the largest energy consumer in Quebec, followed by the transportation sector, and the residential, commercial and agricultural sectors. Total energy consumption in the province is expected to increase by 1.2 per cent annually between 2001-2016. Although competitive electricity prices in Quebec have contributed to strengthening the provincial economy, it has been argued that the low price of electricity does not promote energy efficiency nor the development of alternative energy sources. Quebec imports all of its crude oil and natural gas. Energy production in the province is currently confined to electricity generation and refining of petroleum products at 3 main refineries. In 2005, the installed electrical capacity was 92.2 per cent hydropower, 5.3 per cent thermal power, 1.5 per cent nuclear power, and 0.9 per cent wind power. The vast majority of this installed capacity (78 per cent) is owned by Hydro-Quebec. Wind capacity is expected to reach 3,500 MW by 2017, representing about 8 per cent of Quebec's total electrical capacity. Guidelines have been identified in Quebec's energy strategy for 2006-2015 to promote energy efficiency and innovation of new energy technologies covering all markets and all forms of energy, including geothermal energy, solar energy and ethanol produced from forest residues, agricultural wastes and municipal wastes. The government's overall goal is to generate both energy savings and a reduction in annual greenhouse gas emissions.

  8. Renewable Energy Sources - Technologies and Development of the Economy

    International Nuclear Information System (INIS)

    Car, S.

    2010-01-01

    The usage of renewable energy sources is a substitute for usage of fossil fuels, whose quantities are limited, and it represents an essential contribution to the reduction of greenhouse gases; at the same time it has a great economic significance for the development of new industries and creation of new jobs. To speed up gradual transition from fossil to renewable sources, governments of all EU member states harmonise their legislations and subordinate regulations promoting investments in usage of renewable sources and thus creating opportunities for new jobs especially in the production of plants and equipment for utilisation of wind power, solar energy, small hydro power plants, biomass and other kinds of renewable sources. In the last 10 years Croatia has adopted a number of acts and regulations that also stimulate investors to utilise renewable sources, and the source of such subsidies is a higher price of electricity paid by all the consumers. On the other hand, the development of domestic industry and gaining references necessary for gaining new contracts are very difficult because of stiff international competition and foreign sources of finance, which often require purchase of foreign equipment as a condition for contract award. In such conditions the utilisation of renewable sources does not contribute either to economic development or creating new jobs in Croatia, but in the countries in which such equipment is produced.(author).

  9. Developing necessary and sufficient sets of environmental, safety, and health standards at the Department of Energy

    International Nuclear Information System (INIS)

    Nelson, D.B.; Troy, A.W.

    1995-01-01

    The U.S. Department of Energy (DOE) is committed to protect its workers, the public, and the environment. To do this, we must understand our work and its potential hazards and tailor our protection to those hazards. Until now, the DOE has regulated environmental, safety, and health aspects of our work through orders and, more recently, through rules. However, it has become apparent that our current approach suffers from several disadvantages. Most notably, it has been difficult to craft orders that recognize and deal effectively with the wide diversity in our work; this can lead to inappropriate requirements and can even compromise safety. Also, the current approach does not easily incorporate the benefits of experience; our practices can become obsolete or ineffectual. This report describes efforts of DOE towards the development of an integrated standards program as the basis for ensuring the protection of workers, public and the environment

  10. DOE headquarters publications

    International Nuclear Information System (INIS)

    1978-09-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the ''report code'' assigned to each of the major organizations at DOE Headquarters, followed by the three categories of environmental reports issued from DOE Headquarters. All of the publications listed, except for those shown as still ''in preparation,'' may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications are omitted. They include such items as pamphlets, ''fact sheets,'' bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., ''HCP'' (Headquarters Contractor Publication) and ''CONF'' (conference proceedings)

  11. Does energy integrate?

    International Nuclear Information System (INIS)

    Hira, Anil; Amaya, Libardo

    2003-01-01

    Amidst the international movement to privatize and deregulate electricity and gas sectors of economies, the question of the integration of those sectors has been somewhat underestimated. In fact, the integration of energy markets across boundaries is occurring. We examine this process in three regions: Europe, Central America, and South America. We analyze the forces driving integration in each area, and estimate the prospects for progress. We take a close look at Nordpool, which is now the most integrated market in the world, to see if it can serve as a model for other regions. We close with a set of conditions that we suggest are necessary for a successful international integration of energy markets

  12. Does energy integrate?

    International Nuclear Information System (INIS)

    Hira, A.; Amaya, L.

    2003-01-01

    Amidst the international movement to privatize and deregulate electricity and gas sectors of economics, the question of the integration of those sectors has been somewhat underestimated. In fact, the integration of energy markets across boundaries is occurring. We examine this process in three regions: Europe, Central America, and South America. We analyze the forces driving integration in each area, and estimate the prospects for progress. We take a close look at Nordpool, which is now the most integrated market in the world, to see if it can serve as a model for other regions. We close with a set of conditions that we suggest are necessary for a successful international integration of energy markets. (author)

  13. HIA 2016 DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans, Beacon House, Deer Park, NY

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2016-09-01

    Case study of a DOE 2016 Housing Innovation Award winning affordable home in the mixed-humid climate that met the DOE Zero Energy Ready Home criteria and achieved a HERS 32 without PV or HERS 9 with PV.

  14. DOE Zero Energy Ready Home Case Study: Amerisips Homes — Miller-Bloch Residence, Johns Island, SC

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    For this DOE Zero Energy Ready Home that won a Custom Builder award in the 2014 Housing Innovation Awards, the builder uses structural insulated panels to construct the entire building shell, including the roof, walls, and floor of the home.

  15. Sufficiency does energy consumption become a moral issue?

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Adrian (Socio-economic Inst. and Univ. Research Priority Programme in Ethics, Univ. of Zuerich, Zuerich (Switzerland))

    2009-07-01

    Reducing the externalities from energy use is crucial for sustainability. There are basically four ways to reduce externalities from energy use: increasing technical efficiency ('energy input per unit energy service'), increasing economic efficiency ('internalising external costs'), using 'clean' energy sources with few externalities, or sufficiency ('identifying 'optimal' energy service levels'). A combination of those strategies is most promising for sustainable energy systems. However, the debate on sustainable energy is dominated by efficiency and clean energy strategies, while sufficiency plays a minor role. Efficiency and clean energy face several problems, though. Thus, the current debate should be complemented with a critical discussion of sufficiency. In this paper, I develop a concept of sufficiency, which is adequate for liberal societies. I focus on ethical foundations for sufficiency, as the discussion of such is missing or cursory only in the existing literature. I first show that many examples of sufficiency can be understood as (economic) efficiency, but that the two concepts do not coincide. I then show that sufficiency based on moralization of actions can be understood as implementation of the boundary conditions for social justice that come with notions of liberal societies, in particular the duty not to harm other people. By this, to increase sufficiency becomes a duty beyond individual taste. I further illustrate this in the context of the adverse effects of climate change as externalities from energy use.

  16. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  17. Guide to good practices for on-the-job training. DOE guideline

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The purpose of the Department of Energy (DOE) Guide to Good Practices for On-the-Job Training (OJT) is to provide DOE contractor organizations with information that can be used to modify existing programs or to develop new programs. This guide replaces the Guide to Good Practices for On-the-Job Training that was distributed to DOE and DOE contractors in 1987. DOE contractors should not feel obligated to adopt all parts of this guide. Rather, they can use the information in this guide to develop programs that apply to their facility. This guide can be used as an aid in the design and development of a facility`s OJT programs and to assist the instructors who conduct OJT and performance tests in the areas of facility operations, maintenance, and technical supports.

  18. DOE technical standards list: Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This technical standards list (TSL) was prepared for use by personnel involved in the selection and use of US DOE technical standards and other government and non-government standards. This TSL provides listings of current DOE technical standards, non-government standards that have been adopted by DOE, other government documents in which DOE has a recorded interest, and cancelled DOE technical standards. Standards are indexed by type in the appendices to this document. Definitions of and general guidance for the use of standards are also provided.

  19. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE's waste management capabilities

  20. Negotiating equity for management of DOE wastes

    International Nuclear Information System (INIS)

    Carnes, S.A.

    1994-01-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE's waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE's waste management capabilities

  1. DOE-2 basics version 2.1E

    Energy Technology Data Exchange (ETDEWEB)

    Birdsall, B.E.; Buhl, W.F.; Ellington, K.L.; Erdem, A.E.; Winkelmann, F.C. [Lawrence Berkeley Lab., CA (United States); Hirsch, J.J.; Gates, S. [Hirsch and Associates, Camarillo, CA (United States)

    1994-05-01

    DOE-2 is an up-to-date, unbiased, well-documented public-domain computer program for building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building given hourly weather information and a description of the building and its HVAC equipment and utility rate structure. DOE-2 is a portable FORTRAN program that can be used on a large variety of computers, including PC`s. Using DOE-2, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort. The purpose of DOE-2 is to aid in the analysis of energy usage in buildings; it is not intended to be the sole source of information relied upon for the design of buildings. The judgment and experience of the architect/engineer still remain the most important elements of building design.

  2. How does the development of the financial industry advance renewable energy? A panel regression study of 198 countries over three decades

    OpenAIRE

    Scholtens, Bert; Veldhuis, Rineke

    2015-01-01

    Abstract We investigate how the development of the financial industry connects with renewable energy. We analyze 198 countries over three decades in various model settings (fixed effects, random effects, dynamic panel). We use a wide range of proxies for the development of the financial industry and establish that in general this development has a positive impact on renewable energy capacity. Especially, the relative size of the commercial banking industry as well as of private credit and the...

  3. Nuclear science. U.S. electricity needs and DOE's civilian reactor development program

    International Nuclear Information System (INIS)

    England-Joseph, Judy; Allen, Robert E. Jr.; Fitzgerald, Duane; Young, Edward E. Jr.; Leavens, William P.; Bell, Jacqueline

    1990-05-01

    Electricity projections developed by the North American Electric Reliability Council (NERC) appear to be the best available estimates of future U.S. electricity needs. NERC, which represents all segments of the utility industry, forecasts that before 1998 certain regions of the country, particularly in the more heavily populated eastern half of the United States, may experience shortfalls during summer peak demand periods. These forecasts considered the utility companies' plans, as of 1989, to meet electricity needs during the period; these plans include such measures as constructing additional generators and conducting demand management programs. Working closely with the nuclear industry, DOE is supporting the development of several reactor technologies to ensure that nuclear power remains a viable electricity supply option. In fiscal year 1990, DOE's Civilian Reactor Development Program was funded at $253 million. DOE is using these funds to support industry-led efforts to develop light water reactors (LWR), advanced liquid-metal reactors (LMR), and modular high-temperature gas-cooled reactors (MHTGR) that are safe, environmentally acceptable, and economically competitive. The utility company officials we spoke with, all of whom were in the Southeast, generally supported DOE's efforts in developing these technologies. However, most of the officials do not plan to purchase nuclear reactors until after 2000 because of the high costs of constructing nuclear reactors and current public opposition to nuclear power

  4. DOE standard: Radiological control

    International Nuclear Information System (INIS)

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ''Occupational Radiation Protection''. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835

  5. DOE standard: Radiological control

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  6. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  7. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  8. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  9. DOE Zero Energy Ready Home Case Study: Promethean Homes — Gross-Shepard Residence, Charlottesville, VA

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    This is the first DOE Zero Energy Ready Home for this builder, who earned a Custom Builder honor in the 2014 Housing Innovation Awards. The home included rigid mineral wool board insulation over house wrap and plywood on the 2x6 advanced framed walls, achieving HERS 33 without PV.

  10. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  11. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    International Nuclear Information System (INIS)

    1994-01-01

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies

  12. Energy problems of developing countries and the development co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K; Sahrman, K

    1984-12-15

    The technology, economy and problems of energy sector in developing countries are presented as well as the possibilities of solving energy problems, with special emphasis on how to adapt Finnish energy know-how to the conditions existing in the developing countries. The population in the developing countries has grown explosively. The worst energy problem due to this growth is the shortage of firewood. The fact that wood is used for burning is one reason for the formation of deserts. Today already about one hundred million people in developing countries suffer from shortage of energy. In the following 20-30 years it will threaten already about one billion people. Poverty in the developing countries prevents the use of fossil fuels like oil. It is likely that the developing countries already in the coming decades will have to start to use new and renewable sources of energy, like these are solar and wind energy as well as hydroelectric power. The efficiency of burning fire wood should rapidly be improved. On the other hand reforestration should be increased. Also fossil fuels are needed before new sources of energy can be used. All over the world there has been interest in the energy problems of the developing countries. The World Bank and other financing bodies are increasing their financial aid for different kinds of energy projects. The Finnish development aid is primarily bilateral and concentrated in certain countries. In the 1980's the energy sector will be one of the main fields in our development aid, at the same time as the portion of our development aid from gross national income is increasing.

  13. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  14. The DOE/DHHS memorandum of understanding: The DOE perspective

    International Nuclear Information System (INIS)

    Goldsmith, R.

    1991-01-01

    On March 27, 1990, Secretary James D. Watkins established an Office of Health under the Assistant Secretary for Environment, Safety and Health. All epidemiologic activities throughout the department were consolidated into this office as part of an Office of Epidemiology and Health Surveillance (OEHS) with specific responsibilities for occupational and community health surveillance. The mission and functions of the OEHS include the conduct of epidemiologic studies at US Department of Energy (DOE) facilities, nearby communities, and other populations. These studies comprise retrospective mortality studies of DOE contractor workers, hypothesis-generating studies related to the potential health effects of energy production and use, ecologic studies of off-site populations, quick-response investigations of suspected disease clusters, and others as needed. In addition, OEHS is responsible for providing procedures, technical support, and other resources for the conduct of DOE-sponsored epidemiologic research studies to be managed outside of DOE, including analytic studies to be managed by the Department of Health and Human Service (HHS) under a memorandum of understanding (MOU), dose-reconstruction studies, and studies related to DOE facilities to be conducted through state health departments

  15. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  16. Environmental effects of marine energy development around the world. Annex IV Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea; Hanna, Luke; Whiting, Johnathan; Geerlofs, Simon; Grear, Molly; Blake, Kara [Pacific Northwest National Laboratory, Richland, WA (United States); Coffey, Anna; Massaua, Meghan; Brown-Saracino, Jocelyn; Battey, Hoyt [US Dept. of Energy, Washington, DC (United States)

    2013-01-15

    Annex IV is an international collaborative project to examine the environmental effects of marine energy devices among countries through the International Energy Agency’s Ocean Energy Systems Initiative (OES). The U.S. Department of Energy (DOE) serves as the Operating Agent for the Annex, in partnership with the Bureau of Ocean Energy Management (BOEM; formerly the Minerals Management Service), the Federal Energy Regulatory Commission (FERC), and National Oceanographic and Atmospheric Administration (NOAA). Numerous ocean energy technologies and devices are being developed around the world, and the few data that exist about the environmental effects of these technologies are dispersed among countries and developers. The purpose of Annex IV is to facilitate efficient government oversight of the development of ocean energy systems by compiling and disseminating information about the potential environmental effects of marine energy technologies and to identify methods of monitoring for these effects. Beginning in 2010, this three-year effort produced a publicly available searchable online database of environmental effects information (Tethys). It houses scientific literature pertaining to the environmental effects of marine energy systems, as well as metadata on international ocean energy projects and research studies. Two experts’ workshops were held in Dublin, Ireland (September 2010 and October 2012) to engage with international researchers, developers, and regulators on the scope and outcomes of the Annex IV project. Metadata and information stored in the Tethys database and feedback obtained from the two experts’ workshops were used as resources in the development of this report. This Annex IV final report contains three case studies of specific interactions of marine energy devices with the marine environment that survey, compile, and analyze the best available information in one coherent location. These case studies address 1) the physical interactions

  17. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  18. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  19. Energy in developing countries and the role of nuclear energy

    International Nuclear Information System (INIS)

    Goldemberg, Jose

    1986-01-01

    The role of nuclear energy in developing countries is discussed with respect to energy consumption, energy needs and energy future. The application of Article IV of the Non-Proliferation Treaty (NPT) is examined for the developing countries. It is suggested that a revision of the NPT is needed to encourage effective nuclear disarmament. (UK)

  20. Automation through the PIP [Program Implementation Plan] concurrence system improves information sharing among DOE [Dept. of Energy] managers

    International Nuclear Information System (INIS)

    Imholz, R.M.; Berube, D.S.; Peterson, J.L.

    1990-01-01

    The Program Implementation Plan (PIP) Concurrence System is designed to improve information sharing within the U.S. Department of Energy (DOE) and between DOE and the Field. Effectively sharing information enables DOE managers to make more informed, effective decisions. The PIP Concurrence System improved information sharing among DOE managers by defining the automated process for concurring on a DOE document, thus reducing the time required to concur on the document by 75%. The first step in defining an automated process is to structure the process for concurring on a document. Only those DOE managers with approved access could review certain parts of a document on a concurrence system. Remember that the concurrence process is a sign off procedure unlike a commentary process in which comments may not be restricted to certain people. The commentary process is the beginning of the concurrence process. The commentary process builds a document; the concurrence process approves it. 6 refs., 7 figs

  1. Energy access: Revelations from energy consumption patterns in rural India

    International Nuclear Information System (INIS)

    Srivastava, Leena; Goswami, Anandajit; Diljun, Gaurang Meher; Chaudhury, Saswata

    2012-01-01

    After decades of research on the subject of energy poverty and access and its impact on human development, the issue has finally gained global attention and commitment through the UN Secretary General's initiative on Sustainable Energy for All. However, the issue of what constitutes energy access and how such access can be supported by efficient subsidies remains a key question that does not have simple answers. At what point along the energy consumption and income spectrum does the energy access problem cease to be one of public policy, thereby letting the market take over? Using data from an extensive survey carried out by the Government of India, this paper highlights the complexities and inadequacies of using a normative consumption based approach to determine the scope and scale of interventions required. Factoring in the environmental and social pillars of sustainable development when defining access to modern energy forms would also significantly inform the level of effort involved in meeting the goal of energy access to all. - Highlights: ► Simple head count measures are inadequate to estimate the energy access challenge. ► The income and energy poor populations in a country need not completely overlap. ► Modern energy service delivery mechanisms, ensuring quality, essential for outcomes. ► Need to create enabling environment that empowers making of desired energy choices.

  2. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  3. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  4. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  5. DOE Zero Energy Ready Home Case Study: Mandalay Homes — Pronghorn Ranch, Prescott Valley, AZ

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-09-01

    The builder has certified 20 homes to DOE Zero Energy Ready Home program and plans are underway for 50 more. Winner of a Production Builder prize in the 2014 Housing Innovation Awards, the homes achieved a HERS score of 48 without photovoltaics (PV) or HERS 25 with 3.5 kW PV included.

  6. Energy and Development. A Modelling Approach

    International Nuclear Information System (INIS)

    Van Ruijven, B.J.

    2008-01-01

    Rapid economic growth of developing countries like India and China implies that these countries become important actors in the global energy system. Examples of this impact are the present day oil shortages and rapidly increasing emissions of greenhouse gases. Global energy models are used to explore possible future developments of the global energy system and identify policies to prevent potential problems. Such estimations of future energy use in developing countries are very uncertain. Crucial factors in the future energy use of these regions are electrification, urbanisation and income distribution, issues that are generally not included in present day global energy models. Model simulations in this thesis show that current insight in developments in low-income regions lead to a wide range of expected energy use in 2030 of the residential and transport sectors. This is mainly caused by many different model calibration options that result from the limited data availability for model development and calibration. We developed a method to identify the impact of model calibration uncertainty on future projections. We developed a new model for residential energy use in India, in collaboration with the Indian Institute of Science. Experiments with this model show that the impact of electrification and income distribution is less univocal than often assumed. The use of fuelwood, with related health risks, can decrease rapidly if the income of poor groups increases. However, there is a trade off in terms of CO2 emissions because these groups gain access to electricity and the ownership of appliances increases. Another issue is the potential role of new technologies in developing countries: will they use the opportunities of leapfrogging? We explored the potential role of hydrogen, an energy carrier that might play a central role in a sustainable energy system. We found that hydrogen only plays a role before 2050 under very optimistic assumptions. Regional energy

  7. Improved clean development mechanism and joint implementation to promote holistic sustainable development - an integrated policy and methodology for international energy collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Kua Harn Wei

    2007-07-01

    The current Clean Development Mechanism/Joint Implementation framework does not emphasize on wholistic sustainability of energy projects. The Golden Standard was a good example of how this framework can be fine-tuned. However, it does not explicitly incentivize the adoption of the sustainability standards it outlines. A 4-element integrated policy strategy is proposed. A Sustainability Assessment Matrix is constructed to evaluate project proposals' sustainability performance. The Probational Sustainability Performance Demand requires continual monitoring of this performance of approved projects throughout a designated probation period. The involved countries will be awarded Sustainability Credits (measured with the matrix) in installments according to their performance within this period. The Probational Emission Reduction Demand requires investing countries to meet moderated emission reduction targets in order for them to claim the certified emission reductions/ emission reduction credits and their share of Sustainability Credits. These credits are converted into Sustainability Assistance Funds, which can be channeled back to finance either the approved projects or independent renewable energy projects in the involved countries. The MIT Energy Cost Model is used to estimate the required amount and identify the forms of such assistance package. Finally, an integrated policymaking framework is suggested to execute and monitor these interconnected policy elements. (auth)

  8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  9. Solar Energy Development PEIS Information Center

    Science.gov (United States)

    skip navigation Solar Energy Development Programmatic EIS Home About the EIS Public Involvement Solar Energy Solar Energy Zones Maps Documents secondary menu News Frequently Asked Questions Glossary E the Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern

  10. Development of a three-dimensional groundwater flow model for Western Melton Valley: Application of P-FEM on a DOE waste site

    International Nuclear Information System (INIS)

    West, O.R.; Toran, L.E.

    1994-04-01

    Modeling the movement of hazardous waste in groundwater was identified by the US Department of Energy (DOE) as one of the grand challenges in scientific computation. In recognition of this need, DOE has provided support for a group of scientists from several national laboratories and universities to conduct research and development in groundwater flow and contaminant transport modeling. This group is part of a larger consortium of researchers, collectively referred to as the Partnership in Computational Science (PICS), that has been charged with the task of applying high-performance computational tools and techniques to grand challenge areas identified by DOE. One of the goals of the PICS Groundwater Group is to develop a new three-dimensional groundwater flow and transport code that is optimized for massively parallel computers. An existing groundwater flow code, 3DFEMWATER, was parallelized in order to serve as a benchmark for these new models. The application of P-FEM, the parallelized version of 3DFEMWATER, to a real field site is the subject of this report

  11. Development of a three-dimensional groundwater flow model for Western Melton Valley: Application of P-FEM on a DOE waste site

    Energy Technology Data Exchange (ETDEWEB)

    West, O.R.; Toran, L.E.

    1994-04-01

    Modeling the movement of hazardous waste in groundwater was identified by the US Department of Energy (DOE) as one of the grand challenges in scientific computation. In recognition of this need, DOE has provided support for a group of scientists from several national laboratories and universities to conduct research and development in groundwater flow and contaminant transport modeling. This group is part of a larger consortium of researchers, collectively referred to as the Partnership in Computational Science (PICS), that has been charged with the task of applying high-performance computational tools and techniques to grand challenge areas identified by DOE. One of the goals of the PICS Groundwater Group is to develop a new three-dimensional groundwater flow and transport code that is optimized for massively parallel computers. An existing groundwater flow code, 3DFEMWATER, was parallelized in order to serve as a benchmark for these new models. The application of P-FEM, the parallelized version of 3DFEMWATER, to a real field site is the subject of this report.

  12. Progress towards developing consistent design and evaluation guidelines for US Department of Energy facilities subjected to natural phenomena

    International Nuclear Information System (INIS)

    Murray, R.C.

    1987-01-01

    Probabilistic definitions of earthquake, wind, and tornado hazards for many Department of Energy (DOE) facilities throughout the United States have been developed. In addition, definitions of the flood hazards which might affect these locations are currently being developed. The authors have prepared a document to provide guidance and criteria for DOE facility managers to assure that DOE facilities are adequately constructed to resist the effects of natural phenomena such as earthquake, strong wind, and flood. The intent of this document is to provide instruction on how to utilize the hazard definitions to evaluate existing facilities and design new facilities in a manner such that the risk of adverse consequences is consistent with the cost, function, and danger to the public or environment. A conference and six mini-courses were organized on natural phenomena hazards mitigation. This provided a mechanism for technology transfer to the DOE community. Complementary manuals have also been developed for 1) suspended ceiling systems and recommendations for bracing them, 2) practical equipment seismic upgrade and strengthening guidelines, and 3) suggested structural details for wind design. These manuals are intended to provide input and guidance for ongoing site safety programs

  13. Development of a continuous energy version of KENO V.a

    International Nuclear Information System (INIS)

    Dunn, M.E.; Bentley, C.L.; Goluoglu, S.; Paschal, L.S.; Dodds, H.L.

    1997-01-01

    KENO V.a is a multigroup Monte Carlo code that solves the Boltzmann transport equation and is used extensively in the nuclear criticality safety community to calculate the effective multiplication factor k eff of systems containing fissile material. Because of the smaller amount of disk storage and CPU time required in calculations, multigroup approaches have been preferred over continuous energy (point) approaches in the past to solve the transport equation. With the advent of high-performance computers, storage and CPU limitations are less restrictive, thereby making continuous energy methods viable for transport calculations. Moreover, continuous energy methods avoid many of the assumptions and approximations inherent in multigroup methods. Because a continuous energy version of KENO V.a does not exist, the objective of the work is to develop a new version of KENO V.a that utilizes continuous energy cross sections. Currently, a point cross-section library, which is based on a raw continuous energy cross-section library such as ENDF/B-V is not available for implementation in KENO V.a; however, point cross-section libraries are available for MCNP, another widely used Monte Carlo transport code. Since MCNP cross sections are based on ENDF data and are readily available, a new version of KENO V.a named PKENO V.a has been developed that performs the random walk using MCNP cross sections. To utilize point cross sections, extensive modifications have been made to KENO V.a. At this point in the research, testing of the code is underway. In particular, PKENO V.a, KENO V.a, and MCNP have been used to model nine critical experiments and one subcritical problem. The results obtained with PKENO V.a are in excellent agreement with MCNP, KENO V.a, and experiments

  14. Minutes from Department of Energy/Hazardous Waste Remedial Actions Program, research and development technology needs assessment review meeting for FY 1990, September 1989, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    On September 20--21, 1989, representatives of the Department of Energy (DOE) Headquarters, DOE Operations Offices, DOE contractors, and the Hazardous Waste Remedial Actions Program met in Oak Ridge, Tennessee, to select and prioritize candidate waste problems in need of research and development. The information gained will be used in planning for future research and development tasks and in restructuring current research activities to address the priority needs. Consistent with the ongoing reevaluation of DOE's plans for environmental restoration and waste management, an attempt was made to relate the needs developed in this meeting to the needs expressed in the draft Applied Research, Development, Demonstration, Testing, and Evaluation Plan. Operations Offices were represented either by DOE staff or by contractor delegates from the area. This document summarizes the results of the meeting and lists the priority waste problems established.

  15. Mapping of Norwegian civil society organizations working on energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    energy solutions at a local level; Norwegian CSOs generally possess high and quite specialized levels of competence for this purpose, covering the most relevant technologies (bio-energy, micro and pico hydropower, solar, clean cook-stoves, energy efficiency). Although some CSOs act as 'watchdogs' in Norway, the watchdog role does not seem to be very prominent for Norwegian CSOs engaged in clean energy and development related work outside Norway (FIVAS is the only clear watchdog organization in its activities abroad). This study also shows that several Norwegian CSOs have a high competence level related to policy. development at the international, regional and the national development country level which can be utilized in a Clean Energy for Development Initiative context. Norwegian CSO experience can play an important role not only in strengthening CSOs in developing countries through organizational capacity building, but also through facilitating access to and experience with best practices in OECD countries and global policy work. The different focus of primarily environmental and social CSOs potentially opens avenues for complimentary cooperation in projects that fit under a Clean Energy for Development Initiative umbrella, as is already exemplified in the cooperation between Kirkens Noedhjelp and Zero in Brazil and Kenya. There are likely significant unreleased synergies and potential for cooperation between the often professional and quite specialized milieus in different CSOs with regards to clean energy topics, and between Norwegian CSOs and other Norwegian stakeholders (government institutions private companies etc.) involved in clean energy for development activities.(auth)

  16. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy In North Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Soeharwinto [University of Sumatra Utara, Medan (Indonesia)

    2011-12-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. A key component of the recent political reforms undertaken in Indonesia is the decentralization and regional autonomy that were implemented in 2001. This process has devolved almost all powers and responsibilities from the central government to the local government, including responsibilities for energy sector development. This means that regional governments are now responsible for formulating their energy policy and, consequently, must reform their institutional structure and strengthen their human capacity to be able to carry out this new responsibility. In Indonesia, people living in urban areas generally have access to efficient and modern energy supplies. However, the rural communities are generally less fortunate and continue to rely on traditional fuels of firewood, because the energy and electricity production system available to them are costly and inefficient. The aim of CASINDO's Technical Working Group V (TWG V) on Identification of Energy Needs and Assessment for Poor Communities was to establish energy-related needs and priorities of poor communities in selected locations in the Province of Central Java. The target location for Casindo TWG V activities was the village of Sruni, in the Boyolali district, because it is a district which produces a great amount of milk from dairy cows (greatest amount in Central Java); and secondly, because it does not receive any funds from other development programs, as well as from other institutions, while other subdistricts do. In order to identify actual energy needs successfully, the Participatory

  17. Mobile Energy Laboratory energy-efficiency testing programs. Semiannual report, April 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G. B.; Currie, J. W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  18. Energy and Development

    Directory of Open Access Journals (Sweden)

    Gilles Carbonnier

    2012-03-01

    Full Text Available Published by Palgrave MacmillanThis chapter introduces the thematic dossier of International Development Policy on the intimate relationship between energy and development. The authors discuss the centrality of fossil fuels in the economic growth of the Western world since the nineteenth century and the key role of oil in the twentieth century and question the future of this development model in the face of geological and climatic constraints. They examine the gaps and misunderstandings that separate social sciences and natural sciences as well as recent attempts to establish interdisciplinary dialogue around ecological economics and industrial ecology. The authors then analyse what is at stake for developing countries, inequalities in access to energy resources, the failure of the global governance system to deal with mounting tensions associated with the depletion of oil and the environmental consequences of an ever increasing consumption of non-renewable resources.

  19. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  20. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  1. Analysis of the energy development variants

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    Analysis of the variants of energy development is made as the third stage of a procedure of energy-economy interrelations dynamics study, the other two stages being the scenarios description and the formulation of the variants. This stage includes a research on the dimensions and the dynamics of the resources demands, the general features and the trends of the national energy development. There is a presentation of a comparative analysis of the variants in terms of economic indices and energy values, computed by the model IMPACT-B. A resource evaluation of the development variants is given in terms of investments, requirements (direct, indirect and total) and limited national resources demands of the energy system. The trends of the national energy development discussed are: trends characterizing the changes in the structure of the energy consumption, resulting from changes in the economy; trends of the energy system impact on the productivity of labor; general trends of the proportionality in the industrial, the household and services sector development. 16 refs., 16 figs., 4 tabs. (R.Ts.)

  2. Does energy labelling on residential housing cause energy savings?

    Energy Technology Data Exchange (ETDEWEB)

    Kjaerbye, V.H.

    2009-07-01

    Danish households use more than 30% of the total amount of energy being used in Denmark. More than 80% of this energy is dedicated to space heating. The same relation is seen in many OECD countries. The corresponding energy savings potential was recently estimated at 30% of the energy used in buildings. Energy labelling is seen as an important instrument to target these potential energy savings. This paper evaluates the effects of the Danish Energy Labelling Scheme on energy consumption in existing single-family houses with propensity score matching using real metered natural gas consumption and a very wide range of register data describing the houses and households. The study did not find significant energy savings due to the Danish Energy Labelling Scheme, but more research would be needed to complement this conclusion

  3. DOE Waste Treatability Group Guidance

    International Nuclear Information System (INIS)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level

  4. DOE Waste Treatability Group Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  5. 75 FR 7556 - Energy Efficiency Standards for Manufactured Housing

    Science.gov (United States)

    2010-02-22

    ... climatic differences should be addressed through a singular energy standard addressing manufactured homes... (e.g., ENERGY STAR) and/or the analysis that DOE should conduct in assessing such programs. (10... has concluded its review. DOE intends to develop a regulatory impact analysis (RIA), also identified...

  6. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  7. Legal means of the energy development in the respect of the environment in French law: research on the law of the sustainable development

    International Nuclear Information System (INIS)

    Grammatico, L.

    2003-05-01

    The energy regulation, in France, appears autonomous compared. to the environmental law. It was necessary to seek the reality of this autonomy, which resulted in analyzing its application at both national and community level. However, the autonomy of energy regulation has been kept in perspective through the influences of both public and economic policies, along with the general framework of life. This autonomy does not prevent the interdependence with environmental law. Indeed, the energy regulation is influenced by the environmental law, which can appear from differing viewpoints as either constraints for the energy sector or as opportunities. Here, the two regulations coexist with t:he environmental law trying to integrate completely with energy regulation. This seems to take place with difficulty through sustainable development, either requiring an evolution in traditional legal instruments or by the creation of new instruments. (author)

  8. Structuring to promote: Which Legal Framework for the Economic Development of Marine Energies?

    International Nuclear Information System (INIS)

    Gelas, Helene

    2015-01-01

    To this day, the development of renewable marine energies does not dispose of a satisfying legal framework. In the territorial sea, the construction and operation of renewable energy projects is subject to a series of permits stemming from different legislation (Occupation of the maritime public domain or the 'Water act Permit'). Because this framework is unable to foster the development of these energy sources, it should be simplified by either abandoning the requirement for a permit under the 'Water act' in favour of an extended licence of occupation granting the public authorities the same guarantees, or by the creation of an ad hoc permit regime to be included in the Energy Code. Also, the reinforcement of power purchase obligation mechanisms of the generated electricity to which these projects are eligible is required. Indeed, beyond the call for tenders and the existing feed-in tariffs, the development of marine renewable energy sources, in particular during the test stage (e.g. pilot offshore farms) has to be accompanied by a tailored tariff system. In the Exclusive Economic Zone, a decree was adopted in July 2013, which seeks to create a special permit granted by the decentralized administrative authority in charge of maritime issues (Prefet maritime). This new legal framework should foster the development of projects in the Zone. Due to the technical challenges, some other evolutions of the known regimes may be required because of the distance of the plants to the shore, for example regarding grid connection or the power purchase obligation regime. (author)

  9. 77 FR 32621 - Developing Large-Scale Renewable Energy Projects at Federal Facilities Using Private Capital Draft

    Science.gov (United States)

    2012-06-01

    ... consider comments and recommendations on the draft guidebook, which is available at: http://www1.eere... draft guidebook is available at: http://www1.eere.energy.gov/femp/pdfs/largereguide.pdf . DOE will... DATES section. More information on DOE's FEMP is available at: http://www1.eere.energy.gov/femp...

  10. Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Van Cleve, Frances B.; States, Jennifer C.

    2010-11-09

    The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOE’s strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC.

  11. Energy investment in developing countries

    International Nuclear Information System (INIS)

    Rovani, Y.

    1982-01-01

    The developing countries are likely to represent the fastest growing component of the global energy demand over the next two decades. The paper presents considerations based on the World Bank's approach to the energy sector in these countries. It is considered that an accelerated development of conventional indigenous sources of energy is absolutely vital if developing countries are to attain a satisfactory rate of economic growth. The cost of the energy investment, the power sector issues, the optimal use of the resources, the role of the external financing and the need of technical assistance are reviewed. One emphasizes the role of the World Bank in analyzing and preparing projects, and in mobilizing financing from other official and commercial sources

  12. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  13. Energy Choices. Choices for future technology development; Vaegval Energi. Vaegval foer framtidens teknikutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Billfalk, Lennart; Haegermark, Harald (eds.)

    2009-03-15

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO{sub 2} target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large

  14. Integration of U.S. Department of Energy (DOE) contractor installations for the purpose of optimizing treatment, storage, and disposal of low-level radioactive waste (LLW)

    International Nuclear Information System (INIS)

    Lucas, M.; Gnoose, J.; Coony, M.; Martin, E.; Piscitella, R.

    1998-02-01

    The US Department of Energy (DOE) manages a multibillion dollar environmental management (EM) program. In June 1996, the Assistant Secretary of Energy for EM issued a memorandum with guidance and a vision for a ten year planning process for the EM Program. The purpose of this process, which became known as the Accelerated Cleanup: Focus on 2006, is to make step changes within the DOE complex regarding the approach for making meaningful environmental cleanup progress. To augment the process, Assistant Secretary requested the site contractors to engage in an effort to identify and evaluate integration alternatives for EM waste stream treatment, storage, and disposal (TSD) that would parallel the 2006 Plan. In October 1996, ten DOE contractor installations began the task of identifying alternative opportunities for low level radioactive waste (LLW). Cost effective, efficient solutions were necessary to meet all requirements associated with storing, characterizing, treating, packaging, transporting, and disposing of LLW while protecting the workers' health and safety, and minimizing impacts to the environment. To develop these solutions, a systems engineering approach was used to establish the baseline requirements, to develop alternatives, and to evaluate the alternatives. Key assumptions were that unique disposal capabilities exist within the DOE that must be maintained; private sector disposal capability for some LLW may not continue to exist into the foreseeable future; and decisions made by the LLW Team must be made on a system or complex wide basis to fully realize the potential cost and schedule benefits. This integration effort promoted more accurate waste volume estimates and forecasts; enhanced recognition of existing treatment, storage, and disposal capabilities and capacities; and improved identification of cost savings across the complex

  15. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  16. Strategy of Energy Development Until 2015

    International Nuclear Information System (INIS)

    Vilemas, J.; Miskinis, V.; Galinis, V.; Zukauskas, V.; Valentukevicius, V.

    2002-01-01

    In the introductory part of the strategy for the development of energy until 2015 the specifications of the present-day energy sector are given: strengths and weaknesses, opportunities for further development, which are expedient to be used, and threats, which are necessary to be reduced as much as possible. A vision of the energy sector and State mission, i.e., the main provisions and trends of State activities, which would allow the implementation of the desirable development of energy, are also formulated. The main strategic goals are identified with the consideration taken of essential requirements and provisions of the European Association Agreement, the Energy Charter Agreement, and other international agreements in the field of energy. Special attention in the strategy is devoted to the identification of the main trends in the development of the energy sector. A number of factors, both external and internal, will have an effect on the development of Lithuania's economy in the future. In preparing this strategy three scenarios of economic growth will be possible: 1) fast economic growth scenario (5.7 percent per year, on the average, in 2000-2015); 2) the main scenario (4.1 percent); 3) slow economic growth scenario (2.3 percent). Forecasts for the needs of energy for the said economic scenarios are prepared with the application of the MAED model, taking into consideration the expected structural changes in the GDP, energy intensity changes, the development of social indices, and other factors, having an effect on the changes in the consumption of energy. The duration of exploitation of the Ignalina NPP will have an essential effect on the development of the electric energy system. On the basis of optimisation calculations, performed with the use of the WASP-4 model, the strategy presents a detailed analysis of different scenarios for the shutdown of the nuclear power plant and expenses of its replacement by other electric power plants. Seeking to ensure the

  17. Guide to energy R and D programs for universities and other research groups

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this guide to provide researchers in universities and other research institutions with summary-level information on the various research and development programs supported by the Department. Collectively, DOE programs support a wide range of research activities - from studies on the fundamental nature of matter and energy to exploratory and advanced research on the development of new technical approaches leading to new energy technologies. The guide summarizes, in one source, basic information on DOE's energy research and development and related programs, interests and needs. It supplies information on current Federal and DOE grant and contract policies and procedures and lists the names of DOE staff, by program area, from whom additional information may be obtained

  18. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  19. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

    Energy Technology Data Exchange (ETDEWEB)

    Paper, Riyaz; Dooley, Bill; Turpish, William J; Symonds, Mark; Carswell, Needham

    2007-04-13

    The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental

  20. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  1. DOE headquarters publications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the ''report code'' assigned to each of the major organizations at DOE Headquarters, followed by the three categories of environmental reports issued from DOE Headquarters. All of the publications listed, except for those shown as still ''in preparation,'' may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications are omitted. They include such items as pamphlets, ''fact sheets,'' bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., ''HCP'' (Headquarters Contractor Publication) and ''CONF'' (conference proceedings). (RWR)

  2. Energy and durable development: the place of the renewable energies

    International Nuclear Information System (INIS)

    2001-01-01

    The 29 may 2000, took place at the UNESCO, a colloquium on the place of the renewable energies facing the economic development. This document presents the opening presentation of A. Antolini and L. Jospin and the colloquium papers and debates in the following four domains: the energy challenges of the durable development, the renewable energies sources facing the european directive, the thermal renewable energies (solar, geothermics and biomass) and the greenhouse effect, the world market of the renewable energies. (A.L.B.)

  3. DOE plutonium disposition study: Pu consumption in ALWRs

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE's System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE's Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy

  4. Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions

    International Nuclear Information System (INIS)

    Ju, Keyi; Su, Bin; Zhou, Dequn; Wu, Junmin

    2017-01-01

    China's energy prices have long been regulated due to the critical role energy plays in economic growth and social development, which leads to energy-price distortion to some extent. To figure out whether energy-price regulations will benefit China's economy (measured by GDP growth) and environment (measured by carbon emissions), we conducted an in-depth simulation using path analysis, where five energy products (natural gas, gasoline, fuel oil, steam coal, and coking coal) are selected and three measurements (absolute, relative, and moving) of energy-price distortions are calculated. The results indicate that, with a series of energy pricing policies, the price distortion for a single type of energy has gradually transformed, while the energy pricing system in China is not fully market-oriented yet. Furthermore, China's economy benefits from relative and moving distortions, while the absolute distortions of energy prices have negative impacts on economic growth. Finally, with regard to the environment, carbon emissions call for fewer distortions. - Highlights: • Price distortion for a single type of energy has gradually transformed. • Energy pricing system in China is not yet fully market-oriented. • China's economy benefits from relative and moving distortions. • Absolute distortions of energy prices have negative effects on economic growth. • Carbon emissions call for less pricing distortions.

  5. Energy and water development appropriations for Fiscal year 1986. Part 2. Hearings before a Subcommittee of the Committee on Appropriations, United States Senate, Ninety-Ninth Congress, First Session on H.R. 2959

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Part 2 of the hearing record covers testimony on H.R. 2959 by representatives of DOE and selected agencies within the department. The volume opens with an overview of DOE-sponsored water programs and budget justifications by Energy Secretary Herrington and supporting witnesses. Witnesses on subsequent days defended the budgets of the radioactive waste management programs, the Federal Energy Regulatory Commission, the Nuclear Regulatory Commission, the five federal power marketing administrations, the solar and renewable programs, the Office of Energy Research, and the atomic energy defense activities. Witnesses described research and development programs and responded to the questions of committee members concerning the fiscal year 1986 budget for DOE

  6. Eleventh DOE workshop on personnel neutron dosimetry

    International Nuclear Information System (INIS)

    1991-01-01

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ''The 1990 Recommendations of the ICRP and their Biological Background.'' The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers

  7. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  8. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  9. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  10. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  11. Environmental value considerations in public attitudes about alternative energy development in Oregon and Washington.

    Science.gov (United States)

    Steel, Brent S; Pierce, John C; Warner, Rebecca L; Lovrich, Nicholas P

    2015-03-01

    The 2013 Pacific Coast Action Plan on Climate and Energy signed by the Governors of California, Oregon, and Washington and the Premier of British Columbia launched a broadly announced public commitment to reduce greenhouse gas emissions through multiple strategies. Those strategies include the development and increased use of renewable energy sources. The initiative recognized that citizens are both a central component in abating greenhouse gas emissions with regard to their energy use behaviors, and are important participants in the public policymaking process at both state and local levels of government. The study reported here examines whether either support or opposition to state government leadership in the development of alternative energy technologies can be explained by environmental values as measured by the New Ecological Paradigm (NEP). The research results are based on mail surveys of randomly selected households conducted throughout Oregon and Washington in late 2009 and early 2010. Findings suggest that younger and more highly educated respondents are significantly more likely than older and less educated respondents to either support or strongly support government policies to promote bioenergy, wind, geothermal, and solar energy. Those respondents with higher NEP scores are also more supportive of government promotion of wind, geothermal, and solar technologies than are those with lower NEP scores. Support for wave