WorldWideScience

Sample records for energy dissipation capacity

  1. Experimental Study of Hysteretic Steel Damper for Energy Dissipation Capacity

    Directory of Open Access Journals (Sweden)

    Daniel R. Teruna

    2015-01-01

    Full Text Available This study aims to evaluate energy absorption capacity of hysteretic steel damper for earthquake protection of structures. These types of steel dampers are fabricated from mild steel plate with different geometrical shapes on the side part, namely, straight, concave, and convex shapes. The performance of the proposed device was verified experimentally by a series of tests under increasing in-plane cyclic load. The overall test results indicated that the proposed steel dampers have similar hysteretic curves, but the specimen with convex-shaped side not only showed stable hysteretic behavior but also showed excellent energy dissipation capabilities and ductility factor. Furthermore, the load-deformation relation of these steel dampers can be decomposed into three parts, namely, skeleton curve, Bauschinger part, and elastic unloading part. The skeleton curve is commonly used to obtain the main parameters, which describe the behavior of steel damper, namely, yield strength, elastic stiffness, and postyield stiffness ratio. Moreover, the effective stiffness, effective damping ratio, cumulative plastic strain energy, and cumulative ductility factor were also derived from the results. Finally, an approximation trilinear hysteretic model was developed based on skeleton curve obtained from experimental results.

  2. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    Directory of Open Access Journals (Sweden)

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  3. Energy dissipators

    National Research Council Canada - National Science Library

    Vischer, D. L; Hager, Willi H; Hager, W. H

    1995-01-01

    .... the book comprises chapters in farious fields such as hydraulic jump, stilling basins, ski jumps and plunge pools but introduces also a general account on various methods of dissipation, as well...

  4. Dissipation of Tidal Energy

    Science.gov (United States)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  5. Mechanical energy dissipation in natural ceramic composites.

    Science.gov (United States)

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  6. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  7. Dissipation of Wave Energy by Cohesive Sediments

    National Research Council Canada - National Science Library

    Kaihatu, James M; Sheremet, Alexandru

    2004-01-01

    Wave energy dissipation by bottom muds is studied. A dissipation mechanism which contains explicit expressions of wavenumber modification due to a viscous bottom fluid is incorporated into a nonlinear wave shoaling model...

  8. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  9. Research on Characteristics of New Energy Dissipation With Symmetrical Structure

    Science.gov (United States)

    Ming, Wen; Huang, Chun-mei; Huang, Hao-wen; Wang, Xin-fang

    2018-03-01

    Utilizing good energy consumption capacity of arc steel bar, a new energy dissipation with symmetrical structure was proposed in this article. On the base of collection experimental data of damper specimen Under low cyclic reversed loading, finite element models were built by using ANSYS software, and influences of parameter change (Conduction rod diameter, Actuation plate thickness, Diameter of arc steel rod, Curved bars initial bending) on energy dissipation performance were analyzed. Some useful conclusions which can lay foundations for practical application were drawn.

  10. Offshore heat dissipation for nuclear energy centers

    International Nuclear Information System (INIS)

    Bauman, H.F.

    1978-09-01

    The technical, environmental, and economic aspects of utilizing the ocean or other large water bodies for the dissipation of reject heat from Nuclear Energy Centers (NECs) were investigated. An NEC in concept is an aggregate of nuclear power plants of 10 GW(e) capacity or greater on a common site. The use of once-through cooling for large power installations offers advantages including higher thermal efficiencies, especially under summer peak-load conditions, compared to closed-cycle cooling systems. A disadvantage of once-through cooling is the potential for greater adverse impacts on the aquatic environment. A concept is presented for minimizing the impacts of such systems by placing water intake and discharge locations relatively distant from shore in deeper water than has heretofore been the practice. This technique would avoid impacts on relatively biologically productive and ecologically sensitive shallow inshore areas. The NEC itself would be set back from the shoreline so that recreational use of the shore area would not be impaired. The characteristics of a heat-dissipation system of the size required for a NEC were predicted from the known characteristics of a smaller system by applying hydraulic scaling laws. The results showed that adequate heat dissipation can be obtained from NEC-sized systems located in water of appropriate depth. Offshore intake and discharge structures would be connected to the NEC pump house on shore via tunnels or buried pipelines. Tunnels have the advantage that shoreline and beach areas would not be disturbed. The cost of an offshore heat-dissipation system depends on the characteristics of the site, particularly the distance to suitably deep water and the type of soil or rock in which water conduits would be constructed. For a favorable site, the cost of an offshore system is estimated to be less than the cost of a closed-cycle system

  11. Transitions in the Communication Capacity of Dissipative Qubit Channels

    Science.gov (United States)

    Daems, D.

    2009-05-01

    The information transmission is studied for quantum channels in which the noise includes dissipative effects, more specifically, nonunitality. Noise is usually a nuisance but can sometimes be helpful. For these channels, the communication capacity is shown to increase with the dissipative component of the noise and may exhibit transitions beyond which it increases faster. The optimal states are constructed analytically as well as the pertaining “phase” diagram.

  12. Energy dissipation in multifrequency atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Valentina Pukhova

    2014-04-01

    Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.

  13. Energy dissipation mapping of cancer cells.

    Science.gov (United States)

    Dutta, Diganta; Palmer, Xavier-Lewis; Kim, Jinhyun; Qian, Shizhi; Stacey, Michael

    2018-02-01

    The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift is generated by the sample elements that do not have a heterogeneous surface. Monitoring and manipulating the phase shift is a powerful way for determining the dissipated energy and plotting the topography. The dissipated energy is a relative value, so the silica wafer and cover slip are given a set reference while the transmission of energy between the tip of the cantilever and cell surfaces is measured. The most important finding is that the magnitude and the number of variations in the dissipated energy change with the strength of NsPEF applied. Utilizing a single low field strength NsPEF (15kV/cm), minor changes in dissipated energy were found. The application of a single high field strength NsPEF (60kV/cm) to Jurkat cells resulted in a higher dissipated energy change versus that of in the low field strength condition. Thus, the dissipated energy from the Jurkat cells changes with the strength of NsPEF. By analyzing the forces via investigation in the tapping mode of the AFM, the stabilization of the cytoskeleton and membrane of the cell are related to the strength of NsPEF applied. Furthermore, the strength of NsPEF indicates a meaningful relationship to the survival of the Jurkat cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Energy dissipation of rockfalls by coppice structures

    Directory of Open Access Journals (Sweden)

    G. Ciabocco

    2009-06-01

    Full Text Available The objective of this work is to develop elements to improve understanding of the behaviour of a coppice in relation to the phenomenon of falling boulders. The first section proposes an amendment to the equation for calculating the index which describes the probability of impact between a rock and plants in managed coppice forests. A study was carried out, using models to calculate the kinetic energy of a falling boulder along a slope considering the kinetic energy dissipated during the impact with the structure of forest plants managed by coppice. The output of the simulation models were then compared with the real dynamics of falling boulders in field tests using digital video.

    It emerged from an analysis of the results of this comparison that a modification to the 1989 Gsteiger equation was required, in order to calculate the "Average Distance between Contacts" (ADC. To this purpose, the concept of "Structure of Interception", proposed in this paper, was developed, valid as a first approach for describing the differences in the spatial distribution of stems between coppice and forest. This study also aims to provide suggestions for forestry management, in order to maintain or increase the protective capacity of a coppice managed with conventional techniques for the area studied, modifying the dendrometric characteristics.

  15. Complex Fluids in Energy Dissipating Systems

    Directory of Open Access Journals (Sweden)

    Francisco J. Galindo-Rosales

    2016-07-01

    Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.

  16. Energy and dissipated work in snow avalanches

    Science.gov (United States)

    Bartelt, P.; Buser, O.

    2004-12-01

    Using the results of large scale avalanche experiments at the Swiss Vallée de la Sionne test site, the energy balance of several snow avalanches is determined. Avalanches convert approximately one-seventh of their potential energy into kinetic energy. The total potential energy depends strongly on the entrained snowcover, indicating that entrainment processes cannot be ignored when predicting terminal velocities and runout distances. We find energy dissipation rates on the order of 1 GW. Fluidization of the fracture slab can be identified in the experiments as an increase in dissipation rate, thereby explaining the initial and rapid acceleration of avalanches after release. Interestingly, the dissipation rates appear to be constant along the track, although large fluctuations in internal velocity exist. Thus, we can demonstrate within the context of non-equilibrium thermodynamics that -- in space -- granular snow avalanches are irreversible, dissipative systems that minimize entropy production because they appear to reach a steady-state non-equilibrium. A thermodynamic analysis reveals that fluctuations in velocity depend on the roughness of the flow surface and viscosity of the granular system. We speculate that this property explains the transition from flowing avalanches to powder avalanches.

  17. Energy Dissipation in Quantum Computers

    OpenAIRE

    Granik, A.; Chapline, G.

    2003-01-01

    A method is described for calculating the heat generated in a quantum computer due to loss of quantum phase information. Amazingly enough, this heat generation can take place at zero temperature. and may explain why it is impossible to extract energy from vacuum fluctuations. Implications for optical computers and quantum cosmology are also briefly discussed.

  18. Critical behavior in earthquake energy dissipation

    Science.gov (United States)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  19. Energy balance for a dissipative quantum system

    International Nuclear Information System (INIS)

    Kumar, Jishad

    2014-01-01

    The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)

  20. Stable schemes for dissipative particle dynamics with conserved energy

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, Gabriel, E-mail: stoltz@cermics.enpc.fr

    2017-07-01

    This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to effective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis–Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.

  1. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    -particle interactions have the capacity to regulate the global structure and dominate the energy dissipation of collision-less shocks.

  2. If there is dissipation the particle can gain energy

    International Nuclear Information System (INIS)

    De Carvalho, R Egydio

    2015-01-01

    In this work, we summarize two different mechanisms to gain energy from the presence of dissipation in a time-dependent non-linear system. The particles can gain energy, in the average, from two different scenarios: i) for very week dissipation with the creation of an attractor with high velocity, and ii) in the opposite limit, for very strong dissipation, the particles can also gain energy from a boundary crisis. From the thermodynamic viewpoint both results are totally acceptable. (paper)

  3. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  4. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  5. estimation of ionospheric energy dissipation for the year 2012 using

    African Journals Online (AJOL)

    userpc

    energy dissipation is the dominant channel of energy transfer in that year from the solar wind. This is consistent with many results found by other researchers. Keywords: Østgaard's Empirical Relation, Ionospheric Energy Dissipation, Electron. Precipitation, Joule Heating. INTRODUCTION. In the Earth's magnetosphere, the ...

  6. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    Science.gov (United States)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  7. Energy dissipation of slot-type flip buckets

    Science.gov (United States)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-03-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  8. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling

    2012-01-01

    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  9. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  10. Dissipation of magnetic energy during disruptive current termination

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1983-09-01

    The magnetic coupling during a disruption between the plasma and the various coil systems on the PDX tokamak has been modeled. Using measured coil currents, the model indicates that dissipation of magnetic energy in the plasma equal to 75 % of the energy stored in the poloidal field of the plasma current does occur and that coupling between the plasma and the coil systems can reduce such dissipation. In the case of PDX ohmic discharges, bolometric measurements of radiation and charge exchange, integrated over a disruption, account for 90 % of the calculated energy dissipation. (author)

  11. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  12. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

    International Nuclear Information System (INIS)

    Gardea, Frank; Lagoudas, Dimitris C; Naraghi, Mohammad; Glaz, Bryan; Riddick, Jaret

    2016-01-01

    In this paper we present our recent findings on the mechanisms of energy dissipation in polymer-based nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas. (paper)

  13. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  14. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K T [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1997-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  15. Energy dissipation in a finite volume of magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bashtovoi, V.; Motsar, A.; Reks, A., E-mail: alexfx20@yandex.ru

    2017-06-01

    This study is devoted to investigation of energy dissipation processes which happen in a magnetic fluid drop with compound magnet during its motion in cylindrical non magnetic container. The possibility of energy dissipation control by means of electromagnetic field is examined. It's found that a change of magnetic field of compound magnet can lead to both increase and decrease of oscillation decay time and relative damping factor can be varied in a range of ±35%.

  16. Beam-to-Column Connections with Demountable Energy Dissipative Plates

    Directory of Open Access Journals (Sweden)

    Vasile-Mircea Venghiac

    2018-03-01

    Full Text Available The behavior of steel structures subjected to seismic actions depends directly on the connections behavior. There are two current tendencies for ensuring the structural ductility: allowing the formation of plastic hinges in the beams by using reduced beam sections or reduced web sections or by ensuring the plastic hinge formation in the connection by using dissipative elements. This paper presents a new perspective regarding the energy dissipation mechanism formation within the beam-to-column connection. The design of connections capable of dissipating large amounts of energy, with an acceptable strength and ductile behavior is a real challenge for engineers. Sustainability is a big advantage for these connections. Another big advantage is the possibility of restoring the functionality of the damaged construction in a short time interval and with reduced costs. The introduction of connections with demountable energy dissipative plates can be a step forward in designing new beam-to-column connections for steel structures.

  17. Inferring energy dissipation from violation of the fluctuation-dissipation theorem

    Science.gov (United States)

    Wang, Shou-Wen

    2018-05-01

    The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.

  18. Architected squirt-flow materials for energy dissipation

    Science.gov (United States)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  19. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  20. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...

  1. Modeling compaction-induced energy dissipation of granular HMX

    Energy Technology Data Exchange (ETDEWEB)

    Gonthier, K.A. [Lamar Univ., Beaumont, TX (US). Dept. of Mechanical Engineering; Menikoff, R.; Son, S.F.; Asay, B.W. [Los Alamos National Lab., NM (US)

    1998-12-31

    A thermodynamically consistent model is developed for the compaction of granular solids. The model is an extension of the single phase limit of two-phase continuum models used to describe Deflagration-to-Detonation Transition (DDT) experiments. The focus is on the energetics and dissipation of the compaction process. Changes in volume fraction are partitioned into reversible and irreversible components. Unlike conventional DDT models, the model is applicable from the quasi-static to dynamic compaction regimes for elastic, plastic, or brittle materials. When applied to the compaction of granular HMX (a brittle material), the model predicts results commensurate with experiments including stress relaxation, hysteresis, and energy dissipation. The model provides a suitable starting point for the development of thermal energy localization sub-scale models based on compaction-induced dissipation.

  2. Non-dissipative energy capture of confined liquid in nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoxing; Chen, Xi [Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Lu, Weiyi; Zhao, Cang [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Qiao, Yu, E-mail: yqiao@ucsd.edu [Department of Structural Engineering, University of California–San Diego, La Jolla, California 92093-0085 (United States); Program of Materials Science and Engineering, University of California–San Diego, La Jolla, CA 92093 (United States)

    2014-05-19

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  3. Non-dissipative energy capture of confined liquid in nanopores

    International Nuclear Information System (INIS)

    Xu, Baoxing; Chen, Xi; Lu, Weiyi; Zhao, Cang; Qiao, Yu

    2014-01-01

    In the past, energy absorption of protection/damping materials is mainly based on energy dissipation, which causes a fundamental conflict between the requirements of safety/comfort and efficiency. In the current study, a nanofluidic “energy capture” system is reported, which is based on nanoporous materials and nonwetting liquid. Both molecular dynamics simulations and experiments show that as the liquid overcomes the capillary effect and infiltrates into the nanopores, the mechanical energy of a stress wave could be temporarily stored by the confined liquid phase and isolated from the wave energy transmission path. Such a system can work under a relatively low pressure for mitigating high-pressure stress waves, not necessarily involved in any energy dissipation processes.

  4. Energy dissipation by a longitudinal Raman process

    International Nuclear Information System (INIS)

    Fano, U.; Inokuti, Mitio

    1994-01-01

    The concept of a longitudinal Raman process is introduced to encompass the indirect transmission of energy from slow electrons to nuclei through the reversible polarization of surrounding electrons. Experimental approaches are sought to assess this process quantitatively

  5. Mathematical Modeling for Energy Dissipation Behavior of Velocity ...

    African Journals Online (AJOL)

    The developed oil-pressure damper is installed with an additional Relief Valve parallel to the Throttle Valve. This is intended to obtain an adaptive control by changing the damping coefficient of this damper using changeable orifice size. In order to simulate its actual energy-dissipating behavior, a serial friction model and a ...

  6. Minimum Energy Dissipation under Cocurrent Flow in Packed Beds

    Czech Academy of Sciences Publication Activity Database

    Akramov, T.A.; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2011-01-01

    Roč. 50, č. 18 (2011), s. 10824-10832 ISSN 0888-5885 R&D Projects: GA ČR GA104/09/0880 Institutional research plan: CEZ:AV0Z40720504 Keywords : energy dissipation * current flow * packed bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.237, year: 2011

  7. ENERGY DISSIPATION IN MAGNETIC NULL POINTS AT KINETIC SCALES

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Divin, Andrey; Eriksson, Elin; Markidis, Stefano

    2015-01-01

    We use kinetic particle-in-cell and MHD simulations supported by an observational data set to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of “intermittent turbulence” within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging and vanishing, associated with electron streams and small-scale current sheets. The number of spiral nulls in the simulation outweighs the number of radial nulls by a factor of 5–10, in accordance with Cluster observations in the Earth's magnetosheath. Twisted magnetic fields with embedded spiral null points might indicate the regions of major energy dissipation for future space missions such as the Magnetospheric Multiscale Mission

  8. Wetlands as energy-dissipating systems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, J.; Květ, Jan; Rejšková, A.; Brom, J.

    2010-01-01

    Roč. 37, č. 12 (2010), s. 1299-1305 ISSN 1367-5435 Institutional research plan: CEZ:AV0Z60870520 Keywords : wetlands * vegetation * energy fluxes * primary production * landscape management Subject RIV: EF - Botanics Impact factor: 2.416, year: 2010 http://www.springerlink.com/content/y5t4750647q84553/

  9. Interior Pathways to Dissipation of Mesoscale Energy

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-27

    This talk at Goethe University asks What Powers Overturning Circulation? How does Ocean Circulation Equilibrate? There is a HUGE reservoir of energy sitting in the interior ocean. Can fluid dynamic instabilities contribute to the mixing required to drive global overturning circulation? Study designed to eliminate distinguished horizontal surfaces such as bottom BL and surface layer

  10. Intrinsic Energy Dissipation Limits in Nano and Micromechanical Resonators

    Science.gov (United States)

    Iyer, Srikanth Subramanian

    Resonant microelectromechanical Systems (MEMS) have enabled miniaturization of high-performance inertial sensors, radio-frequency filters, timing references and mass-based chemical sensors. Despite the increasing prevalence of MEMS resonators for these applications, the energy dissipation in these structures is not well-understood. Accurate prediction of the energy loss and the resulting quality factor (Q) has significant design implications because it is directly related to device performance metrics including sensitivity for resonant sensors, bandwidth for radio-frequency filters and phase-noise for timing references. In order to assess the future potential for MEMS resonators it is critically important to evaluate the energy dissipation limits, which will dictate the ultimate performance resonant MEMS devices can achieve. This work focuses on the derivation and evaluation of the intrinsic mechanical energy dissipation limit for single-crystal nano and micromechanical resonators due to anharmonic phonon-phonon scattering in the Akhiezer regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction and polarization dependent mode-Gruneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. Evaluation of the quality factor limit reveals that Akhiezer damping, previously thought to depend only on material properties, has a strong dependence on crystal orientation and resonant mode shape. The robust model provides a dissipation limit for all resonant modes including shear-mode vibrations, which have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to volume-preserving phonon branches, indicating that Lame or wine-glass mode resonators will have the highest upper limit on mechanical efficiency. Finally, the analytical dissipation model is integrated with commercial finite element software in order to

  11. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation.

    Science.gov (United States)

    Demmig-Adams, Barbara; Adams, William W

    2006-01-01

    This review places photoprotection into the context of ecology and species diversity. The focus is on photoprotection via the safe removal - as thermal energy - of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. An update on the surprisingly complex, multiple variations of thermal energy dissipation is presented, placing these different forms into ecological and genetic contexts. Zeaxanthin-facilitated, flexible thermal dissipation associated with the PsbS protein and controlled by the trans-thylakoid pH gradient apparently occurs ubiquitously in plants, and can become sustained (and thus less flexible) at low temperatures. Long-lived, slow-growing plants with low intrinsic capacities for photosynthesis have greater capacities for this flexible dissipation than short-lived, fast-growing species. Furthermore, potent, but inflexible (zeaxanthin-facilitated) thermal dissipation, prominent in evergreen species under prolonged environmental stress, is characterized with respect to the involvement of photosystem II core rearrangement and/or degradation as well as the absence of control by trans-thylakoid pH and, possibly, PsbS. A role of PsbS-related proteins in photoprotection is discussed.

  12. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  13. A simulation for energy dissipation in nuclear reactions

    International Nuclear Information System (INIS)

    Mshelia, E.D.; Ngadda, Y.H.

    1989-01-01

    A model for energy dissipation is presented which demonstrates energy transfer from a collective degree of freedom, represented by free motion, into intrinsic modes, represented by four coupled oscillators. The quantum mechanical probability amplitude for internal excitation is expressed as a multiple integral of a product of translational and intrinsic wavefunctions and exactly solved analytically. Its numerical values as a function of quantities of physical interest have been calculated, represented graphically and discussed. The results show that the probability distributions are peaked. (author)

  14. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  15. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  16. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.

    Science.gov (United States)

    Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul

    2017-02-01

    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T =2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  17. Seismic energy dissipation study of linear fluid viscous dampers in steel structure design

    Directory of Open Access Journals (Sweden)

    A. Ras

    2016-09-01

    Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.

  18. A field theory description of constrained energy-dissipation processes

    International Nuclear Information System (INIS)

    Mandzhavidze, I.D.; Sisakyan, A.N.

    2002-01-01

    A field theory description of dissipation processes constrained by a high-symmetry group is given. The formalism is presented in the example of the multiple-hadron production processes, where the transition to the thermodynamic equilibrium results from the kinetic energy of colliding particles dissipating into hadron masses. The dynamics of these processes is restricted because the constraints responsible for the colour charge confinement must be taken into account. We develop a more general S-matrix formulation of the thermodynamics of nonequilibrium dissipative processes and find a necessary and sufficient condition for the validity of this description; this condition is similar to the correlation relaxation condition, which, according to Bogolyubov, must apply as the system approaches equilibrium. This situation must physically occur in processes with an extremely high multiplicity, at least if the hadron mass is nonzero. We also describe a new strong-coupling perturbation scheme, which is useful for taking symmetry restrictions on the dynamics of dissipation processes into account. We review the literature devoted to this problem

  19. Energy dissipation characteristics of sharp-edged orifice plate

    Directory of Open Access Journals (Sweden)

    Ai Wanzheng

    2015-08-01

    Full Text Available The energy loss coefficient, relating directly to the energy dissipation ratio, is an important index of this energy dissipater. In this article, this coefficient and its affecting parameters were analyzed by theoretical considerations, and their relationships were obtained by numerical simulations. It could be concluded that the energy loss coefficient of sharp-edged orifice plate and its backflow region length were mainly dominated by the contraction ratio of the orifice plate. Sharp-edged orifice plate’s energy loss coefficient and its backflow region length all increase slightly with the increase in its thickness. When Reynolds number is in the range of 9.00×104–10.3×106, Reynolds number has little impacts on energy loss coefficient and backflow region length. Two empirical expressions, relating to backflow region length and energy loss coefficient, respectively, were presented.

  20. Strain energy storage and dissipation rate in active cell mechanics

    Science.gov (United States)

    Agosti, A.; Ambrosi, D.; Turzi, S.

    2018-05-01

    When living cells are observed at rest on a flat substrate, they can typically exhibit a rounded (symmetric) or an elongated (polarized) shape. Although the cells are apparently at rest, the active stress generated by the molecular motors continuously stretches and drifts the actin network, the cytoskeleton of the cell. In this paper we theoretically compare the energy stored and dissipated in this active system in two geometric configurations of interest: symmetric and polarized. We find that the stored energy is larger for a radially symmetric cell at low activation regime, while the polar configuration has larger strain energy when the active stress is beyond a critical threshold. Conversely, the dissipation of energy in a symmetric cell is always larger than that of a nonsymmetric one. By a combination of symmetry arguments and competition between surface and bulk stress, we argue that radial symmetry is an energetically expensive metastable state that provides access to an infinite number of lower-energy states, the polarized configurations.

  1. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    Science.gov (United States)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  2. Energy-Based Design Criterion of Dissipative Bracing Systems for the Seismic Retrofit of Frame Structures

    Directory of Open Access Journals (Sweden)

    Gloria Terenzi

    2018-02-01

    Full Text Available Direct sizing criteria represent useful tools in the design of dissipative bracing systems for the advanced seismic protection of existing frame structures, especially when incorporated dampers feature a markedly non-linear behaviour. An energy-based procedure is proposed herein to this aim, focusing attention on systems including fluid viscous devices. The procedure starts by assuming prefixed reduction factors of the most critical response parameters in current conditions, which are evaluated by means of a conventional elastic finite element analysis. Simple formulas relating the reduction factors to the equivalent viscous damping ratio of the dampers, ξeq, are proposed. These formulas allow calculating the ξeq values that guarantee the achievement of the target factors. Finally, the energy dissipation capacity of the devices is deduced from ξeq, finalizing their sizing process. A detailed description of the procedure is presented in the article, by distinguishing the cases where the prevailing structural deficiencies are represented by poor strength of the constituting members, from the cases having excessive horizontal displacements. A demonstrative application to the retrofit design of a reinforced concrete gym building is then offered to explicate the steps of the sizing criterion in practice, as well as to evaluate the enhancement of the seismic response capacities generated by the installation of the dissipative system.

  3. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  4. Dynamically controlled energy dissipation for fast magnetic vortex switching

    Science.gov (United States)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  5. Entropy production and energy dissipation in symmetric redox supercapacitors

    Science.gov (United States)

    Palma-Aramburu, N.; Santamaría-Holek, I.

    2017-08-01

    In this work we propose a theoretical model that accounts for the main features of the loading-unloading process of a symmetric redox MnO2-based supercapacitor dominated by fast electrochemical reactions at the electrodes. The model is formulated on the basis of nonequilibrium thermodynamics from which we are able to deduce generalized expressions for the electrochemical affinity, the load-voltage and the current-voltage equations that constitute generalizations of the current-overpotential and Butler-Volmer equations, and that are used to describe experimental voltagram data with good agreement. These equations allowed us to derive the behavior of the energy dissipated per cycle showing that it has a nonmonotonic behavior and that in the operation regime it follows a power-law behavior as a function of the frequency. The existence of a maximum for the energy dissipated as a function of the frequency suggests the that the corresponding optimal operation frequency should be similar in value to ωmax.

  6. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  7. Free energy and heat capacity

    International Nuclear Information System (INIS)

    Kurata, M.; Devanathan, R.

    2015-01-01

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuels fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed. (authors)

  8. Testing Procedures for High Output Fluid Viscous Dampers Used in Building and Bridge Structures to Dissipate Seismic Energy

    Directory of Open Access Journals (Sweden)

    Douglas P. Taylor

    1995-01-01

    Full Text Available Today's economic climate demands that conversion of military technology for commerical applications be a part of an aerospace and defense company's strategic planning. Toward this goal, a successful defense conversion has occurred recently with the application of high capacity fluid damping devices from the defense community for use as seismic energy dissipation elements in commercial buildings, bridges, and related structures. These products have been used by the military for many years for attenuation of weapons grade shock, typically applied to shipboard equipment or land based strategic weapons. Commercial energy dissipation devices historically have involved heavy yielding sections or hysteretic joints.

  9. Dissipative generalized Chaplygin gas as phantom dark energy

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco

    2007-01-01

    The generalized Chaplygin gas, characterized by the equation of state p=-A/ρ α , has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003

  10. Dissipative generalized Chaplygin gas as phantom dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)]. E-mail: fcampos@ufro.cl

    2007-03-15

    The generalized Chaplygin gas, characterized by the equation of state p=-A/{rho}{sup {alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003].

  11. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata

    Directory of Open Access Journals (Sweden)

    Ali Newaz Bahar

    2017-02-01

    Full Text Available This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  12. Energy-dissipating and self-repairing SMA-ECC composite material system

    International Nuclear Information System (INIS)

    Li, Xiaopeng; Li, Mo; Song, Gangbing

    2015-01-01

    Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events. (paper)

  13. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  14. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    Science.gov (United States)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  15. Energy modelling and capacity building

    International Nuclear Information System (INIS)

    2005-01-01

    The Planning and Economic Studies Section of the IAEA's Department of Nuclear Energy is focusing on building analytical capacity in MS for energy-environmental-economic assessments and for the elaboration of sustainable energy strategies. It offers a variety of analytical models specifically designed for use in developing countries for (i) evaluating alternative energy strategies; (ii) assessing environmental, economic and financial impacts of energy options; (iii) assessing infrastructure needs; (iv) evaluating regional development possibilities and energy trade; (v) assessing the role of nuclear power in addressing priority issues (climate change, energy security, etc.). These models can be used for analysing energy or electricity systems, and to assess possible implications of different energy, environmental or financial policies that affect the energy sector and energy systems. The models vary in complexity and data requirements, and so can be adapted to the available data, statistics and analytical needs of different countries. These models are constantly updated to reflect changes in the real world and in the concerns that drive energy system choices. They can provide thoughtfully informed choices for policy makers over a broader range of circumstances and interests. For example, they can readily reflect the workings of competitive energy and electricity markets, and cover such topics as external costs. The IAEA further offers training in the use of these models and -just as important- in the interpretation and critical evaluation of results. Training of national teams to develop national competence over the full spectrum of models, is a high priority. The IAEA maintains a broad spectrum of databanks relevant to energy, economic and environmental analysis in MS, and make these data available to analysts in MS for use in their own analytical work. The Reference Technology Data Base (RTDB) and the Reference Data Series (RDS-1) are the major vehicles by which we

  16. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  17. Dissipation of 'dark energy' by cortex in knowledge retrieval.

    Science.gov (United States)

    Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe

    2013-03-01

    We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  19. Energy dissipation statistics along the Lagrangian trajectories in three-dimensional turbulent flows

    Science.gov (United States)

    Luo, Jian-ping; Wang, Yong-bo; Qiu, Xiang; Xia, Yu-xian; Liu, Yu-lu

    2018-02-01

    Energy dissipation rate is relevant in the turbulent phenomenology theory, such as the classical Kolmogorov 1941 and 1962 refined similarity hypothesis. However, it is extremely difficult to retrieve experimentally or numerically. In this paper, the full energy dissipation, its proxy and the pseudo-energy dissipation rate along the Lagrangian trajectories in the three-dimensional turbulent flows are examined by using a state-of-art high resolution direct numerical simulation database with a Reynolds number Re λ = 400. It is found that the energy dissipation proxy ɛ P is more correlated with the full energy dissipation rate ɛ. The corresponding correlation coefficient ρ between the velocity gradient and e shows a Gaussian distribution. Furthermore, the coarse-grained dissipation rate is considered. The cross correlation ρ is found to be increased with the increasing of the scale τ. Finally, the hierarchical structure is extracted for the full energy dissipation rate, its proxy and the pseudo one. The results show a power-law behavior in the inertial range 10 ≤ τ/ τ η ≤ 100. The experimental scaling exponent of the full energy dissipation rate is found to be h L =0.69, agrees very well with the one found for the Eulerian velocity. The experimental values for ɛ P and ɛ S are around h L = 0.78, implying a more intermittent Lagrangian turbulence. Therefore, the intermittency parameter provided by ɛ P and ɛ S will be biased.

  20. Relative Entropy, Interaction Energy and the Nature of Dissipation

    Directory of Open Access Journals (Sweden)

    Bernard Gaveau

    2014-06-01

    Full Text Available Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence. The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed—at least in this case—the source of dissipation in that coefficient is the relative entropy.

  1. Energy dissipation in fragmented geomaterials associated with impacting oscillators

    Science.gov (United States)

    Khudyakov, Maxim; Pasternak, Elena; Dyskin, Arcady

    2016-04-01

    In wave propagation through fragmented geomaterials forced by periodic loadings, the elements (fragments) strike against each other when passing through the neutral position (position with zero mutual rotation), quickly damping the oscillations. Essentially the impacts act as shock absorbers albeit localised at the neutral points. In order to analyse the vibrations of and wave propagation in such structures, a differential equation of a forced harmonic oscillator was investigated, where the each time the system passes through the neutral point the velocity gets reduced by multiplying it with the restitution coefficient which characterise the impact of the fragments. In forced vibrations the impact times depend on both the forced oscillations and the restitution coefficient and form an irregular sequence. Numerical solution of the differential equation was performed using Mathematica software. Along with vibration diagrams, the dependence of the energy dissipation on the ratio of the forcing frequency to the natural frequency was obtained. For small positive values of the restitution coefficient (less than 0.5), the asymmetric oscillations were found, and the phase of the forced vibrations determined the direction of the asymmetry. Also, at some values of the forcing frequencies and the restitution coefficient chaotic behaviour was found.

  2. Kinetic Energy Dissipation on Labyrinth Configuration Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Jaafar S. Maatooq

    2017-12-01

    Full Text Available In present work a labyrinth (zigzag, in shape has been used to configure the steps of stepped spillway by using the physical model. This configuration does not introduce previously by investigators or in construction techniques of dams or cascades. It would be expected to improve the flow over chute. A magnifying the width path of each step to become, LT, instead of, W, will induce the interlocking between the mainstream and that spread laterally due to labyrinth path. This phenomenon leads to reduce the jet velocities near the surfaces, thus minimizing the ability of cavitation and with increasing a circulation regions the ability of air entrainment be maximized. The results were encouraging, (e.g., the reverse performance has recorded for spillway slope. From the evaluation of outcome, the average recorded of percentage profits of kinetic energy dissipation with a labyrinth shape compared with the results of traditional shape were ranged between (13- 44%. Different predictive formulas have been proposed based on iteration analysis, can be recommended for evaluation and design.

  3. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard.

    Science.gov (United States)

    Livorati, André L P; Caldas, Iberê L; Leonel, Edson D

    2012-06-01

    The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon.

  4. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    Science.gov (United States)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  5. Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows

    Science.gov (United States)

    Duncan, B. S.

    1992-01-01

    True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be

  6. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  7. Optimal design of base isolation and energy dissipation system for nuclear power plant structures

    International Nuclear Information System (INIS)

    Zhou Fulin

    1991-01-01

    This paper suggests the method of optimal design of base isolation and energy dissipation system for earthquake resistant nuclear power plant structures. This method is based on dynamic analysis, shaking table tests for a 1/4 scale model, and a great number of low cycle fatigue failure tests for energy dissipating elements. A set of calculation formulas for optimal design of structures with base isolation and energy dissipation system were introduced, which are able to be used in engineering design for earthquake resistant nuclear power plant structures or other kinds of structures. (author)

  8. Observations of turbulent energy dissipation rate in the upper ocean of the central South China Sea

    Science.gov (United States)

    Chen, G.

    2016-02-01

    Measurements of turbulent energy dissipation rate, velocity, temperature, and salinity were obtained in the upper ocean of the central South China Sea (14.5˚N, 117.0˚E) during an experimental campaign from May 11th to 13th 2010. Dissipation rate was elevated ( 10-7 Wkg-1) at night by convection mixing and was weakened ( 10-9 Wkg-1) in daytime due to the warming stratification. Thermocline dissipation rate varied with time ( 10-9 Wkg-1 to 10-8 Wkg-1) under the influence of internal waves. Energy was transferred from the diurnal internal tides to high frequency internal waves through nonlinear wave-wave interactions. This energy cascade process was accompanied by elevated shear and enhanced dissipation, which played an important role in the turbulent mixing in thermocline. Compare with the thermocline dissipation, dissipation below the thermocline was more stable and weak ( 10-10 Wkg-1). The observed dissipation rate during the measurement was well parameterized by the MacKinnon-Gregg parameterization (a model based on a reinterpretation of wave-wave interaction theory), whereas the Gregg-Henyey parameterization was not in good agreement with the observed dissipation rate.

  9. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  10. Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures

    Science.gov (United States)

    Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You

    1998-09-01

    Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.

  11. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-S. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Vojinovic, V. [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland); Patino, R. [Cinvestav-Merida, Departamento de Fisica Aplicada, Km. 6 carretera antigua a Progreso, AP 73 Cordemex, 97310 Merida, Yucatan (Mexico); Maskow, Th. [UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, D-04318 Leipzig (Germany); Stockar, U. von [Laboratory of Chemical and Biochemical Engineering, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)]. E-mail: urs.vonStockar@epfl.ch

    2007-06-25

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol{sup -1} of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure.

  12. A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields

    International Nuclear Information System (INIS)

    Liu, J.-S.; Vojinovic, V.; Patino, R.; Maskow, Th.; Stockar, U. von

    2007-01-01

    Thermodynamic analysis may be applied in order to predict microbial growth yields roughly, based on an empirical correlation of the Gibbs energy of the overall growth reaction or Gibbs energy dissipation. Due to the well-known trade-off between high biomass yield and high Gibbs energy dissipation necessary for fast growth, an optimal range of Gibbs energy dissipation exists and it can be correlated to physical characteristics of the growth substrates. A database previously available in the literature has been extended significantly in order to test such correlations. An analysis of the relationship between biomass yield and Gibbs energy dissipation reveals that one does not need a very precise estimation of the latter to predict the former roughly. Approximating the Gibbs energy dissipation with a constant universal value of -500 kJ C-mol -1 of dry biomass grown predicts many experimental growth yields nearly as well as a carefully designed, complex correlation available from the literature, even though a number of predictions are grossly out of range. A new correlation for Gibbs energy dissipation is proposed which is just as accurate as the complex literature correlation despite its dramatically simpler structure

  13. Numerical simulation of energy equation with viscous dissipation for compressible flow over cones

    International Nuclear Information System (INIS)

    Asif, M.; Chughtai, I.R.

    1998-01-01

    A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)

  14. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  15. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    Science.gov (United States)

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile.

  16. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  17. Forces and energy dissipation in inhomogeneous non-equilibrium superconductors

    International Nuclear Information System (INIS)

    Poluehktov, Yu.M.; Slezov, V.V.

    1987-01-01

    The phenomenological theory of volume forces and dissipation processes in inhomogeneous non-equilibrium superconductors near temperature transition from the normal to superconducting state is constructed. The approach is based on application of dynamic equations of superconductivity formulated on the basis of the Lagrangian formalism. These equations are generalized the Ginzburg-Landau theory in the nonstationary non-equilibrium case for ''foul'' superconductors. The value estimations of volume forces arising in inhomogeneities during relaxation of an order parameter and when the electrical field is penetrated into the superconductor, are given

  18. Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Hung

    2014-01-01

    Full Text Available This study was conducted to characterize carbon nanotube (CNT/water nanofluids (CNWNFs and to apply the nanofluids in a heat-dissipation system of dual green energy sources. CNTs were mixed with water in weight fractions of 0.125%, 0.25%, and 0.5% to produce nanofluids. The thermal conductivity, density, viscosity, and specific heat of the nanofluids were measured. An experimental platform consisting of a simulated dual energy source and a microchip controller was established to evaluate the heat-dissipation performance. Two indices, the heat dissipation enhancement ratio and specific heat dissipation enhancement ratio (SHDER, were defined and calculated. The CNWNFs with a CNT concentration of 0.125 wt.% were used because they exhibited the highest SHDER. The steady-state performance was evaluated at 2 flow rates, 11 hybrid flow ratios, and 3 heating ratios for a total power of 1000 W. The transient behavior of the energy sources at preset optimal temperatures was examined, and the CNWNFs exhibited average increases in stability and heat dissipation efficiency of 36.2% and 5%, respectively, compared with water. This nanofluid heat-dissipation system is expected to be integrated with real dual energy sources in the near future.

  19. A simple dynamic energy capacity model

    International Nuclear Information System (INIS)

    Gander, James P.

    2012-01-01

    I develop a simple dynamic model showing how total energy capacity is allocated to two different uses and how these uses and their corresponding energy flows are related and behave through time. The control variable of the model determines the allocation. All the variables of the model are in terms of a composite energy equivalent measured in BTU's. A key focus is on the shadow price of energy capacity and its behavior through time. Another key focus is on the behavior of the control variable that determines the allocation of overall energy capacity. The matching or linking of the model's variables to real world U.S. energy data is undertaken. In spite of some limitations of the data, the model and its behavior fit the data fairly well. Some energy policy implications are discussed. - Highlights: ► The model shows how energy capacity is allocated to current output production versus added energy capacity production. ► Two variables in the allocation are the shadow price of capacity and the control variable that determines the allocation. ► The model was linked to U.S. historical energy data and fit the data quite well. ► In particular, the policy control variable was cyclical and consistent with the model. ► Policy implications relevant to the allocation of energy capacity are discussed briefly.

  20. Energy principles for linear dissipative systems with application to resistive MHD stability

    International Nuclear Information System (INIS)

    Pletzer, A.

    1997-04-01

    A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs

  1. Isospin effect of coulomb interaction on momentum dissipation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong

    2004-01-01

    The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)

  2. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea

    Science.gov (United States)

    Liang, Chang-Rong; Chen, Gui-Ying; Shang, Xiao-Dong

    2017-05-01

    Measurements of the turbulent kinetic energy dissipation rate ( ɛ), velocity, temperature, and salinity were obtained for the upper ocean of the central South China Sea (14.5° N, 117.0° E) during an experimental campaign from May 11 to 13, 2010. Dissipation in the diurnal mixed layer showed a diurnal variability that was strongly affected by the surface buoyancy flux. Dissipation was enhanced ( ɛ ˜ 10-7 W kg-1) at night due to the convective mixing and was weakened ( ɛ ˜ 10-9 W kg-1) in daytime due to the stratification. Dissipation in the thermocline varied with time under the influence of internal waves. Shear from high-frequency internal waves (period ˜8 h) played an important role in enhancing the turbulent mixing in the thermocline. In the period of strong high-frequency internal waves, the shear from high-frequency internal waves became strong and the depth-averaged ɛ in the thermocline was elevated by almost one order of magnitude. Compared with the dissipation in the thermocline, dissipation below was weaker (the time-averaged ɛ ˜ 10-10 W kg-1). The observation indicates that the dissipation rates during the measurements can be parameterized by the MacKinnon-Gregg model that is widely used in the continental shelf but are not in agreement with the Gregg-Henyey model used for the open ocean.

  3. Evaluation of leaf energy dissipation by the Photochemical Reflectance

    Science.gov (United States)

    Raddi, S.; Magnani, F.

    Starting from the early paper by Heber (1969), several studies have demonstrated a subtle shift in leaf spectroscopic characteristics (both absorbance and reflectance) in response to rapid changes in environmental conditions. More recent work, briefly reviewed here, has also demonstrated the existence of two components in the maked peak centered at 505-540 nm: an irreversible component, attributed to the interconversion of leaf xanthophylls, and a reversible component at slightly longer wavelengths, resulting from conformational changes induced by the buildup of a pH gradient across the thylakoid membrane associated with photosynthetic electron transport. Both processes (xanthophyll de-epoxidation and conformational changes) are known to contribute to the dissipation of excess energy in Photosystem II (PSII). Leaf spectroscopy could therefore provide a powerful non-invasive tool for the determination of leaf photosynthetic processes. This led to the development of the normalized spectral index PRI (Photochemical Reflectance Index; Gamon, Penuelas &Field 1992; Gamon, Serrano &Surfus 1997), which relates the functional signal at 531 nm to a reference signal at 570 nm. The index has been found to track diurnal changes in xanthophyll de-epoxidation state, radiation use efficiency and fluorescence in response to light, both at the leaf and more recently at the canopy level. A common relationship has also beenreported across species and functional types, although such a generality has not always been confirmed. Recent reports (Stylinski et al. 2000) have also hinted of a possible link between PRI and leaf photosynthetic potential, possibly through the correlation between xanthophyll content and electron transport machinery in the chloroplast. Such a link, if confirmed, could prove very useful for the remote sensing and modelling ofvegetation. Some of these open questions were addressed in the present study. The correlation between leaf function and reflectance was

  4. Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium

    Science.gov (United States)

    Green, Jason R.; Costa, Anthony B.; Grzybowski, Bartosz A.; Szleifer, Igal

    2013-01-01

    Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov–Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov–Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes. PMID:24065832

  5. A study of energy dissipation and critical speed of granular flow in a rotating cylinder

    Science.gov (United States)

    Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.

    2014-12-01

    Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.

  6. An estimate of energy dissipation due to soil-moisture hysteresis

    KAUST Repository

    McNamara, H.

    2014-01-01

    Processes of infiltration, transport, and outflow in unsaturated soil necessarily involve the dissipation of energy through various processes. Accounting for these energetic processes can contribute to modeling hydrological and ecological systems. The well-documented hysteretic relationship between matric potential and moisture content in soil suggests that one such mechanism of energy dissipation is associated with the cycling between wetting and drying processes, but it is challenging to estimate the magnitude of the effect in situ. The Preisach model, a generalization of the Independent Domain model, allows hysteresis effects to be incorporated into dynamical systems of differential equations. Building on earlier work using such systems with field data from the south-west of Ireland, this work estimates the average rate of hysteretic energy dissipation. Through some straightforward assumptions, the magnitude of this rate is found to be of O(10-5) W m-3. Key Points Hysteresis in soil-water dissipates energy The rate of dissipation can be estimated directly from saturation data The rate of heating caused is significant ©2013. American Geophysical Union. All Rights Reserved.

  7. Energy conversion and dissipation at dipolarization fronts: Theory, modeling and MMS observations

    Science.gov (United States)

    Sitnov, M. I.; Motoba, T.; Merkin, V. G.; Ohtani, S.; Cohen, I. J.; Mauk, B.; Vines, S. K.; Anderson, B. J.; Moore, T. E.; Torbert, R. B.; Giles, B. L.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is one of the most important energy conversion mechanisms in space plasmas. In the classical picture it converts the energy of antiparallel magnetic fields into the kinetic and thermal energy of accelerated plasma particles in reconnection exhausts. It also involves energy dissipation near the X-line. This classical picture may be substantially modified in real space plasma configurations, such as the dayside magnetopause and the magnetotail. In particular, in the magnetotail the flows of accelerated particles may be strongly asymmetric along the tail with the domination of earthward flows. At the same time, strong energy conversion and even dissipation may occur away from the X-line, in particular, at dipolarization fronts. Here we present a theoretical picture of spontaneous magnetotail reconnection based on 3-D PIC simulations with the focus on plasma bulk flows, energy conversion and dissipation. This picture is compared with some observations from the MMS tail season. An important finding from these observations is that dipolarizations fronts may not only be regions of the total energy conversion with jE>0, but they may also be the sites of energy dissipation, both positive (jE'>0, E' is the electric field E in the system moving with one of the plasma species) and negative (jE'braking).

  8. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    Science.gov (United States)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  9. Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY

    Science.gov (United States)

    Soares, S. M.; Natarov, A.; Richards, K. J.

    2016-05-01

    A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.

  10. Energy density of a dissipative polarizable solid by a Lagrangean formalism

    International Nuclear Information System (INIS)

    Englman, R.; Yahalom, A.

    2003-01-01

    A Lagrangean for the dynamics of an electromagnetic field in a dispersive and dissipative material is constructed (adapting some ideas by Bekenstein and Hannay) and an expression for the energy density that is positive is obtained from it. The expression contains extra (sink) degrees of freedom that represent dissipating modes. In simplified cases the sink modes can be eliminated to yield an energy density expression in terms of the electromagnetic fields, the polarization and the magnetization only, but which contains parameters associated with the sink modes. The method of adding extra modes can be used to set up a Lagrangean formalism for dissipative systems in general, such that will reinstate time-translation invariance and will yield a unique energy density

  11. A dissipated energy comparison to evaluate fatigue resistance using 2-point bending

    Directory of Open Access Journals (Sweden)

    Cinzia Maggiore

    2014-02-01

    Full Text Available Fatigue is the main failure mode in pavement engineering. Typically, micro-cracks originate at the bottom of asphalt concrete layer due to horizontal tensile strains. Micro-cracks start to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different methods are usually used to describe fatigue behavior in asphalt materials such as: phenomenological approach, fracture mechanics approach and dissipated energy approach. This paper presents a comparison of fatigue resistances calculated for different dissipated energy models using 2-point bending (2PB at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect.

  12. Effect of angular-momentum dissipation and fluctuation on energy coherence lengths and time evolution in the dissipative collision 28Si+48Ti

    International Nuclear Information System (INIS)

    Kun, S.Yu.; WITS Univ., Johannesburg; Noerenberg, W.; TH Darmstadt; Papa, M.

    1992-09-01

    We analyze the energy autocorrelation functions and the energy coherence lengths in the strongly dissipative collision 28 Si(E lab = 130 MeV) + 4 8Ti for Z=11 and 12 reaction fragments. It is found that in order to obtain a good fit of both the energy averaged angular distributions and the angular dependence of the energy coherence lengths one has to take into account (i) the dissipation and fluctuation of the relative angular momentum of the dinucleus and (ii) the contribution from direct (fast) reactions in addition to the statistical (relatively slow) interaction processes. The established angular dependence is a direct consequence of the angular-momentum dissipation-fluctuation effects on the time-space evolution of the intermediate dinucleus. (orig.)

  13. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  14. Cancer is an adaptation that selects in animals against energy dissipation.

    Science.gov (United States)

    Muller, Anthonie W J

    2017-07-01

    As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis

  15. How important is the friction model on the modeling of energy dissipation

    NARCIS (Netherlands)

    Lopez Arteaga, I.; Nijmeijer, H.

    2005-01-01

    Frictional forces arising from the relative motion of two contacting surfaces are a well-known source of energy dissipation. Sometimes this is an unwanted effect of the design, but it can also be intentionally used to increase the damping of a certain system in a simple and cost-effective way. In an

  16. Dissipation of solar energy in landscape - controlled by management of water and vegetation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jan

    2001-01-01

    Roč. 24, - (2001), s. 641-645 ISSN 0960-1481 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Solar energy dissipation * vegetation * production -evapotranspiration Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.224, year: 2001

  17. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  18. Investigation of energy dissipation in meat with an experimental ultrasonic device

    International Nuclear Information System (INIS)

    Stasiak, D.M.; Dolatowski, Z.

    2000-01-01

    The phenomena concomitant with acoustic energy dissipation in meat were studied. An experimental ultrasonic device (25-37 kHz, 2 W/square cm) was applied. Measurements of meat temperature in ultrasonic field showed the temperature rise significant for technological reasons. In this respect the changes in water absorption ability and acidity of meat were also examined

  19. Assessment of Stability and Energy Dissipation Performances of an Antifer Layer Protected Caisson

    Directory of Open Access Journals (Sweden)

    M. Sedat Kabdaşlı

    2015-08-01

    Full Text Available The present study intends to assess the stability and energy dissipation performances of a breakwater configuration (APC protected by an antifer layer. For comparison, an ordinary caisson (OC, which was 5% wider and 10% heavier, was also investigated. Physical models were implemented and tested under regular and irregular waves; and resulting linear and angular displacements were directly measured via a photogrammetric method. Additionally, wave forces and resulting horizontal displacements were estimated both from recorded pressure data and from individual incident waves by modified Goda method. To calculate the horizontal displacement, the estimated wave force time series were directly double-integrated, whilst the theoretical method proposed by Shimosako et al. (1994 were used on the individual force values. Although OC was tested under shorter durations and had a more favorable superstructure in terms of resisting forces, the results indicated that APC was significantly more stable. Energy dissipation performance of the tested configurations were quantified in terms of spectral averaged and phase resolved reflection coefficients, whereas antifer damage ratio was measured on a block-count basis. Results indicated that the APC configuration had an enhanced performance of dissipating the wave energy; moreover, the dissipated energy directly links to antifer damage ratio.

  20. Impact of curved shaped energy dissipaters downstream of head structures on both water energy dissipation and irrigation water quality

    Directory of Open Access Journals (Sweden)

    Ashour Mohamed A.

    2015-03-01

    Full Text Available Using energy dissipaters on the soled aprons downstream of head structures is the main technique for accelerating hydraulic jump formation and dissipating a great amount of the residual harmful kinetic energy occurring downstream of head structures. In this paper, an experimental study was conducted to investigate some untested shapes of curved dissipaters with different angles of curvature and arrangements from two points of view. The first is to examine its efficiency in dissipating the kinetic water energy. The second is to examine the most effective shape and arrangement obtained from the aforementioned step in enriching the flow with dissolved oxygen for enhancement of the irrigation water quality. The study was held in the irrigation and hydraulic laboratory of the Civil Department, Faculty of Engineering, Assiut University, using a movable bed tilting channel 20 m long, 30 cm wide, and 50 cm high, using 21 types of curved dissipaters with different arrangements. A total of 660 runs were carried out. Results were analysed, tabulated and graphically presented, and new formulas were introduced to estimate the energy dissipation ratio, as well as the DO concentrations. Results in general showed that the dissipater performance is more tangible in dissipating the residual energy when the curvature is in the opposite direction to that of the flow. Also, the energy loss ratio increases with an increase in curvature angle (θ, until it reaches (θ = 120°, then it decreases again. The study also showed that using three rows of dissipaters give nearly the same effect as using four rows, concerning both the relative energy dissipation and dissolved oxygen content. So, it is recommended to use three rows of the curved dissipater with the angle of curvature (θ = 120° in the opposite direction to that of the flow to obtain the maximum percentage of water energy dissipation downstream of head structures, and maximum dissolved oxygen content too

  1. Energy dissipation and charged particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Sahoo, Raghunath; Sarkisyan Edward, K.G.; )

    2013-01-01

    In this paper, we use a model combining the constituent quark picture with Landau relativistic hydrodynamics. Within this model, the secondary particle production in nucleus-nucleus or nucleon-nucleon (p-barp/pp) collisions is basically driven by the amount of the initial effective energy deposited by participants (quarks or nucleons) into the Lorentz contracted overlap region

  2. Dissipative processes in 18O + 9Be and 18O + 181Ta reactions at Fermi energies

    International Nuclear Information System (INIS)

    Erdemchimeg, B.; Mikhailova, T.I.; Artyukh, A.G.; Kaminski, G.; Sereda, Yu.M.; Erdemchimeg, B.; Kaminski, G.; Sereda, Yu.M.; Colonna, M.; Di Toro, M.; Wolter, H.H.

    2010-01-01

    A study of peripheral nuclear collisions at Fermi energies with transport models is presented. It is motivated by experiments devoted to studying of isotopic yields in the reactions 18 O on 9 Be and 181 Ta at E/A = 35 MeV measured at very forward angles. The data show a two-component structure, one centered at beam velocity ('direct component') and another at lower velocities ('dissipative component'). It is shown that the transport calculations describe the general features of the dissipative component of the reaction. In our calculations we take into account the evaporation of the excited, primary projectile-like residues due to statistical decay. This improves the comparison of the results of the calculations with experiment. We find substantially different behavior of the dissipative component in the reactions with light and heavy target.

  3. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  4. The influence of friction coefficient and wheel/rail profiles on energy dissipation in the wheel/rail contact

    NARCIS (Netherlands)

    Idarraga Alarcon, G.A.; Burgelman, N.D.M.; Meza Meza, J.; Toro, A.; Li, Z.

    2015-01-01

    This work investigates the energy dissipation in a wheel/rail system through friction work modeling. In order to identify the effect of the friction coefficient on the energy dissipation in the wheel/rail contact, several simulations were performed using a 3D multibody model of a railway vehicle

  5. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  6. Rapid Quantification of Energy Absorption and Dissipation Metrics for PPE Padding Materials

    Science.gov (United States)

    2010-01-22

    dampers ,   i.e.,  Hooke’s  Law  springs  and   viscous ...absorbing/dissipating materials. Input forces caused by blast pressures, determined from computational fluid dynamics (CFD) analysis and simulation...simple  lumped-­‐ parameter  elements   –  spring,  k  (energy  storage)   –  damper ,  b  (energy  dissipa/on   Rapid

  7. Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons

    International Nuclear Information System (INIS)

    Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.

    2011-01-01

    We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.

  8. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    Directory of Open Access Journals (Sweden)

    Chen M

    2015-07-01

    Full Text Available Ming Chen,1 Erik Anderson,2 Geoffrey Hill,3 John J Chen,4 Thomas Patrianakos2 1Department of Surgery, University of Hawaii, Honolulu, HI, 2Department of Ophthalmology, John H Stroger, Jr Hospital of Cook County, Chicago, IL, 3Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 4Biostatistics Core, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA Purpose: To compare cumulative dissipated energy between two phacoemulsification machines. Setting: An ambulatory surgical center, Honolulu, Hawaii, USA. Design: Retrospective chart review. Methods: A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. Results: The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds (P<0.001 across all surgeons in comparison to the Infiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%–45% (2.25–12.54 percent-seconds (P=0.005–<0.001. Cumulative dissipated energy for both the Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. Conclusion: The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system. Keywords: phacoemulsification, cumulative dissipated energy, Centurion Vision System, Infiniti Vision System

  9. Energy Dissipation and Dynamics in Large Guide Field Turbulence Driven Reconnection at the Magnetopause

    Science.gov (United States)

    TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.

    2017-12-01

    Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.

  10. Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems

    International Nuclear Information System (INIS)

    Alabau-Boussouira, Fatiha

    2005-01-01

    This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy

  11. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun

    2010-06-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  12. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun; Fellner, Klemens; Zhu, Changjiang

    2010-01-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  13. Diabatic emission of neutrons: A probe for the energy dissipation mechanism in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Cassing, W.

    1984-05-01

    The precompound emission of neutrons in central nucleus-nucleus collisions is investigated within the framework of dissipative diabatic dynamics. For 92 Mo + 92 Mo at bombarding energies between 7.5 and 20 MeV/u the differential neutron multiplicities dMsub(n)/dEsub(n) are estimated from the decay of highly excited diabatic single-particle states. The energy spectra have an almost exponential high-energy tail with effective temperatures up to 10 MeV for 20 MeV/u bombarding energy. (orig.)

  14. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    Science.gov (United States)

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Kinetic energy dissipation of a tuning fork immersed in superfluid helium at different frequencies of oscillations

    International Nuclear Information System (INIS)

    Gritsenko, I.A.; Klokol, K.A.; Sokolov, S.S.; Sheshin, G.A.

    2016-01-01

    An experimental study is made of the drag coefficient, which is the characteristics of energy dissipation during oscillations of the tuning forks, immersed in liquid helium. The experiments were performed in the temperature range from 0.1 to 3.5 K covering both the range of a hydrodynamic flow, and the ballistic regime of transfer of thermal excitations of superfluid helium below 0.6 K. It is found that there is the frequency dependence of the drag coefficient in the hydrodynamic limit, when the main dissipation mechanism is the viscous friction of the fluid against the walls of the oscillating body at temperatures above 0.7 K. In this case, the drag coefficient is proportional to the square root of the frequency of oscillation, and its temperature dependence in He II is determined by the respective dependence of the normal component density of the normal component and the viscosity of the fluid. At lower temperatures, the dependence of drag coefficient on the frequency is not available, and the magnitude of the dissipative losses is determined only by the temperature dependence of the density of the normal component. At the same time in the entire range of temperatures value of dissipative losses depends on the geometry of the oscillating body.

  16. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  17. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  18. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  19. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    Science.gov (United States)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  20. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems

    OpenAIRE

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    Ming Chen,1 Erik Anderson,2 Geoffrey Hill,3 John J Chen,4 Thomas Patrianakos2 1Department of Surgery, University of Hawaii, Honolulu, HI, 2Department of Ophthalmology, John H Stroger, Jr Hospital of Cook County, Chicago, IL, 3Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 4Biostatistics Core, John A Burns School of Medicine, University of Hawaii, Honolulu, HI, USA Purpose: To compare cumulative dissipated energy between two phacoemulsification mac...

  1. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  2. A photophysical control mechanism for zeaxanthin-associated radiationless energy dissipation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.A.; Cua, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Chemistry; Young, A. [Johns Moores Univ., Liverpool (United Kingdom). School of Biological and Earth Sciences; Gosztola, D.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

    1994-09-01

    Understanding the way in which excess solar energy is dissipated by photosynthetic membranes under high light stress is a major problem in photosynthesis studies. This paper reports femtosecond time-resolved, fast-transient optical spectroscopic analyses of three important xanthophylls: violaxanthin, antheraxanthin, zeoaxanthin. The results support the notion that the enzymatic reactions that interconvert these xanthophylls act as a kind of ``molecular gear shift`` controlling whether the molecules function as light-harvesting pigments performing forward energy transfer or as fluorescence quenchers performing reverse energy transfer.

  3. Recent progress and application on seismic isolation energy dissipation and control for structures in China

    Science.gov (United States)

    Zhou, Fulin; Tan, Ping

    2018-01-01

    China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.

  4. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour

    Science.gov (United States)

    Li, Ling; Ortiz, Christine

    2014-05-01

    Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm-3) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm-3). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.

  5. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  6. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  7. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  8. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  9. Energy dissipation in the process of ternary fission in heavy nuclear reaction

    International Nuclear Information System (INIS)

    Li Xian; Wang Chengqian; Yan Shiwei

    2015-01-01

    We studied the evolution of the collective motion, interaction potential, the total kinetic and excitation energies in ternary fissions of 197 Au + 197 Au system at 15 MeV/u, and discussed energy dissipation of this reaction. Through the comparison with energy-angle correlation data in binary fissions, we preliminarily concluded that the rst fission of ternary fission was an extreme deep-inelastic process. We further analyzed the correlation of the total kinetic energy with impact parameters in both binary and ternary reactions, and found that the total energy of binary reactions systems was lost about 150 MeV more than ternary fission with small impact parameters, and with larger impact parameters the total energy of ternary reactions were lost 300 MeV more than binary reactions. (authors)

  10. IEA Energy Training Capacity-building Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The IEA has carried out training activities in energy-related areas from its origins as an agency, with the Emergency Response Exercises (ERE), designed to prepare member countries for oil supply disruption through a set of specially prepared drills simulating crisis conditions. The globalisation of world energy markets in recent years and the wider engagement of the IEA beyond its members have expanded this role, as demand for training instruction has increased. In response, the IEA has created the Energy Training and Capacity-Building Programme, which, through seminars and workshops, secondments and internships, will offer training in the methods and standards that make IEA work in a wide range of energy-related areas, including statistics, the international standard for objective policy recommendations.

  11. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  12. Experimental analysis of mechanical joints strength by means of energy dissipation

    Science.gov (United States)

    Wolf, Alexander; Lafarge, Remi; Kühn, Tino; Brosius, Alexander

    2018-05-01

    Designing complex structures with the demand for weight reduction leads directly to a multi-material concept. This mixture has to be joined securely and welding, mechanical joining and the usage of adhesives are commonly used for that purpose. Sometimes also a mix of at least two materials is useful to combine the individual advantages. The challenge is the non-destructive testing of these connections because destructive testing requires a lot of preparation and expensive testing equipment. The authors show a testing method by measuring and analysing the energy dissipation in mechanical joints. Known methods are radiography, thermography and ultrasound testing. Unfortunately, the usage of these methods is difficult and often not usable in fibre-reinforced-plastics. The presented approach measures the propagation of the elastic strain wave through the joint. A defined impact strain is detected with by strain-gauges whereby the transmitter is located on one side of the joint and the receiver on the other, respectively. Because of different mechanisms, energy dissipates by passing the joint areas. Main reasons are damping caused by friction and material specific damping. Insufficient performed joints lead to an effect especially in the friction damping. By the measurement of the different strains and the resulting energy loss a statement to the connection quality is given. The possible defect during the execution of the joint can be identified by the energy loss and strain vs. time curve. After the description of the method, the authors present the results of energy dissipation measurements at a bolted assembly with different locking torques. By the adjustable tightening torques for the screw connections easily a variation of the contact pressure can be applied and analysed afterwards. The outlook will give a statement for the usability for other mechanical joints and fibre-reinforced-plastics.

  13. Frictional systems under periodic loads — History-dependence, non-uniqueness and energy dissipation

    International Nuclear Information System (INIS)

    Barber, J R

    2012-01-01

    Nominally static contacts such as bolted or shrink-fit joints typically experience regions of microslip when subjected to oscillatory loading. This results in energy dissipation, reflected as apparent hysteretic damping of the system, and also may cause the initiation of fretting fatigue cracks. Early theoretical studies of the Hertzian contact problem by Cattaneo and Mindlin were confirmed experimentally by Johnson, who identified signs of fretting damage in the slip annulus predicted by the theory. For many years, tribologists assumed that Melan's theorem in plasticity could be extended to frictional systems — i.e. that if there exists a state of residual stress associated with frictional slip that is sufficient to prevent periodic slip in the steady state, then the system will shake down, regardless of the initial condition. However, we now know that this is true only if there is no coupling between the normal and tangential loading problems, as will be the case notably when contact occurs on a symmetry plane. For all other cases, periodic loading scenarios can be devised such that shakedown occurs for some initial conditions and not for others. The initial condition here might be determined by the assembly protocol — e.g. the order in which a set of bolts is tightened — or by the exact loading path before the steady cycle is attained. This non-uniqueness of the steady state persists at load amplitudes above the shakedown limit, in which case there is always some dissipation, but the dissipation per cycle (and hence both the effective damping and the susceptibility to fretting damage) depends on the initial conditions. This implies that fretting fatigue experiments need to follow a well-defined assembly protocol if reproducible results are to be obtained. We shall also present results showing that when both normal and tangential forces vary in time, the energy dissipation is very sensitive to the relative phase of the oscillatory components, being greatest

  14. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  15. Comparison of cumulative dissipated energy between the Infiniti and Centurion phacoemulsification systems.

    Science.gov (United States)

    Chen, Ming; Anderson, Erik; Hill, Geoffrey; Chen, John J; Patrianakos, Thomas

    2015-01-01

    To compare cumulative dissipated energy between two phacoemulsification machines. An ambulatory surgical center, Honolulu, Hawaii, USA. Retrospective chart review. A total of 2,077 consecutive cases of cataract extraction by phacoemulsification performed by five surgeons from November 2012 to November 2014 were included in the study; 1,021 consecutive cases were performed using the Infiniti Vision System, followed by 1,056 consecutive cases performed using the Centurion Vision System. The Centurion phacoemulsification system required less energy to remove a cataractous lens with an adjusted average energy reduction of 38% (5.09 percent-seconds) (PInfiniti phacoemulsification system. The reduction in cumulative dissipated energy was statistically significant for each surgeon, with a range of 29%-45% (2.25-12.54 percent-seconds) (P=0.005-Infiniti and Centurion systems varied directly with patient age, increasing an average of 2.38 percent-seconds/10 years. The Centurion phacoemulsification system required less energy to remove a cataractous lens in comparison to the Infiniti phacoemulsification system.

  16. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    International Nuclear Information System (INIS)

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J on the grid, but the ion accelerator endured them without exhibiting any deterioration in performance

  17. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Science.gov (United States)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  19. Energy dissipation during an explosion in a porous elasto-plastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Lovetskii, E.E.; Maslennikov, A.M.; Fetisov, V.S.

    1979-01-01

    A study is made of the redistribution of energy from camouflage blasting in a saturated porous medium. The study is undertaken with the aid of a numerical solution to a system of hydrodynamic equations, that account for shear strength of the substance under investigation. A study is made of the energy characteristics of explosion, their dynamic development, the influence of strength parameters of the medium, and porosity on these characteristics. A mechanism that is associated with the impact compression of matter is identified as the basic mechanism of energy dissipation for dry porous media. Water saturation of pores brings the energy characteristics of the explosion close to the explosion in a monolith. 12 references, 5 figures, 1 table.

  20. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    Science.gov (United States)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  1. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  2. Comparison of Energy Dissipation, Stiffness, and Damage of Structural Oriented Strand Board (OSB, Conventional Gypsum, and Viscoelastic Gypsum Shearwalls Subjected to Cyclic Loads

    Directory of Open Access Journals (Sweden)

    Andrew S. Blasetti

    2012-06-01

    Full Text Available A key element in the seismic load resisting system of a wood framed structure is the shear wall which is typically sheathed on one side with plywood or oriented strand board (OSB and gypsum on the other. The shear capacity of gypsum sheathed shear walls is typically neglected in high seismic areas due to the susceptibility of conventional drywall screw connections to damage caused by earthquakes. The earthquake resistance of an innovative viscoelastic (VE gypsum shearwall is evaluated and compared to conventional structural and non-structural walls. Ten 8 ft × 8 ft wood framed wall specimens of three configurations [nailed-OSB, screw-gypsum, and VE polymer-gypsum] were subjected to a cyclic test protocol. The energy dissipation, stiffness, and damage characteristics of all shearwalls are reported herein. Testing results indicate the VE-gypsum walls can dissipate more energy than the OSB structural panels and 500% more energy that the conventional gypsum sheathed walls and contains a constant source of energy dissipation not seen in the structural and non-structural walls. The wall stiffness of the OSB wall degrades at a far greater rate that the VE gypsum wall and at continued cycling degrades below the VE wall stiffness. Unlike both of the conventional wall types, the VE wall showed no visible or audible signs of damage when subjected to shear displacements up to 1.

  3. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Directory of Open Access Journals (Sweden)

    Chen-Guang Huang

    2017-11-01

    Full Text Available During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A − V formulation of magnetoquasistatic Maxwell’s equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  4. Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system

    Science.gov (United States)

    Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2017-11-01

    During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.

  5. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers

    International Nuclear Information System (INIS)

    Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    High-pulse-energy harmonic mode-locking in 2 μm Tm-doped fiber lasers (TDFLs) is realized, for the first time, by using a short piece of anomalous dispersion gain fiber and the dissipative soliton mode-locking mechanism. Appropriately designing the cavity dispersion map and adjusting the cavity gain, stable harmonic mode-locking of the dissipative soliton TDFL from the 2nd to the 4th order is achieved, with the pulsing repetition rates and pulse energy being 43.4, 65.1, 86.8 MHz, and 6.27, 4.32 and 3.29 nJ, respectively. The harmonic laser pulse has a pulse width of ∼30 ps and a center wavelength of ∼1929 nm with a spectral bandwidth of ∼3.26 nm, giving a highly chirped laser pulse. Two types of soliton molecules are also observed in this laser system. (letter)

  6. Capacity market design and renewable energy: Performance incentives, qualifying capacity, and demand curves

    Energy Technology Data Exchange (ETDEWEB)

    Botterud, Audun; Levin, Todd; Byers, Conleigh

    2018-01-01

    A review of capacity markets in the United States in the context of increasing levels of variable renewable energy finds substantial differences with respect to incentives for operational performance, methods to calculate qualifying capacity for variable renewable energy and energy storage, and demand curves for capacity. The review also reveals large differences in historical capacity market clearing prices. The authors conclude that electricity market design must continue to evolve to achieve cost-effective policies for resource adequacy.

  7. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  8. Comparative study of passive and semi-active energy dissipation devices intended for overhead cranes

    International Nuclear Information System (INIS)

    Guihot, P.; Revaud, D.

    1996-04-01

    This paper deals with the results of a bibliographic survey of energy dissipation devices which could be adapted for overhead cranes. The principle of passive devices using friction, yielding steel systems of viscous and viscoelastic systems are remembered. An active control system, which needs a minimum of external control energy is also presented. The application to overhead cranes which have a strong non linear behaviour under strong seismic motion (sliding between rails and wheels, local yielding and damage) is further discussed. The first results of a numerical study in progress are likewise purposed. The criterion of selection of the devices turn on the performance, the robustness and the reliability. The behaviour in the presence of non linearities, the sensitivity to the variations of the vibratory characteristics, and lastly the sensitivity to the response delay of the active controller are taken into account. (authors). 14 refs., 4 figs

  9. Energy input and dissipation in a temperate lake during the spring transition

    Science.gov (United States)

    Woolway, R. Iestyn; Simpson, John H.

    2017-08-01

    ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.

  10. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem

    Science.gov (United States)

    Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A.

    2013-02-01

    Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.

  11. An Optimal Free Energy Dissipation Strategy of the MinCDE Oscillator in Regulating Symmetric Bacterial Cell Division

    Science.gov (United States)

    Xiong, Liping; Lan, Ganhui

    2015-01-01

    Sustained molecular oscillations are ubiquitous in biology. The obtained oscillatory patterns provide vital functions as timekeepers, pacemakers and spacemarkers. Models based on control theory have been introduced to explain how specific oscillatory behaviors stem from protein interaction feedbacks, whereas the energy dissipation through the oscillating processes and its role in the regulatory function remain unexplored. Here we developed a general framework to assess an oscillator’s regulation performance at different dissipation levels. Using the Escherichia coli MinCDE oscillator as a model system, we showed that a sufficient amount of energy dissipation is needed to switch on the oscillation, which is tightly coupled to the system’s regulatory performance. Once the dissipation level is beyond this threshold, unlike stationary regulators’ monotonic performance-to-cost relation, excess dissipation at certain steps in the oscillating process damages the oscillator’s regulatory performance. We further discovered that the chemical free energy from ATP hydrolysis has to be strategically assigned to the MinE-aided MinD release and the MinD immobilization steps for optimal performance, and a higher energy budget improves the robustness of the oscillator. These results unfold a novel mode by which living systems trade energy for regulatory function. PMID:26317492

  12. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  13. Laser energy-pooling processes in an optically thick Cs vapor near a dissipative surface

    International Nuclear Information System (INIS)

    Gagne, Jean-Marie; Le Bris, Karine; Gagne, Marie-Claude

    2002-01-01

    We characterize, for the first time to our knowledge, the laser-induced backward fluorescence (retrofluorescence) spectra that result from energy-pooling collisions between Cs atoms near a dissipative thin Cs layer on a glass substrate. We resolve, experimentally and theoretically, the laser spectroscopic problem of energy-pooling processes related to the nature of the glass-metallic vapor interface. Our study focused on the integrated laser-induced retrofluorescence spectra for the 455.5-nm (7 2 P 3/2 -6 2 S 1/2 ) and 852.2-nm (6 2 P 3/2 -6 2 S 1/2 ) lines as a function of laser scanning through pumping resonance at the 852.2-nm line. We experimentally investigate the retrofluorescence from 420 to 930 nm, induced by a diode laser tuned either in the wings or in the center of the pumping resonance line. We present a detailed theoretical model of the retrofluorescence signal based on the radiative transfer equation, taking into account the evanescent wave of the excited atomic dipole strongly coupled with a dissipative surface. Based on theoretical and experimental results, we evaluate the effective nonradiative transfer rate A(bar sign) 6 2 P 3/2 →6 2 S 1/2s f for atoms in the excited 6 2 P 3/2 level located in the near-field region of the surface of the cell. Values extracted from the energy-pooling process analysis are equivalent to those found directly from the 852.2-nm resonance retrofluorescence line. We show that the effective energy-pooling coefficients k-tilde 7 2 P 3/2 and k-tilde 7 2 P 1/2 are approximately equal. The agreement between theory and experiment is remarkably good, considering the simplicity of the model

  14. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    Science.gov (United States)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  15. Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow

    Science.gov (United States)

    Abe, Hiroyuki; Antonia, Robert Anthony

    2011-05-01

    Non-dimensional parameters for the mean energy and scalar dissipation rates Cɛ and Cɛθ are examined using direct numerical simulation (DNS) data obtained in a fully developed turbulent channel flow with a passive scalar (Pr = 0.71) at several values of the Kármán (Reynolds) number h+. It is shown that Cɛ and Cɛθ are approximately equal in the near-equilibrium region (viz., y+ = 100 to y/h = 0.7) where the production and dissipation rates of either the turbulent kinetic energy or scalar variance are approximately equal and the magnitudes of the diffusion terms are negligibly small. The magnitudes of Cɛ and Cɛθ are about 2 and 1 in the logarithmic and outer regions, respectively, when h+ is sufficiently large. The former value is about the same for the channel, pipe, and turbulent boundary layer, reflecting the similarity between the mean velocity and temperature distributions among these three canonical flows. The latter value is, on the other hand, about twice as large as in homogeneous isotropic turbulence due to the existence of the large-scale u structures in the channel. The behaviour of Cɛ and Cɛθ impacts on turbulence modeling. In particular, the similarity between Cɛ and Cɛθ leads to a simple relation for the scalar variance to turbulent kinetic energy time-scale ratio, an important ingredient in the eddy diffusivity model. This similarity also yields a relation between the Taylor and Corrsin microscales and analogous relations, in terms of h+, for the Taylor microscale Reynolds number and Corrsin microscale Peclet number. This dependence is reasonably well supported by both the DNS data at small to moderate h+ and the experimental data of Comte-Bellot [Ph. D. thesis (University of Grenoble, 1963)] at larger h+. It does not however apply to a turbulent boundary layer where the mean energy dissipation rate, normalized on either wall or outer variables, is about 30% larger than for the channel flow.

  16. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Science.gov (United States)

    Djenidi, L.; Antonia, R. A.

    2012-10-01

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 ≤ R λ ≤ 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of < \\varepsilon rangle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.

  17. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine)

    International Nuclear Information System (INIS)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L.; Myers, K.; Tissue, D.T.; Western Sydney Univ., Richmond, NSW

    2009-01-01

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO 2 ) partial pressures (pCO 2 ). Exposure to elevated atmospheric CO 2 (pCO 2 ) usually results in significant stimulation in light-saturated rates of photosynthetic CO 2 assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO 2 at the Duke FACE site. The effect of elevated pCO 2 on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O 2 ) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO 2 assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO 2 in comparison with needles of the same age cohort in ambient pCO 2 . Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO 2 . In the winter, Asat was not significantly affected by growth pCO 2 . Asat was lower in winter than in summer. Growth at elevated pCO 2 had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO 2 on Calvin cycle activity. 73 refs., 4 figs

  18. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    Science.gov (United States)

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  19. Experimental basis for parameters contributing to energy dissipation in piping systems

    International Nuclear Information System (INIS)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested

  20. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Willems, B.; Deloye, C. J.; Kalogera, V.

    2010-01-01

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 M sun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 M sun to 10 5 M sun . The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  1. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    Science.gov (United States)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  2. On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence

    Science.gov (United States)

    Cleve, J.; Greiner, M.; Sreenivasan, K. R.

    2003-03-01

    The two-point correlation function of the energy dissipation, obtained from a one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling with intermittency exponent μ approx 0.20 over almost the entire inertial range of scales. However, for the related integral moment, the power law scaling is restricted to the upper part of the inertial range only. This observation is explained in terms of the operational surrogacy of the construction of energy dissipation, which influences the behaviour of the correlation function for small separation distances.

  3. Energy dissipation unveils atomic displacement in the noncontact atomic force microscopy imaging of Si(111 )-(7 ×7 )

    Science.gov (United States)

    Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko

    2018-03-01

    The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.

  4. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  5. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    Science.gov (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  6. Carbon nanotubes within polymer matrix can synergistically enhance mechanical energy dissipation

    Science.gov (United States)

    Ashraf, Taimoor; Ranaiefar, Meelad; Khatri, Sumit; Kavosi, Jamshid; Gardea, Frank; Glaz, Bryan; Naraghi, Mohammad

    2018-03-01

    Safe operation and health of structures relies on their ability to effectively dissipate undesired vibrations, which could otherwise significantly reduce the life-time of a structure due to fatigue loads or large deformations. To address this issue, nanoscale fillers, such as carbon nanotubes (CNTs), have been utilized to dissipate mechanical energy in polymer-based nanocomposites through filler-matrix interfacial friction by benefitting from their large interface area with the matrix. In this manuscript, for the first time, we experimentally investigate the effect of CNT alignment with respect to reach other and their orientation with respect to the loading direction on vibrational damping in nanocomposites. The matrix was polystyrene (PS). A new technique was developed to fabricate PS-CNT nanocomposites which allows for controlling the angle of CNTs with respect to the far-field loading direction (misalignment angle). Samples were subjected to dynamic mechanical analysis, and the damping of the samples were measured as the ratio of the loss to storage moduli versus CNT misalignment angle. Our results defied a notion that randomly oriented CNT nanocomposites can be approximated as a combination of matrix-CNT representative volume elements with randomly aligned CNTs. Instead, our results points to major contributions of stress concentration induced by each CNT in the matrix in proximity of other CNTs on vibrational damping. The stress fields around CNTs in PS-CNT nanocomposites were studied via finite element analysis. Our findings provide significant new insights not only on vibrational damping nanocomposites, but also on their failure modes and toughness, in relation to interface phenomena.

  7. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Energy Technology Data Exchange (ETDEWEB)

    Djenidi, L.; Antonia, R.A. [The University of Newcastle, School of Engineering, Newcastle, NSW (Australia)

    2012-10-15

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate left angle {epsilon}right angle in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301-305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity {nu} and left angle {epsilon}right angle at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynolds number R{sub {lambda}} is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 {<=} R{sub {lambda}}{<=} 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of left angle {epsilon}right angle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall. (orig.)

  8. Energy Conservation in Dissipative Processes: Teacher Expectations and Strategies Associated with Imperceptible Thermal Energy

    Science.gov (United States)

    Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.

    2015-01-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in…

  9. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick-slip motion

    Science.gov (United States)

    Kokorian, Jaap; Merlijn van Spengen, W.

    2017-11-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  10. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  11. MMS observation of energy conversion and collisionless plasma dissipation channels in the turbulent magnetosheath

    Science.gov (United States)

    Parashar, T.; Yang, Y.; Chasapis, A.; Matthaeus, W. H.

    2017-12-01

    High resolution Magnetospheric Multiscale (MMS) plasma and magnetic field data obtained in the inhomogeneous turbulent magnetosheath directly reveals the exchanges of energy between electromagnetic, flow and random kinetic energy. The parameters that quantify these exchanges are based on standard manipulations of the collisionless Vlasov model of plasma dynamics [1], without appeal to viscous or other closures. No analysis of heat transport or heat conduction is carried out. Several intervals of burst mode data in the magnetosheath are considered. Time series of the work done by the electromagnetic field, and the pressure-stress interaction enable description of the pathways to dissipation in this low collisionality plasma. Using these examples we demonstrate that the pressure-stress interaction provides important information not readily revealed in other diagnostics concerning the physical processes that are observed. This method does not require any specific mechanism for its application such as reconnection or a selected mode, although with increased experience it will be useful in distinguishing among proposed possibilities. [1] Y. Yang et al, Phys. Plasmas 24, 072306 (2017); doi: 10.1063/1.4990421.

  12. Energy dissipation effects on imaging of soft materials by dynamic atomic force microscopy: A DNA-chip study

    Energy Technology Data Exchange (ETDEWEB)

    Phaner-Goutorbe, M., E-mail: magali.phaner@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Iazykov, M. [Université de Lyon, laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d' Italie 69364 Lyon cedex 07 (France); Villey, R. [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Université de Lyon, laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin 43 boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Sicard, D.; Robach, Y. [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2013-05-01

    Using amplitude-mode AFM (AM-AFM), we have obtained valuable information during these recent years through the study of amplitude and phase shift dependence on tip–sample separation, leading to a comprehensive understanding of the interaction processes. Two imaging regimes, attractive and repulsive, have been identified and a relationship between phase and dissipative energy was established, providing information on observed material properties. Most of the previous studies have concerned model systems: either hard or soft materials. In this paper, we present the analysis of a mixed system of soft structures on a hard substrate. This is a DNA chip for biological applications consisting of oligonucleotides covalently linked by a layer of silane to a silicon substrate. A detailed study of amplitude-phase curves as a function of the tip–sample separation allowed us to define the best experimental conditions to obtain specific information: we got reliable conditions to minimize noise during topographic imaging and an understanding of the processes of energy dissipation involved in the DNA breaking for DNA arrays. By calculating the energy dissipated as a function of the amplitude of oscillation, we have demonstrated a transition from an energy dissipation process governed by localized viscoelastic interactions (due to the soft layer) to a process governed by extended irreversible deformations (due to the hard substrate). Highlights: ► Amplitude mode AFM analysis of a DNA array is presented. ► Reliable conditions for noise minimization on topographic images are presented. ► Phase, amplitude vs distance curves are analyzed for different setpoint amplitudes. ► Energy dissipation processes are described from viscoelasticity to DNA breaking.

  13. Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Horton, P.; Ruban, A.V.

    2008-01-01

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by

  14. Energy decay for wave equations of phi-Laplacian type with weakly nonlinear dissipation

    Directory of Open Access Journals (Sweden)

    Aissa Guesmia

    2008-08-01

    Full Text Available In this paper, first we prove the existence of global solutions in Sobolev spaces for the initial boundary value problem of the wave equation of $phi$-Laplacian with a general dissipation of the form $$ (|u'|^{l-2}u''-Delta_{phi}u+sigma(t g(u'=0 quadext{in } Omegaimes mathbb{R}_+ , $$ where $Delta_{phi}=sum_{i=1}^n partial_{x_i}igl(phi (|partial_{x_i}|^2partial_{x_i}igr$. Then we prove general stability estimates using multiplier method and general weighted integral inequalities proved by the second author in [18]. Without imposing any growth condition at the origin on $g$ and $phi$, we show that the energy of the system is bounded above by a quantity, depending on $phi$, $sigma$ and $g$, which tends to zero (as time approaches infinity. These estimates allows us to consider large class of functions $g$ and $phi$ with general growth at the origin. We give some examples to illustrate how to derive from our general estimates the polynomial, exponential or logarithmic decay. The results of this paper improve and generalize many existing results in the literature, and generate some interesting open problems.

  15. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    Science.gov (United States)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  16. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  17. Effects of Energy Dissipation Rate on Islets of Langerhans: Implications for Isolation and Transplantation

    Science.gov (United States)

    Shenkman, Rustin M.; Godoy-Silva, Ruben; Papas, Klearchos K.; Chalmers, Jeffrey J.

    2010-01-01

    Acute physical stresses can occur in the procurement and isolation process and potentially can contribute to islet death or malfunction upon transplantation. A contractional flow device, previously used to subject suspended cells to well-defined hydrodynamic forces, has been modified and used to assess the vulnerability of porcine islets of Langerhans to hydrodynamic forces. The flow profiles and velocity gradients in this modified device were modeled using commercial CFD software and characterized, as in previous studies, with the scalar parameter, energy dissipation rate (EDR). Porcine islets were stressed in a single pass at various stress levels (i.e., values of EDR). Membrane integrity, oxygen uptake rate, caspase 3/7 activity, and insulin release were not affected by the levels of fluid stress tested up to an EDR of 2 × 103 W/m3. Visual observation of the stressed islets suggested that cells at the islet exterior were peeled away at EDR greater than 10,000 W/m3, however, this observation could not be confirmed using image analysis software, which determined the ratio of surface perimeter to total area. The result of this study suggests an upper limit in fluid stress to which islets can be subjected. Such upper limits assist in the design and operation of future islet processing equipment and processes. PMID:19191351

  18. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Directory of Open Access Journals (Sweden)

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  19. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

    Science.gov (United States)

    Troncoso, Omar P.; Gigos, Florian; Torres, Fernando G.

    2017-11-01

    Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load-penetration (P-h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

  20. Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2017-04-01

    Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.

  1. Building capacity for energy and electricity planning for sustainable development

    International Nuclear Information System (INIS)

    2008-09-01

    The IAEA, through its Planning and Economic Studies Section (PESS), assists Member States to build their capacities to perform analyses for developing alternative strategies for sustainable energy development, evaluate the energy-economic-environmental implications and assess the potential contribution of nuclear energy in securing affordable and clean supplies of energy

  2. Transfer and dissipation of energy during wave group propagation on a gentle beach slope

    Science.gov (United States)

    Padilla, Enrique M.; Alsina, José M.

    2017-08-01

    The propagation of bichromatic wave groups over a constant 1:100 beach slope and the influence of the group modulation is presented. The modulation is controlled by varying the group frequency, fg, which is shown to remarkably affect the energy transfer to high and low frequency components. The growth of the high frequency (hf) wave skewness increases when fg decreases. This is explained by nonlinear coupling between the primary frequencies, which results in a larger growth of hf components as fg decreases, causing the hf waves to break earlier. Due to high spatial resolution, wave tracking has provided an accurate measurement of the varying breakpoint. These breaking locations are very well described (R2>0.91) by the wave-height to effective-depth ratio (γ). However, for any given Iribarren number, this γ is shown to increase with fg. Therefore, a modified Iribarren number is proposed to include the grouping structure, leading to a considerable improvement in reproducing the measured γ-values. Within the surf zone, the behavior of the Incident Long Wave also depends on the group modulation. For low fg conditions, the lf wave decays only slightly by transferring energy back to the hf wave components. However, for high fg wave conditions, strong dissipation of low frequency (lf) components occurs close to the shoreline associated with lf wave breaking. This mechanism is explained by the growth of the lf wave height, induced partly by the self-self interaction of fg, and partly by the nonlinear coupling between the primary frequencies and fg.

  3. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Energy Technology Data Exchange (ETDEWEB)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Winands, G J J [Department of Electrical Engineering, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: e.m.v.veldhuizen@tue.nl, E-mail: ebert@cwi.nl

    2008-12-07

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v {approx} 10{sup 5} m s{sup -1}. For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10{sup 6} m s{sup -1}; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d{sup 2} mm{sup -1} ns{sup -1} for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  4. Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    International Nuclear Information System (INIS)

    Briels, T M P; Kos, J; Van Veldhuizen, E M; Ebert, U; Winands, G J J

    2008-01-01

    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5-20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ∼ 10 5 m s -1 . For 20-40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 x 10 6 m s -1 ; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d 2 mm -1 ns -1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

  5. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites.

    Science.gov (United States)

    Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding

    2018-07-01

    Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve

  6. Peripheral collisions in Ar induced reactions between 27 and 44 A.MeV: study of energy dissipation by measuring the correlated neutron multiplicities

    International Nuclear Information System (INIS)

    Guerreau, D.; Doubre, H.; Galin, J.; Pouthas, J.; Jahnke, U.; Jiang, D.X.; Lott, B.; Jacquet, D.

    1988-01-01

    A 4 π detector measuring the neutron multiplicities has been used to investigate the energy dissipation during peripheral collisions in Ar induced reactions around the Fermi Energy. Besides the persistance of direct transfer reactions for the most peripheral collisions, there are strong evidences for the occurrence of quite large energy dissipation, a clear signature for the one body friction to still play a major role at these intermediate energies

  7. Structure–function relationship of the foam-like pomelo peel (Citrus maxima)—an inspiration for the development of biomimetic damping materials with high energy dissipation

    International Nuclear Information System (INIS)

    Thielen, M; Schmitt, C N Z; Eckert, S; Speck, T; Seidel, R

    2013-01-01

    The mechanical properties of artificial foams are mainly determined by the choice of bulk materials and relative density. In natural foams, in contrast, variation to optimize properties is achieved by structural optimization rather than by conscious substitution of bulk materials. Pomelos (Citrus maxima) have a thick foam-like peel which is capable of dissipating considerable amounts of kinetic energy and thus this fruit represents an ideal role model for the development of biomimetic impact damping structures. This paper focuses on the analysis of the biomechanics of the pomelo peel and on its structure–function relationship. It deals with the determination of the onset strain of densification of this foam-like tissue and on how this property is influenced by the arrangement of vascular bundles. It was found here that the vascular bundles branch in a very regular manner—every 16.5% of the radial peel thickness—and that the surrounding peel tissue (pericarp) attains its exceptional thickness mainly by the expansion of existing interconnected cells causing an increasing volume of the intercellular space, rather than by cell division. These findings lead to the discussion of the pomelo peel as an inspiration for fibre-reinforced cast metallic foams with the capacity for excellent energy dissipation. (paper)

  8. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  9. A Surface-Layer Study of the Transport and Dissipation of Turbulent Kinetic Energy and the Variances of Temperature, Humidity and CO_2

    Science.gov (United States)

    Hackerott, João A.; Bakhoday Paskyabi, Mostafa; Reuder, Joachim; de Oliveira, Amauri P.; Kral, Stephan T.; Marques Filho, Edson P.; Mesquita, Michel dos Santos; de Camargo, Ricardo

    2017-11-01

    We discuss scalar similarities and dissimilarities based on analysis of the dissipation terms in the variance budget equations, considering the turbulent kinetic energy and the variances of temperature, specific humidity and specific CO_2 content. For this purpose, 124 high-frequency sampled segments are selected from the Boundary Layer Late Afternoon and Sunset Turbulence experiment. The consequences of dissipation similarity in the variance transport are also discussed and quantified. The results show that, for the convective atmospheric surface layer, the non-dimensional dissipation terms can be expressed in the framework of Monin-Obukhov similarity theory and are independent of whether the variable is temperature or moisture. The scalar similarity in the dissipation term implies that the characteristic scales of the atmospheric surface layer can be estimated from the respective rate of variance dissipation, the characteristic scale of temperature, and the dissipation rate of temperature variance.

  10. Towards development of lignin reinforced elastomeric compounds with reduced energy dissipation

    Science.gov (United States)

    Bahl, Kushal

    This research deals with development of lignin as reinforcing filler for elastomeric compounds. Lignins are naturally abundant and cost competitive wood derivatives possessing strong mechanical properties and offering reactive functional groups on their surfaces. The presence of the functional groups imparts polarity to the lignin molecules and makes them incompatible with non-polar elastomers. Also, the large particle size of lignin does not produce desired mechanical reinforcement. The present study deals with solving the outstanding issues associated with the use of lignin as fillers for polymeric compounds. In addition, the work specifically focuses on producing rubber compounds with reduced energy dissipation via partial replacement of carbon black with lignin. The first part of this study is devoted to suppression of the polarity of lignin and achievement of compatibility with rubber matrix via modification of lignosulfonates (LS) with cyclohexylamine (CA). CA reduces the polarity of lignin via interactions originating from proton transfer and hydrogen bonding. X-ray Photoelectron Spectroscopy (XPS) confirms the attachment of CA on the surfaces of lignin. The mechanical properties of rubber compounds increase substantially along with improvement in cure properties and increase in crosslink density in the presence of LS particles modified with CA. The tensile strength and storage modulus show an increase by 45% and 41% respectively. The values of the 100% modulus and elongation at break also improve by 35% and 60% respectively. The second part of this study exploits the non-covalent interactions between lignin and carbon black (CB) for the design of novel hybrid filler particles exhibiting lower energy loss in rubber compounds. The hybrid fillers offer unique morphology consisting of coating layers of lignin on carbon black particle aggregates. It is found that such coating layers are formed due to pi-pi interactions between lignin and carbon black. Raman

  11. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  12. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    International Nuclear Information System (INIS)

    Gung, C.Y.

    1993-01-01

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the new AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb 3 Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb 3 Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb 3 Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications

  13. Ions-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Medina-Castillo, Antonio Luis; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2017-04-01

    The aim of this study was to evaluate changes in the mechanical and chemical behavior, and bonding ability at dentin interfaces infiltrated with polymeric nanoparticlesstandard deviations and modes of failure are (NPs) prior to resin application. Dentin surfaces were treated with 37% phosphoric acid followed by application of an ethanol suspension of NPs, Zn-NPs or Ca-NPs followed by the application of an adhesive, Single Bond (SB). Bonded interfaces were stored for 24h, submitted to microtensile bond strength test, and evaluated by scanning electron microscopy. After 24h and 21 d of storage, the whole resin-dentin interface adhesive was evaluated using a Nano-DMA. Complex modulus, storage modulus and tan delta (δ) were assessed. AFM imaging and Raman analysis were performed. Bond strength was not affected by NPs infiltration. After 21 d of storage, tan δ generally decreased at Zn-NPs/resin-dentin interface, and augmented when Ca-NPs or non-doped NPs were used. When both Zn-NPs and Ca-NPs were employed, the storage modulus and complex modulus decreased, though both moduli increased at the adhesive and at peritubular dentin after Zn-NPs infiltration. The phosphate and the carbonate peaks, and carbonate substitution, augmented more at interfaces promoted with Ca-NPs than with Zn-NPs after 21 d of storage, but crystallinity did not differ at created interfaces with both ions-doped NPs. Crosslinking of collagen and the secondary structure of collagen improved with Zn-NPs resin-dentin infiltration. Ca-NPs-resin dentin infiltration produced a favorable dissipation of energy with minimal stress concentration trough the crystalline remineralized resin-dentin interface, causing minor damage at this structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell

    Science.gov (United States)

    Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B.

    2005-01-01

    A beach morphology monitoring program was initiated during summer 1997 along the Columbia River littoral cell (CRLC) on the coasts of northwest Oregon and southwest Washington, USA. This field program documents the seasonal through interannual morphological variability of these high-energy dissipative beaches over a variety of spatial scales. Following the installation of a dense network of geodetic control monuments, a nested sampling scheme consisting of cross-shore topographic beach profiles, three-dimensional topographic beach surface maps, nearshore bathymetric surveys, and sediment size distribution analyses was initiated. Beach monitoring is being conducted with state-of-the-art real-time kinematic differential global positioning system survey methods that combine both high accuracy and speed of measurement. Sampling methods resolve variability in beach morphology at alongshore length scales of approximately 10 meters to approximately 100 kilometers and cross-shore length scales of approximately 1 meter to approximately 2 kilometers. During the winter of 1997/1998, coastal change in the US Pacific Northwest was greatly influenced by one of the strongest El Nin??o events on record. Steeper than typical southerly wave angles resulted in alongshore sediment transport gradients and shoreline reorientation on a regional scale. The La Nin??a of 1998/1999, dominated by cross-shore processes associated with the largest recorded wave year in the region, resulted in net beach erosion along much of the littoral cell. The monitoring program successfully documented the morphological response to these interannual forcing anomalies as well as the subsequent beach recovery associated with three consecutive moderate wave years. These morphological observations within the CRLC can be generalized to explain overall system patterns; however, distinct differences in large-scale coastal behavior (e.g., foredune ridge morphology, sandbar morphometrics, and nearshore beach slopes

  15. Road-surface properties affecting rates of energy dissipation from vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Igwe, E.A. [Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ayotamuno, M.J.; Okparanma, R.N. [Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ogaji, S.O.T.; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire Mk43 OAL (United Kingdom)

    2009-09-15

    The rates of energy that moving vehicles dissipate to road surfaces as well as noise emissions and their propensities for pitting (and hence their repair costs per year) all depend upon the structural properties of these surfaces. Thus, to increase the strength of bituminous concrete (i.e. a typical flexible road-surface) has been one of the major recent aims in highway engineering. The present study explored techniques that will increase these strength properties by modifying the material, using rubber latex, through rubberization and hence, improve the strength of the flexible trafficked surface when in contact with vehicles. At the optimal design asphalt (i.e. bitumen) content of 4.68%, the successive addition of various percentages of the rubber latex produced a design value of 1.65% rubber content, which increased the stability of the roadway from 1595 to 2639 N (i.e. an 65.5% increase) and the density from 2447 to 2520.8 kg/m{sup 3} (i.e. a 3.02% increase). This shows that the addition of rubber latex to bituminous concrete (a flexible road-surface) increased sustainability and the strength (in terms of stability and density). Similarly, the air voids and voids in the mineral aggregate (VMA) were reduced by introducing latex from 4.22% to 3.45% (i.e. a 17.06% reduction) and 16.25% to 13.43% (i.e. an 17.4% reduction), respectively. Whereas, the reduction in voidage volume added strength to the bituminous concrete by increasing its stability and density, the reduction in VMA had no positive impact on the strength properties of the flexible road-surface. (author)

  16. Dissipation of the electronic excitation energy in fluorides with different type of a crystal lattice

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Grechkina, T. V.; Korepanov, V.I.; Lisitsyna, L.A.

    2004-01-01

    F-centers is revealed. Therefore, in researched crystals any of types STE is not starting for creation of the F-centers. The expenditure energy for creation of STE at 20 K and the F-centers in the field of their primary creation (300 K) in crystals LiF and MeF 2 are comparable and equal 1.5-2 eV. It means that formation of both types of defects can be only result of decay created by radiation electronic excitation. Therefore, there are two basic channels of dissipation energy of high-energy electronic excitation, i.e. the creation of two-center type configuration of STEs in triplet state and creation Frenkel pairs defects. Occupation of channels occurs during an oscillatory relaxation of high-energy electronic excitation (a precursor state), instead of a process thermally activation conversion of one type of initial defect to another (from triplet STE to F, H pair). Thus total efficiency of generation of defects on channels remains practically to a constant in all the investigated temperature range 20-500 K. It is established, that the ratio between channels of energy dissipation of a precursor state depends on many parameters: temperatures of a crystal at an irradiation, type of crystal lattice, type and concentration both primary and created the defectiveness of a material during irradiation. Thus, creation of primary radiation defects of a lattice both in crystals LiF and MgF 2 , occurs during a relaxation electronic excitation. All set of experimental results are evidence of identical character of mechanisms of generation of primary defects in these crystals in wide temperature area, as well as similarity of structure and character of behavior of primary defects, specifying on the certain universality of the considered processes in ionic crystals

  17. Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism

    International Nuclear Information System (INIS)

    Petitet, Marie; Finon, Dominique; Janssen, Tanguy

    2017-01-01

    This article analyses how a capacity mechanism can address security of supply objectives in a power market undergoing an energy transition that combines energy efficiency efforts to stabilise demand and a rapid increase in the proportion of renewables. To analyse this situation, power markets are simulated over the long term with a System Dynamics model integrating new investment and closure decisions. This last trait is relevant to studying investment in power generation in mature markets undergoing policy shocks. The energy-only market design with a price cap, with and without a capacity mechanism, is compared to scarcity pricing in two investment behaviour scenarios with and without risk aversion. The results show that the three market designs lead to different levels of risk for peaking unit investment and results thus differ according to which risk aversion hypothesis is adopted. Assuming a risk-neutral investor, the results indicate that compared to an energy-only market with a price cap at 3 000 €/MWh, an energy-only market with scarcity pricing and the market design with a capacity mechanism are two efficient options to reach similar levels of load loss. But under the hypothesis of risk aversion, the results highlight the advantage of the capacity mechanism over scarcity pricing. - Highlights: • Investment decisions in electricity markets are simulated by a System Dynamics model. • Capacity mechanism enhances capacity adequacy compared to the energy-only market. • With no risk aversion, capacity mechanism or scarcity pricing provide similar results. • With risk aversion, capacity mechanism appears to be the preferable market design.

  18. A thermal storage capacity market for non dispatchable renewable energies

    Science.gov (United States)

    Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz

    2017-06-01

    Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.

  19. On the energy flux of stationary electromagnetic waves in anisotropic dissipative media with spatial dispersion

    NARCIS (Netherlands)

    Tokman, M. D.; Westerhof, E.; Gavrilova, M. A.

    2000-01-01

    The special features of the propagation of electromagnetic waves in gyrotropic medium with dispersion and resonant dissipation (specifically, in a magnetoactive plasma) are studied. Even though the anti-Hermitian components of the permittivity tensor are substantial in magnitude, weakly damped waves

  20. Novel approaches to estimating the turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation time series

    Directory of Open Access Journals (Sweden)

    M. Wacławczyk

    2017-11-01

    Full Text Available In this paper we propose two approaches to estimating the turbulent kinetic energy (TKE dissipation rate, based on the zero-crossing method by Sreenivasan et al. (1983. The original formulation requires a fine resolution of the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cutoffs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top (POST airborne research campaign as well as synthetic turbulence data. They appear useful and complementary to existing methods. We show the number-of-crossings-based approaches respond differently to errors due to finite sampling and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate retrieval.

  1. How plasmas dissipate: cascade and the production of internal energy and entropy in weakly collisional plasma turbulence

    Science.gov (United States)

    Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.

    2017-12-01

    Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.

  2. Viscous dissipation of energy at the stage of accumulation of the Earth

    Science.gov (United States)

    Yurie Khachay, Professor; Olga Hachay, Professor; Antipin, Alexandr

    2017-04-01

    significant. That influence is defined by a set of factors. It was changed the width of the formed outer core. It was changed the distribution of the temperature and hydrostatic pressure inside the core and reciprocally the viscosity of the matter. It had been changed the orbit parameters of the system Earth-Moon. The received results depend from the parameters, the values of which are known with large degree of uncertainty. They have to be specified during next researchers. This work was supported by grant RFBRI №16-05-00540 References. 1. V.Anfilogov,Y. Khachay ,2005, Possible variant of matter differentiation on the initial stage of Earth's forming //DAN, 2005, V. 403, № 6, p. 803-806. 2.V.Anfilogov,Y.Khachay ,2015, Some Aspects of the Solar System Formation. Springer Briefs of the Earth Sciences. -75p 3.Khachay Yu.V., Hachay O.A. Heat production by the viscous dissipation of energy at the stage of accumulation of the Earth. Geophysical Research AbstractsVol. 18, EGU2016-2825, 2016 4. Khachay Yu. Realization of thermal Convection into the initial Earth's Core on the Stage of planetary Accumulation // Geophysical Research Abstracts, Vol. 17, EGU2015-2211, 2015.

  3. The crack energy absorptive capacity of composites with fractal structure

    International Nuclear Information System (INIS)

    Lung, C.W.

    1990-11-01

    This paper discusses the energy absorptive capacity of composites with fibers of fractal structures. It is found that this kind of structure may increase the absorption energy during the crack propagation and hence the fracture toughness of composites. (author). 10 refs, 6 figs, 2 tabs

  4. Estimating cell capacity for multi-cell electrical energy system

    Science.gov (United States)

    Hashemi, Iman Ahari

    A Multi-Cell Electrical Energy System is a set of batteries that are connected in series. The series batteries provide the required voltage necessary for the contraption. After using the energy that is provided by the batteries, some cells within the system tend to have a lower voltage than the other cells. Also, other factors, such as the number of times a battery has been charged or discharged, how long it has been within the system and many other factors, result in some cells having a lesser capacity compared to the other cells within the system. The outcome is that it lowers the required capacity that the electrical energy system is required to provide. By having an unknown cell capacity within the system, it is unknown how much of a charge can be provided to the system so that the cells are not overcharged or undercharged. Therefore, it is necessary to know the cells capacity within the system. Hence, if we were dealing with a single cell, the capacity could be obtained by a full charge and discharge of the cell. In a series system that contains multiple cells a full charging or discharging cannot happen as it might result in deteriorating the structure of some cells within the system. Hence, to find the capacity of a single cell within an electrical energy system it is required to obtain a method that can estimate the value of each cell within the electrical energy system. To approach this method an electrical energy system is required. The electrical energy system consists of rechargeable non-equal capacity batteries to provide the required energy to the system, a battery management system (BMS) board to monitor the cells voltages, an Arduino board that provides the required communication to BMS board, and the PC, and a software that is able to deliver the required data obtained from the Arduino board to the PC. The outcome, estimating the capacity of a cell within a multi-cell system, can be used in many battery related technologies to obtain unknown

  5. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  6. Capacity building in renewable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, Ingvar

    2010-09-15

    The renewable energy sources are expected to provide 20-40% of the world primary energy in 2050, depending on scenarios. A key element in the mitigation of climate change is capacity building in renewable energy technologies in the developing countries, where the main energy use growth is expected. An innovative training programme for geothermal energy professionals developed in Iceland is an example of how this can be done effectively. In 1979-2009, 424 scientists/engineers from 44 developing countries have completed the 6 month courses. In many countries in Africa, Asia, C-America, and E-Europe, UNU-GTP Fellows are among the leading geothermal specialists.

  7. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    International Nuclear Information System (INIS)

    Yoon, Hong Min; Kondaraju, Sasidhar; Lee, Jung Shin; Suh, Youngho; Lee, Joonho H.; Lee, Joon Sang

    2017-01-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  8. Molecular dynamics study of the nanosized droplet spreading: The effect of the contact line forces on the kinetic energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-07-01

    Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.

  9. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  10. Energy Efficiency in Logistics: An Interactive Approach to Capacity Utilisation

    Directory of Open Access Journals (Sweden)

    Jessica Wehner

    2018-05-01

    Full Text Available Logistics operations are energy-consuming and impact the environment negatively. Improving energy efficiency in logistics is crucial for environmental sustainability and can be achieved by increasing the utilisation of capacity. This paper takes an interactive approach to capacity utilisation, to contribute to sustainable freight transport and logistics, by identifying its causes and mitigations. From literature, a conceptual framework was developed to highlight different system levels in the logistics system, in which the energy efficiency improvement potential can be found and that are summarised in the categories activities, actors, and areas. Through semi-structured interviews with representatives of nine companies, empirical data was collected to validate the framework of the causes of the unutilised capacity and proposed mitigations. The results suggest that activities, such as inflexibilities and limited information sharing as well as actors’ over-delivery of logistics services, incorrect price setting, and sales campaigns can cause unutilised capacity, and that problem areas include i.a. poor integration of reversed logistics and the last mile. The paper contributes by categorising causes of unutilised capacity and linking them to mitigations in a framework, providing a critical view towards fill rates, highlighting the need for a standardised approach to measure environmental impact that enables comparison between companies and underlining that costs are not an appropriate indicator for measuring environmental impact.

  11. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  12. Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2016-01-01

    Full Text Available Fatigue crack initiation and propagation involve plastic strains that require some work to be done on the material. Most of this irreversible energy is dissipated as heat and consequently the material temperature increases. The heat being an indicator of the intense plastic strains occurring at the tip of a propagating fatigue crack, when combined with the Neuber’s structural volume concept, it might be used as an experimentally measurable parameter to assess the fatigue damage accumulation rate of cracked components. On the basis of a theoretical model published previously, in this work the heat energy dissipated in a volume surrounding the crack tip is estimated experimentally on the basis of the radial temperature profiles measured by means of an infrared camera. The definition of the structural volume in a fatigue sense is beyond the scope of the present paper. The experimental crack propagation tests were carried out on hot-rolled, 6-mm-thick AISI 304L stainless steel specimens subject to completely reversed axial fatigue loading.

  13. Elliptical Leaf Spring Shock and Vibration Mounts with Enhanced Damping and Energy Dissipation Capabilities Using Lead Spring

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2015-01-01

    Full Text Available We present an enhancement to the existing elliptical leaf spring (ELS for improved damping and energy dissipation capabilities. The ELS consists of a high tensile stainless steel elliptical leaf spring with polymer or rubber compound. This device is conceived as a shock and vibration isolator for equipment and lightweight structures. The enhancement to the ELS consists of a lead spring plugged vertically between the leaves (referred to as lead-rubber elliptical leaf spring (LRELS. The lead is shown to produce hysteretic damping under plastic deformations. The LRELS isolator is shown to exhibit nonlinear hysteretic behavior. In both horizontal directions, the LRELS showed symmetrical rate independent behavior but undergoes stiffening behavior under large displacements. However, in the vertical direction, the LRELS behavior is asymmetric, exhibiting softening behavior in compression and stiffening behavior in tension. Mathematical models based on the Bouc-Wen model, describing the hysteretic behavior of the proposed isolator, are developed and numerically calibrated using a series of finite element analyses. The LRELS is found to be effective in the in-plane and vertical directions. The improved damping and energy dissipation of the LRELS is provided from the hysteretic damping of the lead spring.

  14. Energy-Dissipation Performance of Combined Low Yield Point Steel Plate Damper Based on Topology Optimization and Its Application in Structural Control

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2016-01-01

    Full Text Available In view of the disadvantages such as higher yield stress and inadequate adjustability, a combined low yield point steel plate damper involving low yield point steel plates and common steel plates is proposed. Three types of combined plate dampers with new hollow shapes are proposed, and the specific forms include interior hollow, boundary hollow, and ellipse hollow. The “maximum stiffness” and “full stress state” are used as the optimization objectives, and the topology optimization of different hollow forms by alternating optimization method is to obtain the optimal shape. Various combined steel plate dampers are calculated by finite element simulation, the results indicate that the initial stiffness of the boundary optimized damper and interior optimized damper is lager, the hysteresis curves are full, and there is no stress concentration. These two types of optimization models made in different materials rations are studied by numerical simulation, and the adjustability of yield stress of these combined dampers is verified. The nonlinear dynamic responses, seismic capacity, and damping effect of steel frame structures with different combined dampers are analyzed. The results show that the boundary optimized damper has better energy-dissipation capacity and is suitable for engineering application.

  15. Pricing and Capacity Planning Problems in Energy Transmission Networks

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer

    strategy. In the Nordic electricity system a market with zonal prices is adopted. We consider the problem of designing zones in an optimal way explicitly considering uncertainty. Finally, we formulate the integrated problem of pipeline capacity expansion planning and transmission pricing in natural gas...... necessitates a radical change in the way we plan and operate energy systems. Another paradigm change which began in the 1990’s for electricity systems is that of deregulation. This has led to a variety of different market structures implemented across the world. In this thesis we discuss capacity planning...... and transmission pricing problems in energy transmission networks. Although the modelling framework applies to energy networks in general, most of the applications discussed concern the transmission of electricity. A number of the problems presented involves transmission switching, which allows the operator...

  16. Equilibrium Transitions from Non Renewable Energy to Renewable Energy under Capacity Constraints

    OpenAIRE

    Amigues, Jean-Pierre; Ayong Le Kama, Alain; Moreaux, Michel

    2013-01-01

    We study the transition between non-renewable and renewable energy sources with adjustment costs over the production capacity of renewable energy. Assuming constant variable marginal costs for both energy sources, convex adjustment costs and a more expensive renewable energy, we show the following. With sufficiently abundant non-renewable energy endowments, the dynamic equilibrium path is composed of a first time phase of only non-renewable energy use followed by a transition phase substituti...

  17. Low-cost viscometer based on energy dissipation in viscous liquids

    Science.gov (United States)

    Hashimoto, C.; Cristobal, G.; Nicolas, A.; Panizza, P.; Rouch, J.; Ushiki, H.

    2001-04-01

    We describe a new type of low-cost easy-to-use viscometer based on the temperature elevation in a liquid under shear flow. After calibration, this instrument can be used to measure the apparent steady state viscosity for both Newtonian and non-Newtonian liquids with no yield stress. We compute the rise in temperature due to viscous dissipation in a Couette cell and compare it to experimental results for different fluids. We show that the variation of the temperature with shear rate can be used to characterize the rheological behaviour of viscous fluids and to evaluate their viscosity in a large domain, from typically a few cP up to more than 10 P, with an accuracy of about ±5%. In contrast to simple viscometers, non-Newtonian fluids can be studied with this apparatus. We give experimental results for Newtonian and non-Newtonian liquids and show that they are very similar to those given in the literature by using much more sophisticated instruments.

  18. Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator

    Science.gov (United States)

    Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-07-01

    We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the

  19. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    Science.gov (United States)

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  20. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    International Nuclear Information System (INIS)

    Adams, J; Fantner, G E; Hansma, P K; Fisher, L W

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence

  1. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J; Fantner, G E; Hansma, P K [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Fisher, L W [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892 (United States)], E-mail: adams@physics.ucsb.edu, E-mail: fantner@physics.ucsb.edu, E-mail: lfisher@dir.nidcr.nih.gov, E-mail: prasant@physics.ucsb.edu

    2008-09-24

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  2. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface

    International Nuclear Information System (INIS)

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Kim, Yousoo; Yamamoto, Naoki

    2015-01-01

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS. (paper)

  3. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  4. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    Science.gov (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  5. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  6. Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of exitation energy after mild heat treatment of barley leaves

    International Nuclear Information System (INIS)

    Bukhov, N.G.; Boucher, N.; Carpentier, R.

    1998-01-01

    The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (F m - F o )/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat-treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH-dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far-red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non-photochemical quenching of excitation energy. (author)

  7. Required storage capacity to increase the value of renewable energy

    International Nuclear Information System (INIS)

    Nacht, T.

    2014-01-01

    The effort to achieve a more eco - friendly production of energy leads to larger shares of renewables in the electricity sector, resulting in more supply - dependency and volatility. This results in a time shift between production and consumption. In order to gain an upper hand, possibilities for transferring renewable energies from the time of production to the time when the demand occurs are researched. Energy storage systems will play a big role in this process, with pumped storage plants being the most developed and most common technology nowadays. As a first part of this thesis, the renewables in Germany are studied through the use of models on the basis of hourly measured values of the primary energy carriers for the corresponding technology. For these data series many years’ worth of measurements were considered, resulting in data for the hourly production values of the renewable energy sources. The results show a strong dependency between production and the seasons of the year. Furthermore a very small secured contribution of renewable production during times of peak load is registered, leading to the conclusion that energy storages are indeed necessary. Different strategies for the dispatch of the storage technologies pumped hydro storage, compressed air storage and hydrogen storage are developed for the region of Germany, which will be dispatched outside the energy - only market. The different strategies for the storage dispatch have the reduction of the resulting load in common, by preferably transferring renewable energy from times when it is not needed to those times with high loads. This resulting load needs to be covered by thermal power plants. The required capacities of the different storage technologies are evaluated and compared. By using pumped storage plants the increase in the value of renewables, as measured by the secure contribution during peak load hours, is determined. An analysis of different compositions of renewable production allows

  8. Performance investigation on dissipative dielectric elastomer generators with a triangular energy harvesting scheme

    Science.gov (United States)

    Fan, Peng; Chen, Hualing; Li, Bo; Wang, Yongquan

    2017-11-01

    In this letter, a theoretical framework describing an energy harvesting cycle including the loss of tension (LT) process is proposed to investigate the energy harvesting performance of a dielectric elastomer generator (DEG) with a triangular energy harvesting scheme by considering material viscosity and leakage current. As the external force that is applied to the membrane decreases, the membrane is relaxed. When the external force decreases to zero, the condition is known as LT. Then the membrane undergoing LT can further relax, which is referred to as the LT process. The LT process is usually ignored in theoretical analysis but observed from energy harvesting experiments of DEGs. It is also studied how shrinking time and transfer capacitor affect the energy conversion of a DEG. The results indicate that energy density and conversion efficiency can be simultaneously improved by choosing appropriate shrinking time and transfer capacitor to optimize the energy harvesting cycle. The results and methods are expected to provide guidelines for the optimal design and assessment of DEGs.

  9. Drisla, Macedonian energy potential capacity, v. 15(58)

    International Nuclear Information System (INIS)

    Dimitrov, Ognen; Armenski, Slave

    2007-01-01

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  10. Drisla, Macedonian energy potential capacity, v. 15(57)

    International Nuclear Information System (INIS)

    Dimitrov, Ognen; Armenski, Slave

    2007-01-01

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  11. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  12. Computer simulation of energy dissipation from near threshold knock-ons in Fe3Al

    International Nuclear Information System (INIS)

    Schade, G.; Leighly, H.P. Jr.; Edwards, D.R.

    1976-01-01

    A computer program has been developed and used to model a series of knock-ons near the damage energy threshold in a micro-crystallite of the ordered alloy Fe 3 Al. The primary paths of energy removal from the knock-on site were found to be along the [100] and [111] directions by means of focusing type collision chains. The relative importance of either direction as an energy removal path varied with the initial knock-on direction and also changed with time during the course of the knock-on event. The time rate of energy removal was found to be greatest in the [111] direction due to the shorter interatomic distances between atoms along this direction

  13. Vibration and Energy Dissipation of Nanocomposite Laminates for Below Ballistic Impact Loading

    Directory of Open Access Journals (Sweden)

    G. Balaganesan

    Full Text Available Abstract Composite laminates are made of glass woven roving mats of 610gsm, epoxy resin and nano clay which are subjected to projectile impact. Nano clay dispersion is varied from 1% to 5%. Impact tests are conducted in a gas gun setup with a spherical nose cylindrical projectile of diameter 9.5 mm of mass 7.6 g. The energy absorbed by the laminates when subjected to impact loading is studied, the velocity range is below ballistic limit. The effect of nano clay on energy absorption in vibration, delamination and matrix crack is studied for different weight % of nano clay and for different thickness values of the laminates. The natural frequencies and damping factors are obtained for the laminates during impact and the effect of nano clay is studied. The results show considerable improvement in energy absorption due to the presence of nano clay

  14. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    Science.gov (United States)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  15. Attractors of dissipative structure in three dissipative fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1993-10-01

    A general theory with use of auto-correlations for distributions is presented to derive that realization of coherent structures in general dissipative dynamic systems is equivalent to that of self-organized states with the minimum dissipation rate for instantaneously contained energy. Attractors of dissipative structure are shown to be given by eigenfunctions for dissipative dynamic operators of the dynamic system and to constitute the self-organized and self-similar decay phase. Three typical examples applied to incompressible viscous fluids, to incompressible viscous and resistive magnetohydrodynamic (MHD) fluids and to compressible resistive MHD plasmas are presented to lead to attractors in the three dissipative fluids and to describe a common physical picture of self-organization and bifurcation of the dissipative structure. (author)

  16. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  17. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  18. 10 CFR 904.6 - Charge for capacity and firm energy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6... CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity and Firm Energy from the Project shall be composed of two separate charges; a charge to provide for the...

  19. Capacity of Distribution Feeders for Hosting Distributed Energy Resources

    DEFF Research Database (Denmark)

    Papathanassiou, S.; Hatziargyriou, N.; Anagnostopoulos, P.

    The last two decades have seen an unprecedented development of distributed energy resources (DER) all over the world. Several countries have adopted a variety of support schemes (feed-in tariffs, green certificates, direct subsidies, tax exemptions etc.) so as to promote distributed generation (DG...... standards of the networks. To address this need in a timely and effective manner, simplified methodologies and practical rules of thumbs are often applied to assess the DER hosting capacity of existing distribution networks, avoiding thus detailed and time consuming analytical studies. The scope...

  20. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their

  1. Infragravity-wave dynamics in shallow water : energy dissipation and role in sand suspension and transport

    NARCIS (Netherlands)

    de Bakker, A.T.M.|info:eu-repo/dai/nl/371573734

    2016-01-01

    Infragravity waves (20-200 s) receive their energy from sea-swell waves (2-20 s), and are thought to be important to beach erosion during storms, when they can reach up to several meters in height. Numerous studies have observed that on sandy beaches infragravity waves can lose a large part of their

  2. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation

    NARCIS (Netherlands)

    Maschke, Bernhard M.J.; Ortega, Romeo; Schaft, Arjan J. van der

    1998-01-01

    It is well known that the total energy is a suitable Lyapunov function to study the stability of the trivial equilibrium of an isolated standard Hamiltonian system. In many practical instances, however, the system is in interaction with its environment through some constant forcing terms. This gives

  3. Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

    Science.gov (United States)

    Nozaki, Kengo; Matsuo, Shinji; Fujii, Takuro; Takeda, Koji; Shinya, Akihiko; Kuramochi, Eiichi; Notomi, Masaya

    2018-04-01

    Generally, reverse-biased photodetectors (PDs) are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W). Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.

  4. Forward-biased nanophotonic detector for ultralow-energy dissipation receiver

    Directory of Open Access Journals (Sweden)

    Kengo Nozaki

    2018-04-01

    Full Text Available Generally, reverse-biased photodetectors (PDs are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W. Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.

  5. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.

    Science.gov (United States)

    Lee, Jinkyu; Song, Yongnam; Shin, Choongsoo S

    2018-05-01

    During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R 2  = 0.64, p angle was negatively correlated with hip negative work (r = -0.46, R 2  = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R 2  = 0.37, p angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R 2  = 0.25, p angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness

    International Nuclear Information System (INIS)

    Virk, K; Marsh, M; Monti, A; Trehard, T; Hazra, K; Boba, K; Remillat, C D L; Scarpa, F; Farrow, I R

    2013-01-01

    The work describes the manufacturing, testing and parametric analysis of cellular structures exhibiting zero Poisson’s ratio-type behaviour, together with zero and negative stiffness effects. The cellular structures are produced in flat panels and curved configurations, using a combination of rapid prototyping techniques and Kirigami (Origami and cutting) procedures for PEEK (Polyether Ether Ketone) thermoplastic composites. The curved cellular configurations show remarkable large deformation behaviours, with zero and negative stiffness regimes depending also on the strain rate applied. These unusual stiffness characteristics lead to a large increase of energy absorption during cyclic tests. (paper)

  7. From a bundled energy-capacity pricing model to an energy-capacity-ancillary services pricing model

    International Nuclear Information System (INIS)

    Raineri, Ricardo; Arce, Raul; Rios, Sebastian; Salamanca, Carlos

    2008-01-01

    In this paper, we extend the Chilean power generation pricing mechanism, with capacity and energy payments, to one where ancillary services (AS), as frequency regulation and voltage control, are explicitly recognized. Adequacy and security attributes of the electric system and the public good characteristics of AS are set within the payment structure to distribute the financing of AS among those who benefit from their provision. The contribution to finance the provision of AS is determined assessing the value assigned to the system security by each agent, following what's an efficient pricing mechanism in the presence of public goods

  8. Energy storage and dissipation in the magnetotail during substorms. 2. MHD simulations

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Winglee, R.M.

    1993-01-01

    The authors present a global MHD simulation of the magnetotail in an effort to study magnetic storm development. They address the question of energy storage in the current sheet in the early phases of storm growth, which previous simulations have not shown. They address this problem by dealing with the variation of the resistivity throughout the magnetosphere. They argue that MHD theory should provide a suitable representation to this problem on a global scale, even if it does not handle all details adequately. For their simulation they use three different forms for the resistivity. First is a uniform and constant resistivity. Second is a resistivity proportional to the current density, which is related to argument that resistivity is driven by wave-particle interactions which should be strongest in regions where the current is the greatest. Thirdly is a model where the resistivity varies with the magnetic field strength, which was suggested by previous results from particle simulations of the same problem. The simulation then gives approximately the same response of the magnetosphere for all three of the models. Each results in the formation and ejection of plasmoids, but the energy stored in the magnetotail, the timing of substorm onset in relation to the appearance of a southward interplanetary magnetic field, and the speed of ejection of the plasmoids formed differ with the resistivity models

  9. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    International Nuclear Information System (INIS)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makes an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected

  10. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  11. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  12. On the Role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains

    Directory of Open Access Journals (Sweden)

    Silvia Meniconi

    2018-02-01

    Full Text Available In the last decades several reliable technologies have been proposed for fault detection in water distribution networks (DNs, whereas there are some limitations for transmission mains (TMs. For TM inspection, the most common fault detection technologies are of inline types—with sensors inserted into the pipelines—and then more expensive with respect to those used in DNs. An alternative to in-line sensors is given by transient test-based techniques (TTBTs, where pressure waves are injected in pipes “to explore” them. On the basis of the results of some tests, this paper analyses the relevance of the system configuration, energy dissipation phenomena, and pipe material characteristics in the transient behavior of a real TM. With this aim, a numerical model has been progressively refined not only in terms of the governing equations but also by including a more and more realistic representation of the system layout and taking into account the actual functioning conditions. As a result, the unexpected role of the minor branches—i.e., pipes with a length smaller than the 1% of the length of the main pipe—is pointed out and a preliminary criterion for the system skeletonization is offered. Moreover, the importance of both unsteady friction and viscoelasticity is evaluated as well as the remarkable effects of small defects is highlighted.

  13. The effects of LT-SN on energy dissipation and lifetime in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Zeydin Pala

    2016-11-01

    Full Text Available Wireless sensor networks (WSNs still attract the attention of researchers, users and the private sector despite their low power and low range tendency for malfunction. This attraction towards WSNs results from their low cost structure and the solutions they offer for many prevalent problems. Many conditions, which remain unforeseen or unexpected during the design of the system, may arise after the initialization of the system. Similarly, many situations where security vulnerabilities take place may emerge in time in WSNs operating normally. In this study, we called nodes which enter sleeping mode without any further waking up and causing a sparser number of nodes in the network without any function in data transmission as Long-Term Sleep Nodes (LT-SN; and considered energy spaces caused by such nodes as a problem; and established two Linear Programming (LP models based on the efficiency of the present nodes. We offered two different models which present the effect of sensor nodes, which were initially operating in wireless sensor network environment and did not wake up following sleep mode, on network lifetime. The results of the present study report that as the number of LT-SN increases, the lifetime of the network decreases.

  14. Israel-Stewart Approach to Viscous Dissipative Extended Holographic Ricci Dark Energy Dominated Universe

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2016-01-01

    Full Text Available This paper reports a study on the truncated Israel-Stewart formalism for bulk viscosity using the extended holographic Ricci dark energy (EHRDE. Under the consideration that the universe is dominated by EHRDE, the evolution equation for the bulk viscous pressure Π in the framework of the truncated Israel-Stewart theory has been taken as τΠ˙+Π=-3ξH, where τ is the relaxation time and ξ is the bulk viscosity coefficient. Considering effective pressure as a sum of thermodynamic pressure of EHRDE and bulk viscous pressure, it has been observed that under the influence of bulk viscosity the EoS parameter wDE is behaving like phantom, that is, wDE≤-1. It has been observed that the magnitude of the effective pressure peff=p+Π is decaying with time. We also investigated the case for a specific choice of scale factor; namely, a(t=(t-t0β/(1-α. For this choice we have observed that a transition from quintessence to phantom is possible for the equation of state parameter. However, the ΛCDM phase is not attainable by the state-finder trajectories for this choice. Finally it has been observed that in both of the cases the generalized second law of thermodynamics is valid for the viscous EHRDE dominated universe enveloped by the apparent horizon.

  15. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  16. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  17. Energy Approach to Measure the Region’s Assimilative Capacity

    Directory of Open Access Journals (Sweden)

    Irina Stepanovna Belik

    2017-12-01

    Full Text Available One of the important problems of the environmental economics is the development of methodology for quantifying the assimilative capacity (AC of a territory. The article analyzes the existing approaches to determining and assessing the AC of a territory. We justify the advantages of using the energy approach. The authors’ method consists in using the maximum permissible energy load (MPEL for quantitative assessment of the AC of a territory. MPEL is a value that the ecological and economic system can withstand for a long time without changing its properties. We determine MPEL on the basis of data on the ability of various categories of land to absorb greenhouse gases (GHG, as well as the specific GHG emissions per ton of conventional fuel. Further, we compare the calculated value of MPEL in fuel equivalents with the actual consumption of fuel resources for the needs of the national economy. These values ratio can serve as a standard for measuring and balancing the environmental and economic system. The authors have validated the described method on the example of the Sverdlovsk region, which is characterized by a high level of man’s impact. Calculations show that the actual consumption of fossil fuels in the region exceeds MPEL. That indicates an imbalance in the ecological and economic system and may lead to further deterioration of the environmental quality in the region. The proposed methodological approach and calculations can be used when developing strategic planning documents for a territory, including its energy strategy

  18. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  19. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective Discusses emerging fields and analysis Provides examples.

  20. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  1. Differences in energy capacities between tennis players and runners.

    Science.gov (United States)

    Novak, Dario; Vucetić, Vlatko; Zugaj, Sanja

    2013-05-01

    The primary purpose of this study was to determine differences between elite athletes and tennis players in order to provide a clearer picture regarding the energy demands in modern tennis. Forty-eight (48) athletes and 24 tennis players from Croatian national leagues were compared in morphological and physiological parameters of an all-out incremental treadmill test with gas exchange measurements. Tennis players' HRmax (192.96+/-7.75 bpm) shows values that are most different to 400-meters sprinters (200.13+/-6.95 bpm). Maximum running speed of tennis players on the treadmill (vmax) is no different with the speed achieved by sprinters, while there are significant differences among other athletes. Values in running speed at anaerobic threshold (vAnT) show no statistically significant difference with the values for athlete sprinters and 400-m sprinters. Values of RvO2max for tennis players indicate significant similarities with athlete sprinters and 400-m sprinters while the values of RvO2AnT are nearly identical with the values for sprinters and show no statistically significant differences (psprint endurance in tennis players. Knowing these characteristics is the basis for planning and implementing training systems that will enable the increase and optimal usage of energy capacities of tennis players in possibly improving sports results.

  2. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2018-03-01

    Full Text Available The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen and PLA (polylactic acid matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD

  3. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    Science.gov (United States)

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P Infiniti ® IP system for NII and NIII cataracts.

  4. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  5. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen Conifer Jack Pine

    OpenAIRE

    Busch, F.; Huner, N.; Ensminger, I.

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack ...

  6. Molecular-scale noncontact atomic force microscopy contrasts in topography and energy dissipation on c(4x2) superlattice structures of alkanethiol self-assembled monolayers

    OpenAIRE

    Fukuma, Takeshi; Ichii, Takashi; Kobayashi, Kei; Yamada, Hirofumi; Matsushige, Kazumi

    2004-01-01

    Alkanethiol self-assembledmonolayers formed on Au(111) surfaces were investigated by noncontact atomic force microscopy (NC-AFM). Dodecanethiol monolayers prepared at 78 °C were imaged by NC-AFM, which revealed that the film is composed predominantly of two different phases of c(4×2)superlattice structures. The obtained molecular-scale NC-AFM contrasts are discussed in comparison with previously reported scanning tunneling microscopy images. We found that the energy dissipation image exhibits...

  7. 78 FR 77161 - Grant Program To Build Tribal Energy Development Capacity

    Science.gov (United States)

    2013-12-20

    ... Feasibility studies and energy resource assessments; Purchase of resource assessment data; Research and... used to eliminate capacity gaps or obtain the development of energy resource development capacity... eliminate any identified capacity gaps; (f) Objectives of the proposal describing how the proposed project...

  8. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    Science.gov (United States)

    Rowse, Tarah

    and financial stimulus are essential if Vermont hopes to increase strategic energy planning alignment and spur whole-scale energy system change. Study 2 examined local energy actors to assess their ability to develop and sustain energy action on the local level. A survey of 120 municipalities collected statewide baseline data covering the structures, processes, and activities of local energy actors. The analysis examined the role that various forms of capacity play in local energy activity. The results show that towns with higher incomes are more likely to have local energy actors and towns with higher populations have higher aggregate energy activity levels. Structurally, energy actors that had both an energy coordinator and an energy committee were more active, and municipal committees were more active than independent committees. Access to a budget and volunteer engagement were both associated with higher activity levels. The network of local energy actors in Vermont consists of committed and knowledgeable volunteers. Yet, the capacity of these local energy actors to implement sustainable energy change is limited due to resource constraints of time and money. In most cases, the scope of municipal energy planning strategy is modest. Prioritization of strategy and action at the central and local levels, along with increased interaction and coordination, is necessary to increase the regional compatibility and pace of energy system transformation.

  9. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Directory of Open Access Journals (Sweden)

    Q Joyce Han

    Full Text Available Right ventricular (RV function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH. The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI to derive RV kinetic energy (KE work density and energy loss in the pulmonary artery (PA to better characterize RV work in PAH patients.4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA.PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007 as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001 throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction.This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  10. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Science.gov (United States)

    Han, Q Joyce; Witschey, Walter R T; Fang-Yen, Christopher M; Arkles, Jeffrey S; Barker, Alex J; Forfia, Paul R; Han, Yuchi

    2015-01-01

    Right ventricular (RV) function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH). The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI) to derive RV kinetic energy (KE) work density and energy loss in the pulmonary artery (PA) to better characterize RV work in PAH patients. 4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA. PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007) as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001) throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction. This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  11. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  12. Capacity in the energy underwriting market - an overview

    International Nuclear Information System (INIS)

    Mulhall, L.

    1992-01-01

    It is important to clarify the different definitions of capacity, and in the insurance business this work has two distinct interpretations. The capacity of a Lloyd's syndicate is described by its ability to write premium income. Of more interest is the maximum ability and willingness of an underwriter, whether Lloyds's or Company, to commit itself to catastrophe loss policies. Or put more simply, what is the size of their line? It is this capacity for covering high value catastrophic exposure or Target Risks that will be discussed using the definition that capacity in this case is: ''The ability of insurance markets to cover any single maximum loss''. (Author)

  13. The impacts of renewable energy policies on renewable energy sources for electricity generating capacity

    Science.gov (United States)

    Koo, Bryan Bonsuk

    Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the U.S. almost doubled for the last three year from 2009 to 2012. Multiple papers point out that RES-E policies implemented by state governments play a crucial role in increasing RES-E generation or capacity. This study examines the effects of state RES-E policies on state RES-E generating capacity, using a fixed effects model. The research employs panel data from the 50 states and the District of Columbia, for the period 1990 to 2011, and uses a two-stage approach to control endogeneity embedded in the policies adopted by state governments, and a Prais-Winsten estimator to fix any autocorrelation in the panel data. The analysis finds that Renewable Portfolio Standards (RPS) and Net-metering are significantly and positively associated with RES-E generating capacity, but neither Public Benefit Funds nor the Mandatory Green Power Option has a statistically significant relation to RES-E generating capacity. Results of the two-stage model are quite different from models which do not employ predicted policy variables. Analysis using non-predicted variables finds that RPS and Net-metering policy are statistically insignificant and negatively associated with RES-E generating capacity. On the other hand, Green Energy Purchasing policy is insignificant in the two-stage model, but significant in the model without predicted values.

  14. Dissipative structures in magnetorotational turbulence

    Science.gov (United States)

    Ross, Johnathan; Latter, Henrik N.

    2018-03-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  15. Mechanisms of reaction and energy dissipation in the nucleus-nucleus symmetric collisions at 25 to 74 MeV/u: contribution of exclusive measurements of the INDRA multidetector; Mecanismes de reaction et de dissipation de l`energie dans les collisions symetriques noyau-noyau de 25 a 74 MeV/u: apport des mesures exclusives du multidetecteur INDRA

    Energy Technology Data Exchange (ETDEWEB)

    Metivier, V [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    1995-04-01

    This work is about the first experimental results obtained with the INDRA multidetector. First, the characterization of reaction mechanisms is performed. For complete events, global description of the collision is performed and compared with theoretical calculations. Dissipative binary mechanisms represent the largest part of the cross section for violent collisions whatever the bombarding energy (from 25 to 74 MeV/u) for the studied systems (Ar + KCl and Xe + Sn). The two outgoing products decay takes place through light charged particle and fragment emission. The reconstruction of the two primary sources is achieved, allowing thus the study of the evolution of the energy dissipation. Excitation energies exceeding 10 MeV/u are reached. The decay of the primary outgoing partners can be understood in a statistical model approach and the role of collective modes like expansion energy seems to be negligible. The study of the angular distributions points out angular momentum effects, `proximity effect` and a dynamical ternary process corresponding to the emission of a light fragment in between the two heavier products. For the most violent collisions, events can also be interpreted in terms of the multifragmentation of a single source, at least for the Xe + Sn system at 50 MeV/u (80 m barn). For the lower incident energies, fusion residues associated to the largest dissipations are recognized, but the cross sections is small (35 m barn for the Ar + KCl system at 32 MeV/u). (author) 91 refs.

  16. Practical methodologies for the calculation of capacity in electricity markets for wind energy

    International Nuclear Information System (INIS)

    Botero B, Sergio; Giraldo V, Luis Alfonso; Isaza C, Felipe

    2008-01-01

    Determining the real capacity of the generators in a power market is an essential task in order to estimate the actual system reliability, and to estimate the reward for generators due to their capacity in the firm energy market. In the wind power case, which is an intermittent resource, several methodologies have been proposed to estimate the capacity of a wind power emplacement, not only for planning but also for firm energy remuneration purposes. This paper presents some methodologies that have been proposed or implemented around the world in order to calculate the capacity of this energy resource.

  17. 18 CFR 294.101 - Shortages of electric energy and capacity.

    Science.gov (United States)

    2010-04-01

    ... customers; and (ii) It will report any modifications to its contingency plans for accommodating shortages... REGULATORY POLICIES ACT OF 1978 § 294.101 Shortages of electric energy and capacity. (a) Definition of... customers. (4) If a plan for accommodating any shortages of electric energy or capacity affecting its firm...

  18. Red shift in the spectrum of a chlorophyll species is essential for the drought-induced dissipation of excess light energy in a poikilohydric moss, Bryum argenteum.

    Science.gov (United States)

    Shibata, Yutaka; Mohamed, Ahmed; Taniyama, Koichiro; Kanatani, Kentaro; Kosugi, Makiko; Fukumura, Hiroshi

    2018-05-01

    Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.

  19. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Jenkin, Philipp Beiter, and Robert Margolis

    2016-02-01

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while providing relatively little capacity. This effect becomes more pronounced the higher the variable renewable energy penetration in a market. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets using administratively determined capacity demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers. Third, we consider some of the challenges to capacity markets that arise with higher variable renewable energy penetration.

  20. Distributed coordination of energy-storage capacities in virtual microgrids

    DEFF Research Database (Denmark)

    Brehm, Robert; Ramezani, Hossein; Jouffroy, Jerome

    cooperation is incorported, storage capacities can be operated as a virtual microgrid. The cooperation between nodes is based on the formulation of a simple objective function for coordination. The cooperation objective is then combined with each node’s local objective, which is the increase of self...

  1. Estimation of energy storage capacity in power system in japan under future demand and supply factors

    International Nuclear Information System (INIS)

    Kurihara, Ikuo; Tanaka, Toshikatsu

    1996-01-01

    The desirable capacity of future energy storage facility in power system in Japan is discussed in this paper, putting emphasis on future new electric demand/supply factors such as CO 2 emission problems and social structure change. The two fundamental demand scenarios are considered; one is base case scenario which extrapolates the trend until now and the other is social structure change scenario. The desirable capacity of the energy storage facility is obtained from the result of optimum generation mix which minimizes the yearly expenses of the target year (2030 and 2050). The result shows that the optimum capacity of energy storage facility is about 10 to 15%. The social structure change and demand side energy storage have great influences on the optimum capacity of supply side storage. The former increases storage capacity. The latter reduces it and also contributes to the reduction of generation cost. Suppression of CO 2 emission basically affects to reduce the storage capacity. The load following operation of nuclear plant also reduces the optimum storage capacity in the case it produces surplus energy at night. Though there exist many factors which increase or decrease the capacity of energy storage facility, as a whole, it is concluded that the development of new energy storage technology is necessary for future. (author)

  2. Per-energy capacity and handoff strategies in macro-femto cells environment

    KAUST Repository

    Leon, Jaime; Bader, Faouzi; Alouini, Mohamed-Slim

    2012-01-01

    The effect of smaller cells being placed in a heterogenous network can improve the way energy is spent in a system. Handoff strategies, bandwidth allocation and path loss calculations in different scenarios show how this is possible as the size of the cell is decreased. As a result, users can experience the same or better capacities while maximising the capacity per unit energy spent. The per-energy capacity metric is introduced as a suitable handoff strategy that considers the energy spent as an important criterion. © 2012 IEEE.

  3. Per-energy capacity and handoff strategies in macro-femto cells environment

    KAUST Repository

    Leon, Jaime

    2012-04-01

    The effect of smaller cells being placed in a heterogenous network can improve the way energy is spent in a system. Handoff strategies, bandwidth allocation and path loss calculations in different scenarios show how this is possible as the size of the cell is decreased. As a result, users can experience the same or better capacities while maximising the capacity per unit energy spent. The per-energy capacity metric is introduced as a suitable handoff strategy that considers the energy spent as an important criterion. © 2012 IEEE.

  4. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms o...... of performance and precision is sometimes hard to make. In this work, we use power dissipation and energy consumption as metrics to compare among those different classes of algorithms. There are no previous works in the literature presenting such a comparison....

  5. Expanding the power base. Building capacities for comparative energy assessment

    International Nuclear Information System (INIS)

    Hamilton, B.; Bui, D.T.; Conzelmann, G.

    2000-01-01

    Analysis of national energy systems is reaching unprecedented degrees of complexity. In addition to uncertainty of future energy demand, technology performance and costs, planners and decision makers are confronted with issues such as environment protection, sustainable development, deregulation and market liberalization. At the same time, public sector funds for energy investment projects are being progressively reduced. The IAEA offers its Member States a comprehensive programme of technical assistance and cooperation which covers many diverse areas related to peaceful uses of nuclear energy. In the area of comparative energy assessment, the objective of assistance is to strengthen national capabilities for elaborating sustainable patterns of energy supply and use. Assistance is provided in three ways, namely by: distributing state-of-the-art methodologies and decision-making tools tailored to the special needs of developing countries; providing training in model application, interpretation of results and translation into decision or policy making; and carrying out national studies in co-operation with requesting Member States

  6. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  7. Dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs

  8. Microscopic nuclear dissipation. Pt. 2

    International Nuclear Information System (INIS)

    Yannouleas, C.; Dworzecka, M.; Griffin, J.J.

    1983-01-01

    We have formulated a microscopic, nonperturbative, time reversible model which exhibits a dissipative decay of collective motion for times short compared to the system's Poincare time. The model assumes an RPA approximate description of the initial collective state within a restricted subspace, then traces its time evolution when an additional subspace is coupled to the restricted subspace by certain simplified matrix elements. It invokes no statistical assumptions. The damping of the collective motion occurs via real transitions from the collective state to other more complicated nuclear states of the same energy. It corresponds therefore to the so called 'one-body' long mean free path limit of nuclear dissipation when the collective state describes a surface vibration. When the simplest RPA approximation is used, this process associates the dissipation with the escape width for direct particle emission to the continuum. When the more detailed second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states as well. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy, unlike the dissipation of a classical damped oscillator, where it is proportional to the kinetic energy only. However, for coherent, multi-phonon wave packets, which explicitly describe the time-dependent oscillations of the mean field, dissipation proportional only to the kinetic energy is obtained. Canonical coordinates for the collective degree of freedom are explicitly introduced and a nonlinear frictional hamiltonian to describe such systems is specified by the requirement that it yield the same time dependence for the collective motion as the microscopic model. Thus, for the first time a descriptive nonlinear hamiltonian is derived explicitly from the underlying microscopic model of a nuclear system. (orig.)

  9. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    There is considerable debate about the degree to which restructured markets perform successfully in their use of capacity markets. In providing appropriate incentives for new and existing generation to meet reliability requirements, a variety of capacity market designs have developed across RTOs and ISOs in the United States and internationally. Growing levels of variable renewable energy (VRE) resources arguably create new challenges for capacity market designs, because VREs suppress energy prices while providing relatively little capacity, with these effects increase with VRE penetration. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets under consideration using variable resource requirement (VRR) demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers, including where there substantive differences in opinion. Third, we consider some of the challenges that may be specific to higher penetration levels of VRE. While the well known 'merit order' effect from VRE can be expected to suppress wholesale energy prices and revenue, this may be partly mitigated by increased capacity payments and the greater importance of AS payments for flexible capacity. The potential for greater reliance on capacity markets for generator revenues may amplify any inefficiency and costs associated with capacity price volatility and other suboptimal market design choices. Regulatory intervention to ensure adequate capacity payments and ancillary service revenue may become more prevalent under current market designs as the timescale for market signals shifts increasingly from near term (e.g., day-ahead in wholesale electricity markets) to longer term (annual intervals in capacity markets). Our review and discussion with market participants suggest substantive challenges may

  10. Ensuring capacity adequacy during energy transition in mature power markets: a social efficiency comparison of scarcity pricing and capacity mechanism

    International Nuclear Information System (INIS)

    Petitet, Marie; Finon, Dominique; Janssen, Tanguy

    2016-01-01

    This paper analyses how a capacity market mechanism can address security of supply objectives in the case of an energy transition scenario which combines both high energy efficiency efforts which stabilise demand in a context of mature markets and rapid increase of renewables share. The exogenous entry of variable renewables introduces a new challenge in matter of security of supply during peak hours. To analyse this situation, power markets are simulated on the long term with a model based on System Dynamics modelling which integrates both new investment and closure decisions. This last trait is an originality of the model which is very relevant to study market maturity. The addition of a capacity mechanism in a market architecture with price cap is compared to scarcity pricing in different situations. Simulations are performed for two different cases: a case without any exogenous closure of existing power plants and a case with exogenous retirements which create a need of new investments. Under the assumption of a risk-neutral investor, the results indicate that compared to an energy-only market with price cap set at euro 3,000/MWh, energy-only with scarcity pricing and capacity mechanism are two efficient market designs to reach an acceptable level of loss of load. Besides, the results highlight that the advantage of one design on the other in terms of social efficiency depends on the future scenarios which are simulated. Moreover, the results illustrates that the three market designs lead to different level of risk for peaking units, suggesting that including risk aversion is a relevant further step in the modelling. (authors)

  11. 75 FR 43519 - Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No...

    Science.gov (United States)

    2010-07-26

    ... DEPARTMENT OF ENERGY Western Area Power Administration Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No. 5 Substation and the Palo Verde Hub AGENCY... Department of Energy (DOE), is requesting SOIs from entities that are interested in purchasing transmission...

  12. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  13. High-capacity electrode materials for electrochemical energy storage

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... We discuss the role of nanoscale effects on the electrochemical ..... tems and BASF for developing high energy density lithium ion cells for plug-in electric ..... SEM and STEM images showing typical shapes and sizes of FeF2 ...

  14. Promoting renewable energy through capacity markets: An analysis of the Russian support scheme

    International Nuclear Information System (INIS)

    Boute, Anatole

    2012-01-01

    Most existing support schemes aim to stimulate the deployment of renewable energy sources in the electricity sector on the basis of the electricity output (MW h) of renewable energy installations. Support is anchored in the electricity commodity market. In contrast to this established approach, Russia intends to promote renewable energy through the capacity market. The idea is to remunerate investors for the installed capacity (MW) of their installations, in particular for the availability of their installations to produce electricity. This article argues that, contrary to the implicit consensus, a capacity-based approach to supporting renewable energy can provide an alternative to the current output-based schemes. Capacity-based schemes limit the incentive that the operators of renewable energy installations currently have under output-based schemes to deliver electricity to the grid even in periods of low demand. These schemes also provide investors with a more predictable income flow. However, to be successful, the regulation of capacity supply – currently designed for flexible power plants – needs to accommodate the specific production patterns of variable renewable energy installations. This paper examines ways to overcome this challenge in Russia and provides more general conclusions on the complex interaction between capacity markets and renewable energy investments.

  15. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage

  16. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  17. Differences in Energy Capacities between Tennis Players and Runners

    OpenAIRE

    Novak, Dario; Vučetić, Vlatko; Žugaj, Sanja

    2013-01-01

    The primary purpose of this study was to determine differences between elite athletes and tennis players in order to provide a clearer picture regarding the energy demands in modern tennis. Forty-eight (48) athletes and 24 tennis players from Croatian national leagues were compared in morphological and physiological parameters of an all-out incremental treadmill test with gas exchange measurements. Tennis players’ HRmax (192.96±7.75 bpm) shows values that are most different to 400-meters spri...

  18. Dissipative Solitons that Cannot be Trapped

    International Nuclear Information System (INIS)

    Pardo, Rosa; Perez-Garcia, Victor M.

    2006-01-01

    We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states

  19. Quantum dissipation of a simple conservative system

    International Nuclear Information System (INIS)

    Ibeh, G. J.; Mshelia, E. D.

    2014-01-01

    A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.

  20. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues...... and fuel that can also fulfill a storage function....

  1. Comparison of Two Railgun Power Supply Architectures to Quantify the Energy Dissipated After the Projectile Leaves the Railgun

    Science.gov (United States)

    2016-06-01

    reason , we cannot stop the discharge of energy to the rails. As a result, there is a great deal of inductive arcing and 34 heating at the muzzle. The...energy. When the armature exits the rails, a finite energy from the railgun pulsed-power supply is inductively stored in the rails and discharges at...forced by the system inductance to flow as an electrical discharge, creating a muzzle flash. Quantification of this post-fire rail energy in our

  2. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.

    Science.gov (United States)

    Chen, Xuemei; Fried, Eliot

    2008-10-01

    Lundgren's vortex model for the intermittent fine structure of high-Reynolds-number turbulence is applied to the Navier-Stokes alphabeta equations and specialized to the Navier-Stokes alpha equations. The Navier-Stokes alphabeta equations involve dispersive and dissipative length scales alpha and beta, respectively. Setting beta equal to alpha reduces the Navier-Stokes alphabeta equations to the Navier-Stokes alpha equations. For the Navier-Stokes alpha equations, the energy spectrum is found to obey Kolmogorov's -5/3 law in a range of wave numbers identical to that determined by Lundgren for the Navier-Stokes equations. For the Navier-Stokes alphabeta equations, Kolmogorov's -5/3 law is also recovered. However, granted that beta Navier-Stokes alphabeta equations may have the potential to resolve features smaller than those obtainable using the Navier-Stokes alpha equations.

  3. 75 FR 14342 - Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary Services by...

    Science.gov (United States)

    2010-03-25

    ...; Order No. 697-D] Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary... affiliates.\\3\\ \\1\\ Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary Services...\\ Market-Based Rates for Wholesale Sales of Electric Energy, Capacity and Ancillary Services by Public...

  4. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings.

    Science.gov (United States)

    Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K

    2014-06-01

    Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.

  5. Cooperative and submolecular dissipation mechanisms of sliding friction in complex organic systems.

    Science.gov (United States)

    Knorr, Daniel B; Gray, Tomoko O; Overney, René M

    2008-08-21

    Energy dissipation in single asperity sliding friction was directly linked to submolecular modes of mobility by intrinsic friction analysis, involving time-temperature superposition along with thermodynamic stress and reaction rate models. Thereby, polystyrene served as a representative tribological sample for organic and amorphous complex systems. This study reveals the significance of surface and subsurface (alpha-, beta-, and gamma-) relaxational modes, which couple under appropriate external conditions (load, temperature, and rate) with shear induced disturbances, and thus gives rise to material specific frictional dissipation. At low pressures and temperatures below the glass transition point, the phenyl pendant side groups of polystyrene, known for their preferential orientation at the free surface, were noticed to be the primary channel for dissipation of kinetic sliding-energy. While this process was found to be truly enthalpic (activation energy of 8 kcalmol), energy dissipation was shown to possess both enthalpic and cooperative entropic contributions above the loading capacity of the surface phenyl groups (9.9 kcalmol) or above the glass transition. Apparent Arrhenius activation energies of frictional dissipation of 22 and 90 kcalmol, respectively, and cooperative contributions up to 80% were found. As such, this study highlights issues critical to organic lubricant design, i.e., the intrinsic enthalpic activation barriers of mobile linker groups, the evaluation of cooperative mobility phenomena, and critical tribological parameters to access or avoid coupling between shear disturbances and molecular actuators.

  6. High energy bursts from a solid state laser operated in the heat capacity limited regime

    Science.gov (United States)

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  7. Influence of Distributed Residential Energy Storage on Voltage in Rural Distribution Network and Capacity Configuration

    Science.gov (United States)

    Liu, Lu; Tong, Yibin; Zhao, Zhigang; Zhang, Xuefen

    2018-03-01

    Large-scale access of distributed residential photovoltaic (PV) in rural areas has solved the voltage problem to a certain extent. However, due to the intermittency of PV and the particularity of rural residents’ power load, the problem of low voltage in the evening peak remains to be resolved. This paper proposes to solve the problem by accessing residential energy storage. Firstly, the influence of access location and capacity of energy storage on voltage distribution in rural distribution network is analyzed. Secondly, the relation between the storage capacity and load capacity is deduced for four typical load and energy storage cases when the voltage deviation meets the demand. Finally, the optimal storage position and capacity are obtained by using PSO and power flow simulation.

  8. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  9. Analysis of the energy capacity of rim-spoke composite flywheels

    International Nuclear Information System (INIS)

    Moorlat, P.A.; Portnov, G.G.

    1986-01-01

    The rim-spoke flywheel consisting of a rim, connected to the hub by spokes encompassing the rim periphery, is one of the most promising types of energy accumulators. For the rational design of rim-spoke flywheels, the authors investigate the dependence of their mass energy capacity and their volume energy capacity; the limit speed on the geometric parameters of the flywheel and the properties of the composites used in making the rim and the spokes are also examined. It is shown through various programs, worked out for analyzing the energy capacity of rim-spoke flywheels, that they can substantially facilitate the designing of such flywheels according to specified requirements that their operational characteristics have to meet

  10. Preliminary results on σZ and τint fluctuations as a function of incident energy in dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Berceanu, I.; Andronic, A.; Duma, M.

    1998-01-01

    Non-statistical fluctuations in the excitation functions (EF) of dissipative heavy ion collisions (DHIC) was rather unexpected due to the fact that cross sections are always obtained on a 'coarse cell' of TKEL and θ cm . The contribution of a large number of microchannels, N, is expected to attenuate the amplitude of such fluctuations as σ(E) has a χ 2 distribution with 2N degrees of freedom. In the framework of the Partially Overlapping Molecular Levels the observation of the fluctuations of the cross section as a function of the incident energy is explained by the fact that the levels of the dinuclear system formed in the first stage of a dissipative process are excited in a region of low density situated in the vicinity of the yrast line. The time evolution of dinuclear (DNS) system with different mass asymmetries with the total mass of the nuclear system 19 F + 27 Al system configuration and its time evolution, the excitation function for this system has been measured between 111.4 MeV and 136.9 MeV with a 250 keV energy step. Fluctuations with amplitude larger than the statistical errors were observed. Large Z and angular cross correlation coefficients show their nonstatistical nature. An average energy correlation width of 170±65 keV, to which corresponds a DNS lifetime τ int (3.9 ± 1.1)·10 -21 s, was obtained by the energy autocorrelation function (EAF). The experimental EAF secondary structure period agrees with that predicted by Kun model when the deformation of the outgoing fragments is taken into account. To get more insight in the reaction mechanism, the dependence of the charge distribution variance for two total kinetic energy loss windows, W1 = 20 ± 2.5 and W2 = 30 ± 2.5 MeV, was obtained as a function of E lab . The second moments of the experimental charge distributions have been calculated and the obtained values were represented for W1 and W2. Fluctuations with quite large amplitude are present. In a transport approach of deep inelastic

  11. Analysis of Dowlink Macro-Femto Cells Environment Based on Per-Energy Capacity

    KAUST Repository

    León, Jaime

    2012-05-01

    Placing smaller cells in a heterogeneous cellular network can be beneficial in terms of energy because better capacities can be obtained for a given energy constraint. These type of deployments not only highlight the need for appropriate metrics to evaluate how well energy is being spent, but also raise important issues that need to be taken into account when analysing the overall use of energy. In this work, handoff strategies, bandwidth allocation, and path loss models in different scenarios, illustrate how energy can be consumed in a more efficient way when cell size is decreased. A handoff strategy based on per-energy capacity is studied in order to give priority to a more energy efficient handoff option. Energy can also be spent more adequately if the transmit power is adjusted as a function of interference. As a result, users can experience higher capacities while spending less energy, depending whether they handoff or not, increasing the overall performance of the network in terms of energy efficiency.

  12. Analysis of handoff strategies in macro-femto cells environment based on per-energy capacity

    KAUST Repository

    Leon, Jaime; Bader, Faouzi; Alouini, Mohamed-Slim

    2012-01-01

    Placing smaller cells in a heterogeneous network can be beneficial in terms of energy because better capacities can be obtained for a given energy constraint. These type of deployments not only highlight the need for appropriate metrics to evaluate how well energy is being spent, but also raise important issues that need to be taken into account when analysing the overall use of energy. In this study, handoff strategies, bandwidth allocation and path loss calculations in different scenarios, illustrate how energy can be consumed in a more efficient way when cell size is decreased. As a result, users can experience higher capacities while spending less energy, depending whether they handoff or not, increasing the overall performance of the network. © 2012 The Institution of Engineering and Technology.

  13. A variance analysis of the capacity displaced by wind energy in Europe

    DEFF Research Database (Denmark)

    Giebel, Gregor

    2007-01-01

    into a longer-term context. The results are that wind energy can contribute more than 20% of the European demand without significant changes in the system and can replace conventional capacity worth about 10% of the installed wind power capacity. The long-term reference shows that the analysed year is the worst...... simulating the scheduling of the European power plants to cover the demand at every hour of the year. The wind power generation was modelled using wind speed measurements from 60 meteorological stations, for 1 year. The distributed wind power also displaces fossil-fuelled capacity. However, every assessment...... of the displaced capacity (or a capacity credit) by means of a chronological model is highly sensitive to single events. Therefore the wind time series was shifted by integer days against the load time series, and the different results were aggregated. The some set of results is shown for two other options, one...

  14. Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    organised equi- librium in RFP and tokamak by a deterministic approach to incompressible dissipative magnetohydrodynamics. In an earlier work Kondoh [8] formulated an energy principle including the edge plasma effects for a slightly resistive MHD ...

  15. Analysis of Solar Energy Generation Capacity Using Hesitant Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Veysel Coban

    2017-01-01

    Full Text Available Solar energy is an important and reliable source of energy. Better understanding the concepts and relationships of the factors that affect solar energy generation capacity can enhance the usage of solar energy. This understanding can lead investors and governors in their solar power investments. However, solar power generation process is complicated, and the relations among the factors are vague and hesitant. In this paper, a hesitant fuzzy cognitive map for solar energy generation is developed and used for modeling and analyzing the ambiguous relations. The concepts and the relationships among them are defined by using expertsr opinions. Different scenarios are formed and evaluated with the proposed model.

  16. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    Science.gov (United States)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  17. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-01-01

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N 2 , O 2 , and the polyyne C 10 H 2 ) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions

  18. Energy efficiency and capacity retention of Ni–MH batteries for storage applications

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu, Ying; Davis, Zenda; Tatarchuk, Bruce J.

    2013-01-01

    Highlights: ► Ni–MH battery energy efficiency was evaluated at full and partial state-of-charge. ► State-of-charge and state-of-recharge were studied by voltage changes and capacity measurement. ► Capacity retention of the NiMH-B2 battery was 70% after fully charge and 1519 h of storage. ► The inefficient charge process started at ca. 90% of rated capacity when charged at ⩽0.2 C rate. ► Battery durability and low self-discharge strategies are analyzed and discussed for energy storage needs. - Abstract: The Ni–MH batteries were tested for battery energy storage characteristics, including the effects of battery charge or discharge at different rates. The battery energy efficiency and capacity retention were evaluated through measuring the charge/discharge capacities and energies during full and partial state-of-charge (SoC) operations. Energy efficiency results were obtained at various charge input levels and different charge and discharge rates. The inefficient charging process started to take place at ca. 90% state-of-recharge (SoR) when charged at no more than 0.2 C rate. For the NiMH-B2 battery after an approximately full charge (∼100% SoC at 120% SoR and a 0.2 C charge/discharge rate), the capacity retention was obtained as 83% after 360 h of storage, and 70% after 1519 h of storage. The energy efficiency was decreased from 74.0% to 50% after 1519 h of storage time. The Coulomb efficiency was initially 83.34%, and was reduced to 57.95% after 1519 h of storage. The battery has relatively higher energy efficiency at approximately 50% SoC. The energy efficiency was calculated to be more than 92% when the NiMH-C3 battery was charged to 30–70% SoC then discharged to 0% SoC at a 0.2 C charge/discharge rate. In consideration of energy efficiency, charge acceptance, capacity retention rate, and power output needs, as well as Nelson’s analysis on HEV power requirements, the Ni–MH battery is appropriate to work at ca. 50 ± 10% SoC with an

  19. Efficient Control of Energy Storage for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob

    2016-01-01

    grid is usually limited by overvoltage, and the efficient control of distributed electrical energy storage systems (EESSs) can considerably increase this capacity. In this paper, a new control approach based on the voltage sensitivity analysis is proposed to prevent overvoltage and increase the PV......Photovoltaic (PV) systems are among the renewable sources that electrical energy systems are adopting with increasing frequency. The majority of already-installed PV systems are decentralized units that are usually connected to lowvoltage (LV) distribution grids. The PV hosting capacity of an LV...... hosting capacity of LV grids by determining dynamic set points for EESS management. The method has the effectiveness of central control methods and can effectively decrease the energy storage required for overvoltage prevention, yet it eliminates the need for a broadband and fast communication. The net...

  20. On the effect of the near field records on the steel braced frames equipped with energy dissipating devices

    Directory of Open Access Journals (Sweden)

    Mahmoud Bayat

    Full Text Available The behavior of braced steel frame structures is of special importance due to its extensive use. Also the application of active and semi-active control systems, regarding to their benefits in obtaining better seismic performance has increased significantly. The majority of the works on steel structures and steel connections has been done under far field records, and the behavior of steel frame structures equipped with yielding dampers under these circumstances has not yet been fully analyzed. The main purpose of this paper is to determine the behavior of structures equipped with yielding dampers, located in near field based on energy concepts. In order to optimize their seismic behavior, the codes and solutions are also presented.The selected system is a braced steel frame system which is equipped with yielding dampers and the analysis is performed using the "Perform 3D V.4" software and the conclusions are drawn upon energy criterion. The effect of PGA variation and height of the frames are also considered in the study .Finally, using the above mentioned results, a proper solution is presented for typical systems in order to increase the energy damping ability and reduce the destructive effects in structures on an earthquake event, so that a great amount of induced energy is damped and destruction of the structure is prevented as much as possible.

  1. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    Science.gov (United States)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  2. Analytical study of dissipative solitary waves

    Energy Technology Data Exchange (ETDEWEB)

    Dini, Fatemeh [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Emamzadeh, Mehdi Molaie [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Bobin, Jean Louis [Universite Pierre et Marie Curie, Paris (France); Amrollahi, Reza [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sodagar, Majid [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of); Khoshnegar, Milad [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-363, Tehran (Iran, Islamic Republic of)

    2008-02-15

    In this paper, the analytical solution to a new class of nonlinear solitons is presented with cubic nonlinearity, subject to a dissipation term arising as a result of a first-order derivative with respect to time, in the weakly nonlinear regime. Exact solutions are found using the combination of the perturbation and Green's function methods up to the third order. We present an example and discuss the asymptotic behavior of the Green's function. The dissipative solitary equation is also studied in the phase space in the non-dissipative and dissipative forms. Bounded and unbounded solutions of this equation are characterized, yielding an energy conversation law for non-dissipative waves. Applications of the model include weakly nonlinear solutions of terahertz Josephson plasma waves in layered superconductors and ablative Rayleigh-Taylor instability.

  3. Energy dissipation process for 100-MeV protons and the nucleon-nucleon interactions in nuclei

    International Nuclear Information System (INIS)

    Cowley, A.A.; Chang, C.C.; Holmgren, H.D.; Silk, J.D.; Hendrie, D.L.; Koontz, R.W.; Roos, P.G.; Samanta, C.; Wu, J.R.

    1980-01-01

    Coincidence studies of two protons emitted from p+ 58 Ni at 100 MeV have been carried out. The proton spectra in coincidence with scattered protons suffering an average energy loss of 60 MeV are similar to those resulting from 60-MeV incident protons. This suggests that the initial interaction of the incident proton is with a bound nucleon and that one or both of these nucleons are emitted or initiates a cascade leading to more complex states

  4. Collisionless dissipation of Langmuir turbulence

    International Nuclear Information System (INIS)

    Erofeev, V.I.

    2002-01-01

    An analysis of two experimental observations of Langmuir wave collapse is performed. The corresponding experimental data are shown to give evidence against the collapse. The physical reason for preventing the collapses is found to be the nonresonant electron diffusion in momentums. In this process, plasma thermal electrons are efficiently heated at the expense of wave energy, and intense collisionless wave dissipation takes place. The basic reason of underestimation of this phenomenon in traditional theory is shown to be the substitution of real plasma by a plasma probabilistic ensemble. A theory of nonresonant electron diffusion in a single collisionless plasma is developed. It is shown that corresponding collisionless wave dissipation may arrest spectral energy transfer towards small wave numbers

  5. Review of Renewable Energy Technologies in Zambian Households: Capacities and Barriers Affecting Successful Deployment

    Directory of Open Access Journals (Sweden)

    Priscilla Kachapulula-Mudenda

    2018-05-01

    Full Text Available Modern renewable energy has been hailed as one of the prerequisites for fostering green growth and the achievement of sustainable development. Despite efforts to promote the use of renewable energy in households, its adoption has remained fairly low, hence the need for an inquiry into household capabilities needed for the acquisition and adoption of renewable energy technologies. This paper reviews the requisite capacities of households for the adoption of renewable energy services and expounds on some of the barriers hampering renewable energy among households. It takes a desk research approach to analyse the capacities which should be possessed by Zambian households and possible barriers constraining the widespread deployment of renewable energy technologies. The findings reveal that there is a need for a broader, multidimensional understanding of access to renewable energy in order for deployment to be effective. Barriers to the successful adoption of clean energy technologies include underserved populations, policy inadequacies; an underexploited renewable energy sector and heavy reliance on a service-challenged hydro-power utility. Since most of the aforementioned challenges are institutional in nature, the paper concludes with a recommendation of a baseline assessment to understand knowledge, perceptions, attitudes and drivers for renewable energy technology adoption among households.

  6. Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain

    International Nuclear Information System (INIS)

    Liu, Yingqi

    2017-01-01

    Demand-side resources like demand response (DR) and energy efficiency (EE) can contribute to the capacity adequacy underpinning power system reliability. Forward capacity markets are established in many liberalised markets to procure capacity, with a strong interest in procuring DR and EE. With case studies of ISO New England, PJM and Great Britain, this paper examines the process and trends of procuring DR and EE in forward capacity markets, and the design for integration mechanisms. It finds that the contribution of DR and EE varies wildly across these three capacity markets, due to a set of factors regarding mechanism design, market conditions and regulatory provisions, and the offering of EE is more heavily influenced by regulatory utility EE obligation. DR and EE are complementary in targeting end-uses and customers for capacity resources, thus highlighting the value of procuring them both. System needs and resources’ market potential need to be considered in defining capacity products. Over the long-term, it is important to ensure the removal of barriers for these demand-side resources and the capability of providers in addressing risks of unstable funding and forward planning. For the EDR Pilot in the UK, better coordination with forward capacity auction needs to be achieved. - Highlights: • Trends of demand response and energy efficiency in capacity markets are analysed. • Integration mechanisms, market conditions and regulatory provisions are key factors. • Participation of energy efficiency is influenced by regulatory utility obligations. • Procuring both demand response and energy efficiency in capacity market is valuable. • Critical analysis of the design of capacity products and integration mechanisms.

  7. Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market

    International Nuclear Information System (INIS)

    Milstein, Irena; Tishler, Asher

    2011-01-01

    This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. We consider two generating technologies: (1) conventional fossil-fueled technology such as combined cycle gas turbine (CCGT), and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). In the first stage of the model (game), when only the probability distribution functions of future daily electricity demand and sunshine are known, producers maximize their expected profits by determining the CCGT and PV capacity to be constructed. In the second stage, once daily demand and sunshine conditions become known, each producer selects the daily production by each technology, taking the capacities of both technologies as given, and subject to the availability of the PV capacity, which can be used only if the sun is shining. Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. A large reduction in PV capacity cost increases PV adoption but may also raise the average price. Thus, when considering the promotion of renewable energy to reduce CO 2 emissions, regulators should assess the behavior of the electricity market, particularly with respect to characteristics of renewable technologies and demand and supply uncertainties. - Research Highlights: → This paper assesses the effect of intermittently renewable energy on generation capacity mix and market prices. → We consider two generating technologies: (1) conventional fossil-fueled technology such as CCGT and (2) sunshine-dependent renewable technology such as photovoltaic cells (PV). →Using real-world data for Israel, we confirm that the introduction of PV technology amplifies price volatility. → A large reduction in PV capacity cost increases PV adoption but may also raise the average price.

  8. Improved Performance and Safety for High Energy Batteries Through Use of Hazard Anticipation and Capacity Prediction

    Science.gov (United States)

    Atwater, Terrill

    1993-01-01

    Prediction of the capacity remaining in used high rate, high energy batteries is important information to the user. Knowledge of the capacity remaining in used batteries results in better utilization. This translates into improved readiness and cost savings due to complete, efficient use. High rate batteries, due to their chemical nature, are highly sensitive to misuse (i.e., over discharge or very high rate discharge). Battery failure due to misuse or manufacturing defects could be disastrous. Since high rate, high energy batteries are expensive and energetic, a reliable method of predicting both failures and remaining energy has been actively sought. Due to concerns over safety, the behavior of lithium/sulphur dioxide cells at different temperatures and current drains was examined. The main thrust of this effort was to determine failure conditions for incorporation in hazard anticipation circuitry. In addition, capacity prediction formulas have been developed from test data. A process that performs continuous, real-time hazard anticipation and capacity prediction was developed. The introduction of this process into microchip technology will enable the production of reliable, safe, and efficient high energy batteries.

  9. 76 FR 41297 - Grant Program To Build Tribal Energy Development Capacity

    Science.gov (United States)

    2011-07-13

    .... Determine what process(es) and/or procedure(s) may be used to eliminate capacity gaps or sustain the... Ineligible for TEDC Grant Funding Feasibility studies and energy resource assessments; Purchase of resource assessment data; Research and development of speculative or unproven technologies; Purchase or lease of...

  10. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  11. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    Science.gov (United States)

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002

    Directory of Open Access Journals (Sweden)

    N. Engler

    2005-06-01

    Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg-1 in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.

  13. Acute exposure to UV-B sensitizes cucumber, tomato, and Arabidopsis plants to photooxidative stress by inhibiting thermal energy dissipation and antioxidant defense

    International Nuclear Information System (INIS)

    Moon, Yu-Ran; Lee, Min-Hee; Chung, Byung-Yeoup; Kim, Jin-Hong; Tovuu, Altanzaya; Lee, Choon-Hwan; Park, Youn-Il

    2011-01-01

    The purpose of this study was to characterize a change in Non-photochemical quenching (NPQ) upon exposure to ultraviolet-B (UV-B), the xanthophyll cycle-dependent and -independent NPQs were compared in Cucumis sativus, Lycopersicum esculentum, and Arabidopsis thaliana leaves. The xanthophyll cycle-dependent NPQ was dramatically but reversibly suppressed by UV-B radiation. This suppression was correlated more strongly with a marked decrease in photosynthetic electron transport rather than changes in xanthophyll cycle enzymes such as violaxanthin de-epoxidase and zeaxanthin epoxidase. Accordingly, the UV-B-induced suppression of NPQ cannot be attributed to changes in expressions of violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP). However, suppression of the xanthophyll cycle-dependent NPQ could only account for the 77 K fluorescence emission spectra of thylakoid membranes and the increased level of 1 O 2 production, but not for the decreased levels of hydroxyl radical O 2 - production and H 2 O 2 scavenging. These results suggest that a gradual reduction of H 2 O 2 scavenging activity as well as a transient and reversible suppression of thermal energy dissipation may contribute differentially to increased photooxidative damages in cucumber, tomato, and Arabidopsis plants after acute exposure to UV-B radiation. (author)

  14. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    Science.gov (United States)

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  15. Harnessing the sun: Developing capacity to sustain local solar energy systems

    Science.gov (United States)

    Olarewaju, Olufemi

    2011-12-01

    Use of solar photovoltaic (PV) and other renewable sources to meet rising electricity demand by a growing world population has gained traction in many countries in recent years. In rural Sub-Saharan Africa, where 86 percent of the populace has no access to electricity, solar energy systems represent partial solutions to demand, especially in support of rural development initiatives to supply potable water, health care services and education. Unfortunately, development of human and organizational capacity to maintain solar technology has not kept pace with the rate of installation, causing many to fall into disrepair and disuse. This has stimulated interest in capacity development processes required to make solar systems sustainable. To cast light on the practical meanings and challenges of capacity development for solar energy, this study compares the experiences of two rural projects, one in Lagos State (Nigeria) that disregarded the importance of capacity development, and the other in Texas (United States) that, in contrast, made such development the centerpiece of its operations. Based largely on interviews with 60 key actors, findings underscore the crucial importance of sustained investment in capacity development to assurance of durable power supply from renewable sources.

  16. Dissipation effects in mechanics and thermodynamics

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  17. Modeling the effects of the new Russian capacity mechanism on renewable energy investments

    International Nuclear Information System (INIS)

    Kozlova, Mariia; Collan, Mikael

    2016-01-01

    Russian renewable energy policy, introduced in May 2013, is a capacity mechanism-based approach to support wind, solar, and small hydro power development in Russia. This paper explores the effect of the new mechanism on the profitability of new renewable energy investments with a numerical example. The sensitivity of project profitability to selected factors is studied and the results are compared ceteris paribus to results from a generic feed-in premium case. Furthermore, the paper gives a complete and detailed presentation of the capacity price calculation procedure tied to the support mechanism. The results show that the new Russian renewable energy capacity mechanism offers a significant risk reduction to the investor in the form of dampening the sensitivity to external market factors. At the same time it shields the energy market system from excessive burden of renewable energy support. Even if the complexity of the method is a clear drawback to the detailed understanding of how the mechanism works, the design of the incentive policy could be an appealing alternative also for other emerging economies. - Highlights: •New Russian RE investment incentive mechanism is presented in detail. •Effect of the mechanism on RE investment profitability is numerically illustrated. •Sensitivity of project profitability to selected variables is studied. •Sensitivity results are compared to results under a generic feed-in premium. •The mechanism is shown to reduce market-related risks of RE investments.

  18. Mechanisms of reaction and energy dissipation in the nucleus-nucleus symmetric collisions at 25 to 74 MeV/u: contribution of exclusive measurements of the INDRA multidetector

    International Nuclear Information System (INIS)

    Metivier, V.

    1995-04-01

    This work is about the first experimental results obtained with the INDRA multidetector. First, the characterization of reaction mechanisms is performed. For complete events, global description of the collision is performed and compared with theoretical calculations. Dissipative binary mechanisms represent the largest part of the cross section for violent collisions whatever the bombarding energy (from 25 to 74 MeV/u) for the studied systems (Ar + KCl and Xe + Sn). The two outgoing products decay takes place through light charged particle and fragment emission. The reconstruction of the two primary sources is achieved, allowing thus the study of the evolution of the energy dissipation. Excitation energies exceeding 10 MeV/u are reached. The decay of the primary outgoing partners can be understood in a statistical model approach and the role of collective modes like expansion energy seems to be negligible. The study of the angular distributions points out angular momentum effects, 'proximity effect' and a dynamical ternary process corresponding to the emission of a light fragment in between the two heavier products. For the most violent collisions, events can also be interpreted in terms of the multifragmentation of a single source, at least for the Xe + Sn system at 50 MeV/u (80 m barn). For the lower incident energies, fusion residues associated to the largest dissipations are recognized, but the cross sections is small (35 m barn for the Ar + KCl system at 32 MeV/u). (author)

  19. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  20. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid

    International Nuclear Information System (INIS)

    Pearre, Nathaniel S.; Swan, Lukas G.

    2016-01-01

    Highlights: • Examination of EV charging in a wind rich area with transmission constraints. • Multiple survey instruments to determine transportation needs, when charging occurs. • Simple charging, time-of-day scheduled, and ideal smart charging investigated. • Export power peaks reduced by 2% with TOD, 10% with smart charging 10% of fleet. • Smart charging EVs enables enough added wind capacity to power the fleet. - Abstract: Digby, Nova Scotia, is a largely rural area with a wealth of renewable energy resources, principally wind and tidal. Digby’s electrical load is serviced by an aging 69 kV transmission line that often operates at the export capacity limit because of a local wind energy converter (WEC) field. This study examines the potential of smart charging of electric vehicles (EVs) to achieve two objectives: (1) add load so as to increase export capacity; (2) charge EVs using renewable energy. Multiple survey instruments were used to determine transportation energy needs and travel timing. These were used to create EV charging load timeseries based on “convenience”, “time-of-day”, and idealized “smart” charging. These charging scenarios were evaluated in combination with high resolution data of generation at the wind field, electrical flow through the transmission system, and electricity load. With a 10% adoption rate of EVs, time-of-day charging increased local renewable energy usage by 20% and enables marginal WEC upgrading. Smart charging increases charging by local renewable energy by 73%. More significantly, it adds 3 MW of load when power exports face constraints, allowing enough additional renewable electricity generation capacity to fully power those vehicles.

  1. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

    2017-08-20

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.

  2. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  3. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  4. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  5. The Potential for Energy Storage to Provide Peaking Capacity in California under Increased Penetration of Solar Photovoltaics: Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-12

    Opportunities to provide peaking capacity with low-cost energy storage are emerging. But adding storage changes the ability of subsequent storage additions to meet peak demand. Increasing photovoltaic (PV) deployment also affects storage's ability to provide peak capacity. This study examines storage's potential to replace conventional peak capacity in California.

  6. Dissipation and accumulation of energy during plastic deformation of Armco -iron and 12Cr18Ni10Ti stainless steel irradiated by neutrons

    International Nuclear Information System (INIS)

    Toktogulova, D.; Maksimkin, O.; Gusev, M.; Garner, F.

    2007-01-01

    Full text of publication follows: Much attention is currently being paid in the fusion materials community to modeling of radiation damage and its consequences in structural alloys on mechanical properties. Such activities are best guided with experimental data on the fundamental microstructural and thermodynamic processes involved. This report addresses such fundamental concerns. During plastic deformation of metals some fraction of the externally-applied mechanical energy is converted into heat and is partially accumulated in the form of crystal lattice defects. The thermal release arises from gliding dislocations, their various interactions, their annihilation etc. With respect to irradiated material, one might expect additional heat release caused by interactions of dislocation and radiation-induced defects. To explore this possibility flat mini-tensile specimens of Armco-iron and 12Cr18Ni10Ti stainless steel, both in the annealed condition, were irradiated in the range 2x10 18 to 1.3x10 20 n/cm 2 (E>0.1 MeV) in the WWR-K reactor at T≤350 K. Mechanical tests of both irradiated and non-irradiated specimens were conducted at room temperature in a facility that was a combination of a Calvet calorimeter and a micro-tensile device. This allows simultaneous measurement of mechanical properties and thermodynamic parameters such as deformation work, dissipated heat and latent energy during deformation. The authors derived the kinetics of changes in thermodynamic characteristics versus the deformation level. As the neutron fluence rises, the material's capability to accumulate energy appears to be declining. For example, 12Cr18Ni10Ti irradiated to 1.3x10 20 n/cm 2 did not show any energy accumulation under deformation. In Armco-iron at 1.4x10 19 n/cm 2 the heat release considerably exceeded the deformation work value. The authors assume that such effects might be related with annihilation of point defects and their complexes introduced during irradiation. To test this

  7. Design of capacity incentive and energy compensation for demand response programs

    Science.gov (United States)

    Liu, Zhoubin; Cui, Wenqi; Shen, Ran; Hu, Yishuang; Wu, Hui; Ye, Chengjin

    2018-02-01

    Variability and Uncertainties caused by renewable energy sources have called for large amount of balancing services. Demand side resources (DSRs) can be a good alternative of traditional generating units to provide balancing service. In the areas where the electricity market has not been fully established, e.g., China, DSRs can help balance the power system with incentive-based demand response programs. However, there is a lack of information about the interruption cost of consumers in these areas, making it hard to determine the rational amount of capacity incentive and energy compensation for the participants of demand response programs. This paper proposes an algorithm to calculate the amount of capacity incentive and energy compensation for demand response programs when there lacks the information about interruption cost. Available statistical information of interruption cost in referenced areas is selected as the referenced data. Interruption cost of the targeted area is converted from the referenced area by product per electricity consumption. On this basis, capacity incentive and energy compensation are obtained to minimize the payment to consumers. Moreover, the loss of consumers is guaranteed to be covered by the revenue they earned from load serving entities.

  8. Replacement energy, capacity, and reliability costs for permanent nuclear reactor shutdowns

    International Nuclear Information System (INIS)

    VanKuiken, J.C., Buehring, W.A.; Hamilton, S.; Kavicky, J.A.; Cavallo, J.D.; Veselka, T.D.; Willing, D.L.

    1993-10-01

    Average replacement power costs are estimated for potential permanent shutdowns of nuclear electricity-generating units. Replacement power costs are considered to include replacement energy, capacity, and reliability cost components. These estimates were developed to assist the US Nuclear Regulatory Commission in evaluating regulatory issues that potentially affect changes in serious reactor accident frequencies. Cost estimates were derived from long-term production-cost and capacity expansion simulations of pooled utility-system operations. Factors that affect replacement power cost, such as load growth, replacement sources of generation, and capital costs for replacement capacity, were treated in the analysis. Costs are presented for a representative reactor and for selected subcategories of reactors, based on estimates for 112 individual reactors

  9. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  10. World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security

    Directory of Open Access Journals (Sweden)

    Azadeh M. Rouhani

    2012-07-01

    Full Text Available The imbalance between energy resource availability, demand, and production capacity, coupled with inherent economic and environmental uncertainties make strategic energy resources planning, management, and decision-making a challenging process. In this paper, a descriptive approach has been taken to synthesize the world’s energy portfolio and the global energy balance outlook in order to provide insights into the role of Organization of Petroleum Exporting Countries (OPEC in maintaining “stability” and “balance” of the world’s energy market. This synthesis illustrates that in the absence of stringent policies, i.e., if historical trends of the global energy production and consumption hold into the future, it is unlikely that non-conventional liquid fuels and renewable energy sources will play a dominant role in meeting global energy demand by 2030. This should be a source of major global concern as the world may be unprepared for an ultimate shift to other energy sources when the imminent peak oil production is reached. OPEC’s potential to impact the supply and price of oil could enable this organization to act as a facilitator or a barrier for energy transition policies, and to play a key role in the global energy security through cooperative or non-cooperative strategies. It is argued that, as the global energy portfolio becomes more balanced in the long run, OPEC may change its typical high oil price strategies to drive the market prices to lower equilibria, making alternative energy sources less competitive. Alternatively, OPEC can contribute to a cooperative portfolio management approach to help mitigate the gradually emerging energy crisis and global warming, facilitating a less turbulent energy transition path while there is time.

  11. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    Science.gov (United States)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  12. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  13. Optimal Capacity Estimation Method of the Energy Storage Mounted on a Wireless Railway Train for Energy-Sustainable Transportation

    Directory of Open Access Journals (Sweden)

    Jaewon Kim

    2018-04-01

    Full Text Available Although electric railway systems have gone through many technological innovations in their electrical, mechanical and structural engineering since the energy paradigm conversion to electrical energy, the conventional feeding system based on the catenary contact is still being applied. In order to solve the problems of the contact-based feeding system that arise and to build up the energy-sustainable electric railway system simultaneously, this paper considers the wireless railway train (WRT, which is fed by storages mounted on the board without catenary contact during driving and charged at a platform during a stop. In order to maximize the energy improvement of WRTs’ operation, the optimal power and storage capacity estimation method considering the increased weight of the additional storage devices is proposed. Through case studies of the electrical and topographical conditions of the actual operating railway route, compared with the electrical performance of the existing railway trains, it is verified that the application of WRTs leads to facility capacity margin enlargement through the peak power reduction, and cost-effectiveness improvement through the reduction of catenary loss and driving energy.

  14. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy in Central Java

    Energy Technology Data Exchange (ETDEWEB)

    Sumardi, R. Rizal Isnanto; Firdausi, Aulia Latifah Insan [Diponegoro University, Semarang (Indonesia)

    2012-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects.

  15. Dissipative fluid mechanics of nuclei

    International Nuclear Information System (INIS)

    Morgenstern, B.

    1987-11-01

    With the aim to describe nucleus-nucleus collisions at low energies in the present thesis for the first time dissipative fluid dynamics for large-amplitude nuclear motion have been formulated. Thereby the collective dynamics are described in a scaling approximation in which the wave function of the system is distorted by a vortex-free velocity field. For infintely extended nuclear matter this scaling of the wave functions leads to a deformation of the Fermi sphere. Two-body collisions destroy the collective deformation of the Fermi sphere and yield so the dissipative contribution of the motion. Equations of motion for a finite set of collective variables and a field equation for the collective velocity potential in the limit of infinitely many degrees of freedom were developed. In the elastic limit oscillations around the equilibrium position are described. For small collective amplitudes and vortex-free velocity fields the integrodifferential equation for the velocity potential in the elastic limit could be transformed to the divergence of the field equation of fluid dynamics. In the dissipative limit an equation results which is similar to the Navier-Stokes equation and transforms to the divergence of the Navier-Stokes equation for vortex-free fields. It was shown that generally the dynamics of the many-body system is described by non-Markovian equations. (orig./HSI) [de

  16. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  17. Dissipative hidden sector dark matter

    Science.gov (United States)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  18. Macronutrient manipulations of cheese resulted in lower energy content without compromising its satiating capacity

    DEFF Research Database (Denmark)

    Hansen, Thea Toft; Sjödin, Anders Mikael; Ritz, Christian

    2018-01-01

    Manipulation of food’s macronutrient composition in order to reduce energy content without compromising satiating capacity may be helpful in body weight control. For cheeses, substituting fat with protein may provide such opportunity. We aimed at examining the acute effect of cheeses with different...... macronutrient compositions on accumulated energy intake and subjective appetite sensation. A total of thirty-nine normal-weight (average BMI 24·4 kg/m2) men and women completed the partly double-blind, randomised crossover study with high-protein/low-fat (HP/LF, 696 kJ), high-protein/high-fat (HP/HF, 976 k...

  19. Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Pandžić, Hrvoje; Škrlec, Davor

    2014-01-01

    This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported...... by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage capacities...

  20. Effect of dissipation on dynamical fusion thresholds

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1986-01-01

    The existence of dynamical thresholds to fusion in heavy nuclei (A greater than or equal to 200) due to the nature of the potential-energy surface is shown. These thresholds exist even in the absence of dissipative forces, due to the coupling between the various collective deformation degrees of freedom. Using a macroscopic model of nuclear shape dynamics, It is shown how three different suggested dissipation mechanisms increase by varying amounts the excitation energy over the one-dimensional barrier required to cause compound-nucleus formation. The recently introduced surface-plus-window dissipation may give a reasonable representation of experimental data on fusion thresholds, in addition to properly describing fission-fragment kinetic energies and isoscalar giant multipole widths. Scaling of threshold results to asymmetric systems is discussed. 48 refs., 10 figs

  1. Dissipative Continuous Spontaneous Localization (CSL) model.

    Science.gov (United States)

    Smirne, Andrea; Bassi, Angelo

    2015-08-05

    Collapse models explain the absence of quantum superpositions at the macroscopic scale, while giving practically the same predictions as quantum mechanics for microscopic systems. The Continuous Spontaneous Localization (CSL) model is the most refined and studied among collapse models. A well-known problem of this model, and of similar ones, is the steady and unlimited increase of the energy induced by the collapse noise. Here we present the dissipative version of the CSL model, which guarantees a finite energy during the entire system's evolution, thus making a crucial step toward a realistic energy-conserving collapse model. This is achieved by introducing a non-linear stochastic modification of the Schrödinger equation, which represents the action of a dissipative finite-temperature collapse noise. The possibility to introduce dissipation within collapse models in a consistent way will have relevant impact on the experimental investigations of the CSL model, and therefore also on the testability of the quantum superposition principle.

  2. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to section 3021(a) of the Resource Conservation and Recovery Act (RCRA), as amended by section 105(a) of the Federal Facility Compliance Act (FFCA) of 1992 (Pub. L. No. 102-386). DOE has prepared this report for submission to EPA and the States in which DOE stores, generates, or treats mixed wastes. As required by the FFCA, this report contains: a national inventory of all mixed wastes in the DOE system that are currently stored or will be generated over the next five years, including waste stream name, description, EPA waste codes, basis for characterization (i.e., sampling and analysis or process knowledge), effect of radionuclides on treatment, quantity stored that is subject to the Land Disposal Restrictions (LDRs) storage prohibition, quantity stored that is not subject to the LDRS, expected generation over the next five years, Best Demonstrated Available Technology (BDAT) used for developing the LDR requirements, and waste minimization activities; and a national inventory of mixed waste treatment capacities and technologies, including information such as the descriptions, capacities, and locations of all existing and proposed treatment facilities, explanations for not including certain existing facilities in capacity evaluations, information to support decisions on unavailability of treatment technologies for certain mixed wastes, and the planned technology development activities

  3. Energy system, electricity market and economic studies on increasing nuclear power capacity

    International Nuclear Information System (INIS)

    Forsstrom, J.; Pursiheimo, E.; Kekkonen, V.; Honkatukia, J.

    2010-04-01

    Objective of this research project is to examine effects of addition of nuclear capacity from three different angles by using energy system, electricity market and economic analysis. In each area the analysis is based on computational methods. Finland is a member of Nordic electricity market which is further connected to networks of Continental Europe and Russia. Due to the foreign connections Finland has been able to import inexpensive electricity from its neighboring countries and this state is expected to continue. Addition of nuclear capacity lowers electricity import demand, affects level of electricity price decreasingly and decreases shortfall of installed production capacity. Substantial additions of nuclear power capacity and generous import supply have disadvantageous effect on profitability of combined heat and power production. The development of import possibilities depends on progression of difficult-to-estimate balance between electricity consumption and production in the neighboring countries. Investments on nuclear power increase national product during the construction phase. Growth of employment is also rather significant, especially during the construction phase. In the long term permanent jobs will be created too. Increase of employment is held back by increasing real wages, but it is though evident that consumer purchasing power is improved due to these nuclear power developments. (orig.)

  4. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  5. Graphene heat dissipating structure

    Science.gov (United States)

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  6. Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  7. Energy Efficiency and Capacity Tradeoff in Cloud Radio Access Network of High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Shichao Li

    2017-01-01

    Full Text Available To meet the increasing demand of high-data-rate services of high-speed railway (HSR passengers, cloud radio access network (C-RAN is proposed. This paper investigates the tradeoff between energy efficiency (EE performance and capacity in C-RAN of HSR. Considering that the train location can be predicted, we propose a predictable path loss based time domain power allocation method (PPTPA to improve EE performance of HSR communication system. First, we consider that the communication system of HSR only bears the passenger information services (PISs. The energy-efficient power allocation problem with delay constraint is studied. The formulated problem is nonconvex. To deal with it, an equivalent convex problem is reformulated. Based on PPTPA, we propose an iterative algorithm to improve the EE performance. Second, we consider that the PISs and the train control services (TCSs are all bore. A capacity optimization problem with joint EE and services transmission delay constraints is formulated. Based on PPTPA, we propose a hybrid power allocation scheme to improve the capacity of the system. Finally, we analyze the effect of small-scale fading on EE performance. The effectiveness of the proposed power allocation algorithm is validated by HSR channel measurement trace based emulation results and extensive simulation results.

  8. Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement

    International Nuclear Information System (INIS)

    Poudineh, Rahmatallah; Jamasb, Tooraj

    2014-01-01

    The need for investment in capital intensive electricity networks is on the rise in many countries. A major advantage of distributed resources is their potential for deferring investments in distribution network capacity. However, utilizing the full benefits of these resources requires addressing several technical, economic and regulatory challenges. A significant barrier pertains to the lack of an efficient market mechanism that enables this concept and also is consistent with business model of distribution companies under an unbundled power sector paradigm. This paper proposes a market-oriented approach termed as “contract for deferral scheme” (CDS). The scheme outlines how an economically efficient portfolio of distributed generation, storage, demand response and energy efficiency can be integrated as network resources to reduce the need for grid capacity and defer demand driven network investments. - Highlights: • The paper explores a practical framework for smart electricity distribution grids. • The aim is to defer large capital investments in the network by utilizing and incentivising distributed generation, demand response, energy efficiency and storage as network resources. • The paper discusses a possible new market model that enables integration of distributed resources as alternative to grid capacity enhancement

  9. Quantum Dissipative Systems

    CERN Document Server

    Weiss, Ulrich

    2008-01-01

    Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi

  10. Space dissipative structures

    International Nuclear Information System (INIS)

    Chernousenko, V.M.; Kuklin, V.M.; Panachenko, I.P.; Vorob'yov, V.M.

    1990-01-01

    This paper reports on a wide spectrum of oscillations that is excited due to the evolution instabilities, being in a weak above-threshold state, in the inequilibrium media with decaying spectrum. In this case the pumping, whose part is played by an intensive wave or occupation inversion in the active medium, synchronized the phases of excited modes and, thus, forms the space dissipative structure of the field. In dissipative nonlinear media with nondecaying spectrum the space structures, formed due to the development of instability, experience small-scale hexagonal modulation

  11. A Novel Method for Fast Configuration of Energy Storage Capacity in Stand-Alone and Grid-Connected Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available In this paper, a novel method is proposed and applied to quickly calculate the capacity of energy storage for stand-alone and grid-connected wind energy systems, according to the discrete Fourier transform theory. Based on practical wind resource data and power data, which are derived from the American Wind Energy Technology Center and HOMER software separately, the energy storage capacity of a stand-alone wind energy system is investigated and calculated. Moreover, by applying the practical wind power data from a wind farm in Fujian Province, the energy storage capacity for a grid-connected wind system is discussed in this paper. This method can also be applied to determine the storage capacity of a stand-alone solar energy system with practical photovoltaic power data.

  12. Multiple energy supply risks, optimal reserves, and optimal domestic production capacities

    International Nuclear Information System (INIS)

    Zweifel, P.; Ferrari, M.

    1992-01-01

    This study starts from the observation that today's Western trading nations are exposed to multiple risks of energy supplies, e.g. simultaneous shortage of oil and electricity supplies. To cope with these risks, oil can be stockpiled as well as domestic capacity for power production built up. Adopting the viewpoint of a policy maker who aims at minimizing the expected cost of security of supply, optimal simultaneous adjustments of oil stocks and electric production capacities to exogenous changes such as economic growth are derived. Against this benchmark, one-dimensional rules such as 'oil reserves for 90 days' turn out to be not only suboptimal but also to foster adjustments that exacerbate suboptimality. 9 refs., 1 tabs

  13. Collective variables and dissipation

    International Nuclear Information System (INIS)

    Balian, R.

    1984-09-01

    This is an introduction to some basic concepts of non-equilibrium statistical mechanics. We emphasize in particular the relevant entropy relative to a given set of collective variables, the meaning of the projection method in the Liouville space, its use to establish the generalized transport equations for these variables, and the interpretation of dissipation in the framework of information theory

  14. Mobile operators have set ambitious targets – Is it possible to boost network capacity while reducing its energy consumption?

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto

    2012-01-01

    While operators have to upgrade the capacity of their networks, they have committed themselves to reduce their CO2 emissions, partly by reducing their energy consumption. This article investigates the challenges faced by operators and quantifies, through a number of case studies, the impact...... the possible savings by adopting an energy-efficient capacity evolution together with an equipment replacement and site upgrade strategy. Results show that network operators can get relatively close to their targets, with energy reductions of up to 40% noted. While this can be improved further through software...... based energy saving features, further CO2 emissions can be offset through carbon-neutral energy sources....

  15. Optimizing the microstructure of dissipative materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    the material’s loss factor, however, only for large wave lengths (small wave numbers) and constant material parameters (Andreasen et al., 2012). An alternative way to determine the material’s loss factor is to consider the material’s band diagram (Sigalas and Economou, 1992), from which the loss factor can......The aim of this work is to present a method to design material microstructures with high dissipation using topology optimization. In order to compute the macroscopic energy dissipation in periodic structures, we focus both on capturing the physical dissipation mechanism and to find the effective...... from experimental results in (Schaedler, 2011), where a highly energy absorbing material, constructed from structural elements with a small cross sectional area but large area moment of inertia, is presented. Furthermore, the applicability of multiscale finite element methods (Efendiev, 2009...

  16. Microscopic theory of one-body dissipation

    International Nuclear Information System (INIS)

    Koonin, S.E.; Randrup, J.; Hatch, R.; Kolomietz, V.

    1977-01-01

    A microscopic theory is developed for nuclear collective motion in the limit of a long nuclear mean-free path. Linear response techniques are applied to an independent particle model and expressions for the collective kinetic energy and rate of energy dissipation are obtained. For leptodermous systems, these quantities are characterized by mass and dissipation kernels coupling the velocities at different points on the nuclear surface. In a classical treatment, the kernels are given in terms of nucleon trajectories within the nuclear shape. In a quantal treatment, the dissipation kernel is related to the nuclear Green function. The spatial and thermal properties of the kernels are investigated. Corrections for the diffuseness of the potential and shell effects are also discussed. (Auth.)

  17. Dissipative axial inflation

    Energy Technology Data Exchange (ETDEWEB)

    Notari, Alessio [Departament de Física Fondamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, Barcelona, 08028 Spain (Spain); Tywoniuk, Konrad, E-mail: notari@ffn.ub.es, E-mail: konrad.tywoniuk@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland)

    2016-12-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term φ/ f {sub γ} F ∼ F , such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρ{sub R}, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff f {sub γ}, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if f {sub γ} is smaller than the field excursion φ{sub 0} by about a factor of at least O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4–5 efolds and an amplitude which is typically less than a few percent and decreases linearly with f {sub γ}. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρ{sub R} rather than φ-dot {sup 2}/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/ f {sub γ} to U(1) (photons) is much larger than the coupling 1/ f {sub G} to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed φ{sub 0∼} f {sub G}.

  18. National capacity mechanisms in the European internal energy market: Opening the doors to neighbours

    International Nuclear Information System (INIS)

    Mastropietro, Paolo; Rodilla, Pablo; Batlle, Carlos

    2015-01-01

    After decades of strong opposition, several European countries are now in the process of implementing some kind of Capacity Remuneration Mechanism (CRM). Unfortunately, these national initiatives seem to aim at energy autarky rather than seeking a wider regional coordination. This situation can significantly affect the potential benefits of an integrated long-term expansion of the European power system. In this paper the regulatory basis for the effective participation of foreign agents in national CRMs is discussed. The authors support that two pillars are required: (1) stronger coordination among TSOs and respect for the Security of Supply Directive and (2) introduce a particular type of firm cross-border nominations associated to the CRMs commitments. These proposed nominations are to be considered only in situations of system stress. As discussed here, this allows not requiring any type of ex-ante cross-border capacity reservation, thus avoiding many of the inefficiencies associated to traditional physical bilateral contracts. -- Highlights: •We discuss the regulatory basis for the effective participation of foreign agents in national CRMs. •Stronger coordination among TSOs and respect for the Security of Supply Directive is required. •A new type of firm cross-border nominations linked to the CRMs commitments should be introduced. •These proposed nominations are to be considered only in situations of system stress. •No ex-ante cross-border capacity reservation would be needed

  19. Model error assessment of burst capacity models for energy pipelines containing surface cracks

    International Nuclear Information System (INIS)

    Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing

    2014-01-01

    This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines

  20. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Regional Energy Efficiency Planning 2011 [for Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Prahara, Pamungkas Jutta; Hariadi, T.K. [Universitas Muhammadiyah PUSPER-UMY, Yogyakarta (Indonesia)

    2012-06-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Increasing energy demand and decreasing energy supply has to be faced by strategic measures. Daerah Istimewa Yogyakarta (DIY) faces the same problem with more burdens since DIY depends on energy supply from other region. One strategic measure is to reduce energy consumption across sectors. There are, in total, 805.468 electricity consumers in Yogyakarta in the household, social and industrial sector. Through direct measures electricity consumption can be reduced and financial resources can be saved. One of the measures is energy conservation campaign to all sectors in the region which expected to reduce the energy spent, for example to switch off electronic devices totally instead of to put them in standby mode. Survey in the region indicated there are various use of electronic devices in household dominated by refrigeration, television, and AC's. In industries and social, AC and motors are dominating the sector. By applying inverter technology and refrigerant retrofitting to air conditioner can reduce significantly the energy consumption. Changing from old refrigerator with new energy saver refrigerator would also reduce energy consumption. Strategic energy policy and tools has to be identified to push the community to apply the recommended measure. Energy labeling, tax reduction program and energy price increase would make the energy conservation program more feasible and create an environment where inventing in energy efficiency is more attractive. Furthermore a financial resource policy has to be prepared for community education through promotion

  1. Interplay between the energy gap and heat capacity in S-wave superconductor

    International Nuclear Information System (INIS)

    Gonczarek, R.; Mulak, M.

    1998-01-01

    Starting from the postulated, generalized form of the BCS gap equation, suitable for a wide class of microscopic models, the thermodynamic properties of S-wave superconductors are studied. The precise analytical formulas for the main thermodynamic quantities are given and discussed in the characteristic temperature limits. In particular the inversion of the equations defining the specific heat as a function of Δ(T), i.e. the temperature dependence of the energy gap in S-wave superconductor is presented. It makes possible a reconstruction of the energy gap as a function of temperature from the heat capacity data. As predicted, in the frame of the model, the other thermodynamic quantities from the Δ(T) function seem also to be interesting. (orig.)

  2. Power Output Stability Research for Harvesting Automobile Exhaust Energy with Heat Capacity Material as Intermediate Medium

    Science.gov (United States)

    Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng

    2018-06-01

    Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.

  3. Research on Improved VSG Control Algorithm Based on Capacity-Limited Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yanfeng Ma

    2018-03-01

    Full Text Available A large scale of renewable energy employing grid connected electronic inverters fail to contribute inertia or damping to power systems, and, therefore, may bring negative effects to the stability of power system. As a solution, an advanced Virtual Synchronous Generator (VSG control technology based on Hamilton approach is introduced in this paper firstly to support the frequency and enhance the suitability and robustness of the system. The charge and discharge process of power storage devices forms the virtual inertia and damping of VSG, and, therefore, limits on storage capacity may change the coefficients of VSG. To provide a method in keeping system output in an acceptable level with the capacity restriction in a transient period, an energy control algorithm is designed for VSG adaptive control. Finally, simulations are conducted in DIgSILENT to demonstrate the correctness of the algorithm. The demonstration shows: (1 the proposed control model aims at better system robustness and stability; and (2 the model performs in the environment closer to practical engineering by fitting the operation state of storage system.

  4. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 24. Energy Efficiency in Central Java

    Energy Technology Data Exchange (ETDEWEB)

    Windarto, Joko; Nugroho, Agung; Hastanto, Ari; Mahartoto, Gigih [Diponegoro University, Semarang (Indonesia)

    2012-01-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Energy has a very important role and has become a basic necessity in national sustainable development. Therefore, energy should be used sparingly and in a rational manner so that present and future energy demand can be met. Given the importance of using energy efficiently Government needs to devise a framework regulating the utilization of energy resources through the efficient application of technology and stimulating energy-saving behaviours. The purpose of this technical working group in CASINDO project is to research the steps and policy measures needed to improve the efficiency of electrical energy consumption in the household, industrial, and commercial buildings sector for Central Java. The government's efforts in promoting energy efficiency in Indonesia are still hampered by public awareness factor. This study exists to promote public awareness of energy efficiency by describing the financial benefits and possibilities of savings energies in order to support the government's energy saving program, replacement of old equipment that uses high power consumption with a new low-power one, reduction of unnecessary lighting, appreciation to the people who find and develop energy-efficient power utilization, persuade industries to uses the speed controller driver for production and fan motor to streamline the electrical energy usage.

  5. Dissipation of Alfven waves in compressible inhomogeneous media

    International Nuclear Information System (INIS)

    Malara, F.; Primavera, L.; Veltri, P.

    1997-01-01

    In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. Using numerical simulations, we study the properties of Alfven waves propagating in a compressible inhomogeneous medium, with an inhomogeneity transverse to the direction of wave propagation. Two dynamical effects, energy pinching and phase mixing, are responsible for the small-scales formation, similarly to the incompressible case. Moreover, compressive perturbations, slow waves and a static entropy wave are generated; the former are subject to steepening and form shock waves, which efficiently dissipate their energy, regardless of the Reynolds number. Rough estimates show that the dissipation times are consistent with those required to dissipate Alfven waves of photospheric origin inside the solar corona

  6. Friction and dissipative phenomena in quantum mechanics

    International Nuclear Information System (INIS)

    Kostin, M.D.

    1975-01-01

    Frictional and dissipative terms of the Schroedinger equation are studied. A proof is given showing that the frictional term of the Schroedinger--Langevin equation causes the quantum system to lose energy. General expressions are derived for the frictional term of the Schroedinger equation. (U.S.)

  7. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A

  8. Morphing of the Dissipative Reaction Mechanism

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Toke, J.; Gawlikowicz, W.; Houck, M.A.; Lu, J.; Pienkowski, L.

    2003-01-01

    Important trends in the evolution of heavy-ion reaction mechanisms with bombarding energy and impact parameter are reviewed. Essential features of dissipative reactions appear preserved at E/A = 50-62 MeV, such as dissipative orbiting and multi-nucleon exchange. The relaxation of the A/Z asymmetry with impact parameter is slow. Non-equilibrium emission of light particles and clusters is an important process accompanying the evolution of the mechanism. Evidence is presented for a new mechanism of statistical cluster emission from hot, metastable primary reaction products, driven by surface entropy. These results suggest a plausible reinterpretation of multi-fragmentation. (authors)

  9. Dissipation in the superfluid helium film

    International Nuclear Information System (INIS)

    Turkington, R.R.; Harris-Lowe, R.F.

    1977-01-01

    We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021

  10. Morphing of the Dissipative Reaction Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.; Toke, J.; Gawlikowicz, W.; Houck, M.A.; Lu, J.; Pienkowski, L. [Rochester Univ., Dept. of Chemistry, Rochester, NY (United States)

    2003-07-01

    Important trends in the evolution of heavy-ion reaction mechanisms with bombarding energy and impact parameter are reviewed. Essential features of dissipative reactions appear preserved at E/A = 50-62 MeV, such as dissipative orbiting and multi-nucleon exchange. The relaxation of the A/Z asymmetry with impact parameter is slow. Non-equilibrium emission of light particles and clusters is an important process accompanying the evolution of the mechanism. Evidence is presented for a new mechanism of statistical cluster emission from hot, metastable primary reaction products, driven by surface entropy. These results suggest a plausible reinterpretation of multi-fragmentation. (authors)

  11. Natural approach to quantum dissipation

    Science.gov (United States)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  12. The Impact of Mobile Offloading on Energy Consumption and Capacity of Radio Access Networks – Case of Finland

    Directory of Open Access Journals (Sweden)

    Michail Katsigiannis

    2015-08-01

    Full Text Available The Finnish Mobile Operators face two main challenges: (i mobile data subscriptions penetration and traffic are experiencing rapid growth; and (ii government intervenes in the market to attain contradictory goals related to extensive high-speed mobile networks and energy consumption reduction. The mobile operators have to increase the capacity in their networks, taking energy efficiency into account. The reduction of energy consumption in mobile networks results to the reducing carbon emissions, and possibly to cost savings. The purpose of this study is to investigate the wide-to-local area offloading in urban regions in Finland and examine the impact of such a network on the wide area access network in terms of energy and capacity. The results show that the capacity relief ranges from 9.7 to 38.7 %, depending on the penetration of local area service, but the energy savings in macro cellular network are negligible.

  13. Theoretical Consolidation of Acoustic Dissipation

    Science.gov (United States)

    Casiano, M. J.; Zoladz, T. F.

    2012-01-01

    In many engineering problems, the effects of dissipation can be extremely important. Dissipation can be represented by several parameters depending on the context and the models that are used. Some examples of dissipation-related parameters are damping ratio, viscosity, resistance, absorption coefficients, pressure drop, or damping rate. This Technical Memorandum (TM) describes the theoretical consolidation of the classic absorption coefficients with several other dissipation parameters including linearized resistance. The primary goal of this TM is to theoretically consolidate the linearized resistance with the absorption coefficient. As a secondary goal, other dissipation relationships are presented.

  14. Towards Establishing Capacity for Biological Dosimetry at Ghana Atomic Energy Commission.

    Science.gov (United States)

    Achel, Daniel Gyingiri; Achoribo, Elom; Agbenyegah, Sandra; Adaboro, Rudolph M; Donkor, Shadrack; Adu-Bobi, Nana A K; Agyekum, Akwasi A; Akuamoa, Felicia; Tagoe, Samuel N; Kyei, Kofi A; Yarney, Joel; Serafin, Antonio; Akudugu, John M

    2016-01-01

    The aim of this study was not only to obtain basic technical prerequisites for the establishment of capacity of biological dosimetry at the Ghana Atomic Energy Commission (GAEC) but also to stimulate interest in biological dosimetry research in Ghana and Sub-Saharan Africa. Peripheral blood from four healthy donors was exposed to different doses (0-6 Gy) of gamma rays from a radiotherapy machine and lymphocytes were subsequently stimulated, cultured, and processed according to standard protocols for 48-50 h. Processed cells were analyzed for the frequencies of dicentric and centric ring chromosomes. Radiation dose delivered to the experimental model was verified using GafChromic® EBT films in parallel experiments. Basic technical prerequisites for the establishment of capacity of biological dosimetry in the GAEC have been realized and expertise in the dicentric chromosome assay consolidated. We successfully obtained preliminary cytogenetic data for a dose-response relationship of the irradiated blood lymphocytes. The data strongly indicate the existence of significant linear (α) and quadratic (β) components and are consistent with those published for the production of chromosome aberrations in comparable absorbed dose ranges.

  15. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  16. Astrophysical constraints on Planck scale dissipative phenomena.

    Science.gov (United States)

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

  17. Agency-based empowerment training enhances sales capacity of female energy entrepreneurs in Kenya.

    Science.gov (United States)

    Shankar, Anita V; Onyura, MaryAlice; Alderman, Jessica

    2015-01-01

    Globally, women's involvement in clean cooking value chains has been minimal. This is partly because of the multiple challenges faced by women that impede their capacity to effectively engage in the energy sector. To better discern gender-specific differences in involvement in the energy sector, the authors conducted a randomized trial in Kenya to compare sales performance of newly trained male and female improved cookstove entrepreneurs and to test the effects of an agency-based empowerment training on business activity. A total of 257 entrepreneurs completed either a 4-day entrepreneurial training (control) or a 4-day empowerment training (intervention) and were followed for nearly 8 months documenting business activity and sales. The empowerment training led to more than doubling of sales for both genders. In addition, participants in the intervention group were significantly more likely to demonstrate business commitment over time and nearly three times more likely to be higher sellers (relative risk = 2.7, 95% CI [1.4, 5.4]), controlling for gender and rural/urban locale. Women outsold men by a margin of nearly 3 to 1 and were more likely to continue to pursue leads despite limited sales. Nonactive participants (those selling 1 improved cookstove or less) were a larger percentage of the control group (72%) than the intervention group (50%), and more men were nonactive participants (65% of men) compared with women (56% of women).These data show that women can serve as active improved cookstove entrepreneurs in both urban and rural settings and that targeted agency-based empowerment training can significantly increase women's capacity to engage effectively within the improved cookstove value chain.

  18. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  19. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law.

    Science.gov (United States)

    Hsiang, J-T; Chou, C H; Subaşı, Y; Hu, B L

    2018-01-01

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system +  environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are

  20. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy in Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Rosyidi Sri Atmaja P.; Lesmana, Surya Budi Lesmana [Muhammadiyah University of Yogyakarta, Yogyakarta (Indonesia)

    2011-12-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. Chapter 2 provides a review of the national, regional and local policy and programs on energy access for poor communities that have been implemented in Yogyakarta region. However, the two villages, i.e., Dusun Srumbung, Segoroyoso village, Pleret District, Bantul Regency and Dusun Wirokerten, Botokenceng Village, Banguntapan District, Bantul Regency, Yogyakarta Region, selected as locations for energy need assessments in this project have not received any support from the energy programs mentioned in this section. Chapter 3 gives the criteria used to select the locations. Chapter 4 provides the results and analysis of the participatory rural appraisal used for the energy needs assessments which have been carried out in the selected locations. Chapter presents the renewable energy potentials in the study area. Chapter 6 gives the results of a stakeholder analysis for implementing the proposed programmes and roadmap. Chapter 7 is the roadmap for RE project implementation for poor community and provincial budget analysis.

  1. Aluminum and silicon based phase change materials for high capacity thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Zhengyun; Wang, Hui; Li, Xiaobo; Wang, Dezhi; Zhang, Qinyong; Chen, Gang; Ren, Zhifeng

    2015-01-01

    Six compositions of aluminum (Al) and silicon (Si) based materials: 87.8Al-12.2Si, 80Al–20Si, 70Al–30Si, 60Al–40Si, 45Al–40Si–15Fe, and 17Al–53Si–30Ni (atomic ratio), were investigated for potentially high thermal energy storage (TES) application from medium to high temperatures (550–1200 °C) through solid–liquid phase change. Thermal properties such as melting point, latent heat, specific heat, thermal diffusivity and thermal conductivity were investigated by differential scanning calorimetry and laser flash apparatus. The results reveal that the thermal storage capacity of the Al–Si materials increases with increasing Si concentration. The melting point and latent heat of 45Al–40Si–15Fe and 17Al–53Si–30Ni are ∼869 °C and ∼562 J g −1 , and ∼1079 °C and ∼960 J g −1 , respectively. The measured thermal conductivity of Al–Si binary materials depend on Si concentration and is higher than 80 W m −1  K −1 from room temperature to 500 °C, which is almost two orders of magnitude higher than those of salts that are commonly used phase change material for thermal energy storage. - Highlights: • Six kinds of materials were investigated for thermal energy storage (550–1200 °C). • Partial melting of Al–Si materials show progressively changing temperatures. • Studied materials can be used in three different working temperature ranges. • Materials are potentially good candidates for thermal energy storage applications.

  2. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    Science.gov (United States)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  3. Explicit dissipative structures

    International Nuclear Information System (INIS)

    Roessler, O.E.

    1987-01-01

    Dissipative structures consisting of a few macrovariables arise out of a sea of reversible microvariables. Unexpected residual effects of the massive underlying reversibility, on the macrolevel, cannot therefore be excluded. In the age of molecular-dynamics simulations, explicit dissipative structures like excitable systems (explicit observers) can be generated in a computer from first reversible principles. A class of classical, 1-D Hamiltonian systems of chaotic type is considered which has the asset that the trajectorial behavior in phase space can be understood geometrically. If, as nuatural, the number of particle types is much smaller than that of particles, the Gibbs symmetry must be taken into account. The permutation invariance drastically changes the behavior in phase space (quasi-periodization). The explicity observer becomes effectively reversible on a short time scale. In consequence, his ability to measure microscopic motions is suspended in a characteristic fashion. Unlike quantum mechanics whose holistic nature cannot be transcended, the present holistic (internal-interface) effects - mimicking the former to some extent - can be understood fully in principle

  4. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy In North Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Soeharwinto [University of Sumatra Utara, Medan (Indonesia)

    2011-12-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. A key component of the recent political reforms undertaken in Indonesia is the decentralization and regional autonomy that were implemented in 2001. This process has devolved almost all powers and responsibilities from the central government to the local government, including responsibilities for energy sector development. This means that regional governments are now responsible for formulating their energy policy and, consequently, must reform their institutional structure and strengthen their human capacity to be able to carry out this new responsibility. In Indonesia, people living in urban areas generally have access to efficient and modern energy supplies. However, the rural communities are generally less fortunate and continue to rely on traditional fuels of firewood, because the energy and electricity production system available to them are costly and inefficient. The aim of CASINDO's Technical Working Group V (TWG V) on Identification of Energy Needs and Assessment for Poor Communities was to establish energy-related needs and priorities of poor communities in selected locations in the Province of Central Java. The target location for Casindo TWG V activities was the village of Sruni, in the Boyolali district, because it is a district which produces a great amount of milk from dairy cows (greatest amount in Central Java); and secondly, because it does not receive any funds from other development programs, as well as from other institutions, while other subdistricts do. In order to identify actual energy needs successfully, the Participatory

  5. Quantum dynamics in nanoscale magnets in dissipative environments

    NARCIS (Netherlands)

    Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.

    2000-01-01

    In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic

  6. Dissipative phenomena in deep inelastic heavy ion collisions

    International Nuclear Information System (INIS)

    Gross, D.H.E.; Krappe, H.J.; Lindenberger, K.H.; Lipperheide, R.; Moehring, K.

    1978-01-01

    During this meeting the following theoretical concepts for deep-inelastic heavy ion reactions were discussed: the energy transfer and friction, direct or statistical mechanisms, dissipation and fluctuation. (WL) [de

  7. The Potential for Energy Storage to Provide Peaking Capacity in California Under Increased Penetration of Solar Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-14

    In this report, we examine the potential for replacing conventional peaking capacity in California with energy storage, including analysis of the changing technical potential with increased storage deployment and the effect of PV deployment. We examine nine years of historic load data, a range of storage durations (2-8 hours), and a range of PV penetration levels (0%-30%). We demonstrate how PV increases the ability of storage to reduce peak net demand. In the scenarios analyzed, the expected penetration of PV in California in 2020 could more than double the potential for 4-hour energy storage to provide capacity services.

  8. Conservation laws shape dissipation

    Science.gov (United States)

    Rao, Riccardo; Esposito, Massimiliano

    2018-02-01

    Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.

  9. Heterogeneous dissipative composite structures

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila

    2018-05-01

    The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.

  10. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  11. ''Reduced'' magnetohydrodynamics and minimum dissipation rates

    International Nuclear Information System (INIS)

    Montgomery, D.

    1992-01-01

    It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs

  12. Anisotropic Characteristics of Turbulence Dissipation in Swirling Flow: A Direct Numerical Simulation Study

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-01-01

    Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.

  13. Effect of moisture, organic matter, microbial population and fortification level on dissipation of pyraclostrobin in soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-09-01

    The dissipation of pyraclostrobin, a strobilurin fungicide, in soil was found to be influenced by soil moisture, organic matter content and microbial population. Among the different moisture regimes, dissipation was faster under submerged condition (T1/2 10 days) followed by field capacity (T1/2 28.7 days) and in dry soil (T1/2 41.8 days). Use of sludge at 5 % level to Inceptisol favoured a faster dissipation of pyraclostrobin, whereas a slower rate of dissipation was observed in partial organic matter removed soil as compared to normal soil. Slower rate of dissipation was also observed in sterile soil (T1/2 47 days) compared to normal soil. Pyraclostrobin dissipated faster in Vertisol (T1/2 21.8 days) than in Inceptisol (T1/2 28.7 days). No significant difference in the dissipation rate was observed at 1 and 10 μg g(-1) fortification levels.

  14. Sustainable design options for the German electricity market. A comparison of the energy-only market with capacity markets

    International Nuclear Information System (INIS)

    Keles, Dogan; Renz, Lea; Bublitz, Andreas; Zimmermann, Florian; Genoese, Massimo; Fichtner, Wolf

    2016-01-01

    This study intensively discusses the further developments of the electricity market design in Germany based on substantial scientific insights. For this purpose, an agent-based simulation model is applied to evaluate the operability of the energy only market extended with a strategic reserve. Furthermore, the effects of the implementation of a centralized or decentralized capacity market are analyzed.

  15. Tidal dissipation in the subsurface ocean of Enceladus

    Science.gov (United States)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power

  16. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  17. Dissipation in a Quantum Wire: Fact and Fantasy

    International Nuclear Information System (INIS)

    Das, Mukunda P.; Green, Frederick

    2008-01-01

    Where, and how, does energy dissipation of electrical energy take place in a ballistic wire? Fully two decades after the advent of the transmissive phenomenology of electrical conductance, this deceptively simple query remains unanswered. We revisit the quantum kinetic basis of dissipation and show its power to give a definitive answer to our query. Dissipation leaves a clear, quantitative trace in the non-equilibrium current noise of a quantum point contact; this signature has already been observed in the laboratory. We then highlight the current state of accepted understandings in the light of well-known yet seemingly contradictory measurements. The physics of mesoscopic transport rests not in coherent carrier transmission through a perfect and dissipationless metallic channel, but explicitly in their dissipative inelastic scattering at the wire's interfaces and adjacent macroscopic leads.

  18. Effect of viscous dissipation and radiation in an annular cone

    International Nuclear Information System (INIS)

    Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus; Azeem

    2016-01-01

    The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r_i. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number

  19. Effect of viscous dissipation and radiation in an annular cone

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, N. J. Salman; Kamangar, Sarfaraz [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Centre for Energy Sciences, Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 Malaysia (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Azeem [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia)

    2016-06-21

    The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porous medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.

  20. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 38. Pro-poor Energy Strategy in Papua

    Energy Technology Data Exchange (ETDEWEB)

    Awaluddin, Duha [University of Cenderawasih, Jayapura (Indonesia)

    2011-11-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. The need for energy is a very basic requirement for human life. All human activity relates directly or indirectly to the utilization of energy. Energy derived from fossil fuels (petroleum), will run out at a certain point. Because of this, the utilization of new and renewable energy becomes very important and will need to be improved and encouraged. CASINDO, in collaboration with several universities in Indonesia, including the University of Cenderawasih in Jayapura, Papua, has helped facilitate the implementation of new and renewable energy utilization in a target location in Papua. After a lengthy process, it was decided that Enggros village would be the target location for activities in TWG V, in accordance with pre determined criteria. Enggros is a fishermen village located just outside the city of Jayapura, which falls in the category of poor villages and has very limited access to electricity. Several energy laws and policies of central and local governments have been reviewed to assess their impact on the poor. Many of them claim they aim to accommodate the interests of the poor, but the application and implementation of those programs as they occur in the field, is very far from expectations. Most of the poor in the province of Papua, especially in mountainous and remote areas, still do not have access to any form of electricity. This calls for a more integrated over sight and planning for implementation of all the pro-poor energy policies and programs. In addition, an energy needs assessment has been conducted in the target location to obtain a

  1. Relativistic electrodynamics of dissipative elastic media

    International Nuclear Information System (INIS)

    Kranys, M.

    1980-01-01

    A phenomenological general relativistic electrodynamics is proposed for a dissipative elastic solid which is polarizable and magnetizable and whose governing equations form a hyperbolic system. Non-stationary transport equations are proposed for dissipative fluxes (and constitutive equations of electrodynamics) containing new cross-effect terms, as required for compatibility with an entropy principle expressed by a new balance equation (including a new Gibbs equation). The dynamic equations are deduced from the unified Minkowski-Abraham-Eckart energy-momentum tensor. The theory, formed by a set of 29 (reducible to 23) partial differential equations (in special relativity) governing the material behaviour of the system characterized by generalizing the constitutive equations of quasineutral media, together with Maxwell's equations, may be referred to as the electrodynamics of dissipative elastic media (or fluid). The proposed transport laws for polarization and magnetization generalize the well-known Debye law for relaxation and show the influence of shear and bulk viscosity on polarization and magentization. Besides the form of the entropy function, the free energy function in the non-stationary regime is also formulated. (auth)

  2. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  3. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.

    1979-03-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavyion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental informations (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (orig.) [de

  4. Lagrangian descriptors in dissipative systems.

    Science.gov (United States)

    Junginger, Andrej; Hernandez, Rigoberto

    2016-11-09

    The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.

  5. Dissipation and the relaxation to equilibrium

    International Nuclear Information System (INIS)

    Evans, Denis J; Williams, Stephen R; Searles, Debra J

    2009-01-01

    Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium

  6. Non-dissipative effects in nonequilibrium systems

    CERN Document Server

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  7. On the Lagrangian description of dissipative systems

    Science.gov (United States)

    Martínez-Pérez, N. E.; Ramírez, C.

    2018-03-01

    We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.

  8. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  9. Visualization of the dissipation of energy during the cutting process. Presentation of energy value flows by means of dual energy signatures; Energieverschwendung beim Zerspanungsprozess sichtbar machen. Darstellung von Energiewertstroemen mittels dualer Energiesignaturen

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, Rainer [Hochschule Aalen (Germany). Professur Fertigungsorganisation und Prozessmanagement; Kalhoefer, Eckehard [Hochschule Aalen (Germany). Stiftungslehrstuhl Spanende Fertigung; Stock, Timo [Hochschule Aalen (Germany). Studiengang Maschinenbau/Produktion und Management

    2012-09-15

    Lean production systems are the minimization of wastage. Therefore, process steps are divided in value-added and non-value-added process steps. Using the value stream analysis non-value-adding process shares can be identified easily.The main aim usually are the two factors processing time and inventory. By means of a cutting process, the authors of the paper under consideration report on a method which divides the process-related utilization of energy in value-adding and non-value-adding energy use. Due to the dual consideration of energy use, the energy consumption can be easily integrated in the value stream analysis.

  10. Cross measurements of linear momentum transfer and energy dissipation in collisions between 290 MeV 20Ne and 238U

    International Nuclear Information System (INIS)

    Galin, J.; Ingold, G.; Jahnke, U.; Hilscher, D.; Lehmann, M.; Rossner, H.; Schwinn, E.

    1988-01-01

    The 20 Ne+U reactions are investigated at 290 MeV bombarding energy. The linear momentum transfer and excitation energy are deduced eventwise from the respective measurements of the folding angle between correlated fission fragments and the neutron multiplicity. A simple incomplete fusion picture is shown to essentially account for the data. The sensitivity of the two measurements in order to infer the violence of a collision is discussed in details. (orig.)

  11. Study of genetic effects of high energy radiations with different ionizing capacities on extracellular phages.

    Science.gov (United States)

    Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N

    1975-07-01

    The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were

  12. Ready for nuclear energy?: An assessment of capacities and motivations for launching new national nuclear power programs

    International Nuclear Information System (INIS)

    Jewell, Jessica

    2011-01-01

    The International Atomic Energy Agency reports that as of July 2009 there were 52 countries interested in building their first nuclear power plant. This paper characterizes and evaluates these 'Newcomer Countries' in terms of their capacity and motivations to develop nuclear power. It quantifies factors historically associated with the development of nuclear energy programs and then benchmarks the Newcomers against these data. Countries with established nuclear power programs, particularly where nuclear facilities are privately owned, are typically larger, wealthier and politically stable economies with high government effectiveness. Nuclear power was historically launched during periods of high electricity consumption growth. Other indicators for the potential of nuclear power include: the size of the national grid, the presence of international grid connections and security of fuel supply for electricity production. We identify 10 Newcomers which most closely resemble the Established Nuclear Power Countries and thus are most likely to deploy nuclear energy, 10 countries where the development of nuclear energy is uncertain due to high political instability, 14 countries with lower capacities where pursuing nuclear energy may require especially strong international cooperation and 18 countries where the development of nuclear power is less likely due to their significantly lower capacities and motivations. - Research Highlights: →Historically, nuclear power was used in larger, wealthier, politically stable economies. →Nuclear power was typically launched in periods of high electricity demand growth. →Only 10 out of 52 'Newcomer' countries share similar characteristics. →10 other 'Newcomers' with high motivations and capacities are politically unstable. →Nuclear power would need international help in 14 countries and is unlikely in the rest (18).

  13. Dissipative systems and Bateman's Hamiltonian

    International Nuclear Information System (INIS)

    Pedrosa, I.A.; Baseia, B.

    1983-01-01

    It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt

  14. Dissipative Effect and Tunneling Time

    Directory of Open Access Journals (Sweden)

    Samyadeb Bhattacharya

    2011-01-01

    Full Text Available The quantum Langevin equation has been studied for dissipative system using the approach of Ford et al. Here, we have considered the inverted harmonic oscillator potential and calculated the effect of dissipation on tunneling time, group delay, and the self-interference term. A critical value of the friction coefficient has been determined for which the self-interference term vanishes. This approach sheds new light on understanding the ion transport at nanoscale.

  15. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  16. Dissipative light-bullets in the filamentation of femtosecond pulses

    International Nuclear Information System (INIS)

    Porras, M.A.; Gonzalo, I.

    2010-01-01

    Complete text of publication follows. With the growing interest in filamentation in solid and liquid media, the regime of filamentation with anomalous dispersion is receiving more attention. In this work we show that basics aspects of the filament dynamics in this regime can be explained in terms of a novel type of light-bullet, which is not of solitary or of conical types, but a wave-packet that maximizes the energy dissipation into the medium while remaining localized and stationary in propagation. We first show that a nonlinear optical medium at a given carrier wave length at which dispersion is anomalous, supports 'dissipative' light-bullets, i.e., waves localized in space and time and that propagate without change as a result of a balance between nonlinear compression and nonlinear absorption. Among them, the particular dissipative light-bullet with the highest possible dissipation is unique in a given medium, in the sense that all its properties are fixed by the properties of the medium at the carrier wave length. In this light-bullet, self-focusing continuously transports energy towards the pulse center by an amount that just compensates for the nonlinear losses. Figure 1(a) shows the radial profiles of the dissipative light-bullets that maximizes energy dissipation for several orders of multi-photon absorption responsible for the nonlinear losses. We have also found that this dissipative light-bullet tends to be spontaneously formed in the filamentary dynamics in media with anomalous dispersion. Figure 1(b) shows the peak intensity, the total energy and losses of a pulse that undergoes self-focusing and filamentation in an ideal medium with only Kerr nonlinearity and multi-photon absorption. This simple model reproduces the particularly long filament 'segments' and the 'burst' observed in experiments and in more accurate simulations. The peak intensity in the filament is identical to that of the dissipative light-bullet with maximum dissipation, and the

  17. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 4. Inception report

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, N.; Smekens, K. [Unit Policy Studies, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Wijnker, M.; Lemmens, L. [Eindhoven University of Technology TUE, Eindhoven (Netherlands); Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia); Winarno, O.T. [Institute of Technology of Bandung ITB, Bandung (Indonesia)

    2009-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This inception report presents the proposed programmes for addressing the identified training needs, the proposed changes to the monitoring framework and other relevant issues discussed during the inception phase.

  18. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Science.gov (United States)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  19. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  20. Log-Normal Turbulence Dissipation in Global Ocean Models

    Science.gov (United States)

    Pearson, Brodie; Fox-Kemper, Baylor

    2018-03-01

    Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.

  1. Estimates of anelastic dissipation in the Earth's torsional modes

    Directory of Open Access Journals (Sweden)

    M. CAPUTO

    1966-06-01

    Full Text Available The decay of the amplitude of the free modes of the
    Earth is a potential source of information on the mechanism of dissipation
    of the elastic energy of the Earth.
    However there are serious difficulties in the interpretation of the decay;
    they are caused by several facts. One is the limited length of the significant
    part of the record which prohibits to identify the splitting of all the modes
    caused by the Earth rotation and also to follow the pattern in its rotation;
    another reason is the coupling between modes, caused by the inhomogenities
    and the flattening of the Earth, which can transfer energy from one mode
    to another. The results available are therefore very few and of poor accuracy.
    In order to seek new information on the mechanism of dissipation of
    the elastic energy we solve a generalized form of the equation of elastodynamic
    in which we have introduced some unspecified operators to represent
    the dissipation of the elastic energy. By confronting these operators with
    the observations we would hope to find informations on the mechanism
    of dissipation. Unfortunately the laws of variation of Q with frequency,
    found by various authors who were using different observations, are not in
    agreement and are very uncertain. Therefore we can only estimate the
    average values of the parameters of the supposed mechanisms of dissipation.
    We analyze also the dissipation of energy due to viscous frictions at
    the core mantle boundary. This dissipation would be negligible even for
    viscosities of the core up to 1010 poise

  2. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    Science.gov (United States)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  3. Dissipation range turbulent cascades in plasmas

    International Nuclear Information System (INIS)

    Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.

    2012-01-01

    Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.

  4. The Model of Gas Supply Capacity Simulation In Regional Energy Security Framework: Policy Studies PT. X Cirebon Area

    Science.gov (United States)

    Nuryadin; Ronny Rahman Nitibaskara, Tb; Herdiansyah, Herdis; Sari, Ravita

    2017-10-01

    The needs of energy are increasing every year. The unavailability of energy will cause economic losses and weaken energy security. To overcome the availability of gas supply in the future, planning are cruacially needed. Therefore, it is necessary to approach the system, so that the process of gas distribution is running properly. In this research, system dynamic method will be used to measure how much supply capacity planning is needed until 2050, with parameters of demand in industrial, household and commercial sectors. From the model obtained PT.X Cirebon area in 2031 was not able to meet the needs of gas customers in the Cirebon region, as well as with Businnes as usual scenario, the ratio of gas fulfillment only until 2027. The implementation of the national energy policy that is the use of NRE as government intervention in the model is produced up to 2035 PT.X Cirebon area is still able to supply the gas needs of its customers.

  5. Hybrid renewable energy support policy in the power sector: The contracts for difference and capacity market case study

    International Nuclear Information System (INIS)

    Onifade, Temitope Tunbi

    2016-01-01

    The article employs qualitative methods in contextualizing and conceptualizing the hybrid renewable energy support policy. It claims that hybrid policies may combine distinct mechanisms to drive desirable objectives better than traditional policies. A policy cycle helps to frame the United Kingdom's Contracts for Difference and Capacity Market (CFD & CM) scheme as a case study. The CFD & CM policy emerged to address environmental and energy challenges through the deployment of renewable energy (RE) in a low-carbon economy, employing liberalization: Environmental protection is foremost in this scheme. The policy combines and improves on the elements of feed-in tariff (FIT) and quota obligation (QO), and strives to solve the problems of these traditional policies. It addresses regulatory uncertainty under FIT by employing private law mechanics to guarantee above-loss reward for low carbon generation, and addresses market uncertainty under QO by incentivizing the capacity to supply future low carbon energy based on projected demand, hence creating a predictable and stable market. It also accommodates other important commitments. Overall, the CFD & CM scheme is a hybrid policy that engages the energy market mainly for advancing the end goal of environmental protection. To thrive however, it needs to meet private sector interests substantially. - Highlights: •The hybrid support policy combines traditional support systems. •Hybrid policies may drive objectives better than traditional policies. •The UK's contract for difference and capacity market system is a hybrid policy. •Environmental protection is foremost in the UK's hybrid policy. •To thrive, the UK's hybrid policy should address private sector interests.

  6. Capacity building for sustainable energy development and poverty alleviation in sub-saharan Africa - the contribution of AFREPREN

    Energy Technology Data Exchange (ETDEWEB)

    Karekezi, S.; Kithyoma, W. [AFREPREN/FWD, Nairobi (Kenya)

    2004-09-01

    African Energy Policy Research Network and Foundation for Woodstoves (AFREPREN /FWD) is an African initiative on energy, environment and sustainable development. AFREPREN/FWD brings together 97 African energy researchers and policy makers who have a long-term interest in energy research and the attendant policy-making process. AFREPREN/FWD has initiated policy research studies in 19 African countries, namely: Angola, Botswana, Burundi, Eritrea, Ethiopia, Kenya, Lesotho, Malawi, Mauritius, Mozambique, Rwanda, Seychelles, Somalia, South Africa, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. AFREPREN/FWD's ultimate goal is to promote the greater use of cleaner energy options such as renewables for poverty alleviation in Africa. The near-term objective of AFREPREN /FWD is to strengthen local research capacity and to harness it in the service of energy policy making and planning. Initiated in 1987, AFREPREN is a collective regional response to the widespread concern over the weak link between energy research and the formulation and implementation of energy policy in Africa. (orig.)

  7. Coronal heating by Alfven waves dissipation in compressible nonuniform media

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The possibility to produce small scales and then to efficiently dissipate energy has been studied by Malara et al. [1992b] in the case of MHD disturbances propagating in an weakly dissipative incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend this work to include both compressibility and the third component for vector quantities. Numerical simulations show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. These effects give rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. Rough estimates of the typical times the various dynamical processes take to produce small scales show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin

  8. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 22. Energy Profile of Yogyakarta Province 2007. Regional CASINDO Team of Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Al Hasibi, R.A. [Universitas Muhammadiyah Yogyakarta PUSPER-UMY, Yogyakarta (Indonesia)

    2011-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report gives an overview of the province Yogyakarta, Indonesia, focusing on the energy balance in 2007.

  9. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 23. Energy Profile of Yogyakarta Province 2008. Regional CASINDO Team of Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    Al Hasibi, R.A. [Universitas Muhammadiyah Yogyakarta PUSPER-UMY, Yogyakarta (Indonesia)

    2011-09-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report gives an overview of the province Yogyakarta, Indonesia, focusing on the energy balance in 2008.

  10. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 21. Energy Profile of Yogyakarta Province 2006. Regional CASINDO Team of Yogyakarta

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This report gives an overview of the province Yogyakarta, Indonesia, focusing on the energy balance in 2006.

  11. Renewable energy support in Germany: Surcharge development and the impact of a decentralized capacity mechanism

    OpenAIRE

    Traber, Thure; Kemfert, Claudia

    2015-01-01

    The German support for renewable energies in the electricity sector is based on the feed-in tariff for investors that grants guaranteed revenues for their renewable energy supply. Corresponding to differences of granted tariffs and respective market values, a surcharge on consumption covers differential costs. While granted tariffs are bound to fall with advances in renewable energy technologies, the market design and the flexibility of the system influence the expected market values of renew...

  12. Energy system, electricity market and economic studies on increasing nuclear power capacity; Ydinvoimahankkeiden periaatepaeaetoekseen liittyvaet energia- ja kansantaloudelliset selvitykset

    Energy Technology Data Exchange (ETDEWEB)

    Forsstrom, J.; Pursiheimo, E.; Kekkonen, V.; Honkatukia, J.

    2010-04-15

    Objective of this research project is to examine effects of addition of nuclear capacity from three different angles by using energy system, electricity market and economic analysis. In each area the analysis is based on computational methods. Finland is a member of Nordic electricity market which is further connected to networks of Continental Europe and Russia. Due to the foreign connections Finland has been able to import inexpensive electricity from its neighboring countries and this state is expected to continue. Addition of nuclear capacity lowers electricity import demand, affects level of electricity price decreasingly and decreases shortfall of installed production capacity. Substantial additions of nuclear power capacity and generous import supply have disadvantageous effect on profitability of combined heat and power production. The development of import possibilities depends on progression of difficult-to-estimate balance between electricity consumption and production in the neighboring countries. Investments on nuclear power increase national product during the construction phase. Growth of employment is also rather significant, especially during the construction phase. In the long term permanent jobs will be created too. Increase of employment is held back by increasing real wages, but it is though evident that consumer purchasing power is improved due to these nuclear power developments. (orig.)

  13. Title:Distributed Generation Storage, Demand Response, and Energy Efficiency as Alternatives to Grid Capacity Enhancement

    OpenAIRE

    Poudineh, R.; Zhang, Y.

    2013-01-01

    The need for investment in capital intensive electricity networks is on the rise in many countries. A major advantage of distributed resources is their potential for deferring investments in distribution network capacity. However, utilizing the full benefits of these resources requires addressing several technical, economics and regulatory challenges. A significant barrier pertains to the lack of an efficient market mechanism that enables this concept and also is consistent with business mode...

  14. High Capacity Cathode and Carbon Nanotube-Supported Anode for Enhanced Energy Density Batteries

    Science.gov (United States)

    2017-09-07

    110-118, 2014. [15] J. B. Fei, et al., “Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment ...and fixed load step ( grey shading) cell voltage and electrode potentials plotted vs. cell capacity, (b) 5th cycle discharge and fixed load step ( grey ...42  Figure 26. (a) 5th cycle discharge and fixed load step ( grey

  15. Capacity building for the effective adoption of renewable energy technologies in rural areas. Experience of India NGOs

    Energy Technology Data Exchange (ETDEWEB)

    Myles, R. [Integrated Sustainable Energy and Ecological Development Association (INSEDA), New Delhi (India)

    2002-07-01

    The experience of NGO network in the promotions of biogas and other low cost RET gadgets, devices, equipments and machines in the rural areas of India, for over two decades, have shown that there are serveral problems yet challenging opportunities in the promotion and implementation of renewable energy technologies in villages. First of all, the field and extension organizations should recognise that these technologies are new and aliens to the rural people, therefore like any other technologies, developed outside the rural environment, RETs are first view with skepticism by the rural community. Even if 100 units of a RE technology are successfully demonstrated, failure of even one could create negative impact within a radius of 30-50 KMs, and its shortcomings are spread like a wild fire. The appropriate technology demonstration backed by systematic capacity building of different stakeholders/actors/players (i.e. Energy Producers, Energy Service Providers and the Energy End Users) is a must for the acceptance and large-scale adoption of RETs in rural areas of the developing countries. The programme funds for the promotion and implementation of RETs should have good percentage earmarked for the capacity building as well as supporting infrastructure for awareness, motivation, promotional and post installation services activities by local field level organizations and NGOs on a long term basis. (orig.)

  16. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    International Nuclear Information System (INIS)

    Lian, Cheng; University of California, Riverside, CA; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this paper, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance–voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Finally, our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors.

  17. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  18. Dissipative structures and related methods

    Science.gov (United States)

    Langhorst, Benjamin R; Chu, Henry S

    2013-11-05

    Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.

  19. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2016-09-01

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  20. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Withers, C. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Cummings, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, B. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Florida Solar Energy Center, Cocoa, FL (United States)

    2016-09-08

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied by adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.

  1. Tunneling with dissipation in open quantum systems

    International Nuclear Information System (INIS)

    Adamyan, G.G.; Antonenko, N.V.; Scheid, W.

    1997-01-01

    Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered

  2. Dissipative charged fluid in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Navid; Davody, Ali, E-mail: davody.phy@gmail.com

    2016-05-10

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  3. Effects of angular momentum dissipation on fluctuations of excitation functions in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Noerenberg, W.; Technische Hochschule Darmstadt

    1992-02-01

    We study the effect from dissipation of relative angular momentum on fluctuations of exitations functions in dissipative heavy-ion collisions. Dissipation and fluctuation of relative angular momentum modify and smooth the time-angle localization of the roating dinuclear system. The secondary maxima in the energy correlation function of the cross-section are shifted to smaller values of the energy difference, the shift depending on the relaxation time and the diffusion coefficient for the angular-momentum dissipation. The results are illustrated for the collision 28 Si(E lab =130MeV)+ 48 Ti. (orig.)

  4. The Impacts of Different Expansion Modes on Performance of Small Solar Energy Firms: Perspectives of Absorptive Capacity

    Directory of Open Access Journals (Sweden)

    Hsing Hung Chen

    2013-01-01

    Full Text Available The characteristics of firm’s expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance.

  5. Zero temperature dissipation and holography

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Pinaki; Sathiapalan, B. [Institute of Mathematical Sciences,CIT Campus, Taramani, Chennai 600 113 (India)

    2016-04-14

    We use holographic techniques to study the zero-temperature limit of dissipation for a Brownian particle moving in a strongly coupled CFT at finite temperature in various space-time dimensions. The dissipative term in the boundary theory for ω→0, T→0 with ω/T held small and fixed, does not match the same at T=0, ω→0. Thus the T→0 limit is not smooth for ω

  6. Dissipation, intermittency, and singularities in incompressible turbulent flows

    Science.gov (United States)

    Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.

    2018-05-01

    We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.

  7. The development and investigation of a strongly non-equilibrium model of heat transfer in fluid with allowance for the spatial and temporal non-locality and energy dissipation

    Science.gov (United States)

    Kudinov, V. A.; Eremin, A. V.; Kudinov, I. V.

    2017-11-01

    The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.

  8. Design of a seismic energy dissipator for an interruptor type 3AS2-45; Diseno de un disipador de energia sismica para un interruptor tipo 3AS2-45

    Energy Technology Data Exchange (ETDEWEB)

    Castro Felix, Jaime

    2004-02-15

    With the aid of the theory behind seismically isolated structures and the bi-linear behavior of an isolated system of Multiple Degrees of Freedom (MDOF), the information obtained on the spectral analysis is complemented with the purpose of simulating one itself for the design of a dissipator of seismic energy. The seismicity in the world is briefly explained, (in Mexico in special for the Geothermal Field of Cerro Prieto), the types of earthquakes, etc., to give way to a documentation of the state-of-the-art in advanced seismic resistant systems and to a procedure to establish the level of seismic qualification of electrical equipment from the level of seismic performance for the Mexican Republic. [Spanish] Con la ayuda de la teoria detras de estructuras aisladas sismicamente y el comportamiento bilineal de un sistema de aislamiento de Multiples Grados de Libertad (MDOF), se complementa la informacion recabada sobre el analisis espectral con el fin de simular uno propio para el diseno de un disipador de energia sismica. Se explica brevemente la sismicidad en el mundo, en Mexico, en especial el Campo Geotermico de Cerro Prieto, los tipos de sismos, etc., para dar paso a una documentacion del estado del arte en sistemas sismorresistentes avanzados y a un procedimiento para establecer el nivel de calificacion sismica de equipos electricos a partir del Nivel de desempeno sismico para la Republica Mexicana.

  9. Similar goals, divergent motives. The enabling and constraining factors of Russia's capacity-based renewable energy support scheme

    International Nuclear Information System (INIS)

    Smeets, Niels

    2017-01-01

    In 2009, the Russian government set its first quantitative renewable energy target at 4.5% of the total electricity produced and consumed by 2020. In 2013, the Government launched its capacity-based renewable energy support scheme (CRESS), however, the expects it will merely add 0.3% to the current 0.67% share of renewables (Ministry of Energy, 2016c). This raises the question what factors might explain this implementation gap. On the basis of field research in Moscow, the article offers an in-depth policy analysis of resource-geographic, financial, institutional and ecologic enabling and constraining factors of Russia's CRESS between 2009 and 2015. To avoid the trap that policy intentions remain on paper, the entire policy cycle – from goal setting to implementation – has been covered. The article concludes that wind energy, which would have contributed the lion's share of new renewable energy capacity, lags behind, jeopardizing the quantitative renewable energy target. The depreciation of the rouble decreased return on investment, and the Local Content Requirement discouraged investors given the lack of Russian wind production facilities. Contrary to resource-geographic and financial expectations, solar projects have been commissioned more accurately, benefitting from access to major business groups and existing production facilities. - Highlights: • The support scheme is focused on the oversupplied integrated electricity market. • The scheme disregards the technical and economic potential in isolated areas. • The solar industry develops at the fastest rate, wind and small hydro lag behind. • Access to business groups and production facilities condition implementation. • The devaluation of the rouble necessitated a revision of the policy design.

  10. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  11. Human capacity and institutional development towards a sustainable energy future in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Mulugetta, Yacob [Centre for Environmental Strategy, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2008-06-15

    The overwhelming majority of Ethiopians lack access to modern energy fuels such as electricity and liquid petroleum gas, still locked into a biomass-based energy system. As such, women and children in rural areas spend long hours of productive time and labour on woodfuel collection and the urban poor spend a sizeable proportion of their income to meet their daily energy needs. Electricity, which is at the disposal of every household in Western Europe is largely restricted to the urban centres in Ethiopia, hence indicating a strong correlation between lack of access to modern energy and poverty. The paper will analyse the reasons why Ethiopia is lagging behind the rest of the developing world in setting up a sustainable energy pathway. As such, the performance and 'mind-set' of various 'agencies', i.e. higher education system, government, energy authorities, donor agencies, etc. will be reviewed. The paper refers to a range of cases in to illustrate the challenge of building the mechanisms that allow energy technologies to be successfully disseminated, supported and integrated into rural livelihoods. The paper will provide a series of observations and recommendations to ameliorate the current state-of-affairs and ways through which the various actors (community-based organisations, government at various levels and to a lesser degree, donors) can contribute towards that end. (author)

  12. The TKE dissipation rate in the northern South China Sea

    Science.gov (United States)

    Lozovatsky, Iossif; Liu, Zhiyu; Fernando, Harindra Joseph S.; Hu, Jianyu; Wei, Hao

    2013-12-01

    The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline of the deep basin and on the shelf. Linear correlation between and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of . On the shelf stations, the bottom boundary layer depth-integrated dissipation reaches 17-19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation was mostly ˜10-30 % of . A weak dependence of bin-averaged dissipation on the Richardson number was noted, according to , where ɛ 0 + ɛ m is the background value of for weak stratification and Ri cr = 0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon-Gregg scaling for internal-wave-induced turbulence dissipation.

  13. Electricity market design in the context of the energy turnaround. The role of capacity mechanisms

    International Nuclear Information System (INIS)

    Exner, Henning

    2014-01-01

    This publication starts out by presenting the fundamentals of the liberalised electricity market and goes on to focus on price formation in the electricity wholesale market. After this it investigates the degree to which lacking willingness to invest in conventional production technologies poses a danger to long-term security of supply. The main task undertaken in this study has been to present and analyse various capacity mechanisms that could act as incentives, reviving the willingness to invest. The study closes with a summarising conclusion.

  14. Power injected in dissipative systems and the fluctuation theorem

    Science.gov (United States)

    Aumaître, S.; Fauve, S.; McNamara, S.; Poggi, P.

    We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the ``fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of ``temperature" for a dissipative system out of equilibrium. We consider how this ``temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration.

  15. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  16. Spectral signatures for swash on reflective, intermediate and dissipative beaches

    DEFF Research Database (Denmark)

    Hughes, Michael G; Aagaard, Troels; Baldock, Tom E

    2014-01-01

    (reflective, intermediate and dissipative), with beach gradients ranging from approximately 1:6 to 1:60 exposed to offshore significant wave heights of 0.5–3.0 m. The ratio of swash energy in the short-wave (f > 0.05 Hz) to long-wave (f ... the three beach types. Swash energy at short-wave frequencies is dominant on reflective and intermediate beaches and swash at long-wave frequencies is dominant on dissipative beaches; consistent with previously reported spectral signatures for the surf zone on these beach types. The available swash spectra...

  17. Energy-efficient peer-to-peer networking for constrained-capacity mobile environments

    OpenAIRE

    Harjula, E. (Erkki)

    2016-01-01

    Abstract Energy efficiency is a powerful measure for promoting sustainability in technological evolution and ensuring feasible battery life of end-user devices in mobile computing. Peer-to-peer technology provides decentralized and self-organizing architecture for distributing content between devices in networks that scale up almost infinitely. However, peer-to-peer networking may require lots of resources from peer nodes, which in turn may lead to increased energy consumption on mobile d...

  18. Fire Danger of Interaction Processes of Local Sources with a Limited Energy Capacity and Condensed Substances

    OpenAIRE

    Glushkov, Dmitry Olegovich; Strizhak, Pavel Alexandrovich; Vershinina, Kseniya Yurievna

    2015-01-01

    Numerical investigation of flammable interaction processes of local energy sources with liquid condensed substances has been carried out. Basic integrated characteristic values of process have been defined – ignition delay time at different energy sources parameters. Recommendations have been formulated to ensure fire safety of technological processes, characterized by possible local heat sources formation (cutting, welding, friction, metal grinding etc.) in the vicinity of storage areas, tra...

  19. Fire Danger of Interaction Processes of Local Sources with a Limited Energy Capacity and Condensed Substances

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Numerical investigation of flammable interaction processes of local energy sources with liquid condensed substances has been carried out. Basic integrated characteristic values of process have been defined – ignition delay time at different energy sources parameters. Recommendations have been formulated to ensure fire safety of technological processes, characterized by possible local heat sources formation (cutting, welding, friction, metal grinding etc. in the vicinity of storage areas, transportation, transfer and processing of flammable liquids (gasoline, kerosene, diesel fuel.

  20. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    Science.gov (United States)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.