WorldWideScience

Sample records for energy dispersive spectrometer

  1. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  2. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  3. X-ray fluorescence spectrometers: a comparison of wavelength and energy dispersive instruments

    International Nuclear Information System (INIS)

    Slates, R.V.

    1977-11-01

    Wavelength dispersive and energy dispersive x-ray fluorescence spectrometers are compared. Separate sections are devoted to principles of operation, sample excitation, spectral resolution, and x-ray detection. Tabulated data from the literature are cited in the comparison of accuracy, precision, and detection limits. Spectral interferences and distortions are discussed. Advantages and limitations are listed for simultaneous wavelength dispersive spectrometers, sequential wavelength dispersive spectrometers, and Si(Li) energy dispersive spectrometers. Accuracy, precision, and detection limits are generally superior for wavelength dispersive spectrometers

  4. Application of energy dispersive X-ray spectrometers with semiconductor detectors in radiometric analyses

    International Nuclear Information System (INIS)

    Jugelt, P.; Schieckel, M.

    1983-01-01

    Problems and possibilities of applying semiconductor detector spectrometers in radiometric analyses are described. A summary of the state of the art and tendencies of device engineering and spectra evaluation is given. Liquid-nitrogen cooled Li-drifted Si-detectors and high-purity Ge-detectors are compared. Semiconductor detectors working at room temperature are under development. In this connection CdTe and HgI 2 semiconductor detectors are compared. The use of small efficient computers in the spectrometer systems stimulates the development of algorithms for spectra analyses and for determining the concentration. Fields of application of energy dispersive X-ray spectrometers are X-ray diffraction and X-ray macroanalysis in investigating the structure of extensive surface regions

  5. Determination of 40K radioactivity in the soil using energy dispersive X ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Lu Weiwei; Song Fuxiang; Zeng Liping; Lu Hongning

    2012-01-01

    The 40 K radioactive of' the pressed powder sample was determined by Epsilon 5 high-energy polarized energy dispersive X ray fluorescence (EDXRF) spectrometer. The correlation coefficient of the standard curve method was 0.9910, the precision was 2.98% and the relative deviation of the measurement standard samples was up to 6.40%, which showed that the precision and accuracy of the method were also good. Simultaneous measurement of seven soil samples using this method and γ-spectrometer were carried, the results of two analytical methods were compared using a paired t-test by SPSS program, which showed that there was no significant difference in the two sets of data, P>0.05. It indicated that EDXRF could be a potential simple method for analyzing 40 K radioactive in soil samples. (authors)

  6. Calibration of energy dispersive x-ray spectrometers for analysis of thin environmental samples

    International Nuclear Information System (INIS)

    Giauque, R.D.; Garrett, R.B.; Goda, L.Y.

    1976-01-01

    Four separate techniques for calibrating energy dispersive x-ray spectrometers are described. They include the use of (1) individual evaporated elemental thin-film standards, (2) nebulized multielement standard solution deposits to determine relative elemental sensitivity factors, (3) a semi-empirical approach to calculate relative elemental sensitivity factors, and (4) thick pure element disks. The first three techniques are applicable for a broad range of elements. The utilization of nebulized multielement standard solution deposits, along with an evaporated single element thin-film standard for absolute system calibration, is the most accurate method of the calibration techniques described

  7. A method to test the performance of an energy-dispersive X-ray spectrometer (EDS).

    Science.gov (United States)

    Hodoroaba, Vasile-Dan; Procop, Mathias

    2014-10-01

    A test material for routine performance evaluation of energy-dispersive X-ray spectrometers (EDS) is presented. It consists of a synthetic, thick coating of C, Al, Mn, Cu, and Zr, in an elemental composition that provides interference-free characteristic X-ray lines of similar intensities at 10 kV scanning electron microscope voltage. The EDS energy resolution at the C-K, Mn-Lα, Cu-Lα, Al-K, Zr-Lα, and Mn-Kα lines, the calibration state of the energy scale, and the Mn-Lα/Mn-Kα intensity ratio as a measure for the low-energy detection efficiency are calculated by a dedicated software package from the 10 kV spectrum. Measurements at various input count rates and processor shaping times enable an estimation of the operation conditions for which the X-ray spectrum is not yet corrupted by pile-up events. Representative examples of EDS systems characterized with the test material and the related software are presented and discussed.

  8. TX 2000: total reflection and 45o energy dispersive x-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Pasti, F.; Torboli, A.; Valdes, M.

    2000-01-01

    This equipment, developed by Ital Structures, combines two kinds of energy dispersive X-ray fluorescence techniques, the first using total reflection geometry and the second conventional 45 o geometry. The equipment is completely controlled by a PC and to reach the condition of total reflection is very easy because it is enough to load the file with the right position for the corresponding energy. In this apparatus we used an x-ray tube with an alloy anode of Mo/W with a long fine focus at 2200 W. To monochromatize the x-ray beam while choosing, for example, the Mo K alpha or W L alpha or a piece of white spectrum of 33 keV, we use a highly reflective multilayer made of Si/W with 2d = 45.5 A o . The detector used in the equipment is a lithium drifted silicon detector (Si(Li)) with an excellent energy resolution of 135 eV at 5.9 keV and 1000 cps. We developed two programs written in Windows 95, 98 and NT for a 32 bit microprocessor. The first one is called TYACQ32 and has the following functions: first, complete control of the hardware, second automatic alignment of the TX 2000 spectrometer and third acquisition of spectra. The second program is EDXRF32. This is a program to accomplish spectrum and quantitative analysis for TXRF and EDXRF 45 o degrees analysis. (author)

  9. A new energy dispersive X-ray spectrometer developed in ATOMKI (Debrecen, Hungary)

    International Nuclear Information System (INIS)

    Bacso, J.; Kalinka, G.; Kovacs, P.; Lakatos, T.

    1982-01-01

    A new X-ray spectrometer developed in ATOMKI is described. The measuring head contains a p-type Si(Li) detector surrounded by an Al collimator, a charge sensitive preamplifier and a vacuum cryostat. The analog pulse processor uses filters with variable parameters. The characteristic properties of the spectrometer (energy resolution, its dependence on load, stability) are investigated. The background is measured using three different radioactive sources and the results are compared with those of other pulse forming techniques. (D.Gy.)

  10. A spectrometer for X-ray energy-dispersive diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Gerward, L.; Staun Olsen, J.; Steenstrup, S.

    1981-10-01

    The paper describes a white-beam X-ray energy dispersive diffractometer using the synchroton radiation from the DORIS ESR. The following features of the instrument are discussed: Horizontal or vertical scattering plane, collimators, sample environment, remote control of gonimeter, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH 2 using a diamond anvil cell. (orig./HP)

  11. Calibration and energy resolution study of a high dispersive power Thomson Parabola Spectrometer with monochromatic proton beams

    International Nuclear Information System (INIS)

    Schillaci, F.; Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Rifuggiato, D.; Romano, F.; Scuderi, V.; Stancampiano, C.; Tramontana, A.; Amato, A.; Caruso, G.F.; Salamone, S.; Maggiore, M.; Velyhan, A.; Margarone, D.; Palumbo, G. Parasiliti; Russo, G.

    2014-01-01

    A high energy resolution, high dispersive power Thomson Parabola Spectrometer has been developed at INFN-LNS in order to characterize laser-driven beams up to 30- 40 MeV for protons. This device has parallel electric and magnetic field to deflect particles of a certain charge-to-mass ratio onto parabolic traces on the detection plane. Calibration of the deflection sector is crucial for data analysis, namely energy determination of analysed beam, and to evaluate the effective energy limit and resolution. This work reports the study of monochromatic proton beams delivered by the TANDEM accelerator at LNS (Catania) in the energy range between 6 and 12.5 MeV analysed with our spectrometer which allows a precise characterization of the electric and magnetic deflections. Also the energy and the Q/A resolutions and the energy limits have been evaluated proposing a mathematical model that can be used for data analysis, for the experimental set up and for the device scalability for higher energy

  12. Development of analytical software for semi-quantitative analysis of x-ray spectrum acquired from energy-dispersive spectrometer

    International Nuclear Information System (INIS)

    Karim, A.; Rana, M.A.; Qamar, R.; Latif, A; Ahmad, M.; Farooq, M.A.; Ahmad, Z.

    2003-12-01

    Software package for elemental analysis for X-ray spectrum obtained from Energy Dispersive Spectrometer (EDS) attached with Scanning Electron Microscope (SEM) has been developed: A Personal Computer Analyzer card PCA-800 is used to acquire data from the EDS. This spectrum is obtained in binary format, which is transformed into ASCII format using PCAII card software. The program is modular in construction and coded using Microsoft's QUICKBASIC compiler linker. Energy line library containing all lines of elements is created for analysis of acquired characteristic X-ray spectrum. Two techniques of peak identification are provided. Statistical tools are employed for smoothing of a curve and for computing area under the curve. Elemental concentration is calculated in weight % and in atomic. (author)

  13. Analysis of noise in energy-dispersive spectrometers using time-domain methods

    CERN Document Server

    Goulding, F S

    2002-01-01

    This paper presents an integrated time domain approach to the optimization of the signal-to-noise ratio in all spectrometer systems that contain a detector that converts incoming quanta of radiation into electrical pulse signals that are amplified and shaped by an electronic pulse shaper. It allows analysis of normal passive pulse shapers as well as time-variant systems where switching of shaping elements occurs in synchronism with the signal. It also deals comfortably with microcalorimeters (sometimes referred to as bolometers), where noise-determining elements, such as the temperature-sensing element's resistance and temperature, change with time in the presence of a signal. As part of the purely time-domain approach, a new method of calculating the Johnson noise in resistors using only the statistics of electron motion is presented. The result is a time-domain analog of the Nyquist formula.

  14. Transition edge sensor-energy-dispersive spectrometer (TES-EDS) using a cryogen-free dilution refrigerator for material analysis

    International Nuclear Information System (INIS)

    Tanaka, Keiichi; Odawara, Akikazu; Nagata, Atsushi; Ikeda, Masanori; Baba, Yukari; Nakayama, Satoshi; Chinone, Kazuo

    2006-01-01

    A cryogen-free energy-dispersive spectrometer (EDS) using a transition edge sensor (TES) was developed for material analysis. This system can maintain a temperature at 130 mK within 30 μK, and has good energy resolution (19 eV for Mn-Kα) for long-time measurement with a drift in the DC level of less than 0.02 eV/min. This system utilizes a dilution refrigerator (φ 272 mmxheight 572 mm) and has a snout (370 mm long and φ25 mm) similar to that in a conventional EDS system. The dilution refrigerator is pre-cooled by a GM refrigerator. A flexible tube between the dilution refrigerator and GM refrigerator damps the mechanical vibration of the GM refrigerator. Two shields (4 and 80 K) thermally protect the Cu rod (φ8 mm) cooled to be 100 mK. Windows composed of polyimide+Al film allow X-ray detection above the C-Kα line. A TES (6 mmx6 mm) and array SQUID amplifier (1.5 mmx3 mm) are mounted on top of the Cu rod. For Mn-Kα, the pulse height is 5.5 μA and decay time (τ eff ) is 90 μs. The maximum count rate (1/20 τ eff ) is estimated at about 500 cps

  15. Determination of the fine structure in the ionization plots obtained from a mass spectrometer with a large energy dispersion

    International Nuclear Information System (INIS)

    Deruaz, Daniel.

    1974-01-01

    The precise determination of ionization potentials, fragment ion appearance potentials and different excited state levels of the positive ions formed, together with phenomena due to an electron impact, were studied from ionization efficiency curves obtained by mass spectrometry. A standard ion source and an analytical method of electron energy dispersion reduction were used to study fine structures of ionization efficiency curves. Since the mass spectrometer was not adapted for the acquisition of ionization efficiency curve data an electronic system was designed to record these curves automatically. A precise stepwise potential variation of 45+-0.04mV was obtained, and for each step an intensity proportional to the number of ions created by the fragment considered, the additional gain being 4.4 and the linearity greater than 1% over a 13-volt region. Before each set of measurements the scattering was determined by calculation of the second derivative of a logistic function deduced from the cubic regression of the experimental helium function ionization efficiency curve values. The precision, given by the variance analysis SNEDECOR F test, is higher than 1/1000. For each series of recordings the numerical values were processed by a computer to raise by twenty the signal to noise ratio and calculate the ionization efficiency curve values by the energy difference method and the iterative unfolding method. In this way a high sensitivity was obtained for the determination of the curves near the ionization threshold, and a precision below 50MeV (at least equivalent to that given by ionization cells with quasi-monoenergetic electron beams) for the values of the ionization potentials, the appearance potentials and the excited state energy levels. In order to judge the reliability of the technique the ionization potentials of a set of eleven complex molecules were determined and compared with the results obtained by photoionization and photoelectron spectrometry [fr

  16. The design and fabrication of power splitter used in the timescale system of soft X-ray energy dispersive spectrometer in ICF experiment

    International Nuclear Information System (INIS)

    Zhang Huige; China Academy of Engineering Physics, Mianyang; Bai Lixin; Yu Ruizhen; Yang Cunbang; Su Cunxiao

    2006-01-01

    An improved eight power splitter is designed and fabricated newly, which is crucial in the time-scale system of soft X-ray energy dispersive spectrometer. The spectrometer is used in ICF laser facility to measure the evolution of soft X-ray spectrum, whose duration is only several nanoseconds. The synchronization and high bandwidth of signals produced by power splitter are tested, which shows the power splitter could meet the strict requirements of the experiments. The discussion of further improvement of power splitter are also presented. (authors)

  17. Multifunctional synchrotron spectrometer of NRC Kurchatov Institute. Part 1. EXAFS in dispersive mode

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Tyutyunnikov, S.I.; Shalyapin, V.N.; Belyaev, A.D.; Artem'ev, A.N.; Kirillov, B.F.; Demkiv, A.A.; Knyazev, G.A.; Koval'chuk, M.V.; Artem'ev, N.A.

    2017-01-01

    The improved X-ray optical scheme, the system of registration and measurement procedure of multifunctional synchrotron radiation spectrometer in dispersive EXAFS mode are described. The results of the energy permission measurements of spectrometer are given. The advantages and disadvantages in the traditional and dispersion schematics of spectrometers EXAFS are analyzed. Examples of the EXAFS spectra measured in the dispersion mode are given.

  18. Universal energy-dispersive EXAFS spectrometer based on SR beam of `Kurchatovskij Institute` and scientific program of investigations; Universal`nyj ehnergodispersionnyj EXAFS-spektrometr v Natsional`nom tsentre sinkhrotronnogo izlucheniya (`Kurchatovskij institut`) i nauchnaya programma issledovanij

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V L; Ivanov, I N [Laboratory of Particle Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Koval` chuk, M V [Institut Kristallografii, RAN, Moscow (Russian Federation); and others

    1997-12-31

    The scheme of the energy-dispersive EXAFS spectrometer is discussed. The spectrometer will be used for the solid state investigations on the Kurchatov Synchrotron Radiation Source KSRS. The main elements of the universal station are described, including the results of the positive-sensitive X-ray detector testing. The experimental investigations are presented which are supposed to be carried out with this EXAFS spectrometer. (author). 4 refs., 14 figs., 1 tab. Submitted to Poverkhnost`. Rentgenovskie, Sinkhrotronnye i Nejtronnye Issledovaniya.

  19. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  20. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  1. Isotope, scanning electron microscope, and energy dispersive spectrometer studies of heterogeneous zircons from radioactive granites in the Grenville structural province, Quebec and Ontario

    International Nuclear Information System (INIS)

    Rimsaite, J.

    1981-01-01

    Heterogeneous zircons yielded discordant Pb-U, Pb-Th, and 207 Pb- 206 Pb isotopic ages. Most data points fall below the concordia curve, implying losses of daughter elements, bqt they define a discordia line that intersects the concordia at approximately 90 Ma and 1020 Ma. To obtain evidence for mobilization of U and radiogenic Pb, zircon grains were studied using a scanning electron microscope coupled with an energy dispersive spectrometer. High magnification backscattered and secondary electron images of the zircon revealed narrow fractures, zoning and diverse mineral inclusions. Three groups of mineral inclusions observed were: 1) those predating zoned zircon and apparently serving as a nucleus; 2) uraninite, feldspar, and apatite associated with the growth and zoning of the host zircon; and 3) fracture-fillings that postdate crystallization of the host zircon. The U- and Pb-rich inclusions incorporated into the zircon grains during and after its crystallization markedly affect isotopic ages of the host zircon. Migration of Pb and U have occurred along fractures in zircon. Zircon, uraninite, and other associated minerals have decomposed and complex reactions have taken place between the liberated Zr, U, Th and other elements to produce overgrowths on mineral grains and unidentified Zr-bearing material in fractures

  2. Characterizing high-energy-formed particulates with the scanning electron microscope/energy dispersive spectrometer system. Progress report, March--September 1977

    International Nuclear Information System (INIS)

    Casey, A.W.; Biermann, A.H.

    1977-01-01

    A method is being sought that will allow the differentiation between particulates formed in implosions and particulates formed in explosions. The scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDS) were used to measure and compare particle size, shape, surface morphology, and composition. Implosion and explosion detonations yielded spherical, smooth particles within the same size range. Although the particle size, shape, and morphology were the same for comparable samples of different detonation type, there were distinct differences in composition. It is not certain whether differences in composition reflect differences in device components or differences in the nature of the detonation

  3. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  4. Information-theoretical feature selection using data obtained by Scanning Electron Microscopy coupled with and Energy Dispersive X-ray spectrometer for the classification of glass traces

    International Nuclear Information System (INIS)

    Ramos, Daniel; Zadora, Grzegorz

    2011-01-01

    Highlights: → A selection of the best features for multivariate forensic glass classification using SEM-EDX was performed. → The feature selection process was carried out by means of an exhaustive search, with an Empirical Cross-Entropy objective function. → Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows or containers. - Abstract: In this work, a selection of the best features for multivariate forensic glass classification using Scanning Electron Microscopy coupled with an Energy Dispersive X-ray spectrometer (SEM-EDX) has been performed. This has been motivated by the fact that the databases available for forensic glass classification are sparse nowadays, and the acquisition of SEM-EDX data is both costly and time-consuming for forensic laboratories. The database used for this work consists of 278 glass objects for which 7 variables, based on their elemental compositions obtained with SEM-EDX, are available. Two categories are considered for the classification task, namely containers and car/building windows, both of them typical in forensic casework. A multivariate model is proposed for the computation of the likelihood ratios. The feature selection process is carried out by means of an exhaustive search, with an Empirical Cross-Entropy (ECE) objective function. The ECE metric takes into account not only the discriminating power of the model in use, but also its calibration, which indicates whether or not the likelihood ratios are interpretable in a probabilistic way. Thus, the proposed model is applied to all the 63 possible univariate, bivariate and trivariate combinations taken from the 7 variables in the database, and its performance is ranked by its ECE. Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows (from cars or buildings) or containers

  5. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    Keppler, E.; Wilken, B.; Richer, K.; Umlauft, G.; Fischer, K.; Winterhoff, H.P.

    1976-10-01

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.) [de

  6. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  7. Fundamentals of energy dispersive X-ray analysis

    CERN Document Server

    Russ, John C; Kiessling, R; Charles, J

    1984-01-01

    Fundamentals of Energy Dispersive X-ray Analysis provides an introduction to the fundamental principles of dispersive X-ray analysis. It presents descriptions, equations, and graphs to enable the users of these techniques to develop an intuitive and conceptual image of the physical processes involved in the generation and detection of X-rays. The book begins with a discussion of X-ray detection and measurement, which is accomplished by one of two types of X-ray spectrometer: energy dispersive or wavelength dispersive. The emphasis is on energy dispersive spectrometers, given their rather wid

  8. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  9. The Wavelength-Dispersive Spectrometer and Its Proposed Use in the Analytical Electron Microscope

    Science.gov (United States)

    Goldstein, Joseph I.; Lyman, Charles E.; Williams, David B.

    1989-01-01

    The Analytical Electron Microscope (AEM) equipped with a wavelength-dispersive spectrometer (WDS) should have the ability to resolve peaks which normally overlap in the spectra from an energy-dispersive spectrometer (EDS). With a WDS it should also be possible to measure lower concentrations of elements in thin foils due to the increased peak-to-background ratio compared with EDS. The WDS will measure X-ray from the light elements (4 less than Z less than 1O) more effectively. This paper addresses the possibility of interfacing a compact WDS with a focussing circle of approximately 4 cm to a modem AEM with a high-brightness (field emission) source of electrons.

  10. Construction of a remote probe for a spectrometer using NaI(TI) detector and X-ray fluorescence by energy dispersion

    International Nuclear Information System (INIS)

    Brandão Junior, Francisco Antônio

    2014-01-01

    This research project aims the utilization of NaI(Tl) cylindrical detectors with different sensitive volumes in the Nuclear Instrumentation Laboratory (LIN) of the Department of Nuclear Engineering at UFMG (DEN-UFMG) for construction of spectrometers using the X-ray fluorescence (XRF) technique. Conical coupling devices between the crystal detectors and the photomultiplier valve (VMF) were designed and constructed using easily handled material, joined by an optical fiber cable (FO) for driving the luminescence from the detector crystal to the VFM, allowing greater flexibility and accessibility to the device using the aforementioned technique. The cable connections were adapted to the cones that have a system with adjustable convergent lens to maximize level of luminescence (input and output). The photon beam is conducted by FO from the crystal detector to the VFM. This remote probe may bring new solutions for use not only in EDXRF technique but also in other future applications using the NaI(Tl) detector. The SR was designed and built based on the FO properties to conduct the light by total reflection with minimal loss; the first SR qualitative tests were performed and the results demonstrate that the system works properly. (author)

  11. Using the scanning electron microscope and energy dispersive x-ray spectrometer to do mineral identification and compositional point counting on unconsolidated marine sediments

    International Nuclear Information System (INIS)

    Robson, S.H.

    1982-01-01

    This paper describes a rapid and accurate method of point-counting sands and silt-size in unconsolidated open-ocean sediments. As traditional techniques for this operation cannot be employed on the fine-grained material which frequently forms the bulk of deep sea marine sediments, an alternative method has been sought. The method described makes use of equipment known as QUANTEX-RAY comprising a computerised data acquisition and reduction system designed for use in X-ray energy spectrometry and used in conjunction with a scanning electron microscope (SEM). Grains that cannot be identified by their visual morphology in the scanning electron microscope are analysed by X-ray spectrometry. Spectra are acquired in 200 seconds or less and processed by a sequence of software routines under semi-automatic control producing a listing of oxide concentrations as the final result. Each user must customize the control programme and operating conditions to suit his requirements

  12. Martian Neutron Energy Spectrometer (MANES)

    Science.gov (United States)

    Maurer, R. H.; Roth, D. R.; Kinnison, J. D.; Goldsten, J. O.; Fainchtein, R.; Badhwar, G.

    2000-01-01

    High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.

  13. Performance of a three-axes crystal spectrometer at IEA-Sao Paulo, Brazil: measurements of dispersion relations in copper

    International Nuclear Information System (INIS)

    Fuhrmann, C.; Fulfaro, R.; Vinhas, L.A.

    1978-01-01

    With the purpose to check the performance of IEA Triple Axis Spectrometer of which construction was recently finished, dispersion relation curves for copper at room temperature have been messured. The frequencies of phonons propagating along the three major simmetry directions [xi00] [xixi0] and [xixixi] have been determined. The measurements were carried out operating the Triple Axis Spectrometer in the 'Q constant' mode at neutron energy loss. An excellent agreement could be observed between the results obtained in the present experiment and the accurate data for copper presented in the litterature. In such way, we can conclude that the IEA Triple Axis Spectrometer is in good operational conditions and able to perform original experiments. In this report an outline of the theory of the spectrometer operation and details on the experimental procedures for the case of a Triple Axis Spectrometer operating in the 'Q constant' mode are also presented [pt

  14. Excitation methods for energy dispersive analysis

    International Nuclear Information System (INIS)

    Jaklevic, J.M.

    1976-01-01

    The rapid development in recent years of energy dispersive x-ray fluorescence analysis has been based primarily on improvements in semiconductor detector x-ray spectrometers. However, the whole analysis system performance is critically dependent on the availability of optimum methods of excitation for the characteristic x rays in specimens. A number of analysis facilities based on various methods of excitation have been developed over the past few years. A discussion is given of the features of various excitation methods including charged particles, monochromatic photons, and broad-energy band photons. The effects of the excitation method on background and sensitivity are discussed from both theoretical and experimental viewpoints. Recent developments such as pulsed excitation and polarized photons are also discussed

  15. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  16. The TRIUMF low energy pion spectrometer and channel

    International Nuclear Information System (INIS)

    Sobie, R.J.; Drake, T.E.; Barnett, B.M.; Erdman, K.L.; Gyles, W.; Johnson, R.R.; Roser, H.W.; Tacik, R.; Blackmore, E.W.; Gill, D.R.

    1983-08-01

    A low energy pion spectrometer has been developed for use with the TRIUMF M13 pion channel. The combined channel and spectrometer resolution is presently 1.1 MeV at T = 50 MeV. This is limited by the amount of gas and detector material in the spectrometer in addition to the inherent resolution of the channel. Improvements to both the spectrometer and channel are discussed

  17. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10 5 resolving power.

  18. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10 5 resolving power.

  19. Use of semiconductors in energy-dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Schiekel, M.

    1983-01-01

    The state-of-the-art of the application of semiconductor detectors with high resolution for photon radiation in energy-dispersive spectrometers is reviewed. It is concluded that the use of semiconductor detectors results in an improvement of spectrometers and thus in a wider range of application. Characteristics of the spectrometers, such as energy resolution and efficiency, are discussed and possible applications indicated. (author)

  20. Tomography with energy dispersive diffraction

    Science.gov (United States)

    Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.

    2017-09-01

    X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.

  1. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  2. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  3. Elemental characterization of alloy composition by wavelength dispersive X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Khan, F.A.; Pandey, A.; Das, D.K.; Behere, P.G; Mohd Afzal

    2015-01-01

    Wave length Dispersive X-ray Fluorescence (WD-XRF) is a non-destructive well-established analytical technique widely used in industrial and research applications for materials characterization. In nuclear industry various types of alloys have been used as per their application and importance. Few of them like SS-304, SS-316 and SS-316L are being regularly used for manufacturing of glove boxes at AFFF SS-304 alloy has been used in glove boxes of production line of MOX fuel due to its corrosive resistance and SS-316L is being used in chemical quality control lab and microwave applicator due to its acidic resistivity. In view of this an endeavor has been taken up to characterize these alloy steel. The experiments were carried out using a Rigaku make 'supermini', WD-XRF spectrometer having 200W Pd X-ray tube, 12 sample holder position, scintillation and proportional counters as a detector. All the parameters such as kV, mA, collimator, crystal and detectors were selected and operated via computer as per the given programme except for the sample preparation. EZscan (Energy Atomic Number Scan) technique is applied for the analysis of the above samples and the results obtained were in close agreement with the standard values. The present paper describes the characterization of SS-304L and SS-316L which have got better corrosion resistance properties against acids due to its compositions and suited for glove box manufacturing. (author)

  4. Quantitative analysis with energy dispersive X-ray fluorescence analyser

    International Nuclear Information System (INIS)

    Kataria, S.K.; Kapoor, S.S.; Lal, M.; Rao, B.V.N.

    1977-01-01

    Quantitative analysis of samples using radioisotope excited energy dispersive x-ray fluorescence system is described. The complete set-up is built around a locally made Si(Li) detector x-ray spectrometer with an energy resolution of 220 eV at 5.94 KeV. The photopeaks observed in the x-ray fluorescence spectra are fitted with a Gaussian function and the intensities of the characteristic x-ray lines are extracted, which in turn are used for calculating the elemental concentrations. The results for a few typical cases are presented. (author)

  5. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    Science.gov (United States)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x

  6. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  7. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength-dispersive

  8. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  9. Economies Evolve by Energy Dispersal

    Directory of Open Access Journals (Sweden)

    Stanley Salthe

    2009-10-01

    Full Text Available Economic activity can be regarded as an evolutionary process governed by the 2nd law of thermodynamics. The universal law, when formulated locally as an equation of motion, reveals that a growing economy develops functional machinery and organizes hierarchically in such a way as to tend to equalize energy density differences within the economy and in respect to the surroundings it is open to. Diverse economic activities result in flows of energy that will preferentially channel along the most steeply descending paths, leveling a non-Euclidean free energy landscape. This principle of 'maximal energy dispersal‘, equivalent to the maximal rate of entropy production, gives rise to economic laws and regularities. The law of diminishing returns follows from the diminishing free energy while the relation between supply and demand displays a quest for a balance among interdependent energy densities. Economic evolution is dissipative motion where the driving forces and energy flows are inseparable from each other. When there are multiple degrees of freedom, economic growth and decline are inherently impossible to forecast in detail. Namely, trajectories of an evolving economy are non-integrable, i.e. unpredictable in detail because a decision by a player will affect also future decisions of other players. We propose that decision making is ultimately about choosing from various actions those that would reduce most effectively subjectively perceived energy gradients.

  10. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...... velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation....

  11. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  12. The design and evaluation of a selectively modulated interferometric dispersive spectrometer

    International Nuclear Information System (INIS)

    Fitzgerald, J.J.

    1986-01-01

    In approaching the problem of rapid simultaneous multielement analysis, the large light gathering power, wide spectral range and high resolution of a Fourier Transform Spectrometer (FTS) should be of benefit. The severe mechanical tolerances required in the construction and operation of a classical Michelson interferometer for use in the UV-Visible spectral region have limited investigations in the application of simultaneous trace quantitative analysis. Theory is presented demonstrating that replacement of the fixed mirror in one arm of the Michelson interferometer with a rotating grating preserves most of the FTS advantages and results in a greatly simplified detector system. No mathematical Fourier transform is required. The need for a computer is eliminated. An instrument, SEMIDS (Selectively Modulated Interferometric Dispersive Spectrometer), was constructed to investigate the mathematical model. Design criteria and basic operational performance as a flame emission spectrometer are presented. SEMIDS achieved high resolution, high throughput and greatly simplified operation compared to a Michelson interferometer. Performance as a trace quantitative tool was disappoint because of unanticipated noise contributions from flame background. A summary of the noise component contributions is discussed

  13. Polarimeters and energy spectrometers for the ILC beam delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Boogert, S. [London Univ. (United Kingdom). Royal Holloway; Hildreth, M. [Univ. of Notre Dame (United States); Kaefer, K. [DESY, Hamburg (Germany); DESY, Zeuthen (DE)] (and others)

    2009-02-15

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. (orig.)

  14. Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U

    Science.gov (United States)

    Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team

    2017-10-01

    A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  15. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part I - an absolute traceable energy calibration for electron spectrometers

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.; Anthony, M.T.

    1991-01-01

    Experiments have been made to provide calibrated kinetic energy values for AES peaks in order to calibrate Auger electron spectrometers of various resolving powers. The kinetic energies are measured using a VG Scientific ESCALAB 2 which has power supplies appropriate for AES measurements in both the constant ΔE and constant ΔE/E modes. The absolute calibration of the energy scale is obtained by the development of a new measurement chain which, in turn, is calibrated in terms of the post-1990 representation of electron volts using XPS peaks with a traceable kinetic energy accuracy of 0.02 eV. The effects of instrumental and operating parameters, including the spectrometer dispersion and stray magnetic fields, are all assessed and contribute errors for three peaks not exceeding 0.06 eV and for two peaks not exceeding 0.03 eV. Calibrated positions in the direct spectrum are given for the Cu M 2,3 VV, Au N 6,7 VV, Ag M 4 NN, Cu L 3 VV and Au M 5 N 6,7 N 6,7 transitions at 0.2 eV resolution, referred to both the Standard Vacuum Level and the Fermi level. For the derivative spectrum the positions of the negative excursions are derived numerically by computer from this data and are established with the same accuracy. Data are tabulated for the above peaks in both the direct and differentiated modes for the popular resolutions of 0.15%, 0.3% and 0.6% produced by Gaussian broadening of the high resolution spectra. Differentiations are effected by both sinusoidal modulation and Savitzky-Golay functions of 2 eV and 5 eV peak-to-peak

  16. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    International Nuclear Information System (INIS)

    Zhang Chi; Yu Xiaoqi; Yang Tao

    2005-01-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown

  17. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  18. Simultaneous ion detection in a mass spectrometer with variable mass dispersion

    International Nuclear Information System (INIS)

    Tuithof, H.H.

    1977-01-01

    This thesis mainly describes the ion-optics of a magnetic mass spectrometer system, especially applied to the projection of a significant part of the mass spectrum onto a flat ion-detector. The complete detector consists of a channeltron electron multiplier array with phosphor screen and a Vidicon-multichannel analyzer combination for simultaneous read-out. In order to optimise the spectral range projected onto the channelplate, by varying the mass dispersion and to rotate the oblique angle of the mass focal plane with respect to the detector surface, the sector magnet has been combined with electrostatic and magnetic quadrupole lenses. This detector will find wide application in the analysis of minute sample quantities, in the recording of extremely short ion events (large molecules) and at collision activation mass-spectrometry studies

  19. The new double energy-velocity spectrometer VERDI

    Science.gov (United States)

    Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan

    2017-09-01

    VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.

  20. Dispersion self-energy of the electron

    International Nuclear Information System (INIS)

    Hawton, M.

    1991-01-01

    Electron mass renormalization and the Lamb shift have been investigated using the dispersion self-energy formalism. If shifts of both the electromagnetic field and quantum-mechanical transitions frequencies are considered, absorption from the electromagnetic field is canceled by emission due to atomic fluctuations. The frequencies of all modes are obtained from the self-consistency condition that the field seen by the electron is the same as the field produced by the expectation value of current. The radiation present can thus be viewed as arising from emission and subsequent reabsorption by matter. As developed here, the numerical predictions of dispersion theory are identical to those of quantum electrodynamics. The physical picture implied by dispersion theory is discussed in the context of semiclassical theories and quantum electrodynamics

  1. Wide angle spectrometers for intermadiate energy electron accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1982-10-01

    It is shown that improvements of the detector acceptances (in solid angle and momentum bite) is as important as increased duty cycle for coincidence experiments. To have a maximum efficiency and thus to reduce the cost of experiments, it is imperative to develop maximum solid angle systems. This implies an axial symmetry with respect to the incoming beam. At Saclay, we have investigated some of the properties of specific detectors covering up to 90% of 4π steradians for a high energy, 100% duty cycle electron accelerator. The techniques of wide angle spectrometers have already been explored on a large scale in high energy physics. However, in the case of charged particles, such detectors, compared to classical iron dipole spectrometers, present a smaller resolving power and a rather low background rejection. The choice of which of these two solutions is to be used depends on the conditions of the specific experiment

  2. spectrometer

    Directory of Open Access Journals (Sweden)

    J. K. Hedelius

    2016-08-01

    Full Text Available Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON. However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of Xgas within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of XCO2, XCH4, XCO, and XN2O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for XCO2, XCH4, XCO, and XN2O respectively, with 1σ running precisions of 0.08 and 0.06 % for XCO2 and XCH4 from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N2O.

  3. Cavity BPM system tests for the ILC energy spectrometer

    Science.gov (United States)

    Slater, M.; Adolphsen, C.; Arnold, R.; Boogert, S.; Boorman, G.; Gournaris, F.; Hildreth, M.; Hlaing, C.; Jackson, F.; Khainovski, O.; Kolomensky, Yu. G.; Lyapin, A.; Maiheu, B.; McCormick, D.; Miller, D. J.; Orimoto, T. J.; Szalata, Z.; Thomson, M.; Ward, D.; Wing, M.; Woods, M.

    2008-07-01

    The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of 10-4 or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 h for a 1 m long BPM triplet. We find micron-level stability over 1 h for 3 BPM stations distributed over a 30 m long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.

  4. First test results of the airborne dispersive pushbroom imaging spectrometer APEX

    Science.gov (United States)

    Meuleman, K.; Itten, K.; Schaepman, M.

    2009-04-01

    APEX, ESA-Prodex "Airborne Prism Experiment" comprises the development of an airborne dispersive pushbroom imaging spectrometer and has originally been designed as flexible hyperspectral mission simulator and calibrator for existing and upcoming or planned future space missions. The APEX project is co-funded by Switzerland and Belgium and built by a Belgian-Swiss industrial team under the prime RUAG Aerospace (CH), responsible for the total system and the mechanical components, OIP (Oudenaarde, BE) contributing the spectrometer, and Netcetera (Zurich, CH) being responsible for the electronics. RSL (University of Zurich, CH) acts as scientific PI together with the Co-PI VITO (Mol, BE). The APEX sensor is operating between 380 nm and 2500 nm in more than 300 freely configurable bands (up to 512 bands in full spectral mode), by means of two dispersive spectrometer channels. 1000 pixels across track and a total field of view of 28° define the ground pixel size (e.g. 2,5 m from 5000 m AGL). A stabilized platform (Leica PAV-30) reduces major geometric distortions due to aircraft instabilities while a GPS/IMU system (Applanix PosAV 410) measures continuously the sensors' position and orientation allowing direct georeferencing of the acquired data . The system is currently is phase D, the calibration and test phase, and first testflights have been performed on a Do-228 in cooperation of DLR while the acquired data is currently under evaluation. Discussions are ongoing to fly APEX on the new DLR High Altitude Research Aircraft (HALO) as well. The system is currently in phase D, the calibration and test phase, and will deliver first scientific data to users by mid 2009. The APEX processing and archiving facility (PAF) is hosted by VITO in the APEX Operations Center (AOC) at Mol, Belgium . A specific level 0-1 processing software module producing uniform, radiometrically calibrated data has been developed by RSL and is integrated into the PAF by VITO. An APEX Calibration

  5. Pion minus energy measurement by a multilayer semiconductor spectrometer

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Lapushkin, S.V.

    1981-01-01

    A technique for determining π - meson energy by a laminated semiconductor spectrometer is described. Results of experimental test of the technique carried out using beams of meson track of the JINR synchrocyclotron and three Si(Li) detectors are given. A specific feature of the technique is that chi 2 criterium with a functional written through exact thicknesses of semiconductor detectors was used for separating events with disturbance of ionization dependence and determining particle energy. It is shown that the absolute resolution can be not worse than 0.5 MeV in a wide energy range. It is concluded that the technique suggested is suitable for measuring energy of any charged particles with indefinite energy release during stoppage [ru

  6. Ecological succession as an energy dispersal process.

    Science.gov (United States)

    Würtz, Peter; Annila, Arto

    2010-04-01

    Ecological succession is described by the 2nd law of thermodynamics. According to the universal law of the maximal energy dispersal, an ecosystem evolves toward a stationary state in its surroundings by consuming free energy via diverse mechanisms. Species are the mechanisms that conduct energy down along gradients between repositories of energy which consist of populations at various thermodynamic levels. The salient characteristics of succession, growing biomass production, increasing species richness and shifting distributions of species are found as consequences of the universal quest to diminish energy density differences in least time. The analysis reveals that during succession the ecosystem's energy transduction network, i.e., the food web organizes increasingly more effective in the free energy reduction by acquiring new, more effective and abandoning old, less effective species of energy transduction. The number of species does not necessarily peak at the climax state that corresponds to the maximum-entropy partition of species maximizing consumption of free energy. According to the theory of evolution by natural selection founded on statistical physics of open systems, ecological succession is one among many other evolutionary processes. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Method validation for chemical composition determination by electron microprobe with wavelength dispersive spectrometer

    Science.gov (United States)

    Herrera-Basurto, R.; Mercader-Trejo, F.; Muñoz-Madrigal, N.; Juárez-García, J. M.; Rodriguez-López, A.; Manzano-Ramírez, A.

    2016-07-01

    The main goal of method validation is to demonstrate that the method is suitable for its intended purpose. One of the advantages of analytical method validation is translated into a level of confidence about the measurement results reported to satisfy a specific objective. Elemental composition determination by wavelength dispersive spectrometer (WDS) microanalysis has been used over extremely wide areas, mainly in the field of materials science, impurity determinations in geological, biological and food samples. However, little information is reported about the validation of the applied methods. Herein, results of the in-house method validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy Cu-Au of different compositions, was used during the validation protocol following the recommendations for method validation proposed by Eurachem. This paper can be taken as a reference for the evaluation of the validation parameters more frequently requested to get the accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty estimation was proposed including systematic and random errors. In addition, parameters evaluated during the validation process were also considered as part of the uncertainty model.

  8. Energy flow in angularly dispersive optical systems

    International Nuclear Information System (INIS)

    Ware, M.; Dibble, W. E.; Glasgow, S. A.; Peatross, J.

    2001-01-01

    Light-pulse propagation in angularly dispersive systems is explored in the context of a center-of-mass definition of energy arrival time. In this context the time of travel is given by a superposition of group delays weighted by the spectral content of the pulse. With this description the time of travel from one point to the next for a pulse is found to be completely determined by the spectral content, independent of the state of chirp. The effect of sensor orientation on arrival time is also considered. [copyright] 2001 Optical Society of America

  9. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    Science.gov (United States)

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. Copyright © 2013 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  10. Turning an energy analyzer into a mass spectrometer and a charge sorter

    International Nuclear Information System (INIS)

    Lee, K.

    2004-01-01

    Full text:When a swarm of ions are accelerated by a pulsed electric field for a common duration before entering an electrostatically dispersive energy analyzer, they will be sorted according to their charge-to-mass ratio q/m. In other words, the apparent kinetic energy upon which an ion will be registered in an apparent 'energy' spectrum thus obtained is proportional to its q/m ratio. For ions of a fixed mass m, the apparent energy spectrum becomes a charge state distribution spectrum. For ions of a fixed charge q, the apparent energy spectrum becomes a mass spectrum. In essence, an energy analyzer becomes both a charge sorter and a mass spectrometer when operated in this mode. When this technique is brought to bear on the detection of photofragment ions, a distinct advantage emerges. Kinetic energy release distribution (KERD) of fragment ions conventionally is extracted from fitting of the ion time-of-flight profile to ion trajectory simulation results, as such a fair amount of uncertainty exists in the KERD thus obtained. With the current novel approach to mass spectrometry, the KERDs of photofragment ions can be obtained directly, and as a result, with a greater accuracy. This should advance the study of fragmentation dynamics considerably

  11. Energy dispersive x-ray spectrometry by microcalorimetry for the SEM

    CERN Document Server

    Newbury, D; Sae Woo Nam; Hilton, G; Irwin, K; Small, J; Martinis, J

    2002-01-01

    Analytical x-ray spectrometry for electron beam instruments has advanced significantly with the development of the microcalorimeter energy dispersive x-ray spectrometer (mu cal EDS). The mu cal EDS operates by measuring the temperature rise when a single photon is absorbed in a metal target. A cryoelectronic circuit with electrothermal feedback and a superconducting transition edge sensor serves as the thermometer. Spectral resolution approaching 4.5 eV for high energy photons (6000 eV) and 2 eV for low energy photons below 2000 eV has been demonstrated in energy dispersive operation across a photon energy range from 250 eV to 8 keV. Spectra of a variety of materials demonstrate the power of the mu cal EDS to solve practical problems while operating on a scanning electron microscope platform. (author)

  12. A novel design for a variable energy positron lifetime spectrometer

    International Nuclear Information System (INIS)

    Chen, D.; Zhang, J.D.; Cheng, C.C.; Beling, C.D.; Fung, S.

    2008-01-01

    We present computer simulations of a new design of a variable energy positron lifetime beam that uses for a start signal the secondary electron emission from a 25-nm thick carbon foil (C-foil) located in front of the sample. A needle of ∼30 μm diameter is positioned on-axis right behind the foil, creating a radial electric field that deflects the secondary electrons radially outward so as to miss the sample and to hit the micro-channel plate (MCP) detector placed down beam. The MCP signal provides the start signal for the positron lifetime spectrometer. A grid can be further introduced between the sample holder and the MCP to yield a cleaner signal by preventing the positrons with large transmitted scattering angle from hitting the MCP. The cylindrical symmetry of this design reduces the experimental complexity and offers good timing resolution. We show that the design is robust against the transmitted energy and angle of the secondary electrons and positrons

  13. In situ characterization of ancient plaster and pigments on tomb walls in Egypt using energy dispersive X-ray diffraction and fluorescence

    International Nuclear Information System (INIS)

    Uda, M.

    2004-01-01

    A portable type of energy dispersive X-ray diffraction and fluorescence (ED-XRDF) spectrometer was developed, whose operation mode is completely different from that of an X-ray diffractometer commercially available. The former is operated in energy dispersive mode but the latter in angle dispersive mode. The performance of the ED-XRDF spectrometer was tested in the field, i.e. in the tomb of Amenhotep III, built in 1364 B.C. or earlier in Egypt. The crystal structure and chemical composition of ancient plaster and pigments were successfully determined in the field using the spectrometer. The same areas investigated by the ED-XRDF spectrometer were also examined with an optical microscope. The plaster is found to be composed of anhydrite, calcite and quartz. White and yellow pigments were identified as huntite and orpiment, respectively. Egyptian blue and goethite were found in the green colored parts

  14. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  15. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    Davis, A.; Dobinson, R.W.; Dosselli, U.; Edwards, A.; Gabathuler, E.; Kellner, G.; Montgomery, H.E.; Mueller, H.; Osborne, A.M.; Scaramelli, A.; Watson, E.; Brasse, F.W.; Falley, G.; Flauger, W.; Gayler, J.; Goessling, C.; Koll, J.; Korbel, V.; Nassalski, J.; Singer, G.; Thiele, K.; Zank, P.; Figiel, J.; Janata, F.; Rondio, E.; Studt, M.; Torre, A. de la; Bernaudin, B.; Blum, D.; Heusse, P.; Jaffre, M.; Noppe, J.M.; Pascaud, C.; Bertsch, Y.; Bouard, X. de; Broll, C.; Coignet, G.; Favier, J.; Jansco, G.; Lebeau, M.; Maire, M.; Minssieux, H.; Montanet, F.; Moynot, M.; Nagy, E.; Payre, P.; Perrot, G.; Pessard, H.; Ribarics, P.; Schneegans, M.; Thenard, J.M.; Botterill, D.; Carr, J.; Clifft, R.; Edwards, M.; Norton, P.R.; Rousseau, M.D.; Sproston, M.; Thompson, J.C.; Albanese, J.P.; Allkofer, O.C.; Arneodo, M.; Aubert, J.J.; Becks, K.H.; Bee, C.; Benchouk, C.; Bianchi, F.; Bibby, J.; Bird, I.; Boehm, E.; Braun, H.; Brown, S.; Brueck, H.; Callebaut, D.; Cobb, J.H.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G.R.; D'Agostini, G.; Dau, W.D.; Davies, J.K.; Dengler, F.; Derado, I.; Drees, J.; Dumont, J.J.; Eckardt, V.; Ferrero, M.I.; Gamet, R.; Gebauer, H.J.; Haas, J.; Hasert, F.J.; Hayman, P.; Johnson, A.S.; Kabuss, E.M.; Kahl, T.; Krueger, J.; Landgraf, U.; Lanske, D.; Loken, J.; Manz, A.; Mermet-Guyennet, M.; Mohr, W.; Moser, K.; Mount, R.P.; Paul, L.; Peroni, C.; Pettingale, J.; Poetsch, M.; Preissner, H.; Renton, P.; Rith, K.; Roehner, F.; Schlagboehmer, A.; Schmitz, N.; Schultze, K.; Shiers, J.; Sloan, T.; Smith, R.; Stier, H.E.; Stockhausen, W.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, D.A.; Williams, W.S.C.; Wimpenny, S.; Windmolders, R.; Winkmueller, G.; Wolf, G.

    1983-01-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  16. Energy dispersive X-Ray fluorescence spectrometric study of ...

    African Journals Online (AJOL)

    Energy dispersive X-Ray fluorescence spectrometric study of compositional differences in trace elements in dried Moringa oleifera leaves grown in two different agro-ecological locations in Ebonyi State, Nigeria.

  17. Energy-dispersive X-ray fluorescence spectrometry of industrial paint samples

    International Nuclear Information System (INIS)

    Christensen, L.H.; Drabaek, I.

    1986-01-01

    An energy-dispersive X-ray fluorescence method for the direct, simultaneous determination of major and minor elements in coatings is described. The method relies on the back-scatter/fundamental parameter concept and provides a general solution to matrix problems. The method has been implemented and verified on spectrometers based both on tube excitation and radioisotope excitation. Results demonstrating some performance characteristics are presented. Sample inhomogeneity problems that impede quantification of low-Z elements in some types of paint are discussed. (Auth.)

  18. Further development of a track detector as the spectrometer of linear energy transfer

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Botollier-Depois, J.F.

    1998-01-01

    Track revealing in a track etch detector is a phenomenon related to the linear energy transfer (LET) of the particle registered. The measurements of track parameters permit to determine the LET corresponding to each revealed track, i.e. LET spectrum. We have recently developed a spectrometer of LET based on the chemically etched polyallyldiglycolcarbonate (PADC). In this contribution the results obtained with such spectrometer in some neutron fields are presented, analyzed and discussed. Several radionuclide neutron sources have been used, LET spectrometer has been also exposed in high energy neutron reference fields at CERN and JINR Dubna, and on board aircraft. (author)

  19. Self-energy dispersion effects on neutron matter superfluidity

    International Nuclear Information System (INIS)

    Zuo Wei

    2001-01-01

    The effects of the dispersion and ground state correlation of the single particle self-energy on neutron matter superfluidity have been investigated in the framework of the Extended Brueckner-Hartree-Fock and the generalized BCS approaches. A sizable reduction of the energy gap is found due to the energy dependence of the self-energy. And the inclusion of the ground state correlations in the self-energy suppresses further the neutron matter superfluidity

  20. Relativistic energy-dispersion relations of 2D rectangular lattices

    Science.gov (United States)

    Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi

    2017-04-01

    An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.

  1. Air quality dispersion models from energy sources

    International Nuclear Information System (INIS)

    Lazarevska, Ana

    1996-01-01

    Along with the continuing development of new air quality models that cover more complex problems, in the Clean Air Act, legislated by the US Congress, a consistency and standardization of air quality model applications were encouraged. As a result, the Guidelines on Air Quality Models were published, which are regularly reviewed by the Office of Air Quality Planning and Standards, EPA. These guidelines provide a basis for estimating the air quality concentrations used in accessing control strategies as well as defining emission limits. This paper presents a review and analysis of the recent versions of the models: Simple Terrain Stationary Source Model; Complex Terrain Dispersion Model; Ozone,Carbon Monoxide and Nitrogen Dioxide Models; Long Range Transport Model; Other phenomenon Models:Fugitive Dust/Fugitive Emissions, Particulate Matter, Lead, Air Pathway Analyses - Air Toxic as well as Hazardous Waste. 8 refs., 4 tabs., 2 ills

  2. Assessing risk from low energy radionuclide aerosol dispersal

    International Nuclear Information System (INIS)

    Waller, Edward; Perera, Sharman; Erhardt, Lorne; Cousins, Tom; Desrosiers, Marc

    2008-01-01

    Full text: When considering the potential dispersal of radionuclides into the environment, there are two broad classifications: explosive and non-explosive dispersal. An explosive dispersal relies on a violent and sudden release of energy, which may disrupt or vapourised any source containment. As such, the explosion provides the energy to both convert the source into a dispersable physical form and provides initial kinetic energy to transport the source away from the initiation point. This would be the case for sources of radiation in proximity to a steam or chemical explosion of high energy density. A low energy dispersal, on the other hand, may involve a lower energy initiator event (such as a fire or water spray) that transports particles into the near release zone, to be spread via wind or mechanical fields. For this type of dispersion to take place, the source must be in physical form ready for dispersal. In broad terms, this suggests either an ab initio powder form, or soluble/insoluble particulate form in a liquid matrix. This may be the case for radioactive material released from pressurized piping systems, material released through ventilation systems, or deliberate dispersals. To study aerosol dispersion of radionuclides and risk from low energy density initiators, there are a number of important parameters to consider. For example, particle size distribution, physicochemical form, atmospheric effects, charge effects, coagulation and agglomeration. At the University of Ontario Institute of Technology (UOIT) a unique small scale aerosol test chamber has been developed to study the low energy dispersal properties of a number of radioactive source simulant. Principle emphasis has been given to salts (CsCl and CoCl 2 ) and oxides (SrTiO 3 , CeO 2 and EuO 2 ). A planetary ball mill has been utilized to reduce particle size distributions when required. Particle sizing has been performed using Malvern Spraytec spray particle analyzers, cascade impactors, and

  3. Measuring the mass and width of the Z0: The status of the energy spectrometers

    International Nuclear Information System (INIS)

    Rouse, F.; Levi, M.; Kent, J.; King, M.; Von Zanthier, C.; Watson, S.; Bambade, P.; Erickson, R.; Jung, C.K.; Nash, J.; Wormser, G.

    1989-05-01

    The Stanford Linear Collider (SLC) located at the Stanford Linear Accelerator Center (SLAC) collides electrons and positrons produced in the linear accelerator pulse by pulse. The object is to produce collisions energetic enough to produce the heavy intermediate vector boson, the Z 0 . An essential component of the SLC physics program is the precise knowledge of the center-of-mass energy of each interaction. We measure the energy of each collision by using two energy spectrometers. The spectrometers are located in extraction lines of each beam. We will measure the energy of each beam to 20 MeV or 5 parts in 10 4 . We report here on the status of the energy spectrometer system. 13 refs., 7 figs., 3 tabs

  4. Single atom identification by energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-01-01

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  5. Design and construction of a triple-axis crystal neutron spectrometer and performance testing by means of measurements of dispersion relations in copper

    International Nuclear Information System (INIS)

    Fuhrmann, C.

    1979-01-01

    The Triple-Axis Crystal Neutron Spectrometer is the best instrument for the study of lattice dynamics, when the neutron inelastic scattering technique is used. Design, construction and operation of a triple-axis crystal neutron spectrometer, whose construction was recently finished at IEA are described. The design principles employed are directed to mechanical simplicity, facility of construction and flexibility in operation, with no adapted components to industrial applications were used in the construction. The operational characteristics of the spectrometer, such as the neutron wavelenght of the incoming beam and the resolution have been determined. With the purpose to check the performance of IEA Triple-Axis Crystal Neutron Spectrometer, dispersion relation curves for copper, at room temperature, have been measured. The frequency of phonons propagating along three major symmetry directions have been determined. The measurements were carried out operating the Triple-Axis Spectrometer in the 'sup(→)Q-constant' mode. An excelent agreement could be observed between the results obtained in the present experiment and the data for copper presented in the literature. This comparison indicates that the IEA Triple-Axis Crystal Neutron Spectrometer is in good operational conditions and is able to perform original experiments. Details on the experimental procedures for the case of a Triple-Axis Spectrometer operating in 'sup(→)Q-constant' mode are also presented. (Author) [pt

  6. Integrated assessment of dispersed energy resources deployment

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  7. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    Science.gov (United States)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  8. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present the first results from the 'Low Energy Detector' payload of 'Solar X-ray Spectrometer (SOXS)' mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed ...

  9. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  10. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    International Nuclear Information System (INIS)

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-01-01

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed (ℎ/2π)ω/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  11. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  12. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration

  13. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  14. Contact angle dependence on the fluid-wall dispersive energy

    NARCIS (Netherlands)

    Horsch, M.; Heitzig, M.; Dan, C.M.; Harting, J.D.R.; Hasse, H.; Vrabec, J.

    2010-01-01

    Menisci of the truncated and shifted Lennard-Jones fluid between parallel planar walls are investigated by molecular dynamics simulation. Thereby, the characteristic energy of the unlike dispersive interaction between fluid molecules and wall atoms is systematically varied to determine its influence

  15. Energy Dispersive X-Ray Fluorescence Spectrometric Study of ...

    African Journals Online (AJOL)

    MBI

    2017-06-11

    Jun 11, 2017 ... Compositional Differences in Trace Elements in Dried Moringa oleifera ... Ti, Cu, Mo, Fe, Zn, Ni, Re, Eu and Pb using Energy Dispersive X-ray fluorescence ... Africa, Southeast Asia (Valdez-Solana et al., 2015). ... vegetable in many countries, including Nigeria .... of other elements in environmental samples.

  16. Research Note: Energy dispersive x-ray fluorescence analysis ...

    African Journals Online (AJOL)

    Energy Dispersive X-Ray fluorescence (EDXRF) technique for the analysis of geological, biological and environmental samples is described. The technique has been applied in the analysis of 10 (geological, biological, environmental) standard reference materials. The accuracy and precision of the technique were attested ...

  17. Instrumental aspects of tube-excited energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Adams, F.; Nullens, H.; Espen, P. van

    1983-01-01

    Energy-dispersive X-ray fluorescence spectrometry is an attractive and widely used method for sensitive multi-element analysis. The method suffers from the extreme density of spectral components in a rather limited energy range which implies the need for computer based spectrum analysis. The method of iterative least squares analysis is the most powerful tool for this. It requires a systematic and accurate description of the spectral features. Other important necessities for accurate analysis are the calibration of the spectrometer and the correction for matrix absorption effects in the sample; they can be calculated from available physical constants. Ours and similar procedures prove that semi-automatic analyses are possible with an accuracy of the order of 5%. (author)

  18. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  19. Acoustomagnetoelectric effect in nondegenerate semiconductor with nonparabolic energy dispersion law

    International Nuclear Information System (INIS)

    Mensah, N.G.; Nkrumah, G.; Mensah, S.Y.; Allotey, F.K.A.

    2007-10-01

    We have studied acoustomagnetoelectric effect in nondegenerate semiconductor with nonparabolic energy dispersion Law. Attention was focused on the surface acoustomagnetoelectric effect (SAME). This is to reduce Joule's energy dissipated in the sample. It was observed that in a weak magnetic field the SAME is proportional to H 2 whiles in strong magnetic field it is independent of H. The effect is also dependent on the the scattering mechanism and finally SAME changes sign when the magnetic field is turned through 90 deg. (author)

  20. Moderate Image Spectrometer (MODIS) Fire Radiative Energy: Physics and Applications

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    MODIS fire channel does not saturate in the presence of fires. The fire channel therefore is used to estimate the fire radiative energy, a measure of the rate of biomass consumption in the fire. We found correlation between the fire radiative energy, the rate of formation of burn scars and the rate of emission of aerosol from the fires. Others found correlations between the fire radiative energy and the rate of biomass consumption. This relationships can be used to estimates the emissions from the fires and to estimate the fire hazards.

  1. Design and construction of a spectrometer facility and experiment for intermediate energy proton scattering on helium

    International Nuclear Information System (INIS)

    Rolfe, R.M.

    1976-12-01

    The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed

  2. Development of ultrahigh energy resolution gamma spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Drury, O.B.; Velazquez, M.; Dreyer, J.G.; Friedrich, S.

    2009-01-01

    We are developing superconducting ultrahigh resolution gamma-detectors for non-destructive analysis (NDA) of nuclear materials, and specifically for spent fuel characterization in nuclear safeguards. The detectors offer an energy resolution below 100 eV FWHM at 100 keV, and can therefore significantly increase the precision of NDA at low energies where line overlap affects the errors of the measurement when using germanium detectors. They also increase the peak-to-background ratio and thus improve the detection limits for weak gamma emissions from the fissile Pu and U isotopes at low energy in the presence of an intense Compton background from the fission products in spent fuel. Here we demonstrate high energy resolution and high peak-to-background ratio of our superconducting Gamma detectors, and discuss their relevance for measuring actinides in spent nuclear fuel. (author)

  3. First results from the new double velocity-double energy spectrometer VERDI

    Science.gov (United States)

    Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  4. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Nakajima, Kazuo; Fujiwara, Kozo; Nishikata, Susumu

    2008-01-01

    Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers

  5. Influence of the interaction volume on the kinetic energy resolution of a velocity map imaging spectrometer

    International Nuclear Information System (INIS)

    Zhang Peng; Feng Zheng-Peng; Luo Si-Qiang; Wang Zhe

    2016-01-01

    We investigate the influence of the interaction volume on the energy resolution of a velocity map imaging spectrometer. The simulation results show that the axial interaction size has a significant influence on the resolution. This influence is increased for a higher kinetic energy. We further show that the radial interaction size has a minor influence on the energy resolution for the electron or ion with medium energy, but it is crucial for the resolution of the electron or ion with low kinetic energy. By tracing the flight trajectories we show how the electron or ion energy resolution is influenced by the interaction size. (paper)

  6. Results from a prototype chicane-based energy spectrometer for a linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lyapin, A. [Univ. College London (United Kingdom); London Univ., Egham (United Kingdom). Royal Holloway; Schreiber, H.J.; Viti, M. [Deutsches Electronen Synchrotron DESY, Hamburg (Germany); Deutsches Electronen Synchrotron DESY, Zeuthen (DE)] (and others)

    2010-11-15

    The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for achieving this goal is a measurement of the incident beam energy with an uncertainty close to 10{sup -4}. This article presents the analysis of data from a prototype energy spectrometer commissioned in 2006-2007 in SLAC's End Station A beamline. The prototype was a 4-magnet chicane equipped with beam position monitors measuring small changes of the beam orbit through the chicane at different beam energies. A single bunch energy resolution close to 5 . 10{sup -4} was measured, which is satisfactory for most scenarios. We also report on the operational experience with the chicane-based spectrometer and suggest ways of improving its performance. (orig.)

  7. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload ...

    Indian Academy of Sciences (India)

    Solar X-ray Spectrometer (SOXS)' mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and ...

  8. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  9. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  10. Environmental and geochemical studies using lower energy accelerator mass spectrometer

    International Nuclear Information System (INIS)

    Uchida, Masao; Kumata, Hidetoshi

    2016-01-01

    This paper introduces the latest versatile lower energy AMS, which shows a remarkable progress in recent years, the system incorporating it with a variety of analytical instruments, and environmental and geochemical studies using AMS associated with natural level "1"4C tracer, such as the analysis of Asian Brown Cloud originated from black carbon (BC) and the analysis of BC transport due to big rivers in the Arctic. Part of the lower energy AMS has been specifically developed for radiocarbon measurement. It has enabled, through a high-performance gas introduction interface system (GIS), the online introduction into the gas ion source of the sample gas that has been CO_2-converted with a pre-processing unit. Such online system achieved the simplification of sample pre-treatment, and a significant reduction (several μg-C to 1 mg-C) in necessary amount for analysis due to the above simplification. With the progress of such measurement techniques, the construction of "1"4CO_2 database on a global scale, which conventionally could not easily be realized, can be realized. From the observation data of "1"4CO_2, it is possible to more accurately grasp the amount of CO_2 released into the atmosphere through fossil fuel combustion. Therefore, the accuracy improvement of a numerical calculation model used for the estimation of CO_2 balance on earth can be expected. (A.O.)

  11. Nuclear safeguards applications of energy-dispersive absorption edge densitometry

    International Nuclear Information System (INIS)

    Russo, P.A.; Hsue, S.T.; Langner, D.G.; Sprinkle, J.K. Jr.

    1980-01-01

    The principles and techniques of absorption edge densitometry in the energy-dispersive mode are summarized as they apply to the nondestructive assay of special nuclear materials. Five existing field instruments, designed for special nuclear materials accounting measurements, are described. Results of the testing of these instruments as well as recent laboratory results are used to define the capabilities of the technique for special nuclear materials accounting. Possibilities for future applications are reviewed. 14 figures

  12. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  13. Multipole expansion of the retarded interatomic dispersion energy: derivation from quantum electrodynamics

    NARCIS (Netherlands)

    Michels, M.A.J.; Suttorp, L.G.

    1972-01-01

    The multipole expansion of the retarded dispersion energy of two atoms in nondegenerate ground states is derived. The result shows that multipoles of different order may give rise to dispersion energies varying in the same way for large interatomic separations.

  14. Challenges for energy dispersive X-ray absorption spectroscopy at the ESRF: microsecond time resolution and Mega-bar pressures

    International Nuclear Information System (INIS)

    Aquilanti, G.

    2002-01-01

    This Thesis concerns the development of two different applications of energy-dispersive X-ray absorption spectroscopy at the ESRF: time-resolved studies pushed to the microsecond time resolution and high-pressure studies at the limit of the Mega-bar pressures. The work has been developed in two distinct parts, and the underlying theme has been the exploitation of the capabilities of an X-ray absorption spectrometer in dispersive geometry on a third generation synchrotron source. For time-resolved studies, the study of the triplet excited state following a laser excitation of Pt 2 (P 2 O 5 H 2 ) 4 4- has been chosen to push the technique to the microsecond time resolution. In the high-pressure part, the suitability of the energy dispersive X-ray absorption spectrometer for high-pressure studies using diamond anvils cell is stressed. Some technical developments carried out on beamline ID24 are discussed. Finally, the most extensive scientific part concerns a combined X-ray absorption and diffraction study of InAs under pressure. (author)

  15. Procedure and apparatus for controlling the ion energy in a mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fies, W J; Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    The invention relates to a process and apparatus for adjusting the energy of ions of different masses in a mass spectrometer. Specifically, it concerns a mass spectrometer having a gas inlet and ionisation space. A multipole mass filter includes several electrodes. A focusing system connects the ionisation space and the mass filter. Provision is made for applying to the electrodes a mass adjusting voltage combining a high frequency voltage and a d.c. voltage of increasing amplitude, so that the ions of a pre-determined mass can be selected. This system also includes a device connected to the electrodes, sensitive to the mass adjusting voltage and enabling the energy of the ions to be adjusted to that of the selected ions, depending on the mass of the ions, by modifying the difference in potential between the ionisation volume and the mean potential of the electrodes .

  16. Photon detector for high energy measurements in the SELEX spectrometer (Fermilab experiment E781)

    International Nuclear Information System (INIS)

    Goncharenko, Yu.M.; Grachov, O.A.; Kurshetsov, V.F.; Landsberg, L.G.; Nurushev, S.B.; Vasil'ev, A.N.

    1995-01-01

    A possibility to use one- or two-photon lead glass detectors for high energy measurements in the SELEX spectrometer with E γ up to 500 GeV is studied. It is shown that a single photon detector equipped with radiation-resistant lead glass counters is applicable for the experiment discussed. It is concluded that for the best energy resolution in the case of Primakoff effect like π - = γ * → π - + γ the combined method would be used with weighted combination of direct E γ measurement in the Photon-3 detector and the π - beam energy precise measurement. 11 refs., 4 tabs., 17 figs

  17. Development of whole energy absorption spectrometer for decay heat measurement on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    To measure decay heat on fusion reactor materials irradiated by D-T neutrons, a Whole Energy Absorption Spectrometer (WEAS) consisting of a pair of large BGO (bismuth-germanate) scintillators was developed. Feasibility of decay heat measurement with WEAS for various materials and for a wide range of half-lives (seconds - years) was demonstrated by experiments at FNS. Features of WEAS, such as high sensitivity, radioactivity identification, and reasonably low experimental uncertainty of {approx} 10 %, were found. (author)

  18. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  19. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  20. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  1. Van der Waals dispersion energy between atoms and nanoparticles

    International Nuclear Information System (INIS)

    Boustimi, M; Loulou, M; Natto, S; Belafhal, A; Baudon, J

    2017-01-01

    In this work, we focus on the atom-surface interaction where the geometry of the surface is highly symmetric (i.e. sphere, cylinder and plane) and the atom is in ground state. We first present the main features of our model, based on the susceptibility tensors of the two partners in interaction, to determine a general expression of the dispersive energy of van der Waals interaction. Some results are given as applications of this model which addresses recent nanophysical problems, for example, when atoms are in the vicinity of metallic nanoshells, nanospheres or nanowires. (paper)

  2. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2008-01-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A -1 . This opens a still unexplored region of the kinematical (q,ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure

  3. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M. [Dipartimento di Fisica ' G. Occhialini' , Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Pietropaolo, A. [Dipartimento di Fisica ' G. Occhialini' , CNISM-Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); NAST Center - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Andreani, C.; Senesi, R. [Dipartimento di Fisica and Centro NAST - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Rhodes, N.J.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom)

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A{sup -1}. This opens a still unexplored region of the kinematical (q,{omega}) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  4. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  5. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Science.gov (United States)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  6. A double zero-dispersion magnetic spectrometer used in a telescopic mode for very forward heavy ions studies

    International Nuclear Information System (INIS)

    Bacri, C.O.; Roussel, P.

    1990-01-01

    An original method based on the use of a double magnetic spectrometer in a telescopic mode is proposed for the studies of heavy ions collisions both at very forward angles and for magnetic rigidities close to that of the beam. It consists in the direct measurement of angular distributions on doubly - Bρ and angle - sorted events. The method has been tested on the LISE spectrometer at GANIL with a 44 MeV/A 40 Ar beam impinging on C, Al, Ni and Au targets. Milliradian angular accuracy have been obtained at magnetic rigidities as close as 0.9977 of that of the beam

  7. How to measure energy of LEReC electron beam with magnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-04-11

    For successful cooling the energies of RHIC ion beam and LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-beam energy can have as large initial offset as 5%. The final setting of e-beam energy will be performed by observing either Schottky spectrum or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start observing such signals one has to set absolute energy of electron beam with accuracy better than 10-2, preferably better than 5∙10-3. The aim of this exercise is to determine whether and how such accuracy can be reached by utilizing LEReC 180° bend as a spectrometer.

  8. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  9. Modified Thomson spectrometer design for high energy, multi-species ion sources

    International Nuclear Information System (INIS)

    Gwynne, D.; Kar, S.; Doria, D.; Ahmed, H.; Hanton, F.; Cerchez, M.; Swantusch, M.; Willi, O.; Fernandez, J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Green, J. S.; Neely, D.; Najmudin, Z.; Streeter, M.; Ruiz, J. A.; Schiavi, A.; Zepf, M.; Borghesi, M.

    2014-01-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection

  10. Upgrade of neutron energy spectrometer with single multilayer bonner sphere using onion-like structure

    International Nuclear Information System (INIS)

    Mizukpshi, Tomoaki; Watanabe, Kenichi; Yamazaki, Atsushi; Uritan, Akira; Iguchi, Tetsuo; Ogata, Tomohiro; Muramatsu, Takashi

    2016-01-01

    In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type LiCaAlF6 (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. The fabricated detector shows excellent directional uniformity of the neutron sensitivity

  11. The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope

    Science.gov (United States)

    Tull, Robert G.; Macqueen, Phillip J.; Sneden, Christopher; Lambert, David L.

    1995-01-01

    A new high-resolution cross-dispersed echelle spectrometer has been installed at the coude focus of the McDonald Observatory 2.7-m telescope. Its primary goal was simultaneously to gather spectra over as much of the spectral range 3400 A to 1 micrometer as practical, at a resolution R identical with lambda/Delta lambda which approximately = 60,000 with signal-to-noise ratio of approximately 100 for stars down to magnitude 11, using 1-h exposures. In the instrument as built, two exposures are all that are needed to cover the full range. Featuring a white-pupil design, fused silica prism cross disperser, and folded Schmidt camera with a Tektronix 2048x2048 CCD used at either of two foci, it has been in regularly scheduled operation since 1992 April. Design details and performance are described.

  12. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    Energy Technology Data Exchange (ETDEWEB)

    Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.

  13. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  14. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    Science.gov (United States)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  15. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  16. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}energy transfer (-bar {omega}>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  17. Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics

    International Nuclear Information System (INIS)

    Reginatto, M.; Zimbal, A.

    2011-01-01

    The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

  18. Analysis of gold in jewellery articles by energy dispersive XRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Latifah Amin

    2001-01-01

    The value of a precious metal article is much related to its fineness. For gold assay, conventional fire assay technique has been used as the standard technique for more than 500 years. Alternative modern techniques like energy dispersive x-ray fluorescence can also be used in the determination of gold purity. Advantages of this technique compared to the conventional method including non-destructive analysis, does not use any toxic or hazardous chemicals, automatic computer control and is user friendly, requires minimum number of personnel, shorter analysis time and able to determine associated elements in the metal. Analysis was performed on different sizes and purity of gold. Comparison results for the analysis using different reference standards show small differences between technique and its certified value. The technique also gives small standard deviation value in its repeatability test. (Author)

  19. Calorimetric energy-dispersive detectors for ion beam analysis

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1985-01-01

    Energy-dispersive detectors for photons and alpha particles have recently been built. They are based on designs for infrared bolometric detectors working at liquid helium temperatures. For 5.5 Mev alpha particles the energy resolution (FWHM) has been published to be better than 35 keV in preliminary experiments, but thermodynamic limits to the resolution were calculated to be of the order of a few tens of eV. In the present paper limitations to the resolution caused by fluctuations in the processes converting particle energy to heat in the detectors will be calculated. It appears that an FWHM of a few hundred eV for MeV alphas may realistically be hoped for. As these detectors are windowless and may at the same time extend solid angles as large as surface-barrier detectors, be built in any desired geometrical shape, and work with count rates well above 10 3 Hz, exiting possibilities for ion beam analysis will open up through their realization. (orig.)

  20. Wavevector and energy resolution of the polarized diffuse scattering spectrometer D7

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, T., E-mail: tom.fennell@psi.ch [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Mangin-Thro, L., E-mail: mangin-throl@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France); Mutka, H., E-mail: mutka@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France); Nilsen, G.J., E-mail: goran.nilsen@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Wildes, A.R., E-mail: wildes@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156 - 38042 Grenoble Cedex 9 (France)

    2017-06-11

    The instrumental divergence parameters and resolution for the D7 neutron diffuse scattering spectrometer at the Institut Laue-Langevin, France, are presented. The resolution parameters are calibrated against measurements of powders, single crystals, and the incoherent scattering from vanadium. We find that the powder diffraction resolution is well described by the Cagliotti function, the single crystal resolution function can be parameterized using the Cooper-Nathans formalism, and that in time-of-flight mode the energy resolution is consistent with monochromatic focussing.

  1. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-01-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. -1 ) and high energy (unlimited) transfer -bar ω>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A -1 -1 ) and high energy transfer (-bar ω>1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed

  2. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    International Nuclear Information System (INIS)

    Hughes, E.B.; Finman, L.C.; Hofstadter, R.; Lepetich, J.E.; Lin, Y.C.; Mattox, J.R.; Nolan, P.L.; Parks, R.; Walker, A.H.

    1986-01-01

    A large NaI(T1) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described

  3. Modelling the line shape of very low energy peaks of positron beam induced secondary electrons measured using a time of flight spectrometer

    International Nuclear Information System (INIS)

    Fairchild, A J; Chirayath, V A; Gladen, R W; Chrysler, M D; Koymen, A R; Weiss, A H

    2017-01-01

    In this paper, we present results of numerical modelling of the University of Texas at Arlington’s time of flight positron annihilation induced Auger electron spectrometer (UTA TOF-PAES) using SIMION® 8.1 Ion and Electron Optics Simulator. The time of flight (TOF) spectrometer measures the energy of electrons emitted from the surface of a sample as a result of the interaction of low energy positrons with the sample surface. We have used SIMION® 8.1 to calculate the times of flight spectra of electrons leaving the sample surface with energies and angles dispersed according to distribution functions chosen to model the positron induced electron emission process and have thus obtained an estimate of the true electron energy distribution. The simulated TOF distribution was convolved with a Gaussian timing resolution function and compared to the experimental distribution. The broadening observed in the simulated TOF spectra was found to be consistent with that observed in the experimental secondary electron spectra of Cu generated as a result of positrons incident with energy 1.5 eV to 901 eV, when a timing resolution of 2.3 ns was assumed. (paper)

  4. Low energy characterization of Caliste HD, a fine pitch CdTe-based imaging spectrometer

    International Nuclear Information System (INIS)

    Dubos, S.; Limousin, O.; Blondel, C.; Meuris, A.; Orduna, T.; Tourette, T.; Sauvageon, A.; Chipaux, R.; Gevin, O.; Dolgorouky, Y.; Menesguen, Y.

    2013-01-01

    Caliste HD is a recently developed micro-camera designed for X and gamma-ray astronomy, based on a 1*1 cm 2 CdTe Schottky pixelated detector. Its entire surface is composed of 256 pixels, disposed on a 16*16 pixel array. This spectrometer is buttable on its 4 sides and can be used to create a large focal plane. It is also designed for space environment. Its IDeF-X front-end electronics has low power consumption, excellent noise performance and a wide dynamic range, from 2 keV to 1 MeV. Moreover, electronic noise performances of this device were optimized to set the low level energy threshold lower than 2 keV. This paper focuses on the Caliste HD performance near the low energy limit. For this purpose, we have exposed the module to a mono energetic X-ray beam. We measured accurately the detection efficiency and found it to be ranging from 39% to 75% for energies from 2.2 keV to 11.6 keV, considering only photons detected in the single-event photopeak and ignoring events impinging between two adjacent pixels. This detection efficiency profile thereby highlights crucial effects of the Pt electrode opacity on Caliste HD low energy response, and suggests the presence of absorption layers at the interface between CdTe crystal and platinum.Respective thickness of each layer was estimated by simulation and confirmed by Rutherford Backscattering Spectroscopy. The monoenergetic X-ray beam was also used to measure energy resolution of the detector. This was found to be between 560 and 760 eV FWHM for energies between 2 and 12 keV respectively. In addition, the linearity of this spectrometer and the issue of charge sharing between adjacent pixels were studied. This study revealed that spectroscopic performances remain excellent for such boundary operating conditions. (authors)

  5. Automatic energy dispersive x-ray fluorescence analysing apparatus

    International Nuclear Information System (INIS)

    Russ, J.C.; Carey, R.; Chopra, V.K.

    1983-01-01

    The invention discloses a number of improvements for an energy dispersive X-ray analysis system having computer supervised data collection, display and processing. The systems with which the improved circuitry and methods may be used include a dual interlocking bus structure so that the analyzer and computer functions communicate directly with each other and the user has immediate keyboard control of both. Such a system normally includes a system base control, a control console and a display console. The portions of the system which have been improved include a new type of ratemeter which gives a voltage output proportional to the intensity of the energy window or windows under consideration, an output which is an absolute digital representation of the intensity count rate, circuitry for input multiplexing and multiple output voltage buffering of the ratemeter to accomodate multiple single channel signals, and a new dead time correction to enable meaningful single channel intensity data to be handled by the system. An extension of the ratemeter is also disclosed for use in conjunction with X-ray mapping, enabling enhancements to be made on mapping SCA data

  6. A portable and wide energy range semiconductor-based neutron spectrometer

    International Nuclear Information System (INIS)

    Hoshor, C.B.; Oakes, T.M.; Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R.; Miller, W.H.; Bellinger, S.L.; Sobering, T.J.; Fronk, R.G.; Shultis, J.K.; McGregor, D.S.; Caruso, A.N.

    2015-01-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  7. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  8. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  9. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei

    2017-01-01

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  10. A Pb-TLD spectrometer to measure high energy photons in z-pinch experiments on the primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Si, Fenni; Yang, Jianlun; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Ye, Fan; Wang, Dong; Zhang, Chuanfei, E-mail: sifenni@163.com

    2017-05-15

    Highlights: • A Pb-TLD spectrometer has been developed to measure spectra of high energy photons in wire-array z pinches on PTS. • Energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code. • The energy of high energy x-ray on PTS is obtained to be mainly within the region of 100 keV to 1.3 MeV. - Abstract: A Pb-TLD spectrometer has been developed based on attenuation techniques to measure high energy photons in wire-array z-pinch experiments on the primary test stand (PTS). It is composed of a stack of 18 lead filters interspersed with 19 thermoluminescent dosimeters (TLD). A shield is constructed for the spectrometer and scattered radiation is reduced to less than 5% by the shield. Response functions of the spectrometer are calculated by MCNP5 for 0–2 MeV photons. Based on response functions and 19 dose data measured in experiments, energy spectra of high energy photons on PTS has been firstly obtained by unfolding programs developed with MATLAB code using iterative least square fit. Results show that energy peak locates within 200 keV and 300 keV, and the fluence decreases to background level at energy higher than 1.3 MeV.

  11. Gibbs free energy of formation of lanthanum rhodate by quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Prasad, R.; Banerjee, Aparna; Venugopal, V.

    2003-01-01

    The ternary oxide in the system La-Rh-O is of considerable importance because of its application in catalysis. Phase equilibria in the pseudo-binary system La 2 O 3 -Rh 2 O 3 has been investigated by Shevyakov et. al. Gibbs free energy of LaRhO 3 (s) was determined by Jacob et. al. using a solid state Galvanic cell in the temperature range 890 to 1310 K. No other thermodynamic data were available in the literature. Hence it was decided to determine Gibbs free energy of formation of LaRhO 3 (s) by an independent technique, viz. quadrupole mass spectrometer (QMS) coupled with a Knudsen effusion cell and the results are presented

  12. A new Thomson Spectrometer for high energy laser-driven beams diagnostic

    International Nuclear Information System (INIS)

    Cirrone, G A P; Tramontana, A; Candiano, G; Cavallaro, S; Cutroneo, M; Cuttone, G; Pisciotta, P; Romano, F; Schillaci, F; Scuderi, V; Torrisi, L; Carpinelli, M; Martinis, C De; Giove, D; Krása, J; Korn, G; Margarone, D; Prokůpek, J; Velyhan, A; Maggiore, M

    2014-01-01

    Thomson Spectrometers (TPs) are widely used for beam diagnostic as they provide simultaneous information on charge over mass ratio, energy and momentum of detected ions. A new TP design has been realized at INFN-LNS within the LILIA (Laser Induced Light Ion Acceleration) and ELIMED (MEDical application at ELI-Beamlines) projects. This paper reports on the construction details of the TP and on its experimental tests performed at PALS laboratory in Prague, with the ASTERIX IV laser system. Reported data are obtained with polyethylene and polyvinyl alcohol solid targets, they have been compared with data obtained from other detectors. Consistency among results confirms the correct functioning of the new TP. The main features, characterizing the design, are a wide acceptance of the deflection sector and a tunability of the, partially overlapping, magnetic and electric fields that allow to resolve ions with energy up to about 40 MeV for protons

  13. Low energy characterization of Caliste HD, a CdTe based imaging spectrometer

    International Nuclear Information System (INIS)

    Dubos, S.; Limousin, O.; Blondel, C.; Chipaux, R.; Menesguen, Y.; Meuris, A.; Orduna, T.; Tourette, T.; Sauvageon, A.

    2012-01-01

    Caliste HD is a recently developed micro-camera designed for X and gamma-rays astronomy, based on a 1*1 cm 2 CdTe Schottky pixelated detector. Its entire surface is composed of 256 pixels, disposed on a 16*16 pixels matrix with 625 micrometers pitch. This spectrometer is buttable on its 4 sides and can be used to create a large focal plane. Caliste HD is designed for space environment and its front-end electronic has a low power consumption and excellent noise performances which can provide an extended dynamic range, from 2 keV to 1 MeV as well as excellent energy resolutions. This large spectroscopic window is suited to observe astrophysical sources for a wide range of wavelengths. Moreover, electronic noise performances of this instrument were designed to set the low level-threshold lower than 2 keV; these continuous improvements now allow studying detailed spectroscopic performances at very low energies. For this purpose, we have exposed the Caliste HD module to a mono-energetic X-rays beam, and set energies between 2 and 12 keV emphasizing the 2 to 6 keV band. We could measure accurately detections efficiencies for the lowest energies and found it to be from 43% to 75% at 2.1 keV and 11.6 keV respectively, considering only particles detected in photopeak for single events, ignoring events impinging between two adjacent pixels. Absorption edges due to the Platinum (Pt) entrance electrode have been detected, as well as other characteristics absorption edges on the efficiency curve caused by Cd and Te elements. This efficiency detection profile thereby highlights crucial effects of the Pt electrode opacity on Caliste HD low energy response, and suggests the presence of absorption zones at the interface between CdTe crystal and Platinum. Besides, using a mono-energetic beam allows fine energy resolution measurement. It has been found to be ranging from 560 and 760 eV FWHM between 2 and 12 keV. In the same way, another crucial parameter - the linearity of the

  14. Radioisotope induced energy dispersive X-ray fluorescence - a diagnostic tool in clinical science

    International Nuclear Information System (INIS)

    Joseph, Daisy

    2010-01-01

    Full text: Energy dispersive X-ray fluorescence (EDXRF) - an ideal technique for detecting trace elements in drugs have been used for analyzing drugs marked as Zn supplements (Jasad Bhasm) used for growth in children and Ayurvedic medicines containing toxic elements such as Arsenic (As) and Mercury (Hg). Folklore medicines obtained as plants extracts from Manipur plants were also analyzed for their composition. Zn supplements (Jasad Bhasm) manufactured by various manufacturers were analyzed for their trace elements besides Zn and were compared with laboratory preparations. Similarly the Ayurvedic medicines from different companies were analyzed for their metal composition. All samples in powder form were pelletized and analyzed using an X-ray spectrometer consisting of a Cd 109 radioisotope source, Si (Li) detector of resolution 170 eV at 5.9 KeV Mn X-ray, preamplifier, amplifier and a PC based multichannel analyzer. Varying amounts of trace elements were detected in Jasad Bhasm and interesting results (As and Hg) were seen in the Ayurvedic medicines in addition to other trace elements such as K,Ca,Fe,Cu and Zn. In Manipur plant extracts Sr was predominantly seen in most samples. Their levels of toxicity and significance to human health and diseases will be discussed in the remaining sections of the paper

  15. Analysis of trace element compositions in adhesive cloth tapes using high-energy x-ray fluorescence spectrometer with three-dimensional polarization optics for forensic discrimination

    International Nuclear Information System (INIS)

    Goto, Akiko; Hokura, Akiko; Nakai, Izumi

    2008-01-01

    The forensic discrimination of adhesive cloth tapes often used in crimes was developed using a high-energy energy-dispersive X-ray fluorescence spectrometer with 3-dimensional polarization optics. The best measurement condition for discrimination of the tape was as follows: secondary targets, Rh and Al 2 O 3 ; measurement time, 300 s for Rh and 600 s for Al 2 O 3 ; 14 elements (Ca, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Zr, Nb, Mo, Sb, Ba and Pb) were used for discrimination. It is found that the combined information of yarn density and the XRF peak intensity of the 14 elements successfully discriminated 29 out of 31 samples, of which 2 probably had the same origin. This technique is useful for forensic analysis, because it is nondestructive, rapid and easy. Therefore, it can be applied to actual forensic identification. (author)

  16. X-ray spectrometer having 12 000 resolving power at 8 keV energy

    Science.gov (United States)

    Seely, John F.; Hudson, Lawrence T.; Henins, Albert; Feldman, Uri

    2017-10-01

    An x-ray spectrometer employing a thin (50 μm) silicon transmission crystal was used to record high-resolution Cu Kα spectra from a laboratory x-ray source. The diffraction was from the (331) planes that were at an angle of 13.26° to the crystal surface. The components of the spectral lines resulting from single-vacancy (1s) and double-vacancy (1s and 3d) transitions were observed. After accounting for the natural lifetime widths from reference double-crystal spectra and the spatial resolution of the image plate detector, the intrinsic broadening of the transmission crystal was measured to be as small as 0.67 eV and the resolving power 12 000, the highest resolving power achieved by a compact (0.5 m long) spectrometer employing a single transmission crystal operating in the hard x-ray region. By recording spectra with variable source-to-crystal distances and comparing to the calculated widths from various geometrical broadening mechanisms, the primary contributions to the intrinsic crystal broadening were found to be the source height at small distances and the crystal apertured height at large distances. By reducing these two effects, using a smaller source size and vignetting the crystal height, the intrinsic crystal broadening is then limited by the crystal thickness and the rocking curve width and would be 0.4 eV at 8 keV energy (20 000 resolving power).

  17. α spectrometer of parallel plate grid ionization chamber of high energy resolution

    International Nuclear Information System (INIS)

    Tong Boting; Wang Jianqing; Dong Mingli; Tang Peijia; Wang Xiaorong; Lin Cansheng

    2000-01-01

    Parallel plate grid ionization chamber with cathode area of 300 cm 2 was developed and applied to detect minimum α-emitters. It consist of a vacuum system, a gas cycle system of the parallel plate grid ionization chamber, electronics (a high voltage supply, a pre-amplifier and a main amplifier) and a computer-multichannel analyzer. The energy resolution is 23 keV FWHM for the 244 Cm electrostatic precipitated source. The integral background is typically 10 counts/h between 4 and 6 MeV. The detector efficiency is 50%. The minimum detecting activity is 3 x 10 -4 Bq (3σ, 30 hours). This spectrometer is suitable for detecting various samples, such as samples of the soil, water, air, bion, food, structural material, geology, archaeology, α-emitters of after processing and measuring α activity of accounting for and control of nuclear material and monitoring the artificial radioactivity nuclides of environment samples around nuclear facilities. The spectrometer is equipped with apparatus for preparing large area α source by using vacuum deposition or ultrasonic pulverization. The operating program of preparing source is simple. The source thickness can be kept in 40-60 μm/cm 2

  18. Studies on a modular high-energy photon spectrometer of pure CsI scintillators

    International Nuclear Information System (INIS)

    Kopyto, D.

    1994-04-01

    Aim of the present thesis is the optimization of components for the construction of a high-energy photon spectrometer of pure CsI for the detection of the neutral pseudoscalar mesons π 0 , η, and η' at COSY. These mesons are distinguished by their decay into two γ quanta and can therefore be detected by means of a photon spectrometer. A concept of a 2-arm shower counter of pure CsI is presented. Conclusions on the energy resolution of such a calorimeter shall yield a test module, which is constructed of 5.5 CsI(pure) pyramide trunk, each of which possesses a length of 30 cm and an angular acceptance of 6 .6 . The geometry of the moduls is formed in such a way that its extension to a 2-arm shower counter is possible at any time. Hitherto 14 by teflon foils wrapped up crystals for the test module were tested. Their energy resolution varies at 0.66 MeV between 20 and 25 % FWHM. Furthermore a method was found, which allows to trim the position dependence to the required values. So for the position dependence of a crystal even a value of 1.1 % could be reached. The energy resolution amounted thereby to 22 % FWHM. A measurement of the energy resolution with 20 MeV protons yielded a value of 7 %. For the energy calibration of the single detector elements in a dynamic range between 1 MeV and 12 GeV with low-energy γ sources the charge response function of the photoelectron multiplier to be applied in the test module was determined in dependence on the light intensity. The measurement resulted that the photomultiplier at 40 MeV (related to a CsI(pure) reference crystal with an about twofold so high efficiency of the detectable light in comparison to the long pyramide trunks) deviates by 4 % and at 300 MeV by 38 % from the linear behaviour, while it at 500 MeV shows a deviation of 50 %

  19. Development of a BaF2 scintillation spectrometer for evaluation of photon energy spectra in workplaces around nuclear facilities

    International Nuclear Information System (INIS)

    Urabe, Itsumasa; Yoshimoto, Taka-aki; Kobayashi, Katsuhei; Akiyoshi, Tsunekazu; Tsujimoto, Tadashi; Nakashima, Yoshiyuki; Oda, Keiji.

    1997-01-01

    A BaF 2 scintillation spectrometer has been constructed for the determination of photon energy spectra in workplaces around nuclear facilities. Energy absorption spectra by the BaF 2 detector were calculated with the EGS4 Monte Carlo code in the energy region from 0.1 to 100 MeV and a response matrix of the spectrometer was obtained from the energy absorption spectra, of which the energy resolutions were modified to fit to the experimental results. With the irradiation experiments using neutron-capture gamma rays and those from radioactive sources, it became clear that photon energy spectra can be evaluated within an error of about 10% in the energy region 0.1 MeV to a few tens of megaelectronvolts. (author)

  20. The data acquisition system used in one-dimension multichannel fast electron energy loss spectrometer

    International Nuclear Information System (INIS)

    Jiang Weichun; Zhu Linfan; Zhang Yijun; Xu Kezuo

    2010-01-01

    It describes a data acquisition system used in one dimension multichannel fast electron energy loss spectrometer, which can work in scan acquisition mode and static acquisition mode. The timing precision of the scan mode is less than 4 μs by utilizing the gated signal generated by data acquisition card DAQ2010 and an AND logic circuit. A timer card PCI8554 is used to synchronize the data acquisition card and the personal computer. The scan voltage supply is controlled by the personal computer through the RS232 interface. The multithreading technology is used in the acquisition software in order to improve the accommodating-err ability of the acquisition system. A satisfactory test result is given. (authors)

  1. Data acquisition and processing system of energy dispersive X-ray spectrometer with microprocessor

    International Nuclear Information System (INIS)

    Horkay, G.; Kis-Varga, M.; Lakatos, T.; Molnar, J.; Zsurzs, M.

    1984-01-01

    For quantitative analysis of chemical elements by the method of X-ray spectroscopy a multichannel analyzer on the base of minicomputer with the INTEL 8080 A microprocessor is developed. The data acquisition and data processing systems which comprise a central processor, memory unit, ADC and display are described. Major system subprograms are enumerated. An example of Pb concentration determinating in a bronze specimen is given

  2. Dispersion of radioactive tracers (Energy transport in geological media)

    International Nuclear Information System (INIS)

    Moltyaner, G.L.; Wills, A.

    1991-01-01

    The idea of adding a gamma-emitting tracer like radioiodine to groundwater to measure its velocity offers a new approach to contaminant transport studies. In fact, the groundwater velocity is acquired by measuring, in situ, changes that the flowing water and sedimentary matrix jointly impose on the electromagnetic field generated by radioiodine. The information is encoded in the measured field intensity and it is transmitted continuously from the source to a radiation detector by electromagnetic energy photons. In situ sensed data acquired by scanning dry boreholes provide information on joint variations of static (sedimentary matrix) and dynamic (flowing water) elements of the aquifer over its depth. The spatial structure of the aquifer heterogeneities may be modelled in terms of the space-correlation coefficient between two velocities at two points a specified distance apart. This gives a new method for defining aquifer heterogeneities by the introduction of kinematically significant length scales of velocity variation without invoking Darcy's law and the concept of hydraulic conductivity. The dimensions of aquifer heterogeneities are defined in a longitudinal sense, along the mean flow direction, and in a transverse sense, in the transverse to flow direction. Two hierarchical scales of motion, local and integral, are introduced to characterize the mixing process caused by aquifer heterogeneity and depositional heterogeneity, respectively. At the microscopic and local scales, transport processes are characterized by the three-dimensional diffusion equation with, generally speaking, variable coefficients. At the integral scale, aquifer heterogeneities impose conditions on the transport such that for shallow aquifers the transport may be modelled by the dispersion equation with constant coefficients in one longitudinal dimension. 3 figs., 25 refs

  3. Electrostatic mass spectrometer for concurrent mass-, energy- and angle-resolved measurements

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Krasnova, N.K.

    1999-01-01

    A new electron-optical scheme is considered. An energy- and mass-analyser with angular resolution are combined in one device, in which a time-of-flight principle of mass separation is used. The tool is created on the basis of electrostatic field of quasi-conical systems possessing the high-energy dispersion and high-angular resolution. A regime of simultaneous angular and energy resolution is found. If there is an ion-pulsed source then the ion groups of equal mass will be registered at the same time at a position-sensitive detector located at the edge of the field. Real parameters of the suggested scheme are calculated

  4. The calibration of spectrometers for Auger electron and X-ray photoelectron spectrometers part II - the determination of the electron spectrometer transmission function and the detector sensitivity energy dependencies

    International Nuclear Information System (INIS)

    Smith, G.C.; Seah, M.P.

    1991-01-01

    For the use of published general or theoretical sensitivity factors in quantitative AES and XPS the energy dependence of both the spectrometer transmission function and the detector sensitivity must be known. Here we develop simple procedures which allow these dependencies to be determined experimentally. Detailed measurements for a modified VG Scientific ESCALAB II, the metrology spectrometer, operated in both the constant ΔE/E and constant ΔE modes, are presented and compared with theoretical estimates. It is shown that an exceptionally detailed electron-optical calculation, involving proprietary information, would be required to match the accuracy of the experimental procedures developed. Removal of the spectrometer transmission function and the detector sensitivity terms allows the measured spectrum to be converted to the true electron emission spectrum irrespective of the mode of operation. This provides the first step to the provision of reference samples to calibrate the transmission functions and detector sensitivities of all instruments so that they, in turn, may produce true electron emission spectra. This is vital if (i) all instruments are to give consistent results, (ii) theoretical terms are to be used in quantifying either AES or XPS and (iii) reference data banks are to be established for AES or XPS

  5. Study of high-energy nucleus-nucleus interactions with the enlarged NA10 dimuon spectrometer

    CERN Multimedia

    Dimuon production is studied in $^{16}$0 - $^{238}$U and $^{32}$S - $^{238}$U collisions at the maximum possible luminosity of $\\sim10^{7}$ interactions per pulse using the NA10 spectrometer to which beam counters, an active segmented target and an electromagnetic calorimeter have been added. Thermal dimuons are expected to be emitted from a quark-gluon plasma at a detectable rate in the 1-3 GeV/c$^{2}$ transverse mass range, and to differ from ordinary dimuons by their $P_{T}$ and rapidity distribution. Particular emphasis is put on the $J/\\psi$ meson whose $\\mu\\mu$ decays are studied in detail. It is expected to be suppressed when a quark-gluon plasma is formed (Debye screening of the colour field). The correlations of the dimuon variables with charged multiplicity and neutral energy flow distributions are studied event by event. The energy density is estimated from the measured transverse neutral energy. Also $p$ - $^{228}$U collisions are studied in the same apparatus with the purpose of establishing a da...

  6. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  7. Dispersion relations for the self-energy in noncommutative field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Das, Ashok; Frenkel, J.

    2002-01-01

    We study the IR-UV connection in noncommutative φ 3 theory as well as in noncommutative QED from the point of view of the dispersion relation for self-energy. We show that, although the imaginary part of the self-energy is well behaved as the parameter of noncommutativity vanishes, the real part becomes divergent as a consequence of the high energy behavior of the dispersion integral. Some other interesting features that arise from this analysis are also briefly discussed

  8. Mis-diode as a low-energy X- and γ-ray spectrometer

    International Nuclear Information System (INIS)

    Konova, A.

    1980-01-01

    Considered are main peculiarities of apparata called MIS-diods having metal-thin isolating semiconductor structure and used as detectors of low-energy gamma and X-ray radiation. Discussed are advantages of tunnel MIS-diods based on non-primitive carriers. Presented are results of experimental measurements carried out using system of metal-silion oxide-silicon with the oxide layer width of 10-25 A (silicon with acceptor concentration of 10 19 m -3 ). Data presented show that MIS-diods can be considered as diods with p-n - transition in which n + - region is an inversion layer near the semiconductor surface, and further a leant region is situated. When voltage is applied only the depth of the leant region changes. In case of high quality diods the leakage currents are very small. Results of the investigation performed show that MIS-diods with oxide film wiolth of 10-22 A (the film covering p-silicon with high specific resistance) can be used as spectrometers of low-energy photons having particularly high energetic solution at room temperature. An advantage of new diods is the reverse current significantly lower in comparison with that of usual detectors with the Schottky barrier

  9. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  10. Energy dispersion of x-ray continua in the energy range 9kev to 19kev refraction on Si wafers

    International Nuclear Information System (INIS)

    Ebel, H.; Streli, C.; Pepponi, G.; Wobrauschek, P.

    2000-01-01

    Total reflection of x-rays in matter at given grazing incidence angle is characterized by the occurrence of an energy cut-off. Photons with energies greater than the cut-off energy penetrate into matter and are refracted according to a transition from the optically more dense to the optically less dense medium. Since the refractive index depends on photon energy, an energy dispersion of continuous x-radiation is observed. The present investigation is dedicated to the energy dispersion of continuous x-radiation (Mo, 45 kV) by Si wafers. Theory and experimental results are in excellent agreement. (author)

  11. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  12. Design and Simulation of a Spin Rotator for Longitudinal Field Measurements in the Low Energy Muons Spectrometer

    Science.gov (United States)

    Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.

    We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.

  13. Energy dispersive X-ray diffractometry in texture studies

    International Nuclear Information System (INIS)

    Szpunar, J.A.

    1983-01-01

    Information about texture is traditionally obtained from the two-dimensional distributions of crystallographic directions in the reference frame of the specimen. The distributions can be measured using the angular dispersive diffractometry. In such measurements the rotation of the specimen brings the crystallographic planes of differently oriented crystals into the diffraction position. The distribution (pole figure) can be measured continuously or alternatively the angular space can be scanned in different directions and with required accuracy. The subject is discussed, with examples. (author)

  14. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M., E-mail: mehran.salehpour@physics.uu.se [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Håkansson, K.; Possnert, G. [Department of Physics and Astronomy, Ion Physics, Applied Nuclear Physics Division, P.O. Box 516, SE-751 20 Uppsala (Sweden); Wacker, L.; Synal, H.-A. [Ion Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 (Switzerland)

    2016-03-15

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV {sup 14,13,12}C{sup 3+} ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the {sup 14}C/{sup 12}C and the {sup 13}C/{sup 12}C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  15. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    Science.gov (United States)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  16. Certification of reference materials by energy-dispersive x-ray fluorescence spectrometry?

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Heydorn, Kaj

    1985-01-01

    This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference.......This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference....

  17. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  18. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  19. An achromatic multipassage magnetic mass spectrometer

    International Nuclear Information System (INIS)

    Boulanger, P.; Baril, M.

    1999-01-01

    A design providing achromatic correction to a multipassage magnetic mass spectrometer previously described by the author is presented. The energy spatial dispersion caused by repeated passages in the magnetic prism is corrected by three supplementary mirrors placed in a reinjection loop. From this study one can see that we simultaneously eliminate the energy dispersion term C ΔE/E and the opening angle aberration term C α 2 and we may also eliminate the coupled aberration term C αΔE/E

  20. A new life for the wavelength-dispersive X-ray spectrometer (WDS): incorporation of a silicon drift detector into the WDS for improved quantification and X-ray mapping

    Science.gov (United States)

    Wuhrer, R.; Moran, K.

    2018-01-01

    The wavelength-dispersive X-ray spectrometer (WDS) has been around for a long time and the design has not changed much since its original development. The electron microprobe operator using WDS has to be meticulous in monitoring items such as gas flow, gas purity, gas pressure, noise levels of baseline and window, gas flow proportional counter (GFPC) voltage levels, count rate suppression, anode wire contamination and other detector parameters. Recent development and improvements of silicon drift detectors (SDD’s) has allowed the incorporation of a SDD as the X-ray detector in place of the proportional counter (PC) and/or gas flow proportional counter (GFPC). This allows minimal mechanical alteration and no loss of movement range. The superiority of a WDS with a SDD, referred to as SD-WDS, is easily seen once in operation. The SD-WDS removes many artefacts including the worse of all high order diffraction, thus allowing more accurate analysis. The incorporation of the SDD has been found to improve the light and mid element range and consequently improving the detection limit for these elements. It is also possible to obtain much more reliable results at high count rates with almost no change in resolution, gain and zero-peak characteristics of the energy spectrum.

  1. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    Science.gov (United States)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  2. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem

    Science.gov (United States)

    Tkatchenko, Alexandre; Ambrosetti, Alberto; DiStasio, Robert A.

    2013-02-01

    Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.

  3. Mass- and energy-analysis of fast ion beams in PF-1000 by means of a Thomson spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Czaus, K.; Skladnik-Sadowska, E.; Malinowski, K.; Kwiatkowski, R.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland); Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Zebrowski, J.; Karpinski, L.; Paduch, M.; Scholz, M.; Zielinska, E. [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Garkusha, I.E. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine)

    2011-07-01

    The paper describes measurements of energy spectra of ions emitted along the z-axis of the PF-1000 facility, which have been for the first time performed by means a miniature Thomson spectrometer during 480-kJ discharges with the deuterium filling. The recorded Thomson parabolas showed that the escaping deuterons have energies in the range of 25-1000 keV, while protons (originated from hydrogen remnants) have the population of about 2 orders smaller and energies within the range of 35-300 keV. This document is composed of a paper followed by a poster. (authors)

  4. Dependency of non-homogeneity energy dispersion on absorbance line-shape of luminescent polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Castanheira da, E-mail: mar_castanheira@yahoo.com.br [Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, CP 500, 69915-900 Rio Branco, AC (Brazil); Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil); Santos Silva, H.; Silva, R.A.; Marletta, Alexandre [Instituto de Física, Universidade Federal de Uberlândia, CP 593, 38400-902 Uberlândia, MG (Brazil)

    2013-01-16

    In this paper, we study the importance of the non-homogeneity energy dispersion on absorption line-shape of luminescent polymers. The optical transition probability was calculated based on the molecular exciton model, Franck–Condon states, Gaussian distribution of non-entangled chains with conjugate degree n, semi-empirical parameterization of energy gap, electric dipole moment, and electron-vibrational mode coupling. Based on the approach of the energy gap functional dependence 1/n, the inclusion of the non-homogeneity energy dispersion 1/n{sup 2} is essential to obtain good experimental data agreement, mainly, where the absorption spectra display peaks width of about 65 meV. For unresolved absorption spectra, such as those observed for a large number of conjugated polymers processed via spin-coating technique, for example, the non-homogeneity energy dispersion parameterization is not significant. Results were supported by the application of the model for poly (p-phenylene vinylene) films.

  5. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  6. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  7. Recent ion optics and mass spectrometers

    International Nuclear Information System (INIS)

    Matsuda, Hisashi

    1976-01-01

    The establishment of the third order approximation method for computing the orbit of the ion optical system for mass spectrometers and the completion of its computer program are reported. A feature of this orbit computation is in that the effect of the fringing field can be considered with the accuracy of third order approximation. Several new ion optical systems for mass spectrometers have been proposed by using such orbit computing programs. Brief explanation and the description on the future prospect and problems are made on the following items: the vertual image double focusing mass spectrometer, the second order double focusing mass spectrometer, the E x B superposed field mass spectrometer, and the apparatus with a cylindrical electric field and Q-lens. In the E x B superposed field with Matsuda plates, if the magnetic field is generated by an electromagnet instead of a permanent magnet, the dispersion of mass and energy can be changed at will. The Matsuda plates are known as the auxiliary electrodes positioned at the top and bottom of a cylindrical capacitor. Utilizing those characteristics, a zoom spectrometer can be made, with which only a necessary part of mass spectra can be investigated in detail, but the whole spectra are investigated roughly. In addition, the distribution of energy can be investigated simultaneously after the separation of ionic mass similarly to the parabola apparatus. (Iwakiri, K.)

  8. QQDDQ magnet spectrometer 'BIG KARL'

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S A; Hardt, A; Meissburger, J; Berg, G P.A.; Hacker, U; Huerlimann, W; Roemer, J G.M.; Sagefka, T; Retz, A; Schult, O W.B.

    1983-09-01

    A magnet spectrometer consisting of two quadrupoles, two dipole magnets and another larger quadrupole in front of the detector was designed and installed at the nuclear research institute of the KFA Juelich. It has been used for charged-particle spectroscopy at the isochronous cyclotron since early 1979. Special features of the spectrometer are variable and high dispersion, coils for higher order field corrections in the dipole magnets and a focal plane perpendicular to the optical axis. A large mass-energy product of mE/q/sup 2/ < 540 u x MeV, an angular acceptance of d..cap omega..<12.5 msr, a high resolving power of p/..delta..p up to 3 x 10/sup 4/ and the possibility of kinematical corrections up to K=0.8 make the instrument a very versatile tool for many experiments in the fields of nuclear and atomic physics. 51 references.

  9. Dispersion and energy conservation relations of surface waves in semi-infinite plasma

    International Nuclear Information System (INIS)

    Atanassov, V.

    1981-01-01

    The hydrodynamic theory of surface wave propagation in semi-infinite homogeneous isotropic plasma is considered. Explicit linear surface wave solutions are given for the electric and magnetic fields, charge and current densities. These solutions are used to obtain the well-known dispersion relations and, together with the general energy conservation equation, to find appropriate definitions for the energy and the energy flow densities of surface waves. These densities are associated with the dispersion relation and the group velocity by formulae similar to those for bulk waves in infinite plasmas. Both cases of high-frequency (HF) and low-frequency (LF) surface waves are considered. (author)

  10. On the method of calibration of the energy dispersive EXAFS ...

    Indian Academy of Sciences (India)

    samples, whose absorption edge energies are well-established. .... bend the crystal to take shape of an ellipse (Lee et al 1994). ..... Kelly S D, Hesterberg D and Ravel B 2008 Methods of Soil Analysis, Part 5, Mineralogical Methods,. Chapter ...

  11. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    Science.gov (United States)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  12. A portable Compton spectrometer for clinical X-ray beams in the energy range 20-150 keV

    International Nuclear Information System (INIS)

    Vieira, A.A.; Linke, A.; Yoshimura, E.M.; Terini, R.A.; Herdade, S.B.

    2011-01-01

    Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 o , measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments.

  13. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  14. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  15. A low power x-ray tube for use in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kataria, S.K.; Govil, Rekha; Lal, M.

    1980-01-01

    A low power X-ray tube with thin molybdenum transmission target for use in energy dispersive X-ray fluorescence (ENDXRF) element analysis has been indigenously built, along with its power supply. The X-ray tube has been in operation since August 1979, and it has been operated upto maximum target voltage of 35 KV and tube current upto 200 μA which is more than sufficient for trace element analysis. This X-ray tube has been used alongwith the indigenously built Si(Li) detector X-ray spectrometer with an energy resolution of 200 eV at 5.9 Kev MnKsub(α) X-ray peak for ENDXRF analysis. A simple procedure of calibration has been developed for thin samples based on the cellulose diluted, thin multielement standard pellets. Analytical sensitivities of the order of a few p.p.m. have been obtained with the experimental setup for elements with 20 < = Z < = 38 and 60 < = Z < = 90. A number of X-ray spectra for samples of environmental, biological, agricultural, industrial and metallurgical interest are presented to demonstrate the salient features of the experimental sep up. (auth.)

  16. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A. [High Temperature Gasdynamics Laboratory, Stanford University, Stanford, California 94305 (United States)

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  17. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    International Nuclear Information System (INIS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    Science.gov (United States)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    Science.gov (United States)

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  20. Absorbed impact energy and mode of fracture: A statistical description of the micro-structural dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pontikis, V., E-mail: Vassilis.Pontikis@cea.f [Commissariat a l' Energie Atomique, IRAMIS, Laboratoire des Solides Irradies, CNRS UMR 7642, Ecole Polytechnique, 91191 Gif sur Yvette Cedex (France); Gorse, D. [Commissariat a l' Energie Atomique, IRAMIS, Laboratoire des Solides Irradies, CNRS UMR 7642, Ecole Polytechnique, 91191 Gif sur Yvette Cedex (France)

    2009-10-01

    A statistical model is proposed to account for the influence of the dispersion of the microstructure on the ductile-to-brittle transition in body centered cubic (bcc) metals and their alloys. In this model, the dispersion of the microstructure is expressed via a normal distribution of transition temperatures whereas a simple relation exists between the values of absorbed, lower and upper shelf energies, the ductile area fraction and the distribution parameters. It is shown that via an appropriate renormalization of energies and temperatures, experimental data for different materials and ageing conditions align all together on a master curve, guaranteeing thereby the effectiveness of the proposed statistical description.

  1. Absorbed impact energy and mode of fracture: A statistical description of the micro-structural dispersion

    International Nuclear Information System (INIS)

    Pontikis, V.; Gorse, D.

    2009-01-01

    A statistical model is proposed to account for the influence of the dispersion of the microstructure on the ductile-to-brittle transition in body centered cubic (bcc) metals and their alloys. In this model, the dispersion of the microstructure is expressed via a normal distribution of transition temperatures whereas a simple relation exists between the values of absorbed, lower and upper shelf energies, the ductile area fraction and the distribution parameters. It is shown that via an appropriate renormalization of energies and temperatures, experimental data for different materials and ageing conditions align all together on a master curve, guaranteeing thereby the effectiveness of the proposed statistical description.

  2. Optimization of a spectrometry for energy-dispersive x-ray fluorescence analysis by x-ray tube in combination with secondary target for multielements determination of sediment samples

    International Nuclear Information System (INIS)

    Zaidi Embong; Husin Wagiran

    1997-01-01

    The design of an energy-dispersive X-ray fluorescence spectrometer equipped with a conventional X-ray tube and secondary target is described. The spectrometer system constructed in our laboratory consists of a semiconductor detector system, irradiation chamber and X-ray tube. Primary source from X-ray tube was used to produced secondary X-ray from selenium, molybdenum and cadmium targets. The fluorescence X-ray from the sample was detected using Si(Li) detector with resolution of 0. 175 keV (Mn-K(x). The spectrometer was used for determination of multi-elements with atomic number between 20 to 44 in river sediment samples. The X-ray spectrum, from the samples were analysed using computer software which was developed based on Marquardt method. Optimal conditions and detection limits are determined experimentally by variation of excitation parameters for each combination of secondary target and tube voltage

  3. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    Science.gov (United States)

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  4. Determination of workplace neutron spectra at a high energy hadron accelerator using active and passive Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Bedogni, R.; Esposito, A.; Chiti, M.

    2008-01-01

    In the framework of the 2006 experimental benchmark organized at the GSI (Darmstadt, Germany) by the EC CONRAD network, a neutron dosimetry intercomparison was performed in a workplace field around a carbon target hit by 400 MeV/u 12 C ions. The radiation protection group of the INFN-LNF participated to the intercomparison with a Bonner sphere spectrometer equipped with an active 6 LiI(Eu) scintillator and a set of passive detectors, namely MCP-6s (80mgcm -2 )/MCP-7 TLD pairs from TLD Poland. Both active and passive spectrometers, independently tested and calibrated, were used to determine the field and dosimetric quantities in the measurement point. The FRUIT unfolding code, developed at the INFN-LNF radiation protection group, was used to unfold the raw BSS data. This paper compares the results of the active or passive spectrometers, obtaining a satisfactory agreement in terms of both spectrum shape and value of the integral quantities, as the neutron fluence or the ambient dose equivalent. These results allow qualifying the BSS based on TLD pairs as a reliable passive method to be used around high energy particle accelerators even in low dose rate areas. This is particularly useful in those workplaces where the active instruments could be disturbed by the presence of pulsed fields, large photon fluence or electromagnetic noise

  5. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G. A. P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Ter-Avetisyan, S. [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen' s University Belfast, BT7 1NN (United Kingdom); Velyhan, A. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  6. Illicit drug detection using energy dispersive x-ray diffraction

    Science.gov (United States)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  7. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    OpenAIRE

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spe...

  8. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  9. THE DEVELOPMENT OF A SUPER-STABLE DATUM POINT FOR MONITORING THE ENERGY SCALE OF ELECTRON SPECTROMETERS IN THE ENERGY RANGE UP TO 20 keV

    Czech Academy of Sciences Publication Activity Database

    Vénos, Drahoslav; Zbořil, Miroslav; Kašpar, Jaromír; Dragoun, Otokar; Bonn, J.; Kovalík, Alojz; Lebeda, Ondřej; Lebedev, N. A.; Ryšavý, Miloš; Schlosser, K.; Špalek, Antonín; Weinheimer, C.

    2010-01-01

    Roč. 53, č. 3 (2010), s. 305-312 ISSN 0543-1972 R&D Projects: GA ČR GA202/06/0002; GA MŠk LA318; GA MŠk LC07050; GA MŠk LA08002 Institutional research plan: CEZ:AV0Z10480505 Keywords : nuclear transition energy * conversion electrons * electron spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.154, year: 2010

  10. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic ...

  12. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    Science.gov (United States)

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  13. Photon induced x-ray fluorescence analysis using energy dispersive detector and dichotomous sampler

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Loo, B.W.; Goulding, F.S.

    1976-01-01

    Operating experience in using the photon-excited energy-dispersive x-ray fluorescence analysis system has demonstrated the applicability of this technique to large-scale air-sampling networks. This experience has shown that it is possible to perform automatic sampling and analysis of aerosol particulates at a sensitivity and accuracy more than adequate for most air pollution studies

  14. Energy-dispersive X-ray fluorescence – A tool for interdisciplinary ...

    Indian Academy of Sciences (India)

    Keywords. Energy-dispersive X-ray fluorescence; trace elements; oral cancer; biomonitoring; air pollution. Abstract. Trace elements have been at the focus of attention for decades with considerable emphasis on their role in biology and biomedical sciences, environmental sciences, geology, archaeology and material ...

  15. First experience with energy dispersive X-ray analysis (EDXA) in lung fibrosis

    International Nuclear Information System (INIS)

    Liebetrau, G.; Wiesner, B.; Strausz, J.; Zglinicki, T. von

    1987-01-01

    Biopsies from 68 patients suffering from interstitial lung disease were examined with regard to minerals using energy dispersive X-ray analysis. In 31 patients a higher portion of minerals or elements were found as pigments. The interpretation of these findings is difficult. If there is a occupational exposure and a reaction of the lung parenchyma the findings could be of clinical value. (author)

  16. A new NAMA framework for dispersed energy end-use sectors

    DEFF Research Database (Denmark)

    Cheng, Chia-Chin

    2010-01-01

    This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two ...

  17. Elemental analysis of soils from central Sudan by energy dispersive XRF

    DEFF Research Database (Denmark)

    Yousif, A. A.; Kunzendorf, Helmar

    1986-01-01

    Energy dispersive X-ray fluorescence spectroscopy is employed to determine the concentration of nineteen elements in seven profiles representing the aridisols and vertisols groups from agricultural plains of Sudan. A significant variation in the concentration of alkaline and alkaline earth elements...

  18. ENDIX. A computer program to simulate energy dispersive X-ray and synchrotron powder diffraction diagrams

    International Nuclear Information System (INIS)

    Hovestreydt, E.; Karlsruhe Univ.; Parthe, E.; Benedict, U.

    1987-01-01

    A Fortran 77 computer program is described which allows the simulation of energy dispersive X-ray and synchrotron powder diffraction diagrams. The input consists of structural data (space group, unit cell dimensions, atomic positional and displacement parameters) and information on the experimental conditions (chosen Bragg angle, type of X-ray tube and applied voltage or operating power of synchrotron radiation source). The output consists of the normalized intensities of the diffraction lines, listed by increasing energy (in keV), and of an optional intensity-energy plot. The intensities are calculated with due consideration of the wave-length dependence of both the anomalous dispersion and the absorption coefficients. For a better agreement between observed and calculated spectra provision is made to optionally superimpose, on the calculated diffraction line spectrum, all additional lines such as fluorescence and emission lines and escape peaks. The different effects which have been considered in the simulation are discussed in some detail. A sample calculation of the energy dispersive powder diffraction pattern of UPt 3 (Ni 3 Sn structure type) is given. Warning: the user of ENDIX should be aware that for a successful application it is necessary to adapt the program to correspond to the actual experimental conditions. Even then, due to the only approximately known values of certain functions, the agreement between observed and calculated intensities will not be as good as for angle dispersive diffraction methods

  19. Energy-dispersive X-ray microanalysis of elements' content and ...

    African Journals Online (AJOL)

    This study was designed to investigate elements' content and anti-microbial effects of two Malaysian plants, Pereskia bleo and Goniothalamus umbrosus. Elements' analysis was carried out using Energy Dispersive X-ray Microanalysis combined with Variable Pressure Scanning Electron Microscope (EDX, VPSEM).

  20. In Situ Structure-Function Studies of Oxide Supported Rhodium Catalysts by Combined Energy Dispersive XAFS and DRIFTS Spectroscopies

    International Nuclear Information System (INIS)

    Evans, John; Dent, Andrew J.; Diaz-Moreno, Sofia; Fiddy, Steven G.; Jyoti, Bhrat; Tromp, Moniek; Newton, Mark A.

    2007-01-01

    The techniques of energy dispersive EXAFS (EDE), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and mass spectrometry (MS) have been combined to study the structure and function of an oxide supported metal catalyst, namely 5 wt% Rh/Al2O3. Using a FreLoN camera as the EDE detector and a rapid-scanning IR spectrometer, experiments could be performed with a repetition rate of 50 ms. The results show that the nature of the rhodium centers is a function of the partial pressures of the reacting gases (CO and NO) and also temperature. This combination of gases oxidizes metallic rhodium particles to Rh(CO)2 at room temperature. The proportion of the rhodium adopting this site increases as the temperature is raised (up to 450 K). Above that temperature the dicarbonyl decomposes and the metal reclusters. Once this condition is met, catalysis ensues. Gas switching techniques show that at 573 K with NO in excess, the clusters can be oxidized rapidly to afford a linear nitrosyl complex; re-exposure to CO also promotes reclustering and the CO adopts terminal (atop) and bridging (2-fold) sites

  1. The Omicron Spectrometer

    CERN Document Server

    Allardyce, B W

    1976-01-01

    It is intended to build a spectrometer with a large solid angle and a large momentum acceptance at the reconstructed synchrocyclotron at CERN. This spectrometer will have an energy resolution of about 1 MeV for particles with momenta up to about 400 MeV/c.

  2. Rationalization of activation energies for creep of dispersion strengthened aluminium materials

    International Nuclear Information System (INIS)

    Carreno, F.; Ruano, O. A.

    2001-01-01

    The high apparent activation energies for creep of various aluminum dispersion strengthened materials have been analyzed. A direct relationship between the activation energies and stress exponents for every material has been observed. The values of the Q a p/n a p ratios group around some constant values, Q m , which depend solely on the deformation mechanism. Therefore, Q m establishes an easy, fast and reliable criterion to determine the underlying creep deformation mechanism of any reinforced materials. (Author) 18 refs

  3. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks

  4. The DEIS high energy muon spectrometer. II. The data acquisition system

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Dau, W.D.; Faehnders, E.; Jokisch, H.; Kaleschke, G.P.; Klemke, G.; Sauerland, K.; Schmidtke, G.; Uhr, R.C.; Bella, G.; Oren, Y.; Virni, U.; Seidman, A.

    1977-01-01

    The whole spectrometer is read out and controlled on-line via a CAMAC-system by a minicomputer. The magnetostrictive read out signals of 66 magnetostrictive read out wands of the wire spark chambers are digitized by 20-MHz-scalers which can store up to 8 sparks per chamber. The time-of-flight of the muon, the pulse heights of the scintillation counters, the time of event are also recorded. The on-line-computer makes reliability checks of the data and stores them together with monitor data about magnetic field, gas and high voltage system, etc. on magnetic tape for off-line analysis. (author)

  5. Application of a low energy x-ray spectrometer to analyses of suspended air particulate matter

    International Nuclear Information System (INIS)

    Giauque, R.D.; Garrett, R.B.; Goda, L.Y.; Jaklevic, J.M.; Malone, D.F.

    1975-01-01

    A semiconductor detector x-ray spectrometer has been constructed for the analysis of elements in air particulate specimens. The excitation radiation is provided, either directly or indirectly, using a low power (40 watts) Ag anode x-ray tube. Less than 100 ng for most of the elements in the range Mg → Zr, Pb are easily detected within two 1-minute counting intervals. A calibration technique for light element analysis and an experimental method which compensates for particle size effects are discussed. (auth)

  6. Effects of Single Dose Energy Drink on QT and P-Wave Dispersion

    Directory of Open Access Journals (Sweden)

    Huseyin Arinc

    2013-12-01

    Full Text Available INTRODUCTION: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull on QT and P duration and dispersion on surface electrocardiogram. METHODS: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or those P-waves and QT intervals unavailable in at least eight ECG leads were excluded. Subjects having insomnia, lactose intolerance, caffeine allergy, recurrent headaches, depression, any psychiatric condition, and history of alcohol or drug abuse, pregnant or lactating women were also excluded from participation. 12 lead ECG was obtained before and after consumption of 250 cc enegry drink. QT and P-wave dispersion was calculated. RESULTS: No significant difference have occurred in heart rate (79 ± 14 vs.81 ±13, p=0.68, systolic pressure (114 ± 14 vs.118 ± 16,p=0.38, diastolic blood pressure (74 ± 12 vs.76 ± 14, p=0.64, QT dispersion (58 ± 12 vs. 57 ± 22, p= 0.785 and P-wave dispersion (37 ± 7 vs. 36 ± 13, p= 0.755 between before and 2 hours after consumption of energy drink. DISCUSSION AND CONCLUSION: Consumption of single dose energy drink doesn't affect QT dispersion and P-wave dispersion, heart rate and blood pressure in healthy adults.

  7. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  8. On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structures

    International Nuclear Information System (INIS)

    Vashkovsky, Anatolii V; Lock, Edwin H

    2011-01-01

    The energy and dispersion characteristics of a dipole spin wave in a ferrite-dielectric-metal structure are calculated. An analysis of spin wave dispersion characteristics with extreme points demonstrates how fundamental relationships among the propagation constant, phase and group velocities, Poynting vector, and power flux manifest themselves when the wavenumber changes near these points. A comparison of magnetostatic approximation results with calculations using Maxwell's equations shows the inadequacy of the magnetostatic approximation formulas currently used for calculating the Poynting vector and power flux of dipole spin waves. A correct alternative is proposed. (methodological notes)

  9. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  10. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Elementary analysis by means of the x fluorescence and energy dispersion

    International Nuclear Information System (INIS)

    Jbeli, H.

    1988-10-01

    Three actualisation reports are shown, in the three first chapters, concerning the following subjects: x fluorescence principle, energy dispersive X ray spectroscopy and excitation spectrum characteristics. The matrice effects, the energy equivalence concept, and the correction methods of the interelement effects, related to a calibration curve, are discussed. For the last ones, it is shown that they are supplied to rough values. Quantitative analysis results are shown. A new possibility has been added to those of data processing program usually applied in quantitative analysis. In the second method applied in quantitative analysis, standard samples are used. In both methods an error appreciation analysis is carried out. It is shown that energy dispersive X fluorescence analysis can be applied to thin layers composition and thickness characterization [fr

  12. Dosimetry and LET spectrometry in C 290 MeV/n and Ne 400 MeV/n HIMAC ion beam by different TLD's, TED based LET spectrometers, and Si energy-deposition spectrometer

    International Nuclear Information System (INIS)

    Spurny, F.; Brabcova, K.; Jadrnickova, I.; Uchihori, Y.; Kitamura, H.; Yasuda, N.; Molokanov, A. G.

    2009-01-01

    The sets of track etched detectors based (TED) spectrometer's of the linear energy transfer (LET) have been, together with two types of thermoluminescent detectors (TLD)and MDU- Liulin energy deposition spectrometer exposed in the C 290 MeV/n and Ne 400 MeV/n ion beams at the HlMAC installation at NIRS, Chiba, Japan. The experiment has been performed in the frame of NPI project 20P241 agreed by HlMAC P AC at the beginning of 2008 year. Up to now, moxstle only results obtained in C-ion beam have been treated and analyzed. Sets of TED spectrometer's and TLD detectors have been exposed in 19 depths in the C-ion beam with expected LET values of primary particles from 13 keV/μm in water, through the Bragg peak area up to two depth behind the Bragg peak. The contribution of fragments to total number of events, and to the energy absorbed in Si has been determined, when possible separately for different fragments. In all cases also total contribution of fragments (and other secondary particles) to the total number of energy deposition events and to the absorbed dose has been estimated. LET and energy deposition spectra obtained will be compared together , a good agreement of data has bee stated. Some of results have been also compared with those obtained by calculation by means of PHITS code. (authors)

  13. The application of a microstrip gas counter to energy-dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Veloso, J.F.C.A.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    Performance characteristics of a microstrip gas counter operated as a x-ray fluorescence spectrometer are reported. Gas amplification as a function of microstrip anode-cathode voltage was measured, and the breakdown threshold voltage was determined in pure xenon. The detector temporal stability and the effect of gas purity were assessed. Energy resolution and linearity, detection efficiency, and uniformity of spatial response in the 2- to 60-keV x-ray energy range were determined from the pulse-height distributions of the fluorescence x-ray spectra induced in a variety of single- and multi-element sample materials. Energy resolution similar to conventional proportional counters was achieved at 6 keV

  14. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  15. Relation of wave energy and momentum with the plasma dispersion relation in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Berk, H.L.; Pfirsch, D.

    1988-01-01

    The expressions for wave energy and angular momentum commonly used in homogeneous and near-homogeneous media is generalized to inhomogeneous media governed by a nonlocal conductivity tensor. The expression for wave energy applies to linear excitations in an arbitrary three-dimensional equilibrium, while the expression for angular momentum applies to linear excitations of azimuthally symmetric equilibria. The wave energy E-script/sub wave/ is interpreted as the energy transferred from linear external sources to the plasma if there is no dissipation. With dissipation, such a simple interpretation is lacking as energy is also thermally absorbed. However, for azimuthally symmetric equilibria, the expression for the wave energy in a frame rotating with a frequency ω can be unambiguously separated from thermal energy. This expression is given by E-script/sub wave/ -ωL/sub wave/ l, where L/sub wave/ is the wave angular momentum defined in the text and l the azimuthal wavenumber and it is closely related to the real part of a dispersion relation for marginal stability. The imaginary part of the dispersion is closely related to the energy input into a system. Another useful quantity discussed is the impedance form, which can be used for three-dimensional equilibrium without an ignorable coordinate and the expression is closely related to the wave impedance used in antenna theory. Applications to stability theory are also discussed

  16. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    International Nuclear Information System (INIS)

    Cui Tiejun; Kong Jinau

    2004-01-01

    From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain

  17. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis

    International Nuclear Information System (INIS)

    Genzel, Ch.; Denks, I.A.; Gibmeier, J.; Klaus, M.; Wagener, G.

    2007-01-01

    In April 2005 the materials science beamline EDDI (Energy Dispersive DIffraction) at the Berlin synchrotron storage ring BESSY started operation. The beamline is operated in the energy-dispersive mode of diffraction using the high energy white photon beam provided by a superconducting 7 T multipole wiggler. Starting from basic information on the beamline set-up, its measuring facilities and data processing concept, the wide range of applications for energy-dispersive diffraction is demonstrated by a series of examples coming from different fields in materials sciences. It will be shown, that the EDDI beamline is especially suitable for the investigation of structural properties and gradients in the near surface region of polycrystalline materials. In particular, this concerns the analysis of multiaxial residual stress fields in the highly stressed surface zone of technical parts. The high photon flux further facilitates fast in situ experiments at room as well as high temperature to monitor for example the growth kinetics and reaction in thin film growth

  18. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  19. Design and development of wide energy neutron REM equivalent spectrometer-dosimeters based on polycarbonates and Cr-39

    International Nuclear Information System (INIS)

    Faermann, S.

    1985-03-01

    This work describes a system composed of a Rem response personnel neutron dosemeter, based on boron radiators and a polycarbonate track detector, for monitoring dose equivalents in the energy range 1 eV to 14 MeV, an electrochemical etching system for revealing damage sites in solid state track etch detectors, a reader for magnifying the etched pits and a microprocessor for evaluating the dose equivalents and their uncertainties. The performance and directional dependence of the dosemeter when exposed to monoenergetic and polyenergetic neutron fields in the epithermal and fast energy regions are discussed. Saturation effects in polycarbonate foils are presented and a comparison is made between the response of polycarbonate and CR-39 foils, used as passive detectors in the dosemeter. A new passive miniature fast neutron spectrometer-dosimeter is also described. The device is based on the detection of proton tracks by electrochemical etching of CR-39 foils covered with thin polyethylene layers of different thicknesses. By means of this device it is possible to assess the fast neutron energy spectrum in 10 energy intervals in the energy range 0.5-15 MeV. Dose equivalents can be determined in the dose equivalent range 20 mRem to 8 Rem, approximately (author)

  20. Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues

    Science.gov (United States)

    Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.

    2017-08-01

    An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.

  1. Influence of experimental conditions on atom column visibility in energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dycus, J.H.; Xu, W.; Sang, X. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way Engineering Building 1, Raleigh, NC 27606 (United States); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); LeBeau, J.M., E-mail: jmlebeau@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way Engineering Building 1, Raleigh, NC 27606 (United States)

    2016-12-15

    Here we report the influence of key experimental parameters on atomically resolved energy dispersive X-ray spectroscopy (EDX). In particular, we examine the role of the probe forming convergence semi-angle, sample thickness, lattice spacing, and dwell/collection time. We show that an optimum specimen-dependent probe forming convergence angle exists to maximize the signal-to-noise ratio of the atomically resolved signal in EDX mapping. Furthermore, we highlight that it can be important to select an appropriate dwell time to efficiently process the X-ray signal. These practical considerations provide insight for experimental parameters in atomic resolution energy dispersive X-ray analysis. - Highlights: • Impacts of microscope operating conditions on EDX signal and atom column contrast are demonstrated. • Influence of sample thickness and lattice spacing is shown. • Conditions for obtaining optimal signal and contrast for different sample types are discussed. • Effects of dwell time during EDX acquisition are discussed.

  2. Ultrastructural and Energy dispersive analysis of inorganic inclusions in a muscle biopsy

    International Nuclear Information System (INIS)

    Dodson, R.F.; Castillo-Mozun, P.; Hieger, L.R.; Williams, M.G. Jr.

    1981-01-01

    A muscle biopsy that, by light microscopy, exhibited mild atrophy consistent with chronic denervating disease was submitted for ultrastructural analysis. Inorganic structures within the tissue were defined by energy dispersive analysis as aluminosilicates, magnesium silicates, and iron deposits. These structures were localized in the interstitial (intercollagenous) area and in high concentrations within degenerated muscle bundles. An alteration of the blood/muscle barrier has obviously occurred; however, the extent to which the end result commonly occurs in humans is unknown. Clarification of the question raised by this observation will have to be derived from animal studies, and clinicians must have an awareness of the need for electron microscopy/energy-dispersive x-ray analysis in muscle biopsies from patients with similar therapeutic backgrounds

  3. In situ determination of K, Ca, S and Si in fresh sugar cane leaves by handheld Energy Dispersive X-Ray Fluorescence Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Marcelo B.B.; Adame, Andressa; Almeida, Eduardo de; Brasil, Marcos A.S.; Krug, Francisco J., E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil); Schaefer, Carlos E.G.R. [Departamento de Solos, Universidade Federal de Viçosa, MG (Brazil)

    2018-05-01

    A portable energy dispersive X-ray fluorescence spectrometer was evaluated in the in situ analysis of fresh sugar cane leaves for real time plant nutrition diagnosis. Fresh leaf fragments (n = 10 sugar cane varieties; 20 fragments per leaf; 2 measurement sites per fragment) were irradiated and the averaged data from X-ray characteristic emission lines intensities (for K, Ca, S and Si Kα lines) were in close agreement with mass fraction data obtained by a validated comparative method. The linear correlation coefficients (r) ranged from 0.9575 for Ca to 0.9851 for Si. The obtained limits of detection were at least two-fold lower than the critical nutrient levels. Manganese can also be properly determined, but validation still requires more robust calibration models. The proposed method is a straightforward approach towards the fast evaluation of the nutritional profile of plants avoiding time-consuming steps, which involve drying, grinding, weighing, and acid digestion. (author)

  4. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  5. Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography

    International Nuclear Information System (INIS)

    Pani, S.; Cook, E.J.; Horrocks, J.A.; Jones, J.L.; Speller, R.D.

    2010-01-01

    A method for sample characterization using energy-dispersive X-ray diffraction computed tomography (EDXRDCT) is presented. The procedures for extracting diffraction patterns from the data and the corrections applied are discussed. The procedures were applied to the characterization of breast tissue samples, 6 mm in diameter. Comparison with histological sections of the samples confirmed the possibility of grouping the patterns into five families, corresponding to adipose tissue, fibrosis, poorly differentiated cancer, well differentiated cancer and benign tumour.

  6. Analysis of trace elements in medicinal plants with energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Ekinci, N.; Polat, R.; Budak, G.; Ekinci, R.

    2004-01-01

    Mankind still depend on traditional herbal medicine for the treatment of various diseases and ailments. Elemental composition and concentration of medicinal plants have been investigated by energy dispersive X-ray fluorescence. The elements present in medicinal plants are P, Cl, K, Ca, S, Al, Ti, V, Rb, Sr, Zr, Nb, Mo, In, Sn, I and Ce. The physical basis of the used analytical method, the experimental set up and the procedure of sample preparation are presented. (author)

  7. Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons

    Science.gov (United States)

    Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.

    2015-08-01

    Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.

  8. Energy dispersion X-ray fluorescence techniques in water pollution analysis

    International Nuclear Information System (INIS)

    Holynska, B.

    1980-01-01

    Advantages and limitations of energy dispersion X-ray fluorescence methods for analysis of pollutants in water are discussed. The necessary equipment for X-ray measurement of insoluble and dissolved trace metals in water is described. Different techniques of enrichment of trace metals are presented: ion exchange on selective Chelex-100 exchanger, precipitation with chelating agents DDTC and APDC, and adsorption on activated carbon. Some results obtained using different preconcentration methods for trace metals determination in different waters are presented. (author)

  9. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  10. Effects of Single Dose Energy Drink on QT and P-Wave Dispersion

    OpenAIRE

    Arınç, Hüseyin; Sarli, Bahadir; Baktir, Ahmet Oguz; Yolcu, Mustafa; Ozyildirim, Serhan; Kayardi, Mahmut; Cosgun, Mehmet; Erguzel, Nuri; Gunduz, Huseyin; Uyan, Cihangir

    2013-01-01

    Objective: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull) on QT and P duration and dispersion on surface electrocardiogram.Methods: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or tho...

  11. Energy-dispersive X-ray fluorescence analysis of cerium in ferrosilicon

    International Nuclear Information System (INIS)

    Marbec, E.R.

    1987-01-01

    The cerium was determined in ferrosilicon samples by energy-dispersive X-ray fluorescence techniques (XRF) techniques, with a secondary target of gadolinium. The methods employed were: comparison and linear regression with reference materials with cerium concentration between 0.4 and 1.0%. The samples were prepared in the form of pellets and the analytical results are reported as an average of five determinations with a confidence limits at 95% probability. (Author) [es

  12. Analysis of kiwi fruit (Accented deliciosa) by energy dispersive X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia S.; Oliveira, Marcia L. de; Silva, Lucia C.A.S.; Arthur, Valter; Almeida, Eduardo

    2011-01-01

    The search for a healthy life has led consumers to eat fruits and vegetables in place of manufactured products, however, the demand for minimally processed products has evolved rapidly. The kiwi has at least eight nutrients beneficial to health: calcium, magnesium, manganese, phosphorus, iron, potassium, sodium and has also high vitamin C, which has wide acceptance in consumer markets. Energy dispersive spectroscopy X-ray (EDX) is the analytical technique used for elemental analysis or chemical characterization of a sample. It is a variant of fluorescence spectroscopy X-ray based on the sample through an investigation of interactions between electromagnetic radiation and matter, analyzing X-rays emitted by matter in response to being struck by charged particles. The aim of this study were to determine potassium, calcium, iron and bromine (K, Ca, Fe and Br, respectively) present in kiwifruit using the technique of fluorescence X-ray energy dispersive (EDXRF). Kiwifruit were peeled, washed and cut into slices and freeze-dried. After drying the sample was held digestion and subsequent reading of the same equipment in the X-ray fluorescence energy dispersive (EDXRF). The results indicated that the contents of potassium, calcium, iron and bromine are present in kiwifruit as expected when compared to Brazilian Table of Food Composition. (author)

  13. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  14. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  15. Energy dispersion of charged particles decelerated in a two-dimensional electrostatic field of the type x1/n

    International Nuclear Information System (INIS)

    Zashkvara, V.V.; Bok, A.A.

    1992-01-01

    Two components of the spatial dispersion of particles with respect to kinetic energy can be distinguished of the motion of charged particle beams in electrostatic mirros with a two-dimensional field φ(x,y) ans xz symmetry plane. The first is the longitudinal dispersion, which is along the z axis perpendicular to the field; the second is the transverse dispersion, along the x axis parallel to the field vector in the plane of symmetry. The longitudinal dispersion is a basic characteristic of electrostatic mirrors used as energy analyzers. It has been shown that for first-order angular focusing, the longitudinal dispersion, divided by the focal length, is independent of the structure of the two-dimensional field and is a function only of the angle at which the charged particle beam enters the mirror. The transverse dispersion stems from the energy dependence of the penetration depth of the beam as it is decelerated, and it plays an important role when the energy of a charged particle beam is analyzed by the filtering principle, making use of the property of an electrostatic mirror to transmit or reflect charged particles with kinetic energy in a specified interval. This type of dispersion in electrostatic mirrors with two-dimensional fields has not been analyzed systematically. In the present note the authors consider a particular type of two-dimensional electrostatic field which is characterized by a large transverse dispersion, many times larger than in existing electrostatic reflecting filters employing planar and cylindrical fields

  16. Angular dispersion and energy loss of H+ and He+ in metals

    International Nuclear Information System (INIS)

    Cantero, Esteban

    2006-01-01

    In this master thesis the effects produced when a light ion beam traverses a thin metallic film were studied.In particular, the interactions of low energy (E ≤ 10 keV) light ions (H + ,H 2 + , D + , He + ) with monocrystalline and also polycrystalline gold samples were investigated.In first place, the dependence of the stopping power with projectiles' velocity was studied, analyzing the threshold effect in the excitation of the 5d electrons in the channelling regime for energies between 0,4 and 9 keV.Next, the angular dispersion of ions in polycrystalline and monocrystalline films was measured and analyzed.Comparisons for different energies and projectiles were done, studying molecular and isotopic effects.Using Lindhard's channeling theory, a scale law for the angular dispersion of angles greater than the critical angle was found.Additionally, the angular dependence of the energy loss and the energy loss straggling of protons transmitted through monocrystals were measured.To explain the angular variations of these magnitudes a theoretical model based on the electronic density fluctuations inside the channel was developed [es

  17. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  18. Impact localization in dispersive waveguides based on energy-attenuation of waves with the traveled distance

    Science.gov (United States)

    Alajlouni, Sa'ed; Albakri, Mohammad; Tarazaga, Pablo

    2018-05-01

    An algorithm is introduced to solve the general multilateration (source localization) problem in a dispersive waveguide. The algorithm is designed with the intention of localizing impact forces in a dispersive floor, and can potentially be used to localize and track occupants in a building using vibration sensors connected to the lower surface of the walking floor. The lower the wave frequencies generated by the impact force, the more accurate the localization is expected to be. An impact force acting on a floor, generates a seismic wave that gets distorted as it travels away from the source. This distortion is noticeable even over relatively short traveled distances, and is mainly caused by the dispersion phenomenon among other reasons, therefore using conventional localization/multilateration methods will produce localization error values that are highly variable and occasionally large. The proposed localization approach is based on the fact that the wave's energy, calculated over some time window, decays exponentially as the wave travels away from the source. Although localization methods that assume exponential decay exist in the literature (in the field of wireless communications), these methods have only been considered for wave propagation in non-dispersive media, in addition to the limiting assumption required by these methods that the source must not coincide with a sensor location. As a result, these methods cannot be applied to the indoor localization problem in their current form. We show how our proposed method is different from the other methods, and that it overcomes the source-sensor location coincidence limitation. Theoretical analysis and experimental data will be used to motivate and justify the pursuit of the proposed approach for localization in a dispersive medium. Additionally, hammer impacts on an instrumented floor section inside an operational building, as well as finite element model simulations, are used to evaluate the performance of

  19. A novel electrostatic ion-energy spectrometer by the use of a proposed ``self-collection'' method for secondary-electron emission from a metal collector

    Science.gov (United States)

    Hirata, M.; Nagashima, S.; Cho, T.; Kohagura, J.; Yoshida, M.; Ito, H.; Numakura, T.; Minami, R.; Kondoh, T.; Nakashima, Y.; Yatsu, K.; Miyoshi, S.

    2003-03-01

    For the purpose of end-loss-ion energy analyses in open-field plasmas, a newly developed electrostatic ion-energy spectrometer is proposed on the basis of a "self-collection" principle for secondary-electron emission from a metal collector. The ion-energy spectrometer is designed with multiple grids for analyzing incident ion energies, and a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most important characteristic properties of this spectrometer is the use of our proposed principle of a "self-collection" mechanism due to E×B drifts for secondary electrons emitted from the grounded metal-plate collector by the use of no further additional magnetic systems except the ambient open-ended fields B. The proof-of-principle and characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed ion-energy spectrometer for end-loss-ion diagnostics in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation, since these electrons have contributed to disturb these ion signals from conventional end-loss-ion detectors.

  20. A gamma-Ray spectrometer system for low energy photons by coupling two detectors

    International Nuclear Information System (INIS)

    Martinez, A.; Palomares, J.; Romero, L.; Travesi, A.

    1986-01-01

    This report describes the study performed to obtain a composite (sun uma) spectrum from a Low Energy Gamma Spectrometry System by coupling two planar Germanium detectors. This disposition allows to obtain a high counting efficiency for the total system. It shows the improvement achieved by the synthetic spectrum which is obtained by adding the two original spectra through the LULEPS code. This code corrects the differences (channel/energy) between both two spectra before performing the addition. (Author) 6 refs

  1. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00406842; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner Sphere Spectrometers (BSS). The extended- range BSS that was used for this work, consists of 7 spheres with an overall response to neutrons up to 2 GeV. A 3He detector is used as a thermal counter in the centre of each sphere. In the context of this thesis the BSS was calibrated in monoenergetic neutron fields at low and intermediate energies. It was also used for measurements in several high energy mixed fields. These measurements have led to the calculation of neutron yields and spectral fluences from unshielded targets....

  2. A combined cosmic ray muon spectrometer and high energy air shower array

    International Nuclear Information System (INIS)

    Cherry, M.L.; Ayres, D.S.; Halzen, F.

    1986-01-01

    Cosmic rays have been detected at energies in excess of 10 20 eV, and individual sources have been conclusively identified as intense emitters of gamma rays at energies up to 10 16 eV. There is clearly a great deal of exciting astrophysics to be learned from such studies, but it has been suggested that there may be particle physics to be learned from the cosmic beam as well. Based in particular on the reports of surprisingly high fluxes of underground muons from the direction of Cygnus X-3 modulated by the known orbital period, there have been several suggestions recently invoking stable supersymmetric particles produced at Cygnus X-3, enhanced muon production from high energy photons, quark matter, and ''cygnets.'' Although the underground muon results have been questioned, it may still be worthwhile to consider the possibility of new physics beyond the standard model with energy scale (G/sub F/)/sup -1/2/ ≥ 0.25 TeV. For example, there have been recent discussions on the experimental signatures to be observed from new high energy photon couplings to matter, exchanges between constituent quarks and leptons, and stable gluinos and photinos mixed in with the cosmic gamma ray flux. We describe here a possible detector to search for such effects. We utilize the possibility that point sources like Cygnus X-3 can be used to provide a directional time-modulated ''tagged'' high energy photon beam

  3. Identification and energy measurement of charged particles in the 50-300 MeV energy range by means of a magnet-free hardron spectrometer

    International Nuclear Information System (INIS)

    Bayukov, Yu D.; Bukiej, A.E.; Gavrilov, V.B.

    1980-01-01

    Studied are the main characteristics (efficiency, time delay and amplitude singal distribution) of a magnet-free hadron spectrometer, in which a plastic scintillator block is the main part. The plastic scintillator having the form of a cylinder of the 20 cm diameter and the 20 cm height is examined with a photomultiplier through a 50 cm light guide. The dependencies of the amplitude conversion coefficient and signal time delay on the distance between the scintillation point and the light guide are resented. The analysis of the results obtained has shown that the closer the beam passes to the light guide, the greater is the signal amplitude. The counter signal delay linearly increases with the distance increase between the beam and the light guide. The dependence of the spectrometer efficiency on the proton energy is measured as well. The investigations have proved possible utilization of the scintillation detector described for identification of charged particles in the 50-300 MeV range and measurement of their energy with the 3-8% accuracy

  4. A new NAMA framework for dispersed energy end-use sectors

    International Nuclear Information System (INIS)

    Cheng, C.-C.

    2010-01-01

    This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two sectors make up the largest portions of energy consumption in developing countries. However, due to multiple barriers and lack of effective polices, energy efficiency in dispersed energy end-use sectors has not been effectively put into practice. The new NAMA framework described in this paper is designed to fulfill the demand for public policies and public sector investment in developing countries and thereby boost private sector investment through project based market mechanisms, such as CDM. The new NAMA framework is designed as a need-based mechanism which effectively considers the conditions of each developing country. The building sector is used as an example to demonstrate how NAMA measures can be registered and implemented. The described new NAMA framework has the ability to interface efficiently with Kyoto Protocol mechanisms and to facilitate a systematic uptake for GHG emission reduction investment projects. This is an essential step to achieve the global climate change mitigation target and support sustainable development in developing countries.

  5. Energy dispersive soft X-ray fluorescence analysis by radioisotopic α-particle excitation

    International Nuclear Information System (INIS)

    Robertson, R.

    1977-01-01

    A Si(Li) X-ray detector system and 210 Po α-particle excitation source are combined to form a spectrometer for low energy X-rays. Its response in terms of Ksub(α) X-ray rate is shown for thick targets of elements from fluorine to copper. Potential applications of the equipment to useful quantitative elemental analysis of geological, biological and organic materials are explored. The results of analyses for oxygen and silicon in rocks and potassium in vegetation samples are included. A semi-empirical method of correcting for absorption and enhancement effects is employed. This is based upon X-ray production and photon absorption cross-sections taken from the literature and upon a minimal number of experimentally derived coefficients. (Auth.)

  6. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  7. Conceptual study of a heavy-ion-ERDA spectrometer for energies below 6 MeV

    Science.gov (United States)

    Julin, Jaakko; Sajavaara, Timo

    2017-09-01

    Elastic recoil detection analysis (ERDA) is a well established technique and it offers unique capabilities in thin film analysis. Simultaneous detection and depth profiling of all elements, including hydrogen, is possible only with time-of-flight ERDA. Bragg ionization chambers or ΔE - E detectors can also be used to identify the recoiling element if sufficiently high energies are used. The chief limitations of time-of-flight ERDA are the beam induced sample damage and the requirement of a relatively large accelerator. In this paper we propose a detector setup, which could be used with 3 MeV to 6 MeV medium heavy beams from either a single ended accelerator (40Ar) or from a tandem accelerator (39K). The detector setup consists of two timing detectors and a gas ionization chamber energy detector. Compared to use of very heavy low energy ions the hydrogen recoils with this beam have sufficient energy to be detected with current gas ionization chamber energy detector. To reduce the beam induced damage the proposed detector setup covers a solid angle larger than 1 msr, roughly an order of magnitude improvement over most time-of-flight ERDA setups. The setup could be used together with a small accelerator to be used for light element analysis of approximately 50 nm films. The concept is tested with 39K beam from a 1.7 MV Pelletron tandem accelerator with the Jyväskylä ToF-ERDA setup. In addition to the measurements effects related to low energies and increase in the solid angle are simulated with Monte Carlo methods.

  8. High energy X-γ ray spectrometer on the Chandrayaan-1 mission to ...

    Indian Academy of Sciences (India)

    U decay series. Mapping of U and Th concentration over the lunar surface, par- ticularly in the polar and U–Th rich regions will also be attempted through detection of prominent lines from the U and Th decay series in the above energy range. The low signal strengths of these emissions require a detector with high sensitivity ...

  9. The internal strain parameter of gallium arsenide measured by energy-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Cousins, C.S.G.; Sheldon, B.J.; Webster, G.E.; Gerward, L.; Selsmark, B.; Staun Olsen, J.

    1989-01-01

    The internal strain parameter of GaAs has been measured by observing the stress-dependence of the integrated intensity of the weak 006 reflection, with the compressive stress along the [1anti 10] axis. An energy-dispersive technique was employed so that the reflection could be obtained at a photon energy close to the minimum in the structure factor, thereby approaching closely the strictly-forbidden condition that applies at any energy in the diamond structure. A value anti A=-0.138±0.005, equivalent to a bond-bending parameter ζ=0.55=0.02, has been found. This is in good agreement with recent theoretical calculations and indirect determinations related to the bandstructure of GaAs. (orig.)

  10. A new analysis technique to measure fusion excitation functions with large beam energy dispersions

    Science.gov (United States)

    Figuera, P.; Di Pietro, A.; Fisichella, M.; Lattuada, M.; Shotter, A. C.; Ruiz, C.; Zadro, M.

    2018-01-01

    Peculiar nuclear structures of two colliding nuclei such has clustering, neutron halo/skin or very low breakup thresholds can affect the reaction dynamics below the Coulomb barrier and this may also have astrophysical consequences. In order to have a better understanding of this topic, in the last decade, several experiments were performed. A typical experimental challenge of such studies is the need to measure excitation functions below the Coulomb barrier, having a strong energy dependence, with rather large beam energy dispersions inside the target. This may easily lead to ambiguities in associating the measured cross section with a proper beam energy. In this paper a discussion on this topic is reported and a new technique to deal with the above problem will be proposed.

  11. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...... confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act...

  12. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghammraoui, B., E-mail: bahaa.ghammraoui@cea.fr [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Tabary, J. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Pouget, S. [CEA-INAC Sciences de la matieres, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Paulus, C.; Moulin, V.; Verger, L. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Duvauchelle, Ph. [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne Cedex (France)

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  13. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  14. Processing and quantification of x-ray energy dispersive spectra in the Analytical Electron Microscope

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1988-08-01

    Spectral processing in x-ray energy dispersive spectroscopy deals with the extraction of characteristic signals from experimental data. In this text, the four basic procedures for this methodology are reviewed and their limitations outlined. Quantification, on the other hand, deals with the interpretation of the information obtained from spectral processing. Here the limitations are for the most part instrumental in nature. The prospects of higher voltage operation does not, in theory, present any new problems and may in fact prove to be more desirable assuming that electron damage effects do not preclude analysis. 28 refs., 6 figs

  15. Analysis of siliceous geologic materials by energy-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1987-01-01

    The determination of the elements Al, Si, K, Ca, Ti, Cr, Mn and Fe in siliceous geologic samples by energy-dispersive X-ray fluorescence is investigated using the most adequate excitation conditions: direct excitation mode (rhodium anode X-ray tube) for the former two elements, and the secondary targets titanium for K and Ca, and germanium for Ti, Cr, Mn and Fe. For the correction of matrix effects the use of ratio methods has been tested. Procedure files have been defined allowing the automatic simultaneous acquisition and processing of spectra. (author)

  16. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...... conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting....

  17. Application of energy-dispersive XRF technique in the hydrometallurgy study of local zircon

    International Nuclear Information System (INIS)

    Meor Yusoff Sulaiman; Kamaruddin Hussin; Azizan Aziz

    1996-01-01

    In this study, energy-dispersive X-ray Fluorescence (EDXR-F) was used to analyse the elemental composition of the starting zircon mineral associated elements in the leaching solution. Besides analysing the major elements i.e. of zirconium, silicon and hafnium, trace elemental analysis for iron, titanium and the naturally occurring radioactive element thorium and uranium are important in establishing the grades of Malaysian zircon. The technique was also used in determine the optimum conditions for zirconium and hafnium recovery during the leaching process

  18. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies

  19. A new energy-dispersive powder diffraction facility at the SRS

    International Nuclear Information System (INIS)

    Clark, S.M.

    1996-01-01

    A new energy-dispersive powder diffraction facility has been constructed on the 6 T wiggler beam line of the Daresbury Laboratory Synchrotron Radiation Source. This paper describes the facility, in particular the beam definition apparatus (front end), the detector positioning system (back end), a 10 000 kN loading frame and high pressure cell and the counting and control electronics. Some recent results are presented including a study of the compressibility of talc and the phase I→II transition of ammonium chloride. (orig.)

  20. Quantitative schemes in energy dispersive X-ray fluorescence implemented in AXIL

    International Nuclear Information System (INIS)

    Tchantchane, A.; Benamar, M.A.; Tobbeche, S.

    1995-01-01

    E.D.X.R.F (Energy Dispersive X-ray Fluorescence) has long been used for quantitative analysis of many types of samples including environment samples. the software package AXIL (Analysis of x-ray spectra by iterative least quares) is extensively used for the spectra analysis and the quantification of x-ray spectra. It includes several methods of quantitative schemes for evaluating element concentrations. We present the general theory behind each scheme implemented into the software package. The spectra of the performance of each of these quantitative schemes. We have also investigated their performance relative to the uncertainties in the experimental parameters and sample description

  1. A sub-50meV spectrometer and energy filter for use in combination with 200kV monochromated (S)TEMs.

    Science.gov (United States)

    Brink, H A; Barfels, M M G; Burgner, R P; Edwards, B N

    2003-09-01

    A high-energy resolution post-column spectrometer for the purpose of electron energy loss spectroscopy (EELS) and energy-filtered TEM in combination with a monochromated (S)TEM is presented. The prism aberrations were corrected up to fourth order using multipole elements improving the electron optical energy resolution and increasing the acceptance of the spectrometer for a combination of object area and collection angles. Electronics supplying the prism, drift tube, high-tension reference and critical lenses have been newly designed such that, in combination with the new electron optics, a sub-50 meV energy resolution has been realized, a 10-fold improvement over past post-column spectrometer designs. The first system has been installed on a 200 kV monochromated TEM at the Delft University of Technology. Total system energy resolution of sub-100 meV has been demonstrated. For a 1s exposure the resolution degraded to 110 meV as a result of noise. No further degradation in energy resolution was measured for exposures up to 1 min at 120 kV. Spectral resolution measurements, performed on the pi* peak of the BN K-edge, demonstrated a 350 meV (FWHM) peak width at 200 kV. This measure is predominantly determined by the natural line width of the BN K-edge.

  2. Resolution dependence on phase extraction by the Hilbert transform in phase calibrated and dispersion compensated ultrahigh resolution spectrometer-based OCT

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Maria, Michael; Feuchter, Thomas

    2018-01-01

    -linearities lead together to an unknown chirp of the detected interferogram. One method to compensate for the chirp is to perform a pixel-wavenumber calibration versus phase that requires numerical extraction of the phase. Typically a Hilbert transform algorithm is employed to extract the optical phase versus...... wavenumber for calibration and dispersion compensation. In this work we demonstrate UHR-OCT at 1300 nm using a Super continuum source and highlight the resolution constraints in using the Hilbert transform algorithm when extracting the optical phase for calibration and dispersion compensation. We demonstrate...... that the constraints cannot be explained purely by the numerical errors in the data processing module utilizing the Hilbert transform but must be dictated by broadening mechanisms originating from the experimentally obtained interferograms....

  3. A dilepton spectrometer project for SIS

    International Nuclear Information System (INIS)

    Meritet, L.

    1991-01-01

    An experimental project is presented to study e + e - pairs production in nucleus-nucleus collisions at GSI. Dileptons appear to be a clean probe to investigate in medium properties of nuclear form factors, baryon excitations (Δ) and mesons (π-dispersion relation; ρ-form factor) at high nuclear matter densities. The design of the detector system will be based on the experience obtained with the DLS-spectrometer at LBL and other dilepton detector systems in operation at high energy facilities. The project includes a fast electron trigger provided by a ring imaging Cherenkov detector with a segmented photomultiplier array. (author) 14 refs., 5 figs

  4. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  5. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  6. Automated x-ray spectrometer for mixed oxide pellets

    International Nuclear Information System (INIS)

    Lambert, M.C.; Goheen, M.W.; Urie, M.W.; Wynhoff, N.

    1979-01-01

    This paper discusses the development of an energy dispersive x-ray (EDX) spectrometer for the rapid, automated, close-coupled analysis of solid mixed plutonium--uranium oxide fuel pellets. Reasons are given for the system design, which is intended to give a relative precision (RSD) of +-0.3% in a total analysis time of three minutes. The principal problems in an EDX system are in maximizing the plutonium count rates

  7. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa_{5}

    Directory of Open Access Journals (Sweden)

    Tanmoy Das

    2012-11-01

    Full Text Available We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa_{5} that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV and high (approximately 1 eV binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  8. The energy-dispersive reflectometer at BESSY II: a challenge for thin film analysis

    CERN Document Server

    Pietsch, U; Geue, T; Neissendorfer, F; Brezsesinski, G; Symietz, C; Moehwald, H; Gudat, W

    2001-01-01

    Installed in 1999 the energy-dispersive reflectometer at the 13.2 bending magnet employs the exponentially decaying white X-ray emission spectrum of the 1.7 GeV storage ring of BESSY II outside the vacuum. Using an energy-dispersive detector specular and longitudinal-diffuse reflectivity spectra of thin films can be recorded simultaneously between 0.2 A sup - sup 1

  9. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    International Nuclear Information System (INIS)

    Daley, T.D.; Gibson, D.

    1990-01-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses

  10. Energy dispersive X-ray diffraction at high pressure in CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Baublitz, M.A. Jr.

    1981-01-01

    Energy dispersive X-ray techniques were used with a diamond anvil cell in the Cornell High Energy Synchrotron Source (CHESS). It was shown that quantitative relative intensity measurement could be made when the pressure was hydrostatic and the crystals were relatively defect free. The crystal structures of the high pressure polymorphs of Ge, GaAs, GaP, and AlSb were studied. Ge exhibits the β-tetragonal structure as found by Jamieson; however, the transition pressure is 80 +- 5 kbars. GaAs exhibits an orthorhombic structure above 172 +- 7 kbars, GaP the β-Sn structure above 215 +- 8 kbars, and AlSb an orthorhombic structure above 77 +- 5 kbars. (Auth.)

  11. Inducing Strong Density Modulation with Small Energy Dispersion in Particle Beams and the Harmonic Amplifier Free Electron Laser

    CERN Document Server

    McNeil, Brian W J; Robb, Gordon

    2005-01-01

    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative ele...

  12. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  13. Mass and energy dispersive recoil spectrometry of GaAs structures

    International Nuclear Information System (INIS)

    Hult, M.

    1994-01-01

    Mass and energy dispersive Recoil Spectrometry (RS) using heavy ions at energies of about 0.2Α-0.8Α MeV has attracted much interest recently due to its potential for separately and unambiguously generating information on isotopic depth distributions. The principal advantages of mass and energy dispersive RS are that both light and heavy elements can be separately studied simultaneously and problems caused by chemical matrix effects are avoided since the technique is based on high energy nucleus-nucleus scattering. In order to elucidate reactions taking place in various GaAs structures, Time of flight-Energy (ToF-E) RS was developed to allow Ga and As to be studied separately down to depths of about 500-800 nm with a depth resolution of about 16 nm at the surface. This was shown in a study of an Al x Ga 1-x As quantum-well structure. The benefits of using ToF-E RS on GaAs structures were further demonstrated in studies of Co/GaAs and CoSi 2 /GaAs reactions, as well as in a study of the composition of MOCVD grown Al x Ga 1-x As. Most recoil measurements employed 127 I at energies of about 50-90 MeV as projectiles. The recoil detector telescope consisted of a silicon energy detector and two carbon foil time pick-off detectors separated by a variable flight length of 213.5-961 mm. The reactions taking place between various thin films and GaAs were also studied using complementary techniques such as XRD, XPS and SEM. Co was found to react extensively with GaAs, already at about 300 degrees C, making it unsuitable as a contact material. Thin films of Co and Si were found to react extensively with each other and to form CoSi 2 at 500 degrees C and above. CoSi 2 , a low resistivity silicide, turned out to be stable on GaAs, at least up to 700 degrees C. Considerable grain growth could cause problems, however, in the use of CoSi 2 -contacts. 112 refs, figs, tabs

  14. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    2015-01-01

    (3) with a net positive dispersion. Furthermore, the net positive dispersion in the dispersive unit at least partially compensates for the negative nonlinear phase variation and the negative group-velocity dispersion produced by the bulk quadratic nonlinear medium when the optical pulse passes......A method and a pulse compressor (1) for compressing an optical pulse, wherein the pulse compressor comprising a bulk quadratic nonlinear medium (2) adapted for generating a negative nonlinear phase variation on the optical pulse and having a negative group-velocity dispersion, and a dispersive unit...

  15. The Characterisation of Settled Dust by Scanning Electron Microscopy and Energy Dispersive X-ray Analysis

    International Nuclear Information System (INIS)

    Shilton, Vaughan; Giess, Paul; Mitchell, David; Williams, Craig

    2002-01-01

    Settled dust has been collected inside the main foyers oft hree University buildings in Wolverhampton City Centre,U.K. Two of the three buildings are located in a street canyon used almost exclusively by heavy duty diesel vehicles. The dust was collected on adhesive carbonspectro-tabs to be in a form suitable for analysis by scanning electron microscope and energy dispersive X-ray analysis. Using these analytical techniques, individual particle analysis was undertaken for morphology and chemistry. Seasonal variations and variations due to location were observed in both the morphological measurements and chemical analysis. Many of the differences appear attributable to the influence of road traffic, in particular, the heavy duty diesel vehicles, travelling along the street canyon

  16. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    International Nuclear Information System (INIS)

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10 -7 –10 -3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder

  17. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Science.gov (United States)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  18. Energy-dispersive X-ray fluorescence analysis of organic-rich soils and sediments

    International Nuclear Information System (INIS)

    Parekh, P.P.

    1981-01-01

    A method has been developed for elemental analysis of environmental samples of soils and sediments rich in organic matter by energy-dispersive X-ray fluorescence spectrometry. It consists of three steps (i) determining the apparent concentration of elements by using calibration coefficients based on geochemical standards, (ii) subsequent assay of the total organic matter (TOM) from loss on ignition at 550 deg C, and (iii) evaluating the correct elemental concentration by normalizing for transparency from an empirical relationship. The main feature of the method is the sample analysis prior to ignition, which avoids any loss of trace elements - especially the volatile toxic elements, such as Zn, As, Se, and Pb - during heating. The method was tested on two organic-rich lake sediments (TOM> 30%). Concentrations of five elements (K, Mn, Fe, Zn, and Pb) determined by the present method and by atomic absorption spectrometry agreed within about +-10%. (author)

  19. A new device for energy-dispersive x-ray fluorescence

    Science.gov (United States)

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  20. Co marker determination in rumen liquid sample by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo de; Nascimento Filho, Virgilio F.; Massoni, Paulo R. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Leite, Laudi C.; Lanna, Dante P.D. [Escola Superior de Agricultura ' Luiz de Queiroz' (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia. Lab. de Anatomia e Fisiologia Animal (LAFA)]. E-mail: lcleite@ciagri.usp.br

    2007-07-01

    The Co element is used in nutritional studies as marker. This paper describes an analytical methodology for Co determination in rumen liquid sample using energy dispersive X-ray spectrometry (EDXRF). 200 {mu}L of the sample were dried at 60 deg C on 6.35 {mu}m Mylar film. Ga was used as internal standard. The excitation was carried out utilizing Mo target X-ray tube (Zr filter) at 30 kV / 20 mA. The acquisition time was 200 s. The accuracy of this methodology was assessed through standard addition method, the recovery obtained was 98.7 % for Co. The detection limit was 0.15 mg / L for this element. (author)

  1. Co marker determination in rumen liquid sample by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Almeida, Eduardo de; Nascimento Filho, Virgilio F.; Massoni, Paulo R.; Leite, Laudi C.; Lanna, Dante P.D.

    2007-01-01

    The Co element is used in nutritional studies as marker. This paper describes an analytical methodology for Co determination in rumen liquid sample using energy dispersive X-ray spectrometry (EDXRF). 200 μL of the sample were dried at 60 deg C on 6.35 μm Mylar film. Ga was used as internal standard. The excitation was carried out utilizing Mo target X-ray tube (Zr filter) at 30 kV / 20 mA. The acquisition time was 200 s. The accuracy of this methodology was assessed through standard addition method, the recovery obtained was 98.7 % for Co. The detection limit was 0.15 mg / L for this element. (author)

  2. Cr and Yb markers determination in animal feces by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Almeida, Eduardo de; Senicato, Luis A; Nascimento Filho, Virgilio F.; Gomide, Catarina A.

    2007-01-01

    Chromium and Ytterbium elements are utilized in animal nutritional studies as markers. This paper describes an analytical method for Cr and Yb determination in solid buffalo feces sample using standard addition method and energy dispersive X-ray spectrometry (EDXRF) technique. One gram dried sample was pressed manually in an XRF sample cup with Mylar film (6.3 μm thickness) in the bottom. The experimental conditions were: Mo target X-ray tube with Zr filter, operated at 25 kV/10 mA, and 500 s of acquisition time. The limits of detection for Cr and Yb were 16.6 and 11.4 mg/kg, respectively. This methodology has showed appropriated for simultaneous Cr and Yb determination as marker in animal feces. (author)

  3. Cr and Yb markers determination in animal feces by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo de; Senicato, Luis A; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Gomide, Catarina A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos (FZEA). Dept. de Zootecnia]. E-mail: cbgomide@usp.br

    2007-07-01

    Chromium and Ytterbium elements are utilized in animal nutritional studies as markers. This paper describes an analytical method for Cr and Yb determination in solid buffalo feces sample using standard addition method and energy dispersive X-ray spectrometry (EDXRF) technique. One gram dried sample was pressed manually in an XRF sample cup with Mylar film (6.3 {mu}m thickness) in the bottom. The experimental conditions were: Mo target X-ray tube with Zr filter, operated at 25 kV/10 mA, and 500 s of acquisition time. The limits of detection for Cr and Yb were 16.6 and 11.4 mg/kg, respectively. This methodology has showed appropriated for simultaneous Cr and Yb determination as marker in animal feces. (author)

  4. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.

    Science.gov (United States)

    Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry

    2016-01-27

    To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.

  5. A simple method to improve the quantification accuracy of energy-dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Walther, T

    2008-01-01

    Energy-dispersive X-ray spectroscopy in a transmission electron microscope is a standard tool for chemical microanalysis and routinely provides qualitative information on the presence of all major elements above Z=5 (boron) in a sample. Spectrum quantification relies on suitable corrections for absorption and fluorescence, in particular for thick samples and soft X-rays. A brief presentation is given of an easy way to improve quantification accuracy by evaluating the intensity ratio of two measurements acquired at different detector take-off angles. As the take-off angle determines the effective sample thickness seen by the detector this method corresponds to taking two measurements from the same position at two different thicknesses, which allows to correct absorption and fluorescence more reliably. An analytical solution for determining the depth of a feature embedded in the specimen foil is also provided.

  6. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    International Nuclear Information System (INIS)

    YangDai, Tianyi; Zhang, Li

    2016-01-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  7. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    Energy Technology Data Exchange (ETDEWEB)

    YangDai, Tianyi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zhang, Li, E-mail: zhangli@nuctech.com [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  8. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    Science.gov (United States)

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  9. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Energy Technology Data Exchange (ETDEWEB)

    Artem’ev, V. A., E-mail: niitm@inbox.ru [Research Institute of Materials Technology (Russian Federation); Nezvanov, A. Yu. [Moscow State Industrial University (Russian Federation); Nesvizhevsky, V. V. [Institut Max von Laue—Paul Langevin (France)

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  10. Investigation of Detectability of Elementary Composition of Rainbow trout muscle with EDS (Energy Dispersive Spectroscopy Method

    Directory of Open Access Journals (Sweden)

    Saltuk Buğrahan CEYHUN

    2017-06-01

    Full Text Available In present study, it is investigated that detectability of elementary composition of rainbow trout muscle using Energy Dispersive Spectroscopy (EDS. EDS system which has worked with attached to scanning electron microscope can do qualitative and semi-quantitative elementary analyses on selected region of sample using characteristic X-rays. For this purpose, it was performed four point and two mapping analyses from four samples. According to results, it was detected 13 elements which are consist of C, N and O in 87.70 percentage. As a result, although the method is sensitive and reliable, it is concluded that not adequate for elemental analysis alone but can be used as a support for analyzes with systems such as especially atomic absorption and ICP-MS.

  11. Cosmic ray antiproton measurements in the 4-19 GeV energy range using the NMSU/WiZard-matter antimatter superconducting spectrometer 2 (MASS2)

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Brunetti, M.T.; Codini, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Hof, M. [Siegen Univ. (Germany). Fachbereich Physik; Golden, R.L.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.M. [Florence Univ. (Italy)]|[INFN, Florence (Italy)

    1995-09-01

    The p/p-ratio from 4 to 19 GeV has been measured using the NMSU/WiZard balloon borne matter antimatter superconducting spectrometer (MASS2) instrument. This is the first confirmation of the cosmic ray antiproton component made in this energy range since their discovery in 1979. The MASS2 instrument is an updated version of the instrument flown in 1979. The p/p- ratio is 1.52x10{sup -}4.

  12. An Analysis on Some Factors Which Affect the Energy Resolution of a Low-background Anti-compton HPGe Gamma-ray Spectrometer

    International Nuclear Information System (INIS)

    Zhou Chunlin; Dai Junjie; Lei Junniu; Zhang Jiaoyu

    2009-01-01

    This paper describes the basic construction and performing theory of a set of low-background anti-compton high purity germanium gamma-ray spectrometer. On the basis of experiments, some factors which affect the energy resolution of the system are discussed. The optimum parameters configuration for the system is presented and it provides a decision-making ground for purchasing, installation and alignment of analogous system. (authors)

  13. Application of a Bonner sphere spectrometer for determination of the energy spectra of neutrons generated by ≈1 MJ plasma focus

    Czech Academy of Sciences Publication Activity Database

    Králík, M.; Krása, Josef; Velyhan, Andriy; Scholz, M.; Ivanova-Stanik, I.M.; Bienkowska, B.; Miklaszewski, R.; Schmidt, H.; Řezáč, K.; Klír, D.; Kravárik, J.; Kubeš, P.

    2010-01-01

    Roč. 81, č. 11 (2010), 113503/1-113503/5 ISSN 0034-6748 R&D Projects: GA MŠk LA08024 Grant - others:FP-6 EU(XE) RITA-CT2006-26095 Institutional research plan: CEZ:AV0Z10100523 Keywords : plasma focus * fusion DD neutrons * Bonner sphere spectrometer * energy spectra of scattered neutrons * unfolded and calculated spectra Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010

  14. Application of energy dispersive x-ray techniques for water analysis

    International Nuclear Information System (INIS)

    Funtua, I. I.

    2000-07-01

    Energy dispersive x-ray fluorescence (EDXRF) is a class of emission spectroscopic techniques that depends upon the emission of characteristic x-rays following excitation of the atomic electron energy levels by tube or isotopic source x-rays. The technique has found wide range of applications that include determination of chemical elements of water and water pollutants. Three EDXRF systems, the isotopic source, secondary target and total reflection (TXRF) are available at the Centre for Energy research and Training. These systems have been applied for the analysis of sediments, suspensions, ground water, river and rainwater. The isotopic source is based on 55 Fe, 109 Cd and 241 Am excitations while the secondary target and the total reflection are utilizing a Mo x-ray tube. Sample preparation requirements for water analysis range from physical and chemical pre-concentration steps to direct analysis and elements from Al to U can be determined with these systems. The EDXRF techniques, TXRF in particular with its multielement capability, low detection limit and possibility of direct analysis for water have competitive edge over the traditional methods of atomic absorption and flame photometry

  15. Quality in the chemical analysis of biological matrices by fluorescence X-ray by energy dispersive

    International Nuclear Information System (INIS)

    Sousa, Evely E. de; Paiva, Jose Daniel S. de; Franca, Elvis J. de; Almeida, Macio E.S.; Cantinha, Rebeca S.; Hazin, Clovis A.

    2013-01-01

    The aim of this study was to obtain multielement analytical curves of high analytical rigor to the analysis of biological matrices by the technique of fluorescence x-ray energy dispersive - EDXRF. Calibration curves were constructed from the reference materials IAEA 140, IAEA 155, IAEA V8, V10 to the International Atomic Energy Agency - IAEA, and SRM1515, SRM 1547, SRM 1570a, SRM 1573a, SEM 1567a, to the National Institute of Standards and Technology - NIST. After energy calibration, all samples were subjected to vacuum to the analyzes by 100 seconds for each group of chemical elements. The voltages used were respectively 15 keV for chemical elements with less than atomic number 22 and 50 keV for the others. After the construction of the curves, the analytical quality was assessed by the analysis of a portion-test of the reference material SRM 2976, also produced by NIST. Based on the number of certified reference materials used for construction of calibration curves in this work, quality analytical protocol was originated with considerable reliability for quantification of chemical elements in biological samples by EDXR

  16. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Energy Technology Data Exchange (ETDEWEB)

    Smolkova, Ilona S. [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G. Masaryk Sq. 275, 762 72 Zlin (Czech Republic); Kazantseva, Natalia E., E-mail: nekazan@yahoo.com [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, nad Ovcirnou 3685, 760 01 Zlin (Czech Republic); Schneeweiss, Oldrich; Pizurova, Nadezda [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic)

    2015-01-15

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g{sup −1} to 48 emu g{sup −1}) but does not affect the heating ability of nanoparticles. A 2–7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g{sup −1}. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy. - Highlights: • Mixed phase iron oxide magnetic nanoparticles were obtained by coprecipitation. • A part of nanoparticles was annealed at 300 °C to achieve the single-phase γ-Fe{sub 2}O{sub 3}. • Nanoparticles revealed ferromagnetic-like behavior due to interparticle interactions. • Nanoparticles glycerol

  17. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    Science.gov (United States)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  18. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    International Nuclear Information System (INIS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W.H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 10 16 cm -2 ) and sulfur (200 keV, 10 14 cm -2 ) in silicon wafers using ''white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 10 14 cm -2 . Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular

  19. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    International Nuclear Information System (INIS)

    Palutke, S.; Wurth, W.; Gerken, N. C.; Mertens, K.; Klumpp, S.; Martins, M.; Mozzanica, A.; Schmitt, B.; Wunderer, C.; Graafsma, H.; Meiwes-Broer, K.-H.

    2015-01-01

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emission process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators

  20. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    Science.gov (United States)

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  1. Cyclotrons as mass spectrometers

    International Nuclear Information System (INIS)

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  2. HISS spectrometer

    International Nuclear Information System (INIS)

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented

  3. Spectrometer gun

    Science.gov (United States)

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  4. Low-energy theorems for Compton scattering up to order e/sup 4/. [Scattering amplitudes dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Pippig, G

    1975-01-01

    Taking the Compton scattering of pions and deuterons as an example it is shown that low-energy theorems which are valid for the order e/sup 2/ are also valid for the next higher order of electromagnetic interactions. The imaginary component of the scattering amplitude was exactly calculated for the energy of incident photons in the order e/sup 4/ up to the desired one, whereas the real component was obtained from dispersion relations. It is proved that the results derived from the dispersion theory of strong interactions are equivalent to those obtained from quantum electrodynamics for spin 0 and spin 1, respectively.

  5. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  6. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    International Nuclear Information System (INIS)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A.

    2013-01-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  7. Analysis of metals in organic compounds by energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Anjos, Marcelino J.; Lopes, Ricardo T.; Jesus, Edgar F.O. de

    2000-01-01

    Using energy dispersive X-ray fluorescence analysis with an X-ray tube filtered with Ti. It was possible to determine the concentration of the elements at ppm level of several elements: K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn As, Rb, Sr, Y, Zr, and Pb in two types of organic compound enough used in the agriculture: organic compound of urban garbage (Fertilurb) and aviary bed (birds manure). The experimental setup is composed of: x-ray tube (Oxford, 30 kV, 50 μA and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray beam is quasi- monochromatic by using Ti filter. The samples were prepared in pellet form with superficial density in the range of 100 mg/cm 2 . The fundamental parameter method was used in order to verify the elemental concentration. The radiation transmission method was going used to the radiation absorption effects correction in the samples. (author)

  8. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  9. Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.

    Science.gov (United States)

    Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J

    2018-02-01

    The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.

  10. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  11. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  12. Electron spectrometer for measurement of the energy distributions and angular distributions of electrons ejected by ionizing radiation

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1975-01-01

    With a broad range of applications in mind, a new electron spectrometer has been constructed which is flange mountable, has an easily accessible source region, is rotatable over the range 25 0 less than or equal to theta less than or equal to 335 0 , and has a wide dynamical range and a wide range of resolving power

  13. Fast GPU-based spot extraction for energy-dispersive X-ray Laue diffraction

    International Nuclear Information System (INIS)

    Alghabi, F.; Schipper, U.; Kolb, A.; Send, S.; Abboud, A.; Pashniak, N.; Pietsch, U.

    2014-01-01

    This paper describes a novel method for fast online analysis of X-ray Laue spots taken by means of an energy-dispersive X-ray 2D detector. Current pnCCD detectors typically operate at some 100 Hz (up to a maximum of 400 Hz) and have a resolution of 384 × 384 pixels, future devices head for even higher pixel counts and frame rates. The proposed online data analysis is based on a computer utilizing multiple Graphics Processing Units (GPUs), which allow for fast and parallel data processing. Our multi-GPU based algorithm is compliant with the rules of stream-based data processing, for which GPUs are optimized. The paper's main contribution is therefore an alternative algorithm for the determination of spot positions and energies over the full sequence of pnCCD data frames. Furthermore, an improved background suppression algorithm is presented.The resulting system is able to process data at the maximum acquisition rate of 400 Hz. We present a detailed analysis of the spot positions and energies deduced from a prior (single-core) CPU-based and the novel GPU-based data processing, showing that the parallel computed results using the GPU implementation are at least of the same quality as prior CPU-based results. Furthermore, the GPU-based algorithm is able to speed up the data processing by a factor of 7 (in comparison to single-core CPU-based algorithm) which effectively makes the detector system more suitable for online data processing

  14. The Spectrometer

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  15. Possible indicators for bio-mass burning in a small Swedish city as studied by energy dispersive fluorescence (EDXRF) spectrometry

    DEFF Research Database (Denmark)

    Selin Lindgren, Eva; Henriksson, Dag; Lundin, Magnus

    2006-01-01

    to investigate the contribution of biomass incineration to air quality, energy-dispersive x-ray fluorescence (EDXRF) analysis was performed on aerosol particles sampled in the centre of the small city of Växjö. PM2.5 and PM2.5-10 fractions were sampled with the special aim of determining the contribution...

  16. Precision and accuracy of multi-element analysis of aerosols using energy-dispersive x-ray fluorescence

    International Nuclear Information System (INIS)

    Adams, F.; Van Espen, P.

    1976-01-01

    Measurements have been carried out for the determination of the inherent errors of energy-dispersive X-ray fluorescence and for the evaluation of its precision and accuracy. The accuracy of the method is confirmed by independent determinations on the same samples using other analytical methods

  17. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Science.gov (United States)

    Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...

  18. Rapid determination of trace phosphorus, sulfur, chlorine, bromine and iodine by energy dispersive X-ray fluorescence analysis with monochromatic excitations

    International Nuclear Information System (INIS)

    Wakisaka, Tatsushi; Morita, Naoki; Hirabayashi, Tadashi; Nakahara, Taketoshi

    1998-01-01

    A useful and rapid procedure is described for the determination of trace phosphorus, sulfur, chlorine, bromine, and iodine by means of an energy dispersive X-ray fluorescence spectrometer (EDXRF) with monochromatic excitations. Using monochromatic excitations, the detection limits for phosphorus, sulfur, chlorine (Cr-Kα, 5.41 keV), bromine (Mo-Kα, 17.44 keV), and iodine (W-continuum, 40 keV) were found to be 4.6, 1.7, 0.7, 0.09 and 0.5 μg g -1 , respectively. The relative standard deviations in five replicate measurements were 0.9-1.3%. The proposed method was applied to the direct determination of sulfur in the NIST Residual Fuel Oil, and others. The results obtained by the proposed method were in good agreement with the certified values. Bromine in a seawater sample, as well as iodine and bromine in a brine sample were determined by the proposed method. The obtained results were in good agreement with those obtained by ion chromatography. (author)

  19. Electron spectrometer for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Schlachter, A.S. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  20. Determination of multi-element profiles of soil using energy dispersive X-ray fluorescence (EDXRF)

    International Nuclear Information System (INIS)

    Yu, K.N.; Yeung, Z.L.L.; Lee, L.Y.L.; Stokes, M.J.; Kwok, R.C.W.

    2002-01-01

    The source profile for soil in Hong Kong is important both for determination of the main air pollutant source in Hong Kong and for assessment of the impact of Asian dust storms on Hong Kong. Soil associated with different rock types have been sampled, and the concentrations of 19 chemical elements, Na, Al, Si, Ti, V, Cr, Mn, Fe, Co, K, Ca, Ni, Cu, Zn, Pb, Rb, Sr, Y and Zr, have been determined using energy dispersive X-ray fluorescence. A profile for the average soil for Hong Kong has been determined by taking average values for the different soil categories. The values for the Hong Kong soil are commensurate with values for rural soil derived by other workers, except that Hong Kong soil has much lower Fe and Ca concentrations. The abundance of Al, Ca and Fe in the average Hong Kong soil are 9.23%, 0.11% and 0.85%. We conclude that Ca provides a good marker element for identifying dust episodes in Hong Kong while Al does not

  1. The description of compton lines in energy-dispersive x-ray Fluorescence

    International Nuclear Information System (INIS)

    Van Gysel, Mon; Van Espen, P.J.M.

    2001-01-01

    Energy-Dispersive X-Ray Fluorescence (ED-XRF) is a non-destructive technique for the element analysis in a concentration range ppm - % making use of X rays up to 100 keV. Generally, two photon matter interactions occur, respectively absorption and scattering. The absorption of incident photons gives raise to characteristic lines. Scattering gives an incoherent and a coherent line. A Gaussian peak model is adequate to describe the characteristic and coherent scattered lines. Incoherent lines appear as non-Gaussian, broadened peaks. The profile of a Compton peak is complex. It depends on the geometry and the composition of the sample. Especially, when analyzing a low Z matrix; dominant scattering and multiple scattering may cause large interferences. The absence of an appropriate fitting model makes the Compton profile seen as a limiting factor in the evaluation of spectra. An accurate description of incoherent lines should improve quantitative analysis. Therefore, a suitable fitting model, making use of the expertise of non-linear least squares procedures and Monte-Carlo calculations was systematically investigated. The proposed model, containing a modified Gaussian, is tested on experimental data recorded with a HPGe detector

  2. Influence of Zn and Pb on Rhizopogon roseolus mycelium - energy dispersion spectroscopy and cytochemical investigation

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-01-01

    Full Text Available Mycelium isolated from fruitbodies of Rhizopogon roseolus, collected from calamine wastes in Poland, was cultivated on agar media supplemented with Zn or Pb salts. The stimulation of exudate production by the aerial mycelium and the mycelium growing on the surface of the media, accompanied by the change of mycelium pigmentation, was found as a result of Zn application. The presence of Pb resulted mainly in the stimulation of crystalloid production on the surface of mycelium, in direct contact with the medium. Exudate droplets formed on the surface of mycelium cultivated on media with and without the Zn addition, were investigated by means of cytochemical tests (PATAg and Gomori-Swift reaction. In the control media most droplets gave a diffused, positive reaction to both tests. In media supplemented with Zn salts, besides the droplet-like material described in the control also another kind of exudate was observed. It was characterized by the collar showing apositive Gomori-Swift reaction, while the rest of the exudate had an oily appearance and gave a faint or no reaction to both tests. Comparative research by means of scanning electron microscopy accompanied by energy dispersion spectroscopy, was carried out showing the differences in exudate and in mycelia composition as a result of the Zn and Pb presence in the medium.

  3. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    Science.gov (United States)

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  4. Forensic applications of scanning electron microscopy/energy dispersive X-ray analyser in Hong Kong.

    Science.gov (United States)

    Wong, Y S

    1982-01-01

    Scanning Electron Microscopy - Energy Dispersive X-Ray Analysis (SEM/EDX) has been applied in casework for more than a year in the Forensic Division, Government Laboratory of Hong Kong. The types of samples being analysed are summarised and three cases of scientific interest are described. The first case applies SEM/EDX to characterize microscopic gold particles recovered from clothing of suspects involved in goldsmith robberies. Both elemental and morphological results obtained were used as supporting evidence. The second case describes the three types of beaded ends on fibres found in a single cloth sample. These beaded ends are different in shape and surface features and can be used as an additional parameter in fibre identification. The final case shows the application of vacuum evaporation of graphite on a document sample to reveal the area of paper which has been skillfully mechanically erased. Both the image intensity and the composition of the ink are used to differentiate between original and altered characters on the document.

  5. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    Science.gov (United States)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  6. An attempt to reduce radioactivity for energy-dispersive x-ray analysis

    International Nuclear Information System (INIS)

    Hamada, S.

    1992-01-01

    The object of this work is to develop a specimen preparation technique which reduces the intensity of radioactivity of a neutron-irradiated materials for microchemical analysis by analytical electron microscope (AEM) with energy dispersive X-ray spectroscopy (EDXS). A composite specimen preparation technique for the AEM was developed using unirradiated materials. The technique reduced the mass of material from a dummy irradiated specimen by more than a factor of 100. A 1-mm diam. disk was punched from a dummy irradiated 3-mm diam. transmission electron microscope (TEM) disk. The 1-mm disk was then pressed into a hole previously punched at the center of a second 3 mm diam. disk creating a composite disk. The composite disk was electropolished using a twin jet Tenupol until the thickness of the center of the composite was about 100 μm. Approximately 100 μm of nickel plating was then deposited on the surface of the thinned composite. Standard electropolishing by Tenupol unit was performed on the nickel-plated composite specimen and the composite specimen was examined by TEM

  7. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sang, X.; Xu, W.; Dycus, J.H.; LeBeau, J.M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); D' Alfonso, A.J.; Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-09-15

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. - Highlights: • Absolute scale quantification of 2D atomic-resolution EDX maps is demonstrated. • Factors contributing to remaining small quantitative discrepancies are identified. • Experiment confirms large probe-forming apertures suppress channelling enhancement. • The thickness range suitable for reliable column-by-column analysis is discussed.

  8. Automated energy-dispersive x-ray determination of trace elements in stream sediments

    International Nuclear Information System (INIS)

    Hansel, J.M.; Martell, C.J.

    1977-01-01

    Nickel, copper, tungsten, lead, bismuth, niobium, silver, cadmium, and tin are determined in stream sediments using a computer-controlled energy-dispersive x-ray fluorescence system. The system consists of an automatic 20-position sample changer, a silicon lithium-drifted detector, a pulsed molybdenum transmission-target x-ray tube, a multichannel analyzer, and a minicomputer. Samples are analyzed as minus 325-mesh powders. A computer program positions the samples, unfolds overlapping peaks, determines peak intensities for each element, and calculates the ratio of the intensity of each peak to that of the molybdenum Kα Compton peak. Concentrations of each element are then calculated using equations obtained by analyzing prepared standards. Detection limits range from 5 ppM for silver, cadmium, lead, and bismuth to 20 ppM for niobium. The relative standard is 10 percent or less at the 100-ppM level and 20 percent at the 20-ppM level. Samples can be analyzed at the rate of sixty per day

  9. Electron volt neutron spectrometers

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2011-01-01

    The advent of pulsed neutron sources has made available intense fluxes of epithermal neutrons (500 meV ≤E≤100 eV ). The possibility to open new investigations on condensed matter with eV neutron scattering techniques, is related to the development of methods, concepts and devices that drive, or are inspired by, emerging studies at this energy scale. Electron volt spectrometers have undergone continuous improvements since the construction of the first prototype instruments, but in the last decade major breakthroughs have been accomplished in terms of resolution and counting statistics, leading, for example, to the direct measurement of the proton 3-D Born–Oppenheimer potential in any material, or to quantitatively probe nuclear quantum effects in hydrogen bonded systems. This paper reports on the most effective methods and concepts for energy analysis and detection, as well as devices for the optimization of electron volt spectrometers for different applications. This is set in the context of the progress made up to date in instrument development. Starting from early stages of development of the technique, particular emphasis will be given to the Vesuvio eV spectrometer at the ISIS neutron source, the first spectrometer where extensive scientific, as well as research and development programmes have been carried out. The potential offered by this type of instrumentation, from single particle excitations to momentum distribution studies, is then put in perspective into the emerging fields of eV spectroscopy applied to cultural heritages and neutron irradiation effects in electronics. - Highlights: ► Neutron spectrometers at eV energies. ► Methods and techniques for eV neutrons counting at spallation sources. ► Scattering, imaging and radiation hardness tests with multi-eV neutrons.

  10. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  11. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  12. Analysis of agricultural soils by using energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Anjos, Marcelino Jose dos

    2000-03-01

    In this work, we describe an Energy Dispersive x-ray Fluorescence System with a x-ray tube excitation for trace analysis of environmental samples (soil). The system was used to analyze the contamination of metals in treated soils with doses of 10, 20 and 30 ton/ha of compound organic of urban garbage of the type Fertilurb and 10 ton/ha of aviary bed (manure of birds). Samples of roots and foliages of plant radishes cultivated in these soils were also analyzed. The soil samples were collected in five different depths of 0,5, 5-10, 10-20, 20-40 and 40-60 cm. The experimental set-up is composed by an OXFORD X-ray (30 kV, 50 μA and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray spectrum tube is quasi-monochromatic by using of Ti filter. Samples were prepared in pellet form with superficial density in the range of 100 mg/cm 2 . The fundamental parameter method was used in order to verify the elemental concentration. It was possible to determine the concentrations of thirteen elements: K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, Y, Zr and Pb in the treated soils with compounds organic. The results indicate that the values found for K, Ca, Rb, Sr, Zr and Pb are significantly above the upper confidence limits for the control soil (α = 0.05). There is a real different between these elements compared to their relationship in the control soils, (α=0,05). There is a real difference between these elements compared to their relationship in the control soils, confirming the influence of the organic compounds in the soil. (author)

  13. Bent solenoids for spectrometers and emittance exchange sections

    International Nuclear Information System (INIS)

    Norem, J.

    1999-01-01

    Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors

  14. Counting systems in wavelength and energy dispersive spectrometry: the principle and how to check and to adjust

    International Nuclear Information System (INIS)

    Maurice, Francoise

    1978-03-01

    The purpose of this report is to define the optimum operating conditions of the whole counting systems in wavelength dispersive spectrometry (mostly used in conjunction with electron microprobes) and in energy dispersive spectrometry (more often connected to scanning electron microscopes). For both these techniques, the principle of the detector and its attached counting electronics is recalled; a check list is then given for verifying the qualities of the apparatus and detecting the defects; finally the best operating conditions are defined as essential in an analytical instrument whose reliability has to be perfect [fr

  15. Possible applications of energy-dispersive powder diffractometry in the phase analysis of metallurgical and geological specimens

    International Nuclear Information System (INIS)

    Koch, S.; Jugelt, P.

    1978-01-01

    Energy-dispersive powder diffractometry renders possible nondestructive quantitative determination of both α and γ phases of iron with shorter measuring time as compared to angle-dispersive techniques. In investigating geological specimens above all the possibility of obtaining qualitative survey analyses within short time is advantageous. The comparatively lower separability leads to difficulties because of increased line density. Therefore, quantitative phase analysis requires the use of spectra unfolding programmes. For laboratory analyses it is advantageous that the same measuring equipment allows the performance of multi-element analyses. (author)

  16. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    Science.gov (United States)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  17. Comparison of Dorris-Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography.

    Science.gov (United States)

    Shi, Baoli; Wang, Yue; Jia, Lina

    2011-02-11

    Inverse gas chromatography (IGC) is an important technique for the characterization of surface properties of solid materials. A standard method of surface characterization is that the surface dispersive free energy of the solid stationary phase is firstly determined by using a series of linear alkane liquids as molecular probes, and then the acid-base parameters are calculated from the dispersive parameters. However, for the calculation of surface dispersive free energy, generally, two different methods are used, which are Dorris-Gray method and Schultz method. In this paper, the results calculated from Dorris-Gray method and Schultz method are compared through calculating their ratio with their basic equations and parameters. It can be concluded that the dispersive parameters calculated with Dorris-Gray method will always be larger than the data calculated with Schultz method. When the measuring temperature increases, the ratio increases large. Compared with the parameters in solvents handbook, it seems that the traditional surface free energy parameters of n-alkanes listed in the papers using Schultz method are not enough accurate, which can be proved with a published IGC experimental result. © 2010 Elsevier B.V. All rights reserved.

  18. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  19. Simple methodologies to estimate the energy amount stored in a tree due to an explosive seed dispersal mechanism

    Science.gov (United States)

    do Carmo, Eduardo; Goncalves Hönnicke, Marcelo

    2018-05-01

    There are different forms to introduce/illustrate the energy concepts for the basic physics students. The explosive seed dispersal mechanism found in a variety of trees could be one of them. Sibipiruna trees carry out fruits (pods) who show such an explosive mechanism. During the explosion, the pods throw out seeds several meters away. In this manuscript we show simple methodologies to estimate the energy amount stored in the Sibipiruna tree due to such a process. Two different physics approaches were used to carry out this study: by monitoring indoor and in situ the explosive seed dispersal mechanism and by measuring the elastic constant of the pod shell. An energy of the order of kJ was found to be stored in a single tree due to such an explosive mechanism.

  20. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    Science.gov (United States)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  1. High-efficiency improvement for high energy resolution experimental mode of DIANA spectrometer at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Takahashi, Nobuaki; Shibata, Kaoru; Arai, Masatoshi; Sato, Taku J.

    2006-09-01

    DIANA is an indirect-geometry time-of-flight (TOF) spectrometer which is planed to install at Materials and Life science Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC). It has three exchangeable analyzer crystals, such as PG(002), Ge(311) and Si(111) for different energy transfer, momentum transfer and energy-resolution experiments. Normal experimental mode, either PG(002) or Ge(311) analyzer is used, shows moderate energy resolutions of 15μeV or 41λeV, respectively. We are especially aiming very high energy-resolution of 2 μeV by using Si(111) analyzer crystal together with high speed counter-rotating pulse-shaping choppers with each rotation frequency of 300 Hz as an optional setting for the spectrometer. Although such a high energy-resolution is attained, it is considerably inefficient having a very narrow incident energy (E i ) band if the pulse shaping chopper has only one slit. Therefore, we have designed multiple-slit chopper and have performed Monte-Carlo simulation to study Repetition Rate Multiplication (RRM) capability. RRM has been shown to be achievable by using multiple-slit pulse-shaping choppers. By the consideration of the contamination appeared between the neighbor two pulse-shaped bands, the number of slits has been optimized to eight. By using the 8-slit choppers, 23 pulse-shaped neutron energy bands have been available simultaneously within one measurements. Minimum 10 measurements with different phases of the choppers provide the continuous S(Q, ℎω) spectrum of -1.0 meV<ℎω<+3.4 meV. (author)

  2. Study of {lambda} hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, K.

    2007-03-15

    The HADES spectrometer is a high resolution detector installed at the SIS/GSI, Darmstadt. It was primarily designed for studying dielectron decay channels of vector mesons. However, its high accuracy capabilities make it an attractive tool for investigating other rare probes at these beam energies, like strange baryons. Development and investigation of Multiwire Drift Chambers for high spatial resolution have been provided. One of the early experimental runs of HADES was analyzed and the {lambda} hyperon signal was successfully reconstructed for the first time in C+C collisions at 2 AGeV beam kinetic energy. The total {lambda} production cross section is contrasted with expectations from simulations and compared with measurements of the {lambda} yield in heavier systems at the same energy. In addition, the result is considered in the context of strangeness balance and the relative strangeness content of the reaction products is determined. (orig.)

  3. Study of Λ hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer

    International Nuclear Information System (INIS)

    Kanaki, K.

    2007-03-01

    The HADES spectrometer is a high resolution detector installed at the SIS/GSI, Darmstadt. It was primarily designed for studying dielectron decay channels of vector mesons. However, its high accuracy capabilities make it an attractive tool for investigating other rare probes at these beam energies, like strange baryons. Development and investigation of Multiwire Drift Chambers for high spatial resolution have been provided. One of the early experimental runs of HADES was analyzed and the Λ hyperon signal was successfully reconstructed for the first time in C+C collisions at 2 AGeV beam kinetic energy. The total Λ production cross section is contrasted with expectations from simulations and compared with measurements of the Λ yield in heavier systems at the same energy. In addition, the result is considered in the context of strangeness balance and the relative strangeness content of the reaction products is determined. (orig.)

  4. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    International Nuclear Information System (INIS)

    Guilherme, A.; Pessanha, S.; Carvalho, M.L.; Santos, J.M.F. dos; Coroado, J.

    2010-01-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (μ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial μ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 μm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of μm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  5. Depth profiling: RBS versus energy-dispersive X-ray imaging using scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Markwitz, Andreas

    2000-01-01

    Rutherford backscattering spectrometry (RBS) is known to be one of the techniques ideal for analysis of thin films. Elemental concentrations of matrix components and impurities can be investigated as well as depth profiles of almost each element of the periodic table. Best of all, RBS has both a high sensitivity and a high depth resolution, and is a non-destructive analysis technique that does not require specific sample preparation. Solid-state samples are mounted without preparation inside a high-vacuum analysis chamber. However, depth-related interpretation of elemental depth profiles requires the material density of the specimen and stopping power values to be taken into consideration. In many cases, these parameters can be estimated with sufficient precision. However, the assumed density can be inaccurate for depth scales in the nanometer range. For example, in the case of Ge nanoclusters in 500 nm thick SiO 2 layers, uncertainty is related to the actual position of a very thin Ge nanocluster band. Energy-dispersive X-ray emission (EDX) spectroscopy, using a high-resolution scanning transmission electron microscope (STEM) can assist in removing this uncertainty. By preparing a thin section of the specimen, EDX can be used to identify the position of the Ge nanocluster band very precisely, by correlating the Ge profile with the depth profiles of silicon and oxygen. However, extraction of the concentration profiles from STEM-EDX spectra is in general not straightforward. Therefore, a combination of the two very different analysis techniques is often the best and only successful way to extract high-resolution concentration profiles

  6. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  7. Elemental contents in exotic Brazilian tropical fruits evaluated by energy dispersive X-ray fluorescence

    Directory of Open Access Journals (Sweden)

    Oliveira Alessandra Lopes de

    2006-01-01

    Full Text Available The exotic flavor of Brazilian tropical fruits led to increased consumption. Consumers awareness regarding balanced diets, makes necessary determining nutritional composition - vitamins and minerals of the fruits ordinarily consumed. This study contributed to the evaluation of macro (K, Ca and microelements (Mn, Fe, Cu, Zn and Br in eight exotic Brazilian tropical fruits: "abiu" (Lucuma caimito Ruiz & Pav., "jenipapo" (Genipa americana L., "jambo rosa" (rose apple, Eugenia Jambos L., "jambo vermelho" (Syzygium malaccence L., Merr & Perry, "macaúba" (Acrocomia aculeata Jacq. Lood. Ex Mart., "mangaba" (Hancornia speciosa, "pitanga" (Brazilian Cherry, Eugenia uniflora L., and tamarind (Tamarindus indica L., using the Energy Dispersive X-Ray Fluorescence (EDXRF technique. "jambo vermelho" and "macaúba" presented the highest values of K concentrations, 1,558 and 1,725 mg 100 g-1, respectively. On the other hand, Ca concentrations were highest in "macaúba" (680 mg 100 g-1 and "jenipapo" (341 mg 100 g-1. The microelemental concentrations in these eight fruits ranged from: 0.9 to 2.0 mg 100 g-1 for Mn, 3.9 to 11.4 mg 100 g-1 for Fe, 0.5 to 1.0 mg 100 g-1 for Cu, 0.6 to 1.5 mg 100 g-1 for, Zn and 0.3 to 1.3 mg 100 g-1 for Br. The amounts of macro and microelements in the eight fruits analyzed were compared to other tropical fruits and it was found that some of them could be classified as rich sources for these macro and microelements.

  8. Comment on: Power loss and electromagnetic energy density in a dispersive metamaterial medium

    OpenAIRE

    Kinsler, Paul

    2010-01-01

    By clarifying the approach of Luan (Phys. Rev. E, 2009), we can generalize the analysis of dispersive (meta)materials, and treat other material responses involving not only loss, but also gain and coherent response.

  9. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  10. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  11. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    International Nuclear Information System (INIS)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels

  12. Determination of the structure factors of a LiF powder sample by the energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Uno, R.; Ahtee, A.; Paakkari, T.

    1977-01-01

    The structure factors of a LiF powder sample were determined by energy dispersive x-ray diffraction in the range 9 to 25 keV, with the use of a Si(Li) solid state detector, following the method applied on GaP. Since the absorption coefficient of LiF is small at high energy, a fraction of the incident x-rays penetrates through the sample and does not contribute to the diffraction. This effect was taken into account in the determination of the structure factors. Then the structure factors generally agree, within the limit of 5 % error, with those obtained by the usual angle dispersive method, if the penetrated part of the incident beam is less than 40 %. (author)

  13. A Fundamental Parameter-Based Calibration Model for an Intrinsic Germanium X-Ray Fluorescence Spectrometer

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Pind, Niels

    1982-01-01

    A matrix-independent fundamental parameter-based calibration model for an energy-dispersive X-ray fluorescence spectrometer has been developed. This model, which is part of a fundamental parameter approach quantification method, accounts for both the excitation and detection probability. For each...... secondary target a number of relative calibration constants are calculated on the basis of knowledge of the irradiation geometry, the detector specifications, and tabulated fundamental physical parameters. The absolute calibration of the spectrometer is performed by measuring one pure element standard per...

  14. Threat detection of liquid explosives and precursors from their x-ray scattering pattern using energy dispersive detector technology

    DEFF Research Database (Denmark)

    Kehres, Jan; Olsen, Ulrik Lund; Lyksborg, Mark

    2017-01-01

    Energy dispersive X-ray diffraction (EDXRD) can be applied for identification of liquid threats in luggage scanning in security applications. To define the instrumental design, the framework for data reduction and analysis and test the performance of the threat detection in various scenarios....... Initial testing of the threat detection algorithms with this data set indicate the feasibility of detection levels of > 95 % true positive with

  15. Phonon dispersion in vanadium

    International Nuclear Information System (INIS)

    Ivanov, A.S.; Rumiantsev, A.Yu.

    1999-01-01

    Complete text of publication follows. Phonon dispersion curves in Vanadium metal are investigated by neutron inelastic scattering using three-axis spectrometers. Due to extremely low coherent scattering amplitude of neutrons in natural isotope mixture of vanadium the phonon frequencies could be determined in the energy range below about 15 meV. Several phonon groups were measured with the polarised neutron scattering set-up. It is demonstrated that the intensity of coherent inelastic scattering observed in the non-spin-flip channel vanishes in the spin-flip channel. The phonon density of states is measured on a single crystal keeping the momentum transfer equal to a vector of reciprocal lattice where the coherent inelastic scattering is suppressed. Phonon dispersion curves in vanadium, as measured by neutron and earlier by X-ray scattering, are described in frames of a charge-fluctuation model involving monopolar and dipolar degrees of freedom. The model parameters are compared for different transition metals with body-centred cubic-structure. (author)

  16. Analysis of the 48Ca neutron skin using a nonlocal dispersive-optical-model self-energy

    Science.gov (United States)

    Atkinson, Mack; Mahzoon, Hossein; Dickhoff, Willem; Charity, Robert

    2017-09-01

    A nonlocal dispersive-optical-model (DOM) analysis of the 40Ca and 48Ca nuclei has been implemented. The real and imaginary potentials are constrained by fitting to elastic-scattering data, total and reaction cross sections, energy level information, particle number, and the charge densities of 40Ca and 48Ca, respectively. The nonlocality of these potentials permits a proper dispersive self-energy which accurately describes both positive and negative energy observables. 48Ca is of particular interest because it is doubly magic and has a neutron skin due to the excess of neutrons. The DOM neutron skin radius is found to be rskin = 0.245 , which is larger than most previous calculations. The neutron skin is closely related to the symmetry energy which is a crucial part of the nuclear equation of state. The combined analysis of 40Ca and 48Ca energy densities provides a description of the density dependence of the symmetry energy which is compared with the 48Ca neutron skin. Results for 208Pb will also become available in the near future. NSF.

  17. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Aggarwal, S.K.; Venugopal, V.

    2010-01-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 μg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 μg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1σ) and the results deviated from the expected values by < 4% on average.

  18. Exploiting a Transmission Grating Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  19. Exploiting a Transmission Grating Spectrometer

    International Nuclear Information System (INIS)

    Bell, Ronald E.

    2004-01-01

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics

  20. The Microstructures and Energy Dispersive Spectroscopy Analysis of a Hypoeutectoid Steels With 1% Cr

    Directory of Open Access Journals (Sweden)

    Rożniata E.

    2013-12-01

    Full Text Available W artykule zamieszczono wyniki badań mikrostruktury, analizy EDS i twardości stali podeutektoidalnych z 1% Cr imitujących składem chemicznym stale do ulepszania cieplnego. Badania dylatometryczne wykonano przy użyciu dylatometru L78R.I.T.A niemieckiej firmy LlNSElS. Za pomocą dyla- tometru rejestrowano zmiany wydłużenia (Al próbek o wymiarach >p 3X10mm w funkcji temperatury (T. Otrzymane krzywe nagrzewania posłużyły do precyzyjnego wyznaczenia temperatur krytycznych (punktów przełomowych dla badanych stali. Natomiast otrzymane krzywe chłodzenia różniczkowano, co pozwoliło precyzyjnie określić temperatury początków i końców poszczególnych przemian dla wykonania dwóch wykresów CTPc. Analizę składu chemicznego występujących faz w badanych stalach dla różnych szybkości chłodzenia wykonano przy użyciu mikrosondy elektronowej (mikroanalizator rentgenowski. W niniejszej pracy wykorzystano technikę analizy punktowej, liniowej oraz w obszarze o ustalonym polu. Po umieszczeniu próbek z badanych stali w komorze i osiągnięciu odpowiedniej próżni, wyszukano miejsca i dokonano analizy techniką EDS (Energy Dispersive Spectroscopy. Analizy EDS dokonano przy użyciu skaningowego mikroskopu transmisyjnego typu Nova NanoS EM 450. Opracowane wykresy CTPc zgodnie z klasyfikacją Wever’a i Rose’go są typu IV, co oznacza, że przemiany dyfuzyjne są rozdzielone zakresem trwałości przechłodzonego austenitu i mają kształt litery „C". Hartowność badanych stali jest zbliżona, jednak molibden działa zdecydowanie skuteczniej niż nikiel. Molibden zajmuje I-sze miejsce wśród skuteczności pierwiastków stopowych dla stali do niskiego odpuszczania, gdzie „tło" pierwiastków jest słabe. Dla obu badanych stali podeutektoidalnych analiza EDS wykazała wydzielanie się cementy tu stopowego na granicach ziaren. Chrom, jako pierwiastek terrytotwórczy dość silnie dyfunduje do granic ziaren. Widocznie jest to przy

  1. Time moments of the energy flow of optical pulses in highly dispersive media

    International Nuclear Information System (INIS)

    Nanda, Lipsa; Wanare, Harshawardhan; Ramakrishna, S Anantha

    2010-01-01

    We use the time moments of the Poynting vector associated with an electromagnetic pulse to characterize the traversal times and temporal pulse widths as the pulse propagates in highly dispersive media. The behaviour of these quantities with the propagation distance is analysed in three canonical cases: Lorentz absorptive medium, a Raman gain doublet amplifying medium and a medium exhibiting electromagnetically induced transparency. We find that superluminal pulse propagation in the first two cases with anomalous dispersion is usually accompanied by pulse compression and eventually the pulse becomes subluminal with increasing distance of propagation. In a medium with electromagnetically induced transparency with large normal dispersion, we identify a range of frequencies for which the pulse undergoes minimal temporal expansion while propagating with ultra-slow speed.

  2. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high γ-energies

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.

  3. From a single encapsulated detector to the spectrometer for INTEGRAL satellite: predicting the peak-to-total ratio at high γ-energies

    Science.gov (United States)

    Kshetri, R.

    2012-12-01

    In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.

  4. Small angle spectrometers: Summary

    International Nuclear Information System (INIS)

    Courant, E.; Foley, K.J.; Schlein, P.E.

    1986-01-01

    Aspects of experiments at small angles at the Superconducting Super Collider are considered. Topics summarized include a small angle spectrometer, a high contingency spectrometer, dipole and toroid spectrometers, and magnet choices

  5. The mean energy loss by neutrino with magnetic moment in strong magnetic field with consideration of positronium contribution to photon dispersion

    Science.gov (United States)

    Mosichkin, A. F.

    2017-11-01

    The process of radiative decay of the neutrino with a magnetic moment in a strong magnetic field with consideration of positronium influence on photon dispersion has been studied. Positronium contribution to the photon polarization operator induces significant modifications of the photon dispersion law and neutrino radiative decay amplitude. It has been shown that the mean energy loss of a neutrino with magnetic a moment significantly increases, when the positronium contribution to photon dispersion is taken into account.

  6. Dispersion Energy Analysis of Rayleigh and Love Waves in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys

    Science.gov (United States)

    Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin

    2018-03-01

    High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface

  7. Smartphone Spectrometers

    Science.gov (United States)

    Willmott, Jon R.; Mims, Forrest M.; Parisi, Alfio V.

    2018-01-01

    Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades. PMID:29342899

  8. Smartphone Spectrometers

    Directory of Open Access Journals (Sweden)

    Andrew J.S. McGonigle

    2018-01-01

    Full Text Available Smartphones are playing an increasing role in the sciences, owing to the ubiquitous proliferation of these devices, their relatively low cost, increasing processing power and their suitability for integrated data acquisition and processing in a ‘lab in a phone’ capacity. There is furthermore the potential to deploy these units as nodes within Internet of Things architectures, enabling massive networked data capture. Hitherto, considerable attention has been focused on imaging applications of these devices. However, within just the last few years, another possibility has emerged: to use smartphones as a means of capturing spectra, mostly by coupling various classes of fore-optics to these units with data capture achieved using the smartphone camera. These highly novel approaches have the potential to become widely adopted across a broad range of scientific e.g., biomedical, chemical and agricultural application areas. In this review, we detail the exciting recent development of smartphone spectrometer hardware, in addition to covering applications to which these units have been deployed, hitherto. The paper also points forward to the potentially highly influential impacts that such units could have on the sciences in the coming decades.

  9. On the energy flux of stationary electromagnetic waves in anisotropic dissipative media with spatial dispersion

    NARCIS (Netherlands)

    Tokman, M. D.; Westerhof, E.; Gavrilova, M. A.

    2000-01-01

    The special features of the propagation of electromagnetic waves in gyrotropic medium with dispersion and resonant dissipation (specifically, in a magnetoactive plasma) are studied. Even though the anti-Hermitian components of the permittivity tensor are substantial in magnitude, weakly damped waves

  10. Electric and magnetic field modulated energy dispersion, conductivity and optical response in double quantum wire with spin-orbit interactions

    Science.gov (United States)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-02-01

    We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.

  11. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    International Nuclear Information System (INIS)

    Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.

    2016-01-01

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  12. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  13. Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions

    International Nuclear Information System (INIS)

    Kavitha, L.; Mohamadou, A.; Parasuraman, E.; Gopi, D.; Akila, N.; Prabhu, A.

    2016-01-01

    The nonlinear localization phenomena in ferromagnetic spin lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the onset of modulational instability of a plane wave in a discrete ferromagnetic spin chain with physically significant higher order dispersive octupole–dipole and dipole–dipole interactions. We derive the discrete nonlinear equation of motion with the aid of Holstein–Primakoff (H–P) transformation combined with Glauber's coherent state representation. We show that the discrete ferromagnetic spin dynamics is governed by an entirely new discrete NLS model with complex coefficients not reported so far. We report the study of modulational instability (MI) of the ferromagnetic chain with long range dispersive interactions both analytically in the frame work of linear stability analysis and numerically by means of molecular dynamics (MD) simulations. Our numerical simulations explore that the analytical predictions correctly describe the onset of instability. It is found that the presence of the various exchange and dispersive higher order interactions systematically favors the local gathering of excitations and thus supports the growth of high amplitude, long-lived discrete breather (DB) excitations. We analytically compute the strongly localized odd and even modes. Further, we employ the Jacobi elliptic function method to solve the nonlinear evolution equation and an exact propagating bubble-soliton solution is explored. - Highlights: • Higher order dispersive interactions plays significant role in ferromagnetic spin chain. • The energy localization is studied both analytically and numerically. • The existence of DBs are studied under the effect of higher order dispersive interaction.

  14. Study of TGEs and Gamma-Flashes from thunderstorms in 20-3000 keV energy range with SINP MSU Gamma-Ray spectrometers

    International Nuclear Information System (INIS)

    Bogomolov, V.V.; Svertilov, S.I.; Maximov, I.A.; Panasyuk, M.I.; Garipov, G.K.

    2016-01-01

    SINP MSU provided a number of experiments with scintillator gamma-spectrometers for study of spectral, temporal and spatial characteristics of TGEs as well as for search of fast hard x-ray and gamma-ray flashes probably appearing at the moment of lightning. The measurements were done in Moscow region and in Armenia at Aragats Mountain. Each instrument used in this work was able to record data in so called “event mode”: the time of each interaction was recorded with ∼15 mcs accuracy together with detailed spectral data. Such design allowed one to look for fast sequences of gamma-quanta, coming at the moments of discharges during thunderstorms. The pulse-shape analysis made by detector electronics was used to separate real gammaray events and possible imitations of flashes by electrical disturbances when discharges occur. During the time period from spring to autumn of 2015 a number of TGEs were detected. Spectral analysis of received data showed that the energy spectrum of coming radiation in 20-3000 kev range demonstrate a set of gamma-ray lines that can be interpreted as radiation from Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm as well as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate in low energies (<2.6MeV) and must be taken into account in the experiments performed to measure low energy gamma-radiation from the electrons accelerated in thunderclouds. In order to determine the direction from which the additional gamma-quanta come the experiment with collimated gamma-spectrometer placed on rotated platform was done. The results of this experiment realized in Moscow region from august, 2015 will be presented as well as the results of comparison of different TGEs measured in Moscow region and in Armenia. (author)

  15. Use of X-ray fluorescence energy dispersive technique in the lead determination and other metals in excrements of otters (Lontra longicaudis)

    International Nuclear Information System (INIS)

    Moraes, Liz Mary B.; Silva, Richard M.C.; Nascimento Filho, Virgilio F.; Ferreira, Carla Josef; Adriano, Leonardo R.; Ferreira, Jose Roberto

    2005-01-01

    This work had for objective to evaluate the contamination for Pb and other metals (Ti, Mn, Fe, Ni, Cu and Zn) in excrement samples of a neotropical otter population specie, found in river Betari, Alto Vale do Ribeira basin, Southeast Sao Paulo State. This river is a tributary of the Ribeira de Iguape river and part of its passage meets inside of the Parque Estadual Turistico do Alto Ribeira, one of the most conserved area of Brazilian Atlantic Forest. As the diet of these animals is based in fishes, it is an environmental interest in the determination of Pb in its excrements, since that is accumulating on the tropical chain path and in this region (in the decade of 1970) had the implanted a Pb extraction from galena mining. The analysis of the samples requires frequently the chemical digestion, with the disadvantages of being weak and expense. Aiming at to eliminate these disadvantages, the objective of the work was to use the X-ray fluorescence energy dispersive technique (EDXRF), for demanding a minimum preparation of the sample. Six excrement samples had been frozen, lyophilized and cryogenically milled, and after analyzed as pellet form, using a X-ray tube (target Mo, Zr filter, 25 kV/10 mA) and Si(Li) semiconductor spectrometer. The concentration was varied from 5.0 to 15.4 μg g -1 and it was possible also quantified other metals, showing maximum concentrations: Ti - 308, Mn - 38, Fe - 1131, Ni - 44, Cu . 2.8 and Zn . 92.4 μg g -1 . (author)

  16. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.

    Science.gov (United States)

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mangala, M J

    2012-06-04

    Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using (109)Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R(2)>0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g(-1) for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    International Nuclear Information System (INIS)

    Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mangala, M.J.

    2012-01-01

    Highlights: ► Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. ► The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. ► This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace ‘bioavailable’ macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using 109 Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R 2 > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g −1 for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors’ knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices.

  18. A critical evaluation of quantitative and qualitative analysis by means of energy-dispersive X-ray measurement in a scanning electron microscope

    International Nuclear Information System (INIS)

    Blum, F.

    1978-12-01

    The bombardment of solids in the scanning electron microscope (SEM) by means of energetic electrons results in the generation and emission of various signals that carry information about the characteristics of the target. Those signals which are related to the present context, e.g. the secondary and backscattered electrons as well as the characteristic and continuous X-radiation, are discussed. The brief description of the SEM and the energy dispersive X-ray (EDX) spectrometer is followed by a discussion of various obstacles affecting the reliability of X-ray intensity measurements and data reduction procedures. The observed relative X-ray intensities from pure elements were determined as a function of the atomic number. These functional dependence curves, which were established under standard conditions, served as reliable reference data for the purpose of quantitative corrections. The performance limits of a typical SEM-EDX analytical system were assessed by analysing quantitatively various types of standard reference materials and inhomogeneous samples. A brief discussion of the X-ray source is given in order to estimate whether the recorded X-ray intensities are representative of the electron bombarded areas. This is of importance when microanalyses are performed on inclusions or near phase boundaries. The use of oxide glasses which are suitable to evaluate and interrelative SEM-EDX systems is discussed. The analysis of metal alloys, which developed exaggerated surface topography when sputtered in an ion microprobe mass analyser or glow discharge lamp, is presented as a typical example for the investigation of rough-surface samples [af

  19. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    Science.gov (United States)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  20. Evaluation of the impact of higher-order energy enhancement characteristics of solitons in strongly dispersion-managed optical fibers

    International Nuclear Information System (INIS)

    Diaz-Otero, Francisco J.; Guillán-Lorenzo, Omar; Pedrosa-Rodríguez, Laura

    2017-01-01

    Highlights: • Empirical model describing the pulse energy enhancement required to obtain stable pulses to higher-order polynomial equations • An improvement in the accuracy is obtained through the addition of a new quartic addend dependent on the map strength. • This conclusion is validated through a comparison in a commercial DM soliton submarine network. • The error in the interaction distance for two adjacent pulses in the same channel is of the same order as the energy error - Abstract: We study the propagation properties of nonlinear pulses with periodic evolution in a dispersion-managed transmission link by means of a variational approach. We fit the energy enhancement required for stable propagation of a single soliton in a prototypical commercial link to a polynomial approximation that describes the dependence of the energy on the map strength of the normalized unit cell. We present an improvement of a relatively old and essential result, namely, the dependence of the energy-enhancement factor of dispersion-management solitons with the square of the map strength of the fiber link. We find that adding additional corrections to the conventional quadratic formula up to the fourth order results in an improvement in the accuracy of the description of the numerical results obtained with the variational approximation. Even a small error in the energy is found to introduce large deviations in the pulse parameters during its evolution. The error in the evaluation of the interaction distance between two adjacent time division multiplexed pulses propagating in the same channel in a prototypical submarine link is of the same order as the error in the energy.

  1. A Forging Hardness Dispersion Effect on the Energy Consumption of Machining

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The aim of the work is to evaluate a hardness dispersion of forgings to be further machined, and analyse the impact of this dispersion on the resulting power consumption when cutting.The paper studies the hardness values of three kinds of parts for automotive manufacturing. Sample of each part was n = 100 pieces. Analysis of measurements showed that 46% - 93% of parts meet requirements for a range defined by the work-piece working drawing. It was found that hardness of one batch of forgings is under dispersion, which distribution is governed by the normal law.The work provides calculations for machining the external cylindrical surfaces of the considered parts. In the context of calculating are adopted parameters of the enterprise-processing rate. It is found that power consumption of machining because of the dispersion values of the work-piece hardness is a function of the random BH variable and it itself is a random variable. Two types of samples are considered, namely: the full sample and that of the values that meet requirements for hardness. The coefficient of variation for samples that meet the technical requirements for hardness is lower than for the full samples, so their average value is more reliable characteristic of a set. It was also found that to ensure a reliable prediction of power consumption in designing the manufacturing processes it is necessary to reduce a tolerance range of workpiece hardness to the limit.The work gives a comparative evaluation of electric power consumption per unit cylindrical surface of the parts under consideration. A relative change in the electric power consumed at the minimum and maximum levels of the hardness value was introduced as an evaluation criterion. It is found that with changing hardness of machined work-pieces within the tolerance, the change in power consumption in machining the unit surface reaches 16% while in the case its being out of the specified range it does 47%.

  2. Mass spectrometer with two ion sources

    International Nuclear Information System (INIS)

    Glickman, L.G.; Mit', A.G.

    2002-01-01

    Static mass spectrometer with mid-plane near which ions are moving is considered in this article. Two ion sources are used, their exit slits are perpendicular to the mid-plane. The simple method of the replacement of source is offered. Two concave two-electrode transaxial mirrors with two-plate electrodes are used for this aim. The mid-plane of these mirrors coincides with the mid-plane of the device. The exit slit of each source is located in the principal plane of the object space. The principal planes of the image space of the both mirrors coincide. The images of the exit slits of the sources are in these planes and coincide too. We used the mirrors making stigmatic images with the magnification one to one, in which the dispersion on energy and spherical aberrations of the second order are equal to zero. These images are the objects on which the ion-optical system of the mass spectrometer is tuned. When you choose one from two ion sources it is enough to switch the corresponding mirror

  3. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO-8

    International Nuclear Information System (INIS)

    Crannell, C.J.; Dennis, B.R.; Dolan, J.F.; Frost, K.J.; Orwig, L.E.; Maurer, G.S.

    1977-01-01

    High-energy x-ray spectra of the Crab Nebula, Cyg XR-1, and Cen A have been determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year-to-year variations in the spectral and temporal characteristics of the x-ray emission. No variation in the light curve of the Crab pulsar has been found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Cen A are reported

  4. Supervised Mineral Classification with Semi-automatic Training and Validation Set Generation in Scanning Electron Microscope Energy Dispersive Spectroscopy Images of Thin Sections

    DEFF Research Database (Denmark)

    Flesche, Harald; Nielsen, Allan Aasbjerg; Larsen, Rasmus

    2000-01-01

    This paper addresses the problem of classifying minerals common in siliciclastic and carbonate rocks. Twelve chemical elements are mapped from thin sections by energy dispersive spectroscopy in a scanning electron microscope (SEM). Extensions to traditional multivariate statistical methods...

  5. An Energy Dispersive X-ray Spectroscopy Analysis of Elemental Changes of a Persimmon Phytobezoar Dissolved in Coca-Cola.

    Science.gov (United States)

    Iwamuro, Masaya; Urata, Haruo; Higashi, Reiji; Nakagawa, Masahiro; Ishikawa, Shin; Shiraha, Hidenori; Okada, Hiroyuki

    To investigate the mechanism of phytobezoar dissolution by Coca-Cola(®), persimmon phytobezoar pieces removed from a 60-year-old Japanese woman were analyzed by energy dispersive X-ray spectroscopy. The amount of calcium significantly decreased after dissolution treatment using Coca-Cola(®), suggesting a potential contribution of calcium to dissolution mechanisms. Moreover, immersion in Coca-Cola(®) for 120 hours on the exterior surface revealed that Coca-Cola(®) did not permeate persimmon phytobezoars. This is the first study to investigate the mechanisms of persimmon phytobezoar permeability and dissolution induced by Coca-Cola(®).

  6. Characterization of sediments laid on Solimoes/Amazonas river flood plains, using energy dispersive X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Carneiro, Ana E.V.; Nascimento Filho, Virgilio F. do

    1997-01-01

    This paper proposes sediment analysis with high light elements fraction using dispersive energy X-ray fluorescence technique with radioisotopic excitation, The proposed procedure is based on the Fundamental Parameters for analytical elements (Z ≥ 13) evaluation, and coherent and incoherent scattered radiation for quantification of the light fraction of the matrix (Z < 13). Laid sediments samples on Solimoes/Amazonas river flood plains were analyzed, determining simultaneously the Al, Si, K, Ca, Ti, Fe, Sc, V, Mn, Cu, Zn, Rb, Sr and Zr element concentrations, thus allowing chemical characterization and spatial variability, and some mineralogical and weathering sediments aspects. (author). 15 refs., 11 tabs

  7. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    Energy Technology Data Exchange (ETDEWEB)

    Echard, Jean-Philippe [Laboratoire de recherche et de restauration, Musee de la musique, Cite de la musique, 221, avenue Jean-Jaures, 75019 Paris (France)]. E-mail: jpechard@cite-musique.fr

    2004-10-08

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musee de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  8. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    Science.gov (United States)

    Echard, Jean-Philippe

    2004-10-01

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musée de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  9. Analysis of Precious Stones Deposited in Various Rock Samples of Mogok Region by energy dispersive X-ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    Kyi Kyi San; Soe Lwin; Win Win Thar; Sein Htoon

    2004-06-01

    The analysis of precious stones deposited in various rock samples of Mogok region were investigated by the energy dispersive x-ray fluorescence technique. The x-ray machine with Rh target was used to excite the characteristic x-ray from the sample. X-rays emitted from the sample were measured by a high resolution, cooled Si (Li) detector. The calibration was made by the measurement of minerals which composed in each kind of precious stones. The kind of precious stone deposited in the rocks sample was determined by the measurement of minerals from the rock samples compared with those obtained from each kind of precious stones

  10. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    Science.gov (United States)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  11. Energy dispersive X-ray diffraction as a means to identify illicit materials: A preliminary optimisation study

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Emily [Department of Medical Physics and Bioengineering, UCL, London WC1E 6BT (United Kingdom)]. E-mail: ecook@medphys.ucl.ac.uk; Fong, Ruby [Clinical Physics Department, St Bartholomew' s Hospital, London EC1A 7BE (United Kingdom); Horrocks, Julie [Clinical Physics Department, St Bartholomew' s Hospital, London EC1A 7BE (United Kingdom); Wilkinson, David [HOSDB, Woodcock Hill, Sandridge, Herts. AL4 9HQ (United Kingdom); Speller, Robert [Department of Medical Physics and Bioengineering, UCL, London WC1E 6BT (United Kingdom)

    2007-08-15

    Energy dispersive X-ray diffraction is proposed as a suitable non-destructive method to rapidly identify illicit drugs in parcels. A preliminary data set of 7 illicit drug samples and a possible cutting agent has been collected with a range of count times using a tungsten target X-ray source, a high resolution HpGe detector and a variable geometry diffraction cell. These results have been used to calibrate and train multivariate analysis software to predict the drug content in previously unseen spectra.

  12. Energy dispersive X-ray diffraction as a means to identify illicit materials: A preliminary optimisation study

    International Nuclear Information System (INIS)

    Cook, Emily; Fong, Ruby; Horrocks, Julie; Wilkinson, David; Speller, Robert

    2007-01-01

    Energy dispersive X-ray diffraction is proposed as a suitable non-destructive method to rapidly identify illicit drugs in parcels. A preliminary data set of 7 illicit drug samples and a possible cutting agent has been collected with a range of count times using a tungsten target X-ray source, a high resolution HpGe detector and a variable geometry diffraction cell. These results have been used to calibrate and train multivariate analysis software to predict the drug content in previously unseen spectra

  13. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    International Nuclear Information System (INIS)

    Echard, Jean-Philippe

    2004-01-01

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musee de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed

  14. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  15. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  16. Crystal-diffraction spectrometer of increased efficiency

    International Nuclear Information System (INIS)

    Saukov, A.I.; Gornitsyn, G.A.; Morozov, N.A.

    1985-01-01

    The geometry of the spectrometer is illustrated in this paper. An attempt is made to achieve optimal design of the spectrometer by finding the coefficient of reflection of the gamma radiation from the various Ge planes. In these experiments, the Du Mond design was used in the spectrometer. Illustrations are provided to explain dependence of the relative efficiency upon the energy of the gamma quanta

  17. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction II: Nonplanar Molecules.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-11-14

    The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.

  18. Wavelength dispersive μPIXE setup for the ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Fazinić, S., E-mail: stjepko.fazinic@irb.hr [Laboratory for Ion Beam Interactions, Division of Experimental Physics, Rudjer Bošković Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Božičević Mihalić, I.; Tadić, T.; Cosic, D.; Jakšić, M. [Laboratory for Ion Beam Interactions, Division of Experimental Physics, Rudjer Bošković Institute, Bijenicka cesta 54, 10000 Zagreb (Croatia); Mudronja, D. [Croatian Conservation Institute, Grškovićeva 23, 10000 Zagreb (Croatia)

    2015-11-15

    We have developed a small wavelength dispersive X-ray spectrometer to explore the possibility of performing chemical speciation on microscopic samples utilizing focused ion beams available at the Rudjer Boskovic Institute ion microprobe. Although PIXE spectra are in principle chemically invariant, small influence of chemical effects could be observed even with Si(Li) or SDD detectors. Such chemical effects can be clearly seen with high resolution crystal X-ray spectrometers having energy resolution of several eV. A dedicated vacuum chamber, housing the diffraction crystal, sample holder and CCD X-ray detector, was constructed and positioned behind the main ion microprobe vacuum chamber. Here we will briefly describe the spectrometer, and illustrate its capabilities on measured K X-ray spectra of selected sulfur compounds. We will also demonstrate its abilities to resolve K and M X-ray lines irresolvable by solid state ED detectors usually used in PIXE.

  19. Scanning electron microscopy and X-ray energy dispersive spectroscopy - useful tools in the analysis of pharmaceutical products

    Science.gov (United States)

    Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej

    2017-11-01

    The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.

  20. A low cost multi-purpose experimental arrangement for variants in energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F.; Silva, R.M.C.; Moraes, L.M.B.; Parreira, P.S.; Appoloni, R.C.; Silva, R.M.C.

    2005-01-01

    Based in an X-ray tower with four exits (two line and two point beams) experimental conditions were arranged to carry out variants in energy dispersive X-ray fluorescence analysis: (1) the conventional one (EDXRF), with excitation/detection of thin and thick samples, under vacuum and air atmosphere, (2) the X-ray energy dispersive micro- fluorescence analysis(μ-EDXRF), with 2D mapping, using a quartz capillar, (3) the total reflection X-ray fluorescence (TXRF), under He and air atmosphere, and (4) secondary target/polarized X-ray fluorescence (P-EDXRF). It was possible to use a Cu, Mo or W target on the X-ray tube, with or without filter (V, Fe, Ni and Zr), and Si(Li) or Si-PIN semicondutor detectors coupled to a multichannel analyzer. In addition, it was possible to use the point beam to carry out experiments on (5) X-ray radiography and (6) X-ray absorption, and the line beam on (7) X-ray diffractometry studies.

  1. Comparison between energy dispersive X-ray fluorescence and other nuclear analytical techniques in mineral exploration and mining

    International Nuclear Information System (INIS)

    Clayton, C.G.; Packer, T.W.; Wormald, M.R.

    1979-01-01

    At the present time there is an increasing awareness of the value and need for in-situ analytical methods throughout the general area of mineral exploration and mining. Of the alternative techniques, the measurement of natural gamma radiation is well established for uranium exploration and it is now being developed for sea-bed and lake-bed surveying. Energy dispersive X-ray fluorescence equipment is becoming more generally accepted, especially for mine control. Neutron techniques, for so long used routinely in oil well logging, are now being developed for a wide range of applications in all aspects of exploration and mining. It is believed that these techniques will result in major applications in the future. The present paper compares the principal characteristics of energy dispersive X-ray fluorescence and neutron techniques in particular, with special emphasis being given to those factors which affect the accuracy of analytical content; such as elemental resolution, matrix effects, material heterogeneity and neutron transport. A generalised comparison between the techniques is difficult to achieve because of the different nature of radiation interactions, but a range of applications is described and these show the complementary nature of the methods and point to the areas for more active development in the future. (author)

  2. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy

    Science.gov (United States)

    Ferguson, J. B.; Schultz, Benjamin F.; Venugopalan, Dev; Lopez, Hugo F.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-03-01

    Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.

  3. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Paul R., E-mail: prhorn@berkeley.edu; Mao, Yuezhi; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720 (United States)

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na{sup +}, water-Cl{sup −}, and the naphthalene dimer.

  4. A search for flaring Very-High-Energy cosmic-ray sources with the L3+C muon spectrometer

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bähr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiarusi, T; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; De Asmundis, R; Dglon, P; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Durán, I; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, H; Grabosch, G; Grimm, O; Groenstege, H; Grünewald, M W; Guida, M; Guo, Y N; Gupta, S K; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, C; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Ito, N; Jin, B N; Jindal, P; Jing, C L; Jones, L W; de Jong, P; Josa-Mutuberría, M I; Kantserov, V A; Kaur, i; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; König, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V F; Kräber, M; Kuang, H H; Krämer, R W; Krüger, A; Kuijpers, J; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J F; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P A M; Riemann, S; Riles, K; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schmitt, V; Schöneich, B; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sulanke, H; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; Van Wijk, R F; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J

    2006-01-01

    The L3+C muon detector at the Cern electron-position collider, LEP, is used for the detection of very-high-energy cosmic \\gamma-ray sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to November 2000 are considered. Special attention is also given to a selection of known \\gamma-ray sources. No statistically significant excess is observed for any direction or any particular source.

  5. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    Science.gov (United States)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  6. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2015-10-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested highaccuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm-3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown.

  7. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    Science.gov (United States)

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  8. Concept design of a time-of-flight spectrometer for the measurement of the energy of alpha particles.

    Science.gov (United States)

    García-Toraño, E

    2018-04-01

    The knowledge of the energies of the alpha particles emitted in the radioactive decay of a nuclide is a key factor in the construction of its decay scheme. Virtually all existing data are based on a few absolute measurements made by magnetic spectrometry (MS), to which most other MS measurements are traced. An alternative solution would be the use of time-of-flight detectors. This paper discusses the main aspects to be considered in the design of such detectors, and the performances that could be reasonably expected. Based on the concepts discussed here, it is estimated that an energy resolution about 2.5keV may be attainable with a good quality source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Measurements and Monte Carlo calculations with the extended-range Bonner sphere spectrometer at high-energy mixed fields

    OpenAIRE

    Dimovasili, Evangelia; Valley, Jean-Francois; Bay, Aurelio; Silari, Marco; Aroua, Abbas

    2016-01-01

    The use of spectrometry to provide information for neutron radiation protection has become an increasingly important activity over recent years. The need for spectral data arises because neither area survey instruments nor personal dosimeters give the correct dose equivalent results at all neutron energies. It is important therefore to know the spectra of the fields in which these devices are used. One of the systems most commonly employed in neutron spectrometry and dosimetry is the Bonner S...

  10. BNL multiparticle spectrometer software

    International Nuclear Information System (INIS)

    Saulys, A.C.

    1984-01-01

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed

  11. An overview of quantification methods in energy-dispersive X-ray ...

    Indian Academy of Sciences (India)

    Author Affiliations. A Markowicz1. Department of Nuclear Sciences and Applications, Division of Physical and Chemical Sciences, Nuclear Spectrometry & Applications Laboratory, International Atomic Energy Agency, P.O. Box 100, Wagramer Strasse 5, 1400 Vienna, Austria ...

  12. ESA Gaia & the multifrequency behavior of high-energy sources with ultra-low dispersion spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Šimon, Vojtěch; Hudec, L.; Hudcová, Věra

    2012-01-01

    Roč. 83, č. 1 (2012), s. 342-346 ISSN 0037-8720. [Workshop on multifrequency behaviour of high energy cosmic sources. Vulcano, 23.05.2011-28.05.2011] R&D Projects: GA ČR GA205/08/1207 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-rays * high-energy sources * satellites Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  13. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  14. Triple axis spectrometers

    International Nuclear Information System (INIS)

    Clausen, K.N.

    1997-01-01

    Conventional triple-axis neutron spectroscopy was developed by Brockhouse over thirty years ago' and remains today a versatile and powerful tool for probing the dynamics of condensed matter. The original design of the triple axis spectrometer is technically simple and probes momentum and energy space on a point-by-point basis. This ability to systematically probe the scattering function in a way which only requires a few angles to be moved under computer control and where the observed data in general can be analysed using a pencil and graph paper or a simple fitting routine, has been essential for the success of the method. These constraints were quite reasonable at the time the technique was developed. Advances in computer based data acquisition, neutron beam optics, and position sensitive area detectors have been gradually implemented on many triple axis spectrometer spectrometers, but the full potential of this has not been fully exploited yet. Further improvement in terms of efficiency (beyond point by point inspection) and increased sensitivity (use of focusing optics whenever the problem allows it) could easily be up to a factor of 10-20 over present instruments for many problems at a cost which is negligible compared to that of increasing the flux of the source. The real cost will be in complexity - finding the optimal set-up for a given scan and interpreting the data as the they are taken. On-line transformation of the data for an appropriate display in Q, ω space and analysis tools will be equally important for this task, and the success of these new ideas will crucially depend on how well we solve these problems. (author)

  15. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  16. High resolving power spectrometer for beam analysis

    International Nuclear Information System (INIS)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  17. Kinetic energy measurement of hydrogen in LHD peripheral plasma with a multi-wavelength-range fine-resolution spectrometer

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Mizushiri, Keisuke; Nishioka, Tomomi; Shikama, Taiichi; Iwamae, Atsushi; Goto, Motoshi; Morita, Shigeru; Hasuo, Masahiro

    2010-01-01

    We have simultaneously measured high resolution emission spectra of the hydrogen atomic Balmer-α, -β, -γ lines and molecular Fulcher-α band for a LHD peripheral plasma generated under a central magnetic field strength of 0.4 T. It is found that the velocity distributions of excited atoms calculated from the Balmer-α, -β, and -γ line shapes show similar profiles to each other. The translational kinetic energy corresponding to the average velocity is about 13 eV, which is about 300 times larger than the rotational energy of hydrogen molecules estimated from the line intensities in the Fulcher-α band. The velocity distributions differ from Maxwellian and have a high velocity tail over 1x10 5 m/s. A correlation between the high velocity tail and the electron temperature and density is seen and suggesting the excited atoms having such high velocities to be generated by the charge exchange collisions from high velocity protons in the peripheral region.

  18. Real time Faraday spectrometer

    Science.gov (United States)

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  19. Real time Faraday spectrometer

    International Nuclear Information System (INIS)

    Smith, T.E.; Struve, K.W.; Colella, N.J.

    1991-01-01

    This patent describes an invention which uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements

  20. The application of energy-dispersive X-Ray fluorescence spectrometry (EDXRF) to the analysis of ceramic glasses

    International Nuclear Information System (INIS)

    Ben Abdelwahed, Haifa; Reguigui, Nafaa; Ghdira, Lotfi; Khosrof, S.

    2005-01-01

    The measurement of energies and intensities of fluorescent X-rays emitted from a given material when atoms are bombarded with suitable projectiles like electrons, protons, α particles or photons has been successfully used for non-destructive elemental analysis in many applications, especially in the analysis of ceramic glasses. Use of radioisotopes as a source of excitation radiation in combination with high resolution semiconductor detectors in x-ray fluorescence has found wide applications in elemental analysis. A radioisotope excited X-ray fluorescence spectrometer consisting of a standard 5.45mm Si(Li) detector having a resolution of 200 eV at 5.9 keV coupled to a TRUMP-8K multichannel analyzer has been used. Tow sources of annular geometry using 10 mCi 109Cd and 10 mCi 55Fe together with PC AXIL software have been used for this study of tile-pavement glasses of ''Ksar Said'' in Tunisia. Analytical data shows that those tile pavement witch are broken in the 19th century from France (Marseille) have not the same composition of Tunisian tile pavement. Referring to our data, The kind of that analyzed glasses is of alkaline lead. we found also, through this study, the elemental compositions of different pigments (green, blue, brownish, yellow, white and red) used to color that tile-pavement glasses

  1. The application of energy-dispersive X-Ray Fluorescence spectrometry (EDXRF) to the analysis of ceramic glasses

    International Nuclear Information System (INIS)

    Ben Abdelwahed, H.; Reguigui, N.; Ghidira, L.; Khosrof, S.

    2005-01-01

    The measurement of energies and intensities of fluorescent X-rays emitted from a given material when atoms are bombarded with suitable projectiles like electrons, protons,α particles or photons have been successfully used for non destructive elemental analysis in many applications, especially in the analysis of ceramic glasses. Use of radioisotopes as a source of excitation radiation in combination with high resolution semiconductor detectors in x-ray fluorescence has found wide applications in elemental analysis. A radioisotope excited X-ray fluorescence spectrometer consisting of a standard 5.45mm Si(Li) detector having a resolution of 200 eV at 5.9 KeV coupled to a TRUMP -8K multichannel analyser has been used. Two sources of annular geometry using 10 mCi 109 CD and 10 mCi 55 Fe together with PC AXIL software have been used for this study of tile-pavement glasses of ''Ksar Said'' in Tunisia. Analytical data shows that those tile pavements which are broken in the 19th century from France (Marseille) have not the same composition of Tunisian tile pavement. Referring to our data, the kind of that analysed glasses is of alkaline lead. We found also, through this study, the elemental compositions of different pigments (green, blue, brownish, yellow, white and red) used to color those tile-pavement glasses

  2. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  3. Characterization of particulate matter from the Metropolitan Zone of the Valley of Mexico by scanning electron microscopy and energy-dispersive x-ray analysis

    International Nuclear Information System (INIS)

    Martiez, T.; Lartigue, J.; Avila-Perez, P.; Carapio-Morales, L.; Zarazua, G.; Tejeda, S.

    2005-01-01

    The urban air pollution issue is a concern in many Mega cities, because of hazardous effect to human health. The Metropolitan Zone of the Valley of Mexico (MZMV) is one of the ten largest urban areas around the World with a population of 24.4 million people by the year 2000. One or the 'six criteria pollutants' regulated by Norm (because the hazardous effect to human health) are those commonly designed as Total Suspended Particles (TSP) and Respirable Particles (RP) lower than 10 μm (coarse, PM10 and fine PM2.5). Particulate matter consists of solids or liquid aerosol particles suspended in the air and has diverse chemical composition related to the sources. Under ambient conditions of sampling analysis particulate matter exists almost exclusively in solid phase but can include liquid aerosols such as the heavier components of diesel combustion products and nitric acid. In general particulate matter includes dust, dirt, soot, smoke and liquid droplets emitted in the air by sources such as factories, power plants, cars, fire, construction activities, aircrafts and winds blown dust. In this work the survey of TSP particles an PM10 was carried out with an automatic high volume sampler with an average flow rate of 1.5 m 3 min -1 during 24 h in five monitoring stations of the national network system chosen trying to cover the fourth cardinal directions and the central zone: Xalostoc (XAL) at NE; Tlanepantla (TLA) at NW; Merced (MER) at the downtown; Cerro de la Estrella (CES) at SE and Pedregal (PED) at SW. A sample of l cm 2 was cut from each filter and mounted with a graphite tape on an aluminum sample-holder. The analysis of 100 induvidual particles of each sample were done by scanning electron microscopy and energy-dispersive X-ray microanalysis (EDX). The analysis was performed using a scanning electron microscope PHILLIPS Model XL-30. X-ray analysis is carried out with an energy-dispersive Si(Li) detector Model Saphire, SUTW (super ultra thin window), allowing

  4. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...

  5. Total reflection X-ray fluorescence and energy-dispersive X-ray ...

    Indian Academy of Sciences (India)

    Nuclear energy is one of the clean options of electricity generation for the betterment of human life. India has an ambitious program for such electricity generation using different types of nuclear reactors. The safe and efficient generation of electricity from these reactors requires quality control of different nuclear materials, ...

  6. Analysis of stainless steel samples by energy dispersive X-ray ...

    Indian Academy of Sciences (India)

    Unknown

    the total sample mass absorption coefficients for X-ray energies E0, Ej and ... from published literature (McMaster et al 1969; Bam- bynek et al 1972). .... Table 1. Concentrations of CRM samples determined by EDXRF and VES. Concentrations ...

  7. Dispersive X-ray fluorescence applications in energy in environmental problems diagnostic

    International Nuclear Information System (INIS)

    Odino, R.; Souto, B.; Roca, S.; Campomar, W.

    1994-01-01

    X-ray fluorescence energy was used to detect the grade of contamination due to a Portland cement factory. X-ray fluorescence was used to determine the incidence of a Portland cement plant in the quality of air in its surroundings. Many contaminants (Cu, Pb, Ni, Br) do not come from the Portland cement industry but other industries in the zone

  8. Foerster resonance energy transfer in inhomogeneous non-dispersive nanophotonic environments

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    A nondispersive inhomogeneous dielectric environment of a donor-acceptor pair of quantum emitters affects their Foerster resonance energy transfer (FRET) rate. We find that this rate does not depend on the emission frequency and hence not on the local optical density of states (LDOS) at that freq...

  9. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  10. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  11. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    International Nuclear Information System (INIS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-01-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  12. Sodium lauryl sulfate enhances nickel penetration through guinea-pig skin. Studies with energy dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Lindberg, M.; Sagstroem, S.R.; Roomans, G.M.; Forslind, B.

    1989-01-01

    The effect of sodium lauryl sulphate (SLS), a common ingredient of detergents, on the penetration of nickel through the stratum corneum in the guinea-pig skin model was studied with energy dispersive X-ray microanalysis (EDX) to evaluate the barrier-damaging properties of this common detergent. The EDX technique allows a simultaneous determination of physiologically important elements, e.g., Na, Mg, P, Cl, K, Ca and S in addition to Ni at each point of measurement in epidermal cell strata. Our results show that SLS reduces the barrier function to Ni-ion penetration of the stratum corneum. In addition we have shown that EDX allows analysis of the influence of different factors involved in nickel penetration through the skin by giving data on the physiological effects on the epidermal cells caused by the applied substances

  13. Trapped Bose-Einstein condensates with Planck-scale induced deformation of the energy-momentum dispersion relation

    International Nuclear Information System (INIS)

    Briscese, F.

    2012-01-01

    We show that harmonically trapped Bose-Einstein condensates can be used to constrain Planck-scale physics. In particular we prove that a Planck-scale induced deformation of the Minkowski energy-momentum dispersion relation δE≃ξ 1 mcp/2M p produces a shift in the condensation temperature T c of about ΔT c /T c 0 ≃10 -6 ξ 1 for typical laboratory conditions. Such a shift allows to bound the deformation parameter up to |ξ 1 |≤10 4 . Moreover we show that it is possible to enlarge ΔT c /T c 0 and improve the bound on ξ 1 lowering the frequency of the harmonic trap. Finally we compare the Planck-scale induced shift in T c with similar effects due to interboson interactions and finite size effects.

  14. Determination of trace metals in sea waters of the albanian coast by energy-dispersive x-ray fluorescence

    International Nuclear Information System (INIS)

    Civici, N.

    1994-01-01

    Preconcentration of trace transition and heavy metal ions by precipitation with APDC has been combined with energy-dispersive X-ray fluorescence for environmental sea water analysis. The preconcentration procedure implies adding of 500 μg Mo ion and 10 ml of 1 % water solution of APDC to a 500 ml water sample at pH 4, filtering off on a Millipore filter and analyzing after drying. Realistic detection limits are at 1 μg * l -1 level and precision varies between 10 - 25% at about 5 μg * l -1 level, depending on the element. Eleven sea water samples, covering Albanian Adriatic and Ionian coast, are analyzed for trace metal ions. (author) 8 refs.; 2 figs.; 5 tabs

  15. Energy dispersive X-ray fluorescence analysis with Bragg polarized Mo radiation. Energiedispersive Roentgenfluoreszenzanalyse mit Bragg-polarisierter Mo Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckl, H

    1983-01-01

    The aim of introducing energy dispersive analysis into X-ray fluorescence analysis is to suppress background from the Bremsstrahlung spectrum and the characteristic radiation without an undue reduction of the signal. The variant under consideration uses linearly polarization radiation obtained after a Bragg reflection,under delta = 90/sup 0/. In an introductory part, Bragg reflection, fluorescence and strong radiation are considered quantitatively with respect to counting statistics and detection limits. In the experimental part two combinations are describe, of a Ta crystal with a Cr tube and of a Mo crystal with a Mo tube. Details of adjustment, sample preparation and calibration and detection limits are given. The pros and cons of the Ta/Cr and the Mo/Mo are contrasted and proposals for further improvements are given.

  16. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    Energy Technology Data Exchange (ETDEWEB)

    Maruthi, Y. A., E-mail: ymjournal2014@gmail.com [Associate professor, Dept of Environmental Studies, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Das, N. Lakshmana, E-mail: nldas9@gmail.com [Professor, Dept of Physics, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Ramprasad, S., E-mail: ramprasadsurakala@gmail.com [Research Scholar, Dept of Environmental science, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Ram, S. S., E-mail: tracebio@gmail.com [Research Scholar, Dept of Trace element research, UGC-DAE Consortium Centre, Kolkata centre India (India); Sudarshan, M., E-mail: sude@alpha.iuc.res.in [Scientist-F, Dept of Trace element research, UGC-DAE Consortium Centre, Kolkata centre India (India)

    2015-08-28

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.

  17. Analytical Energy Dispersive X-Ray Fluorescence Measurements with a Scanty Amounts of Plant and Soil Materials

    Science.gov (United States)

    Mittal, R.; Rao, P.; Kaur, P.

    2018-01-01

    Elemental evaluations in scanty powdered material have been made using energy dispersive X-ray fluorescence (EDXRF) measurements, for which formulations along with specific procedure for sample target preparation have been developed. Fractional amount evaluation involves an itinerary of steps; (i) collection of elemental characteristic X-ray counts in EDXRF spectra recorded with different weights of material, (ii) search for linearity between X-ray counts and material weights, (iii) calculation of elemental fractions from the linear fit, and (iv) again linear fitting of calculated fractions with sample weights and its extrapolation to zero weight. Thus, elemental fractions at zero weight are free from material self absorption effects for incident and emitted photons. The analytical procedure after its verification with known synthetic samples of macro-nutrients, potassium and calcium, was used for wheat plant/ soil samples obtained from a pot experiment.

  18. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  19. Determination of heavy metals at traces level in leached samples by energy dispersive x-ray fluorescence technique

    International Nuclear Information System (INIS)

    Simabuco, Silvana M.; Nascimento Filho, Virgilio F. do; Inacio, Graziela R.; Navarro, Angela N.

    1996-01-01

    In landfill solid residues are disposed in the soil. When made based on technical criteria and specifically operation patterns a safe confinement is warranted according to environmental and public health protection. However, when the disposal is made by a random and unsuitable way serious problems can be caused as groundwater and superficial water contamination through leach action, indicating the usefulness of monitoring landfills. In this way energy dispersive X-ray fluorescence analysis with radioisotopic excitation was applied to evaluate the concentrations of heavy metals at trace levels in leached samples from the Americana City Landfill with pre-concentration of the elements by a non-specific precipitating agent, called ammonium pyrrolidine dithiocarbamate (APDC). (author)

  20. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Science.gov (United States)

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  1. Energy-dispersive X-ray reflectivity and GID for real-time growth studies of pentacene thin films

    International Nuclear Information System (INIS)

    Kowarik, S.; Gerlach, A.; Leitenberger, W.; Hu, J.; Witte, G.; Woell, C.; Pietsch, U.; Schreiber, F.

    2007-01-01

    We use energy-dispersive X-ray reflectivity and grazing incidence diffraction (GID) to follow the growth of the crystalline organic semiconductor pentacene on silicon oxide in-situ and in real-time. The technique allows for monitoring Bragg reflections and measuring X-ray growth oscillations with a time resolution of 1 min in a wide q-range in reciprocal space extending over 0.25-0.80 A -1 , i.e. sampling a large number of Fourier components simultaneously. A quantitative analysis of growth oscillations at several q-points yields the evolution of the surface roughness, showing a marked transition from layer-by-layer growth to strong roughening after four monolayers of pentacene have been deposited

  2. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peruchi, Lidiane Cristina; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Guerra, Marcelo Braga Bueno; Almeida, Eduardo de; Rufini, Iolanda Aparecida [NAPTISA Research Support Center “Technology and Innovation for a Sustainable Agriculture”, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000, Piracicaba SP (Brazil); Santos, Dário [Federal University of São Paulo, R. Prof. Artur Riedel 275, 09972-270, Diadema SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [NAPTISA Research Support Center “Technology and Innovation for a Sustainable Agriculture”, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000, Piracicaba SP (Brazil)

    2014-10-01

    Laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were evaluated for the determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn in pressed pellets of wheat flours. EDXRF and LIBS calibration models were built with analytes mass fractions determined by inductively coupled plasma optical emission spectrometry after microwave-assisted acid digestion in a set of 25 wheat flour laboratory samples. Test samples consisted of pressed pellets prepared from wheat flour mixed with 30% mm{sup −1} cellulose binder. Experiments were carried out with a LIBS setup consisted of a Q-switched Nd:YAG laser and a spectrometer with Echelle optics and ICCD, and a benchtop EDXRF system fitted with a Rh target X-ray tube and a Si(Li) semiconductor detector. The correlation coefficients from the linear calibration models of P, K, Ca, Mg, S, Fe, Mn and Zn determined by LIBS and/or EDXRF varied from 0.9705 for Zn to 0.9990 for Mg by LIBS, and from 0.9306 for S to 0.9974 for K by EDXRF. The coefficients of variation of measurements varied from 1.2 to 20% for LIBS, and from 0.3 to 24% for EDXRF. The predictive capabilities based on RMSEP (root mean square error of prediction) values were appropriate for the determination of P, Ca, Mg, Fe, Mn and Zn by LIBS, and for P, K, S, Ca, Fe, and Zn by EDXRF. In general, results from the analysis of NIST SRM 1567a Wheat flour by LIBS and EDXRF were in agreement with their certified mass fractions. - Highlights: • Combination of LIBS and EDXRF for quantitative analysis of wheat flour. • Validation performed for determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn. • Same test samples can be used for both methods. • Appropriate limits of detection for all tested analytes. • Methods are simple and provide fast and accurate results for routine analysis.

  4. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaniu, M.I., E-mail: ikaniu@uonbi.ac.ke [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Angeyo, K.H. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mwala, A.K. [Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mangala, M.J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2012-06-04

    Highlights: Black-Right-Pointing-Pointer Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. Black-Right-Pointing-Pointer The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. Black-Right-Pointing-Pointer This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using {sup 109}Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R{sup 2} > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 {mu}g g{sup -1} for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated

  5. Measuring the energies and multiplicities of prompt gamma-ray emissions from neutron-induced fission of $^{235}$U using the STEFF spectrometer

    CERN Document Server

    AUTHOR|(CDS)2093036; Smith, Alastair Gavin; Wright, Tobias James

    Following a NEA high priority nuclear data request, an experimental campaign to measure the prompt $\\gamma$-ray emissions from $^{235}$U has been performed. This has used the STEFF spectrometer at the new Experimental Area 2 (EAR2) within the neutron timeof-flight facility (n_TOF), a white neutron source facility at CERN with energies from thermal to approximately 1 GeV. Prior to the experimental campaign, STEFF has been optimised for the environment of EAR2. The experimental hall features a high background $\\gamma$-ray rate, due to the nature of the spallation neutron source. Thus an investigation into reduction of the background $\\gamma$-ray rate, encountered by the NaI(Tl) detector array of STEFF, has been carried out. This has been via simulations using the simulation package FLUKA. Various materials and shielding geometries have been investigated but the effects determined to be insufficient in reducing the background rate by a meaningful amount. The NaI(Tl) detectors have been modified to improve their ...

  6. Depth profiling of Al{sub 2}O{sub 3} + TiO{sub 2} nanolaminates by means of a time-of-flight energy spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, M., E-mail: mikko.i.laitinen@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Sajavaara, T., E-mail: timo.sajavaara@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Rossi, M., E-mail: mikko.rossi@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Julin, J., E-mail: jaakko.julin@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland); Puurunen, R.L., E-mail: riikka.puurunen@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, FI-02150 Espoo (Finland); Suni, T., E-mail: tommi.suni@vtt.fi [VTT Technical Research Centre of Finland, Tietotie 3, FI-02150 Espoo (Finland); Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Ishida, T., E-mail: tadashii@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Fujita, H., E-mail: fujita@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, ew304, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Arstila, K., E-mail: kai.arstila@imec.be [Imec, Kapeldreef 75, Leuven 3001 (Belgium); Brijs, B., E-mail: bert.brijs@imec.be [Imec, Kapeldreef 75, Leuven 3001 (Belgium); Whitlow, H.J., E-mail: harry.j.whitlow@jyu.fi [Dept. of Physics, P.O. Box 35, 40014 University of Jyvaeskylae (Finland)

    2011-12-15

    Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al{sub 2}O{sub 3} + TiO{sub 2} nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyvaeskylae. In TOF-E measurements {sup 63}Cu, {sup 35}Cl, {sup 12}C and {sup 4}He ions with energies ranging from 0.5 to 10 MeV, were used and depth profiles of the whole nanolaminate film could be analyzed down to 5 nm individual layer thickness.

  7. Some dispersive X-ray fluorescence applications in energies with radioisotopic excitation source

    International Nuclear Information System (INIS)

    Adelfang, P.; Vazquez, C.

    1990-01-01

    The aim of this work is based on the use of interelemental correction coefficients which are calculated through fundamental parameters. To this purpose, it is necessary to know about the physical constants for each element including the absorption coefficient values and fluorescence yield, the incidence radiation energy, geometric and instrumental parameters. Besides, a special application of the program for the determination of a Nd-La mixed crystal formula is included. (Author) [es

  8. Dispersed, Decentralized and Renewable Energy Sources: Alternatives to National Vulnerability and War.

    Science.gov (United States)

    1980-12-01

    U.S. imports a major portion from the Middle East, including Iraq, Saudi Arabia. the Arab Emirates, Kuwait, Qatar . Oman, Bahrain, Turkey and Yemen... aquifers , or fully depleted oil and gas wells. The average capacity of underground storage pools is about nineteen billion cubic feet. In 1978, there...heating demands. 4 3 Aquifers are being considered for thermal energy storage. The ground water stored in aquifers is subject to geothermal radiation

  9. An Assessment of the Heavy Metal Content of Cat Fish (Clarias Lazera) obtained from the Lower Niger Basin at Idah, Kogi State using Energy Dispersive X- ray Fluorescence (EDXRF) Technique

    International Nuclear Information System (INIS)

    Amodu, A.E.; Achumu, L. A.; Egwuogu, C.P.

    2013-01-01

    Five catfish (Clarias lazera) samples obtained from the Lower Niger River Basin at Idah were subjected to elemental analysis by Energy Dispersive X - ray Fluorescence (EDXR) technique. A voltage of 30KV and current of 1mA was applied to produce a 17.441KeV molybdenum X-ray which was used to irradiate the samples for ten minutes. The analysis was performed using the mini pal 4 version PW 4030 X -ray spectrometer at the Center for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Kaduna State, Nigeria. The elemental composition and concentration of seven major and trace elements: Ca, Cr, K, Cu, Fe, Mn, and V were detected in the samples. The major elements are Ca,K and Fe while the trace elements are Cr,Cu, V and Mn. The concentration of Calcium which is the highest range fro 0.370% to 3.110% while the concentration of Copper which is the least range from 46.030pm to 99.859pm. The result shows the presence of Cr, Cu, Fe, Mn and V which are heavy metals the concentration of Cr, Cu, Fe and Mn in the sample were below World Health Organization (WHO) and Food and Agricultural Organization(FAO) maximum permissible limit of intake of the various minerals respectively. However the concentration of V found in the sample is above the WHO and FAO maximum limit for Vanadium.

  10. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.

    Science.gov (United States)

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2014-01-01

    Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014. Copyright © 2013 Wiley Periodicals, Inc.

  11. The electronic system of Beijing spectrometer

    International Nuclear Information System (INIS)

    Xi Deming

    1990-01-01

    Beijing Spectrometer (BES) in an experimental facility of high energy physics on Beijing Electron Positron Collider (BEPC). A brief description including the global design, the read out circuits, the performances and the recent status of its electronic system is presented

  12. Analysis of SHLW by Energy Dispersive X-Ray Fluorescence (EDXRF) technique

    International Nuclear Information System (INIS)

    Vadivu, Senthil; Seshadreesan, N.P.; Kumar, R.; Venkatasubramani, C.R.

    2012-01-01

    The simulated high level liquid waste (SHLW) sample expected from fuel reprocessing experiments containing uranium and about 20 various other elements were analysed by EDXRF technique. An investigation with respect to Nd estimation, a burn up monitor, in presence of varying concentrations of U was also carried out. The simulated raffinate solution with a mixture of 20 expected elements was used as standard solution. Four samples of varying concentrations were prepared by appropriate dilution from the standard solution. Calibrations were carried out for its various constituent elements. The elements such as Cs, Mo, Sr,Y, Cd, Ba, Ce, U and La were analysed using W-filter whereas the elements such as Nd, Fe and Ni were analysed using Ge secondary target. The results of 4 simulated samples analysed using FDXRF are given. These values for each element are the mean of the three values obtained. The results obtained for different simulated waste are also shown. These solutions are of different compositions and therefore, vary in their matrix effects. Nevertheless, the medium of second simulated waste is in 3.5N HNO 3 where as the calibration is done with 0.1N HNO 3 medium and hence this might be the cause for large deviations observed in some of the results. A trend of the non-interference of the Uranium matrix in the assay of Nd was demonstrated typically at a fixed concentration of 92.3 ppm in uranium matrix of 900 and 6000 ppm. In both the cases, it was observed that the concentration of Nd measured remained same. This is in accordance to the fact that the characteristic X-ray energy peaks of Nd (L-lines) and U (M-lines) are well separated in the spectrum and the contribution of the low energy peak of Uranium to the higher energy peak of Nd is negligible. But the limiting concentration of Uranium may be the one in which a overlapping of its peak occurs

  13. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    Directory of Open Access Journals (Sweden)

    Otto Blehr

    1997-04-01

    Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.

  14. Modeling complex dispersed energy and clean water systems for the United States/Mexico border

    Science.gov (United States)

    Herrera, Hugo Francisco Lopez

    As world population grows, and its technology evolves, the demand for electricity inexorably increases. Until now most of this electricity has been produced via fossil fuels, non-renewable energy resources that are irreversibly deteriorating our environment. On the economical aspect it does not get any better. Let's not forget market rules, the higher the demand and lower the offer, the higher the price we will have to pay. Oil is an excellent example. Some countries try to solve this situation with Pharaohnic projects, i.e. investing absurd amounts of money in 'green electricity' building monstrous dams to power equally monstrous hydroelectric power plants. The only problem with this is that it is not green at all---it does have an enormous environmental impact---it is extremely complicated and expensive to implement. It is important to point out, that this research project does not try to solve world's thirst for electricity. It is rather aimed to help solve this problematic at a much lower scale---it should be considered as an extremely small step in the right direction. It focuses on satisfying the local electricity needs with renewable, non-contaminating and locally available resources. More concisely, this project focuses on the attainment and use of hydrogen as an alternate energy source in El Paso/Juarez region. Clean technology is nowadays available to produce hydrogen and oxygen, i.e. the photoelectrolysis process. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. In this research, simulation models of hybrid systems were designed and developed. They were capable to compare, predict and evaluate different options for hydrogen generation. On the other hand, with the produced hydrogen from the electrolysis process it was possible to generate electricity through fuel cells. The main objectives of the proposed research were to define how to use the resources for the attainment of hydrogen

  15. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  16. Silicon spectrometer with a Peltier refrigerator

    International Nuclear Information System (INIS)

    Belcarz, E.; Chwaszczewska, J.; Hahn, G.; Nowicki, W.; Sawicka, B.; Skoczek, K.; Slapa, M.; Szymczak, M.

    1974-01-01

    This paper describes a spectrometer with a Si(Li) detector cooled by a Peltier refrigerator. The spectrometer is able to analyse samples of practically all most frequently encountered emitters of alpha, beta and low energy gamma radiation. The energy resolution were about 1.3-1.5 keV for 14 keV gamma radiation. The system can also operate in field conditions in the fluorescence analysis. (author)

  17. Fundamental parameters method for quantitative energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Demirel, H.; Zararsiz, A.

    1986-01-01

    In this study, the requirement of the standart material in photon excited energy distributed X-ray fluorescence analysis has been removed. The interaction of X-rays with matter has been taken into account. A computer program has been developed by using the fundamental parameters of X-ray fluorescence technique and the spectral intensity 'K' of pure elements at saturation thickness has been obtained. For experimental purpose a convenient source-target-detector geometry has been designed. In order to excite the samples,Cd-109 radioisotope source has been used. The peak intensities has been obtained in a vacum chamber by counting the emitted X-rays. The calculation of concentration has been performed for double mixed samples correcting the effects of absorption and enchancement factors. The results were in conformity with their certificate values. (author)

  18. Numerical study of influence of different dispersed components of crystal cloud on transmission of radiant energy

    Science.gov (United States)

    Shefer, Olga

    2017-11-01

    The calculated results of the transmission of visible and infrared radiation by an atmosphere layer involving ensembles of large preferentially oriented crystals and spherical particles are presented. To calculate extinction characteristics, the physical optics method and the Mie theory are applied. Among all atmospheric particles, both the small particles that are commensurable with the wavelength of the incident radiation and the large plates and the columns are distinguished by the most pronounced dependence of the transmission on spectra of radiant energy. The work illustrates features of influence of parameters of the particle size distribution, particle aspect ratios, orientation and particle refractive index, also polarization state of the incident radiation on the transmission. The predominant effect of the plates on the wavelength dependence of the transmission is shown. A separated and cooperative contributes of the large plates and the small volume shape particles to the common transmission by medium are considered.

  19. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    Science.gov (United States)

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  20. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    International Nuclear Information System (INIS)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B.; Thais, Frédéric; Loisel, Guillaume; Blenski, T.; Poirier, M.; Busquet, M.; Bastiani-Ceccotti, S.; Serres, F.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Turck-Chieze, S.

    2012-01-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  1. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d' astrophysique, 91191 Gif-sur-Yvette (France)

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  2. CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling

    Directory of Open Access Journals (Sweden)

    GUO Li

    2017-11-01

    Full Text Available Carbon nanotubes (CNTs, mass fraction of 0%-2% reinforced Al5083 composites were fabricated by horizontal high-energy ball milling. The effects of ball milling time and CNTs contents on the properties of composite materials were studied. The micro morphology of CNTs/Al5083 composites was characterized by scanning electron microscopy(SEM and transmission electron microscopy(TEM, the tensile strength and microhardness of the composites were tested. The results indicate that after high-energy ball milling for 1.5h, the carbon nanotubes are dispersed homogeneously in the Al5083 matrix, and good interfacial bonding strength between CNTs and Al5083 is obtained at the addition of 1.5%CNTs. Under these conditions, the tensile strength and microhardness of CNTs/Al5083 composites are 188.8MPa and 136HV, respectively. Compared to Al5083 matrix without CNTs reinforcement, tensile strength and microhardness of CNTs/Al5083 composites are increased by 32.2% and 36%, respectively.

  3. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements

    International Nuclear Information System (INIS)

    Kolbe, Michaela

    2011-01-01

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S 2 I/I 0 , with the asymmetry function S and the ratio between scattered and primary intensity I/I 0 . State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM ≅10 -4 . On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10 4 data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a μ-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k parallel -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of ≅3 eV. This leads to a two-dimensional figure of merit of FoM 2D =1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to investigate strongly reactive samples in a short time. This

  4. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  5. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    International Nuclear Information System (INIS)

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-01

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li + , Na + , K + , Rb + , Cs + , F − , Cl − , Br − , and I − . The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar

  6. Multiplate ionization total absorption spectrometer with a compressed gas

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, B.A.; Kantserov, V.A.

    1978-01-01

    The characteristics of a multiplate total absorption spectrometer working with the compressed xenon (up to 25 atm) containing up to 23 radiation lengths of matter are studied. The dependence of the spectrometer energy resolution on the detecting matter density, on the material and thickness of the absorber plates has been studied. The ability of the spectrometer with a tungsten absorber to select hadrons and electrons with P=6 GeV/c by total energy release and characteristics of the cascade longitudinal development has been also studied. The gas spectrometer as it is shown differs quite slightly from the similar spectrometer with liquid argon as for its time resolution it is much better

  7. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  8. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    Energy Technology Data Exchange (ETDEWEB)

    Barber, W.C., E-mail: william.barber@dxray.com [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Wessel, J.C. [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Nygard, E. [Interon AS, Asker (Norway); Iwanczyk, J.S. [DxRay, Inc., Northridge, CA (United States)

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  9. High resolution 14 MeV neutron spectrometer

    International Nuclear Information System (INIS)

    Pillon, M.

    1986-01-01

    A neutron spectrometer, based both on the track position identification and the energy measurement of recoiling protons from a hydrogenous radiator is proposed. The expected performance limits of this spectrometer with regard to energy resolution (deltaE/E), efficiency (epsilon) and counting rate are evaluated in five different configurations. The results show the possibility of deriving an optimized spectrometer design for applications on large fusion devices such as JET and NET with an energy resolution up 1% at 14 MeV

  10. The Philippine spectrometer

    International Nuclear Information System (INIS)

    Juliano, J.O.

    1965-01-01

    A notable project for international collaboration, in which participants from Indonesia, Korea, Thailand, China and the Philippines are working together, has been launched in the Philippines with Indian assistance under the aegis of the Agency. This is a regional training and research programme using a neutron crystal spectrometer, which has been established since January 1965 at the Philippine Atomic Research Centre in Diliman, Quezon City, Philippines. It is called the IPA Project after the signatories to a five year trilateral agreement, namely, the Government of India,the Republic of the Philippines, and the International Atomic Energy Agency. The programme is administered by a Joint Committee composed of one representative each of the Philippines, India and the Agency. The objective of this cooperative venture is to establish a research centre on neutron diffraction in which scientists and technicians from any Member State of IAEA in South Asia, South-East Asia and Pacific, or Far East regions could come to participate in research and training. Studies in solid state physics, such a s the structure determination of alloys and organic crystals, studies on the orientation of magnetic moments in the lattice of magnetic substances, and other problems based on elastic and inelastic scattering of neutrons are undertaken. There are a number of research reactors in this region where neutron spectrometers can be utilized and the recent establishment of this cooperative international research and training programme has been a timely one for this area of the world. Indeed, a number of other countries have shown a strong growing interest in the development of the project

  11. The SPEDE spectrometer

    Science.gov (United States)

    Papadakis, P.; Cox, D. M.; O'Neill, G. G.; Borge, M. J. G.; Butler, P. A.; Gaffney, L. P.; Greenlees, P. T.; Herzberg, R.-D.; Illana, A.; Joss, D. T.; Konki, J.; Kröll, T.; Ojala, J.; Page, R. D.; Rahkila, P.; Ranttila, K.; Thornhill, J.; Tuunanen, J.; Van Duppen, P.; Warr, N.; Pakarinen, J.

    2018-03-01

    The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of γ rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

  12. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  13. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  14. Quantitative analysis without standards using local peak-to-background ratios with the energy dispersive X-ray microanalyzer EDR-184

    International Nuclear Information System (INIS)

    Eggert, F.; Heckel, J.

    1986-01-01

    The method realized in program QMA-184 of the energy dispersive X-Ray-Microanalyzer EDR-184 for quantitative spectra analyzing of bulk materials by using local peak-to-background ratios is described in detail. The authors demonstrate efficiency and limitations of the used method by discussion of experimental results. (author)

  15. Comparison between dispersed nuclear power plants and a nuclear energy center at a hypothetical site on Kentucky Lake, Tennessee. Volume I. Summary

    International Nuclear Information System (INIS)

    Burwell, C.C.; Reister, D.B.; Rosemarin, C.S.; Sisman, O.; Suffern, J.S.

    1976-05-01

    A brief summary is presented of the surrogate site concept used to compare the Nuclear Energy Center (NEC) concept with the present method of dispersed siting of nuclear power plants. Included are data on power transmission, environmental considerations, and a discussion of a site selection methodology

  16. Use of energy-dispersive x-ray microanalysis as a rapid method for demarcating areas around marine outfalls that may be influenced by effluent: a case study

    CSIR Research Space (South Africa)

    Gregory, MA

    2005-01-01

    Full Text Available Surveys that monitor pollution in a marine environment often include the measurement of heavy metals and other trace elements in sediments obtained from multiple stations near marine outfalls. This study investigates the use of energy-dispersive x...

  17. In-situ and operando characterization of batteries with energy-dispersive synchrotron x-ray diffraction

    Science.gov (United States)

    Paxton, William Arthur

    Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution

  18. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections; Montaje de un espectrometro por tiempo de vuelo para la medicion de secciones doble diferenciales de dispersion de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Padron, I; Dominguez, O; Sarria, P. Sandin, C. [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), La Habana (Cuba)

    1996-05-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle {alpha} detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained.

  19. Evaluation of the composition of filters additional of equipment radiological intraoral by energy dispersive x-ray fluorescence (EDXRF)

    International Nuclear Information System (INIS)

    Franca, Alana Caroline; Torres, Catarina A.M.P.; Rocha, Ana S.S.; Deniak, Valeriy; Lara, Alessandro L.; Paschuk, Sergei A.; Fernandes, Angela; Westphalen, Fernando Henrique

    2013-01-01

    The need for high quality standards for radiographic images in order to make a diagnosis assertive, and being the additional filtration required in the intraoral X-ray equipment show the need of evaluating these filters. This study aims to examine the influence of the elemental composition of the filters of X-ray of dental intraoral equipment in the radiographic images quality. The filters analysis were performed by using the energy dispersive X-ray fluorescence method (EDXRF). Ten conventional filters were analysed. In this study, 33 radiographic exposures were performed using films: twenty radiographs in the incisor region and ten in the molar region, three exposures were also made in the same regions with same conditions without using filter. After radiographs development, optical density was measure and all radiographs were submitted to subjective evaluation by dental radiologists. Data obtained were correlated to effects evaluation of the elemental composition of all filters in the quality of the radiographic images. The elements found were: aluminum, cobalt, copper, sulfur, iron, manganese, titanium, zinc, and zirconium. The images obtained were identified in groups: Molars to 0.3 s; Incisors to 0.2 s; Incisors to 0.3 s, and for the group without filters. From the results obtained it was concluded that both unclear radiographs and ideal radiographs were produced by using filters of elementary common. Therefore, conventional filters evaluated were an acceptable option to produce quality images in dental radiology, despite differences in the composition of the alloys. (author)

  20. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    Science.gov (United States)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.