WorldWideScience

Sample records for energy development production

  1. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  2. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  3. Energy efficient product development. 25 examples; Energiezuinige productontwikkeling. 25 voorbeelden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    This report discusses a number of examples of applications of energy efficient product development. These examples featured on separate web pages of the website www.senternovem.nl/mja from 2006 to 2010. The section on 'explanation of energy benefits' is based on a rough calculation made by SenterNovem. The examples illustrate in which stage(s) of the chain the energy benefit is realized. [Dutch] Dit rapport bevat een aantal voorbeelden van de toepassing van energiezuinige productontwikkeling. Deze voorbeelden hebben van 2006 tot 2010 als afzonderlijke pagina's gestaan op de website www.senternovem.nl/mja. De paragraaf 'Toelichting energiewinst' bij de voorbeelden is gebaseerd op een globale berekening van SenterNovem. De voorbeelden geven aan in welke fase(s) in de keten de energiewinst wordt behaald.

  4. Energy management in production: A novel method to develop key performance indicators for improving energy efficiency

    International Nuclear Information System (INIS)

    May, Gökan; Barletta, Ilaria; Stahl, Bojan; Taisch, Marco

    2015-01-01

    Highlights: • We propose a 7-step methodology to develop firm-tailored energy-related KPIs (e-KPIs). • We provide a practical guide for companies to identify their most important e-KPIs. • e-KPIs support identification of energy efficiency improvement areas in production. • The method employs an action plan for achieving energy saving targets. • The paper strengthens theoretical base for energy-based decision making in manufacturing. - Abstract: Measuring energy efficiency performance of equipments, processes and factories is the first step to effective energy management in production. Thus, enabled energy-related information allows the assessment of the progress of manufacturing companies toward their energy efficiency goals. In that respect, the study addresses this challenge where current industrial approaches lack the means and appropriate performance indicators to compare energy-use profiles of machines and processes, and for the comparison of their energy efficiency performance to that of competitors’. Focusing on this challenge, the main objective of the paper is to present a method which supports manufacturing companies in the development of energy-based performance indicators. For this purpose, we provide a 7-step method to develop production-tailored and energy-related key performance indicators (e-KPIs). These indicators allow the interpretation of cause-effect relationships and therefore support companies in their operative decision-making process. Consequently, the proposed method supports the identification of weaknesses and areas for energy efficiency improvements related to the management of production and operations. The study therefore aims to strengthen the theoretical base necessary to support energy-based decision making in manufacturing industries

  5. Energy production, consumption, policies and recent developments in Turkey

    International Nuclear Information System (INIS)

    Toklu, E.; Gueney, M.S.; Isik, M.; Comakli, O.; Kaygusuz, K.

    2010-01-01

    Many factors to be appropriately addressed in moving towards energy sustainability in Turkey are examined. These include harnessing sustainable energy sources, utilizing sustainable energy carriers, increasing efficiency, reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability, economic affordability and equity, lifestyles, land use and aesthetics. On the other hand, Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. Turkey is heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the potential and utilization of the energy sources in Turkey. (author)

  6. Energy production, consumption, policies and recent developments in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Toklu, E.; Gueney, M.S.; Isik, M.; Comakli, O.; Kaygusuz, K. [Department of Mechanical Engineering, Bayburt University, 69000 Bayburt (Turkey)

    2010-05-15

    Many factors to be appropriately addressed in moving towards energy sustainability in Turkey are examined. These include harnessing sustainable energy sources, utilizing sustainable energy carriers, increasing efficiency, reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability, economic affordability and equity, lifestyles, land use and aesthetics. On the other hand, Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. Turkey is heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the potential and utilization of the energy sources in Turkey. (author)

  7. Interest of the Department of Energy in production and development of short-lived radionuclides

    International Nuclear Information System (INIS)

    Thiessen, J.W.

    1985-01-01

    The Department of Energy has developed production of potentially useful radionuclides for applications in medicine. The Department's financial commitment and the short-lived radionuclide production program, with emphasis on iodine-123, is discussed

  8. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  9. Modeling the transition towards a sustainable energy production in developing nations

    NARCIS (Netherlands)

    Thiam, Djiby-Racine; Benders, René M.J.; Moll, Henri C.

    The paper investigates how renewable technologies could promote the transition towards a sustainable energy production in developing nations. Based on two different developing nations in terms of economic, technological and institutional structure: South Africa and Senegal, we implemented scenarios

  10. Applying the energy productivity index that considers maximized energy reduction on SADC (Southern Africa Development Community) members

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2016-01-01

    Under the trend of global energy prices continuously going up, this paper considers the concept of maximized energy reduction to model the energy productivity index by decomposing it into energy technical change and energy efficiency change. The paper takes the eight SADC (Southern Africa Development Community ) members as an example to estimate their energy efficiency, energy productivity change, energy technical change, energy efficiency change, and rebound effect on energy use, as well as to test the Jevons Paradox. The time period of the data spans 2005 to 2009. The empirical result shows large energy performance differences among the eight SADC members. Not one country among the eight members is an energy technology innovator. After calculating the rebound effect and testing the Jevons Paradox, the result shows that there seems to be no obvious Jevons Paradox in this economic region. - Highlights: • This paper discusses the concept of maximized energy reduction. • The method is applied towards the Southern Africa Development Community members. • This paper also investigates the rebound effect of energy use. • We offer suggestions on energy use and CO 2 emission reductions.

  11. Technologies for production of Electricity and Heat in Sweden. Wind energy in perspective of international development

    DEFF Research Database (Denmark)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Jørgen Kjærgaard

    energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative...... to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability...... of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment...

  12. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  13. Developing estimates of potential demand for renewable wood energy products in Alaska

    Science.gov (United States)

    Allen M. Brackley; Valerie A. Barber; Cassie Pinkel

    2010-01-01

    Goal three of the current U.S. Department of Agriculture, Forest Service strategy for improving the use of woody biomass is to help develop and expand markets for woody biomass products. This report is concerned with the existing volumes of renewable wood energy products (RWEP) that are currently used in Alaska and the potential demand for RWEP for residential and...

  14. Development of a framework and tool to asses on-farm energy uses of cotton production

    International Nuclear Information System (INIS)

    Chen Guangnan; Baillie, Craig

    2009-01-01

    Within highly mechanised agricultural productions systems such as the Australian cotton industry, operational energy inputs represent a major cost to the growers. In this paper, a framework to assess the operational energy inputs of various production systems and the relative performance of a grower within an adopted system is developed. It divides energy usage of cotton production into six broadly distinct processes, including fallow, planting, in-crop, irrigation, harvesting and post harvest. This enables both the total energy inputs and the energy usage of each production processes to be assessed. This framework is later implemented and incorporated into an online energy assessment tool (EnergyCalc). Using the developed software, seven farm audits are conducted. It is found that overall, depending on the management and operation methods adopted, the total energy inputs for these farms range from 3.7 to 15.2 GJ/ha of primary energy, which corresponds to $80-310/ha and 275-1404 kg CO 2 equivalent/ha greenhouse gas emissions. Among all the farming practices, irrigation water energy use is found to be the highest and is typically 40-60% of total energy costs. Energy use of the harvesting operation is also significant, accounting for approximately 20% of overall direct energy use. If a farmer moves from conventional tillage to minimum tillage, there is a potential saving of around 10% of the overall fuel used on the farm. Compared with cotton, energy uses by other crops are generally much smaller, due to less intensive management practices, and reduced irrigation requirements.

  15. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    Science.gov (United States)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  16. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  17. IT support of energy-sensitive product development. Energy-efficient product and process innovations in production engineering. Virtual product development for energy-efficient products and processes; IT-Unterstuetzung zur energiesensitiven Produktentwicklung. Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik. Handlungsfeld virtuelle Produktentwicklung fuer energieeffiziente Produkte und Prozesse (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Thomas; Ruenger, Gudula; Steger, Daniel; Xu, Haibin

    2010-07-07

    The development of low-cost, energy-saving and resources-saving products is increasingly important. Thecalculation of the life cycle cost is an important basis for this. For this, it is necessary to extract empirical, decision-relevant data from IT systems of product development (e.g. product data management systems) and operation (e.g. enterprise resource planning systems), and to give the planner appropriate methods for data aggregation. Life cycle data are particularly important for optimising energy efficiency, which may be achieved either by enhanced productivity at constant energy consumption or by reduced energy consumption at constant productivity. The report presents an IT view of the product development process. First, modern methods of product development are analysed including IT support and IT systems. Requirements on IT systems are formulated which enable energy efficiency assessment and optimisation in all phases of product development on the basis of the IT systems used. IT systems for energy-sensitive product development will support the construction engineer in the development of energy-efficient products. For this, the functionalities of existing PDM systems must be enhanced by methods of analysis, synthesis and energy efficiency assessment. Finally, it is shown how the methods for analyzing energy-relevant data can be integrated in the work flow.

  18. Technologies for production of electricity and heat in Sweden. Wind energy in perspective of international development

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 7-10 cEuro/kWh at sites with low average wind speeds to approximately 5-6.5 cEuro/kWh at good coastal positions, with an average of approximately 7cEuro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance to the

  19. Developing Islamic Financial Products for Financing Solar Energy with a Special Reference to Qatar and Algeria

    Science.gov (United States)

    Tabet, Imene Nouar

    Renewable energy has become an important part of the international energy mix. This thesis aims at developing Islamic financial schemes for financing photovoltaic solar energy roof-tops and solar farms. Being an evolving technology based sector with high capital expenditures imposed a challenge for this alternative source of energy to grow especially in countries where electricity costs are low and prices are heavily subsidised. The first two chapters provide a comprehensive overview of solar energy industry with the various policies and financing models that were developed and adopted in various countries. It is found that most of its growth was dependent on government support even in financing. Ijarah Sukuk were developed for financing roof-tops in Qatar, such that the house owners do not have to pay any amount and would get the solar panels at maturity where they would be entitled to their benefit. The cost would be borne by the investors who receive stable rental payments along with their capital throughout the financing period, while electric company would be provided with the electricity at a rate lower than its production cost, hence offering it subsidy savings; the lessee who lives in house would be provided with incentives in the form of electricity-pay break. Although the electricity sector in the country remains highly dependent on government support, the model, in its hypothetical example, provides investors with 8% Internal Rate of Return. On the other hand, Output-sharing Sukuk model is developed for financing solar farms in the context of Algeria, based on the known Islamic financial contract of Muzara'ah. The state-owned electric company contributes the land, the Sukuk holders own the panels, and the developer provides management of the farm. A hypothetical example is also given with calculation of cash flow and investors' Internal Rate of Return which comes to be 7.1029% per annum.

  20. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  1. Development and perspective of promising energy plants for bioethanol production in Taiwan

    International Nuclear Information System (INIS)

    Liu, Sin-Yie; Lin, Chien-Yih

    2009-01-01

    The global energy crisis and continual soaring prices of fossil fuels force people to seek the new and recycled alternative energy sources hard. Biodiesel oil as well as bioethanol fuel, as two new and clean fuels for environmental protection, have already been approved as substitutes for fuel or fuel additive. Some common bottlenecks for production of biodiesel crops have been found. However, developing bioethanol crops in Taiwan has many benefits. Four most promising alcohol crops in Taiwan, i.e., sweet potato, maize, sugarcane, and sweet sorghum have been discussed. Sweet sorghum can be strongly recommended as a key alcohol crop in Taiwan, because of its short growing period, low water requirement, large amount of biomass and alcohol produced, and greater income obtained from sweet sorghum cultivation. (author)

  2. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    Directory of Open Access Journals (Sweden)

    Stefano Casalegno

    Full Text Available Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation using different weighting schemes. Our conclusions are that (i there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production and dispersed services (including cultural services, energy production and floods mitigation; (ii more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to

  3. Regional scale prioritisation for key ecosystem services, renewable energy production and urban development.

    Science.gov (United States)

    Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J

    2014-01-01

    Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

  4. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  5. Development of a novel energy-efficient adsorption dryer with zeolite for food product

    NARCIS (Netherlands)

    Djaeni, M.; Boxtel, van A.J.B.

    2012-01-01

    Abstract: The demand of high quality dry products closing to the fresh condition increases significantly. Current drying technology have shown the significant improvement on product quality, but the breakthrough respecting to energy efficiency is scarce. Air dehumidification with adsorbent such as

  6. Promoting energy-efficient products: GEF experience and lessons for market transformation in developing countries

    International Nuclear Information System (INIS)

    Birner, Sabrina; Martinot, Eric

    2005-01-01

    The Global Environment Facility (GEF) has allocated more than $90 million over the past 10 years to eight projects promoting energy-efficient products in developing and transition countries. We review the early experience from these projects and suggest lessons relevant to market transformation programs. Based on GEF project designs, we also propose a menu of generic supply-side and demand-side interventions useful for designing and analyzing market transformation programs. Experience suggests that institutional and policy changes, leading to sustained price reductions and higher market volumes, are important outcomes for market transformation; that market impacts can appear early in programs due to increased expectations and awareness; and that projects can have a catalytic effect. We recommend eight principles for designers of future projects but caution that no single approach guarantees success

  7. Application of anaerobic bioreactor landfilling as an energy production alternative in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Sartaj, M.; Ahmadifar, M. [Isfahan Univ. of Technology (Iran, Islamic Republic of). Dept. of Civil Engineering

    2009-07-01

    Despite increases in recycling, composting, and incineration, landfilling remains the major method for managing municipal solid wastes (MSW) worldwide. The most common problems associated with landfill operation are the generation of leachate and gases. Methane gas is a by-product of MSW landfilling and is the third most important greenhouse gas after water vapor and carbon dioxide. This study investigated the feasibility of using anaerobic bioreactors for methane production from MSW in developing countries. Laboratory scale studies were conducted to investigate the performance of a bioreactor reactor under anaerobic conditions as an alternative waste management strategy and gas production. The reactor was made of a plastic container measuring 0.5 x 0.5 x 1.0 m. MSW was placed into the reactor in layers and compacted to achieve a density of 550 kg/m{sup 3}. Twenty eight litres of leachate was recirculated daily for 157 days. The final chemical oxygen demand (COD) of the leachate reduced from a maximum value of 64900 mg/L to a value of 5300 mg/L, showing a 92 per cent reduction. The average methane concentration in generated gas was 58 per cent and gas generation rate was 90 L/kg of waste on wet basis. It was concluded that anaerobic bioreactor technology with accompanying leachate recirculation performs very well in terms of decomposition of MSW and reduction of COD of the leachate. It also has a considerable potential for methane production which could be used as a source of energy. 10 refs., 2 tabs., 7 figs.

  8. Policy of productive development and energy efficiency; Politica de desenvolvimento produtivo e eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Naturesa, Jim Silva [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Civil Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico], e-mail: cam@fec.unicamp.br; Mariotoni, Carlos Alberto [Faculdade Politecnica de Jundiai (FPJ), SP (Brazil). Anhanguera Educacional

    2008-07-01

    The new industry policy in Brazil called PDP (Politica de Desenvolvimento Produtivo) and implications on Brazilian energy efficiency program are discussed. The PINTEC - Industrial Research for Technology Innovation (2003/05) indicates a low R and D and I investment of the Brazilian industries. It is expected that and energy efficiency project can be seen as an innovation project because this brings new equipment and a more advanced knowledge to industry, which helps to reduce electrical energy consumption, consumer' bills and production costs. (author)

  9. Wavestar Energy Production Outlook

    DEFF Research Database (Denmark)

    Frigaard, Peter Bak; Andersen, Thomas Lykke; Kofoed, Jens Peter

    It is of paramount importance to decrease the Cost of Energy (CoE) from Wavestar wave energy con-verters (WECs) in order to make the WECs competitive to other sources of renewable energy. The CoE can be decreased by reducing the cost of the machines (CAPEX and OPEX) and by increasing the in......-come. The income can most obviously be enlarged by increasing the energy production. The focus of the present note is solely on expectations to the yearly energy production from future Wavestar WECs....

  10. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production

    NARCIS (Netherlands)

    Anemaet, I.G.; Bekker, M.; Hellingwerf, K.J.

    2010-01-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into

  11. Wood as Energy--Production and Marketing. Instructional Materials Developed for Iowa Teachers of Vocational Agriculture.

    Science.gov (United States)

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    Instructional materials are provided for a unit dealing with production and marketing of wood as an energy source. Unit objectives and a list of visual masters appear first. Content is arranged by six topics: introduction, pre-cutting activities (planning a fuelwood cutting, marketing, chain saw safety), cutting activities, post-cutting…

  12. The Development of Environmental Productivity: the Case of Danish Energy Plants

    DEFF Research Database (Denmark)

    Henningsen, Geraldine; Henningsen, Arne; Schröder, Sascha Thorsten

    2015-01-01

    the environmental productivity of individual generator units based on a paneldata set for the period 1998 to 2011 that includes virtually all fuel-fired generator units in Denmark. We further decompose total environmental energy conversion productivity into conversion efficiency, best conversion practice ratio......, and conversion scale efficiency and use a global Malmquist index to calculate the yearly changes. By applying time series clustering, we can identify high, middle, and low performance groups of generator units in a dynamic setting. Our results indicate that the sectoral productivity only slightly increased over...... the fourteen years. Furthermore, we find that there is no overall high achiever group, but that the ranking, although time consistent, varies between the different productivity measures. However, we identify steam turbines and combustion engines for combined heat and power production as potential high...

  13. Energy production, consumption, and environmental pollution for sustainable development: A case study in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Bilen, K.; Ozyurt, O.; Bakirci, K.; Yilmaz, M.; Comakli, O. [Department of Mechanical Engineering, Ataturk University, 25240 Erzurum (Turkey); Karsli, S. [Pasinler Vocation of Higher Education, Ataturk University, 25300 Erzurum (Turkey); Erdogan, S. [Erzurum Vocation of Higher Education, Ataturk University, 25240 Erzurum (Turkey)

    2008-08-15

    There is increasing consensus in both the scientific and political communities that significant reductions in greenhouse gas (GHG) emissions are necessary to limit the magnitude and extent of climate change. Renewable energy systems already reduce GHG emissions from the energy sector, although on a modest scale. Most long-term energy projections show that renewable energy will play a major role in the global energy supply in the second half of the century, with capacity increasing gradually in the first three decades. On the other hand, Turkey is heavily dependent on expensive imported energy resources (oil, gas and coal) that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the potential and utilization of the fossil fuels and the renewable energy sources in the world and in Turkey. (author)

  14. Energy production, consumption, and environmental pollution for sustainable development: A case study in Turkey

    International Nuclear Information System (INIS)

    Bilen, K.; Ozyurt, O.; Bakirci, K.; Yilmaz, M.; Comakli, O.; Karsli, S.; Erdogan, S.

    2008-01-01

    There is increasing consensus in both the scientific and political communities that significant reductions in greenhouse gas (GHG) emissions are necessary to limit the magnitude and extent of climate change. Renewable energy systems already reduce GHG emissions from the energy sector, although on a modest scale. Most long-term energy projections show that renewable energy will play a major role in the global energy supply in the second half of the century, with capacity increasing gradually in the first three decades. On the other hand, Turkey is heavily dependent on expensive imported energy resources (oil, gas and coal) that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. This article presents a review of the potential and utilization of the fossil fuels and the renewable energy sources in the world and in Turkey. (author)

  15. Methodology developed for the energy-productive diagnosis and evaluation in health buildings

    Energy Technology Data Exchange (ETDEWEB)

    Martini, I.; Discoli, C.; Rosenfeld, E. [Instituto de Estudios del Habitat (IDEHAB), Facultad de Arquitectura y Urbanismo, Universidad Nacional de La Plata, La Plata, Buenos Aires (Argentina)

    2007-07-01

    The public health network in Argentina consists of a wide variety of buildings presenting a complex system of services and structures. In order to modulate and study the energy behaviour of each type of health facility, a database of Energy-Productive Building Modules (Modulos Edilicios Energeticos Productivos: MEEP) was built. This involved evaluating the interactions among physical spaces, building envelope, infrastructure, and equipment usage with the energy consumption, for each specialty service provided in the most common buildings present in the health service network. The MEEP database enables investigators to: (i) Obtain detailed information on each facility. (ii) Identify variables critical to an energy consumption perspective. (iii) Detect areas of over consumption and/or inadequate infrastructure. (iv) Gather essential reference material for the design of health facilities and other similar sectors. The information of each MEEP can be summarized in typological charts. (author)

  16. Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review

    Directory of Open Access Journals (Sweden)

    Yitayal Addis Alemayehu

    2015-10-01

    Full Text Available Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.

  17. The development of Environmental Productivity: the Case of Danish Energy Plants

    Directory of Open Access Journals (Sweden)

    Geraldine Henningsen

    2015-06-01

    Full Text Available The Danish “Klima 2020” plan sets an ambitious target for the complete phasing-out of fossil fuels by 2050. The Danish energy sector currently accounts for 40% of national CO 2 emissions. Based on an extended Farrell input distance function that accounts for CO 2 as an undesirable output, we estimate the environmental productivity of individual generator units based on a panel data set for the period 1998 to 2011 that includes virtually all fuel-fired generator units in Denmark. We further decompose total environmental energy conversion productivity into conversion efficiency, best conversion practice ratio, and conversion scale efficiency and use a global Malmquist index to calculate the yearly changes. By applying time series clustering, we can identify high, middle, and low performance groups of generator units in a dynamic setting. Our results indicate that the sectoral productivity only slightly increased over the fourteen years. Furthermore, we find that there is no overall high achiever group, but that the ranking, although time consistent, varies between the different productivity measures. However, we identify steam turbines and combustion engines for combined heat and power production as potential high performers, while combustion engines that only produce electricity are clearly low performers.

  18. Energy for sustainable development

    International Nuclear Information System (INIS)

    Toepfer, Klaus

    2003-01-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new sustainable energy enterprises

  19. Energy for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Toepfer, Klaus [United Nations Environment Programme (Kenya)

    2003-09-01

    Considerations about 'post-Kyoto' targets and other ways to achieve the objectives of the Protocol are critical. Scientific evidence presented by the IPCC in its third assessment in 2002 clearly indicates the need not only to implement the Protocol, but also to agree on further emission reductions in the medium term in order to keep changes in the world's climate at a manageable level. UNEP's Energy Programme addresses the environmental consequences of energy production and use, such as global climate change and local air pollution. UNEP assists decision makers in government and the private sector to make better, more informed energy choices, which fully integrate environmental and social costs. Since UNEP is not an implementing organization, its role as facilitator is core. The majority of UNEP's energy activities link to mitigation - the reduction of greenhouse gas emissions - but these are generally accompanied by broader objectives related to energy and sustainable development. This includes climate change mitigation, but not as the sole objective since many of UNEP's partners in developing countries have more immediate development objectives. UNEP's main programmes are: The Solar and Wind Energy Resource Assessment (SWERA) project, that provides solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development; A new Global Environment Facility (GEF) funded programme aiming at promoting industrial energy efficiency through a cleaner production/environmental management system framework. A parallel programme, Energy Management and Performance Related Energy Savings Scheme (EMPRESS), supports energy efficiency efforts in Eastern and Central Europe; The Mediterranean Renewable Energy Programme promotes the financing of renewable energy projects in the Mediterranean basin; The Rural Energy Enterprise Development (REED) seeks to develop new

  20. Federal Support for the Development, Production, and Use of Fuels and Energy Technologies

    Science.gov (United States)

    2015-11-01

    the amount of oil produced in the United States has increased dramatically because of technological developments related to hydraulic fractur- ing...the development of hydrau- lic fracturing (or fracking ) and other modern drilling technologies has made some oil production much more responsive to

  1. Energy, environment and development

    Energy Technology Data Exchange (ETDEWEB)

    El-Hinnawi, E

    1977-01-01

    Energy is one of the most important prerequisites of life. The growing socio-economic activities and the rising standard of living have led to a rapid increase in energy consumption. The limited resources of fossil fuels and the recent geopolitical developments activated the exploration of ways and means for energy conservation and exploitation of unconventional renewable sources of energy. Of the renewable energy sources (geothermal, solar, tidal, hydropower, etc), hydro-power production has some potential environmental effects. Man-made lakes have several physical, biological, geochemical and biogeochemical impacts on the environment both in the area of the lake and downstream. From the socio-economic point of view, the harnessing of renewable sources of energy will not only lead to the enhancement of the human environment, particularly in remote rural areas in developing countries, but will also lead to substantial savings in the use of non-renewable sources of energy.

  2. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  3. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  4. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  5. Future waste treatment and energy production – an example of development of joint scenarios

    DEFF Research Database (Denmark)

    Münster, Marie; Finnveden, G.; Wenzel, H.

    2012-01-01

    Development and use of scenarios for large interdisciplinary projects is a complicated task. The article gives practical examples of how this has been done in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are m...

  6. Development of a novel market forecasting tool and its application to hydrogen energy production in Scotland

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2010-01-01

    The authors propose a novel model for forecasting the deployment of hydrogen energy systems based on a company value maximisation algorithm, designed to assist governments and other industry players in decision-making and the development of appropriate policy instruments. Current cost-minimisation approaches, such as MARKAL, have limitations particularly where price arbitrage between energy streams exists. A theoretical relationship between market sector valuations and investment activity is developed and the model is subsequently applied to the Scottish hydrogen energy market. Through the utilisation of net present value, revenue and profitability based valuations, the impact of investing in hydrogen energy infrastructure projects on three key market competitors is considered. It is shown that the three methods for calculating the value impact render different results suggesting that the use of a single method to assess forecast development scenarios, whether cost or value-based methods, may be misleading and that the holistic approach proposed is more realistic. The archivable value of this paper is to demonstrate the impact that investor expectations can have on investment decisions, a facet not captured in traditional methods of forecasting. (author)

  7. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production.

    Science.gov (United States)

    Anemaet, Ida G; Bekker, Martijn; Hellingwerf, Klaas J

    2010-11-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO₂ into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO₂ into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps--after acid hydrolysis--as a complex, animal-free serum for growth of mammalian cells in vitro.

  8. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Energy Technology Data Exchange (ETDEWEB)

    Anemaet, I.G.; Bekker, G.; Hellingwerf, K.J. [Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam (Netherlands)

    2010-11-15

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps-after acid hydrolysis-as a complex, animal-free serum for growth of mammalian cells in vitro.

  9. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Energy Technology Data Exchange (ETDEWEB)

    Anemaet, I G; Bekker, G; Hellingwerf, K J [Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam (Netherlands)

    2010-11-15

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps-after acid hydrolysis-as a complex, animal-free serum for growth of mammalian cells in vitro.

  10. Uranium as an energy source: resources, production and reserves from the point of view of technological development

    International Nuclear Information System (INIS)

    Lersow, M.

    2008-01-01

    A reliable evaluation of the uranium resources available in the future and associated strategic reserves must take into account trends in prospecting, degree of technological development of the different stages of the nuclear fuel cycle (starting with the mining industry and preparation), but in particular also the specific raw material and energy yield of future generations of fuel and reactor technology. Uranium deposits are categorised with regard to ore content and probable production costs. The intensified prospecting following the increase in the uranium price will lead to discovery of further reserves and thus continue to follow the historical trend. Uranium production is subject to increasingly stringent legal boundary conditions - mining and preparation are approved according to strict international standards to minimise the environmental effects during operation and to restore and recultivate the sites after closure. New or extended/modernised uranium production sites are based on modern semi- or fully automated technologies. Exposure to radiation and environmental effects are minimised by avoidance of tailings (in situ leaching), by relocation of preparation partial processes underground or by storage of the residues from conventional plants according to international standards. In addition to a rough prediction based on currently available data trends in resource development, uranium production, fuel production and the energy yield from uranium including the option of utilisation of transuranic elements for energy production in order to minimise the radioactive waste are discussed and applied qualitatively to estimation of the reserves. (orig.)

  11. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  12. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing

    International Nuclear Information System (INIS)

    1990-10-01

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R ampersand D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining

  13. Risk of energy production

    International Nuclear Information System (INIS)

    Inhaber, Herbert.

    1978-03-01

    Every human activity involves risk of accident or disease. Generation of energy is no exception. Although such risk has been considered for conventional systems (coal, oil and nuclear), a similar analysis for the so-called alternative or non-conventional systems (solar, wind, ocean thermal and methanol) has been lacking. This paper presents an evaluation of the risk, both occupational and to the public, of non-conventional energy systems. They are considered both in absolute terms and in relation to conventional systems. The risk of most non-conventional systems, per unit of energy output, is comparable to, and in some cases much higher than, the risk from coal and oil. This conclusion holds whether we consider deaths or injuries. Nuclear power and natural gas had the lowest overall risk of the ten technologies considered. Ocean thermal energy ranked third. The surprising result is that the other seven technologies considered were found to be up to 100 times less safe. The total risk is calculated by considering six components: material acquisition and construction, emissions caused by material production, operation and maintenance, energy back-up, energy storage, and transportation. In this way the risk of widely different systems can be fairly assessed. This methodology of 'risk accounting' will not tell us which energy technology to use. However, it can be employed to inform society of the risk inherent in competing energy systems. (author)

  14. Development of a standard methodology for integrating non-food crop production in rural areas with niche energy markets. Proceedings

    International Nuclear Information System (INIS)

    1996-09-01

    This project was supported as a Concerted Action under the EC DGVI AIR programme from 1993-1996. It has successfully developed a standard methodology to help integrate non-food crop production in rural areas with niche energy markets. The methodology was used to compare the costs of different energy crop production and conversion options across the six participating nations. The partners provide a representative cross-section of European agriculture and energy expertise. All partners agreed on three niche markets favourable for biomass and biofuels: small-scale heat markets (less than 1 MW th ) for agro-industry, domestic and commercial buildings, medium-scale heat markets (1-10MW th ), including cogeneration for light industry and district heating, and liquid biofuels as substitutes for fossil fuels in transport, heat and power applications. (Author)

  15. Research and development studies into isotope production using the Harwell Variable Energy Cyclotron

    International Nuclear Information System (INIS)

    Nichols, A.L.; Bett, R.; Cuninghame, J.G.; Goodall, J.A.B.; Hill, J.I.S.; Sims, H.E.; Willis, H.H.

    1979-11-01

    Many useful radioisotopes can be produced by means of the Harwell Chemistry Division's Variable Energy Cyclotron. This report describes the preliminary preparation of a number of these neutron deficient isotopes (i.e. F18, S38, Fe52, Sr82-Rb82, Nb92m, Rh99, I123, Xe125, Tl201, Pu236, Pu237). Recently a targetry development programme has been initiated to optimise isotope yields. Gas, liquid and solid targets have been designed that can be quickly and safely removed from the cyclotron beam-line so that the target activity can be rapidly processed after the irradiation, if necessary. (author)

  16. Wind and photovoltaic energy: energetic, industrial and societal challenges - Report to the Minister for productive recovery, the Minister of ecology, sustainable development and energy

    International Nuclear Information System (INIS)

    Dambrine, Fabrice; Legait, Benoit; Liger, Alain; Valerian, Francois; Bellier, Michel; Brunetiere, Jean-Rene; Gazeau, Jean-Claude; Boye, Henri; Weymuller, Benoit

    2012-09-01

    After having presented 24 recommendations resulting from this study, this report proposes a detailed and commented presentation of the general context: past development with an abundant and cheap energy, extremely ambitious national and international commitments for the development of renewable energies, wind and photovoltaic production still modest in France but in rapid growth and with a potential which must not be overestimated, the issue of intermittency and unpredictability, environmental challenges, financial support to wind and photovoltaic sectors and their impact, the role of local communities. Then, the report proposes a presentation of the wind energy sector and of the photovoltaic sector (actors, technologies, industry, jobs), of the R and D and innovation strategy within a European framework. It gives an overview of the renewable energy sector in other European member countries: Germany, Denmark, Spain, Italy and United Kingdom

  17. Development, production and promotion of energy-saving and environmentally correct fixtures for private homes; Udvikling, produktion of markedsfoering af energi- og miljoerigtige armaturer til boligmarkedet

    Energy Technology Data Exchange (ETDEWEB)

    Velk, A.; Munck, K. [Lysteknisk Selskab (Denmark)

    2006-08-31

    A design competition for environmentally correct and energy-saving fixtures for private homes was arranged in 2004. There were 88 entries and three were awarded with a prize. The purpose of the project was to produce and promote two or three proposals in a campaign for the use of environmentally correct and energy-saving fixtures. Three manufacturers of fixtures had given prior notice that they would produce the fixtures, but with certain conditions. Despite the many entries, the manufacturers assessed that none of them possessed the necessary qualities to commence product development. A group of designers were offered the possibility to find other manufacturers, but they did not succeed. (au)

  18. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects

    Directory of Open Access Journals (Sweden)

    Amores Ernesto

    2017-06-01

    Full Text Available Alkaline water electrolysis powered by renewable energy sources is one of the most promising strategies for environmentally friendly hydrogen production. However, wind and solar energy sources are highly dependent on weather conditions. As a result, power fluctuations affect the electrolyzer and cause several negative effects. Considering these limiting effects which reduce the water electrolysis efficiency, a novel operation strategy is proposed in this study. It is based on pumping the electrolyte according to the current density supplied by a solar PV module, in order to achieve the suitable fluid dynamics conditions in an electrolysis cell. To this aim, a mathematical model including the influence of electrode-membrane distance, temperature and electrolyte flow rate has been developed and used as optimization tool. The obtained results confirm the convenience of the selected strategy, especially when the electrolyzer is powered by renewable energies.

  19. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  20. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  1. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  2. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Interim report

    International Nuclear Information System (INIS)

    Hakkila, P.

    2003-01-01

    Finland is enhancing its use of renewable sources in energy production. From the 1995 level, the use of renewable energy is to be increased by 50 % by 2010, and 100 % by 2025. Wood-based fuels will play a leading role in this development. The main source of wood-based fuels is processing residues from the forest industries. However, as all processing residues are already in use, an increase is possible only as far as the capacity and wood consumption of the forest industries grow. Energy policy affects the production and availability of processing residues only indirectly. Another large source of wood-based energy is forest fuels, consisting of traditional firewood and chips comminuted from low-quality biomass. It is estimated that the reserve of technically harvest-able forest biomass is 10-16 Mm' annually, when no specific cost limit is applied. This corresponds to 2-3 Mtoe or 6-9 % of the present consumption of primary energy in Finland. How much of this re-serve it will actually be possible to harvest and utilize depends on the cost competitiveness of forest chips against alternative sources of energy. A goal of Finnish energy and climate strategies is to use 5 Mm' forest chips annually by 2010. The use of wood fuels is being promoted by means of taxation, investment aid and support for chip production from young forests. Furthermore, research and development is being supported in order to create techno-economic conditions for the competitive production of forest chips. In 1999, the National Technology Agency Tekes established the five-year Wood Energy Technology Programme to stimulate the development of efficient systems for the large-scale production of forest chips. Key tar-gets are competitive costs, reliable supply and good quality chips. The two guiding principles of the programme are: (1) close cooperation between researchers and practitioners and (2) to apply research and development to the practical applications and commercialization. As of November

  3. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  4. Innovation in Product Development

    DEFF Research Database (Denmark)

    McAloone, Tim C.; Restrepo-Giraldo, John Dairo

    2005-01-01

    The course on Innovation in Product Development attempts to identify and understand the nature of innovation and product development and their important factors. The course takes both a theoretical and a practical approach and employs a mix of lectures, project work and group discussion. Format...... insight. Course content The following aspects of innovation in product development are considered: - Humans and products - Needs and products - Product life - Teams creating products - Products creating business - Product development models - Organising product development - Product development tools...... - The future of product development....

  5. Development of safety-enhanced and allergy-reduced milk product by ionizing energy

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Choi, Jong-Il; Song, Beom-Seok

    2008-06-01

    The microbial contamination of ice cream were detected at 1.70 ∼ 3.32 Log CFU/g level. The isolation and identification of Listeria spp. Escherichia coli, and Salmonella spp. in ice cream results showed the possibility that the commercial ice cream products may be contaminated by the pathogenic microorganisms, L. inocua and E. coli. The D 10 value of L. ivanovii and E. coli was calculated as 0.69 ∼ 0.77 and 0.28 ∼ 0.38 kGy, respectively. The D 10 value of S. Typhimurium could not be calculated in this study. To develop the manufacturing method of ice cream with microbiologically safe and proper sensory quality using irradiation, flavor, and milk fat-reduced for sensitive consumer. Total aerobic bacteria were detected as 1.60 ∼ 2.40 Log CFU/g level in ice cream. No viable cells were observed by irradiation. Sensory evaluation and physicochemical properties of manufactured ice cream did not show any difference by gamma irradiation. No allergenicity was detected in ice cream by gamma irradiation

  6. Development of safety-enhanced and allergy-reduced milk product by ionizing energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Choi, Jong-Il; Song, Beom-Seok

    2008-06-15

    The microbial contamination of ice cream were detected at 1.70 {approx} 3.32 Log CFU/g level. The isolation and identification of Listeria spp. Escherichia coli, and Salmonella spp. in ice cream results showed the possibility that the commercial ice cream products may be contaminated by the pathogenic microorganisms, L. inocua and E. coli. The D{sub 10} value of L. ivanovii and E. coli was calculated as 0.69 {approx} 0.77 and 0.28 {approx} 0.38 kGy, respectively. The D{sub 10} value of S. Typhimurium could not be calculated in this study. To develop the manufacturing method of ice cream with microbiologically safe and proper sensory quality using irradiation, flavor, and milk fat-reduced for sensitive consumer. Total aerobic bacteria were detected as 1.60 {approx} 2.40 Log CFU/g level in ice cream. No viable cells were observed by irradiation. Sensory evaluation and physicochemical properties of manufactured ice cream did not show any difference by gamma irradiation. No allergenicity was detected in ice cream by gamma irradiation.

  7. The Development of Environmental Productivity: the Case of Danish Energy Plants

    DEFF Research Database (Denmark)

    Henningsen, Geraldine; Henningsen, Arne; Schröder, Sascha Thorsten

    the environmental productivity of individual generator units based on a panel data set for the period 1998 to 2011 that includes virtually all fuel-fired generator units in Denmark. We further decompose total productivity into technical efficiency, best practice ratio, and scale efficiency and use a global...... Malmquist index to calculate the yearly changes. By applying time series clustering, we can identify high, middle, and low performance groups of generator units in a dynamic setting. Our results indicate that the sectoral productivity only slightly increased over the fourteen years. Furthermore, we find...... that there is no overall high achiever group, but that the ranking, although time consistent, varies between the different productivity measures. However, we identify steam turbines and combustion engines for combined heat and power production as potential high performers, while combustion engines that only produce...

  8. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  9. Business development in renewable energy

    NARCIS (Netherlands)

    Krozer, Yoram; Visa, Ion

    2014-01-01

    This paper discusses how to foster development of renewable energy business. Factors that impede or enhance renewable energy in the EU 27 member states in the period 1998–2008 are analyzed. Nine factors are considered: population density, production output and energy sector output to indicate market

  10. Energy: decentralized production and sustainable development of territories.... Tomorrow: which roles for the local organizations? Proceedings; Energie: production decentralisee et developpement durable des territoires.... Demain: quels roles pour les collectivites locales? Recueil des interventions

    Energy Technology Data Exchange (ETDEWEB)

    Labrousse, M [Cabinet Explicit, 75 - Paris (France); Magnin, G [Energie-Cites, 25 - Besancon (France)

    2002-07-01

    Dunkerque city consume its own power generation?; an electric power syndicate with a decentralized power production strategy. Workshop 10 - the power transportation grid and the decentralized production; decentralized production and coordinated approach of networks management. Workshop 11 - an example of district heating network which simultaneously valorizes wastes, biomass and cogeneration; district heating networks: advantages and drawbacks. Workshop 12 - the access to energy in the rural areas of developing countries; the intervention procedures of a cooperation program. Workshop 13 - simulation of power demand in Grenoble city; an example of mastery of power demand/decentralized power production in a rural territory: the Saint Nicolas island of Glenan archipelago (Brittany); the 'mastery of power demand and renewable energy sources development' project in the eastern area of the Provence-Alpes-Cote d'Azur region. Workshop 14 - how to evaluate the economical advantage of distributed power production: the contradictory opinion of the producer and of the power company; the tariffs of power purchase; the example of a local power and heat distribution company: UEM. Workshop 15 - value of the heat produced from renewable energy sources, insertion in the energy market; simultaneous power and heat production from wood: impact of the biomass tariff by-law from April 2002; integration of external costs in energy choices. Workshop 16 - decentralized power production: to answer which development needs?; a society responsibility for a vital product; the wind power to supply the basic needs of the population. (J.S.)

  11. Energy: decentralized production and sustainable development of territories.... Tomorrow: which roles for the local organizations? Proceedings; Energie: production decentralisee et developpement durable des territoires.... Demain: quels roles pour les collectivites locales? Recueil des interventions

    Energy Technology Data Exchange (ETDEWEB)

    Labrousse, M. [Cabinet Explicit, 75 - Paris (France); Magnin, G. [Energie-Cites, 25 - Besancon (France)

    2002-07-01

    - will Dunkerque city consume its own power generation?; an electric power syndicate with a decentralized power production strategy. Workshop 10 - the power transportation grid and the decentralized production; decentralized production and coordinated approach of networks management. Workshop 11 - an example of district heating network which simultaneously valorizes wastes, biomass and cogeneration; district heating networks: advantages and drawbacks. Workshop 12 - the access to energy in the rural areas of developing countries; the intervention procedures of a cooperation program. Workshop 13 - simulation of power demand in Grenoble city; an example of mastery of power demand/decentralized power production in a rural territory: the Saint Nicolas island of Glenan archipelago (Brittany); the 'mastery of power demand and renewable energy sources development' project in the eastern area of the Provence-Alpes-Cote d'Azur region. Workshop 14 - how to evaluate the economical advantage of distributed power production: the contradictory opinion of the producer and of the power company; the tariffs of power purchase; the example of a local power and heat distribution company: UEM. Workshop 15 - value of the heat produced from renewable energy sources, insertion in the energy market; simultaneous power and heat production from wood: impact of the biomass tariff by-law from April 2002; integration of external costs in energy choices. Workshop 16 - decentralized power production: to answer which development needs?; a society responsibility for a vital product; the wind power to supply the basic needs of the population. (J.S.)

  12. The framing of product ideas in the making: a case study of the development of an energy saving pump

    DEFF Research Database (Denmark)

    Gish, Liv; Clausen, Christian

    2013-01-01

    Research regarding work with ideas in industrial settings has predominantly treated ideas as rather stable ‘black boxes’. This article contributes a new understanding of idea work and seeks to expand our understanding of how a product concept is constituted and synthesised through socio......-material interaction of organisational members and engagement in idea work. The article contributes a case study of the development process behind the energy-saving Alpha Pro circulator launched by the Danish pump manufacturer Grundfos. Based on an analysis of how organisational players engage in the controversial...... and shifting understandings of what seems to constitute a successful product, the article offers a new perspective on navigating the players’ ideas in the political processes of innovation. It suggests that navigation of technological frames can offer a new perspective to make explicit the implicated actors...

  13. Recent development in high energy plasma production techniques by the deflagration plasma gun

    International Nuclear Information System (INIS)

    Cheng, D.Y.; Chang, C.N.; Tripathi, P.P.

    1983-01-01

    This chapter reports experimental data and experience which establish the phenomenon of deflagration in plasma as unique and with quite different properties from the normal snowplow modes. Demonstrates that extremely high velocities and energies in plasma beams are possible with obvious applications in many field and, in particular, in fusion. Suggests that the potential of deflagration beams' scalability to very high energy quasi-neutral plasma beam is possible with present day technology. Discusses plasma deflagration in a T-tube; coaxial deflagration plasma guns; a typical deflagration gun and its operating procedures; electrical design considerations; kinetic theory point of view of the deflagration acceleration of particles; measurements and results; properties of the deflagration gun; applications; inertial confinement experiments; injection into magnetic confinement systems; interaction experiments; and highly energetic beams

  14. Roof windows in low-energy buildings - Analyses of demands and possibilities for future product development

    DEFF Research Database (Denmark)

    Skarning, Gunnlaug Cecilie Jensen; Duer, Karsten; Hviid, Christian Anker

    As part of an ambitious energy policy and strategy for reducing the use of fossil fuels in the European Union, all new buildings are required to consume `nearly zero-energy' by the end of 2020. This creates a strong need for research in cost-effective solutions and technology that can help balance...... transmittances of about 40-70% could provide suffcient daylighting without overheating in the climates of Rome and Copenhagen, as long as they were located in rooms with a reasonable layout for daylighting and appropriate solar-control coating was used on solar exposed glazing. The same was true for sloped...... and horizontal roof windows with any choice of light transmittance in both climates. Roof-window thermal properties needed for flexibility were then identied by studying the effect of these options on space-heating demand in rooms representing various parts of a 11/2-storey house with a simplied floor plan and...

  15. Study to develop educational products about the fear of new energy technologies. Phase II

    International Nuclear Information System (INIS)

    DuPont, R.L.

    1985-01-01

    Fear of nuclear power was found in the study sample to be widespread and far more intense than fear of any other energy source. Fears were greatest of waste disposal and accidents, with fear of what is not known being especially common. Many fears appeared to be based on lack of information. Both general and specific fears of nuclear power were significantly reduced by reading an educational booklet. After reading this booklet study subjects reported less extreme views of nuclear power, seeing it to be more similar to other energy sources. This decline in fear of nuclear power did not produce a proportionate increase in support for nuclear power as a source of electricity

  16. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Mustamin [Department of Architecture, Khairun University, Ternate (Indonesia); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Yoshino, Jun; Yasuda, Takashi [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan)

    2012-07-01

    This study was undertaken to analyze solar radiation abundance to ascertain the potential of solar energy as an electrical energy resource. Local weather forecasting for predicting solar radiation is performed using a meteorological model MM5. The prediction results are compared with observed results obtained from the Japan Meteorological Agency for verification of the data accuracy. Results show that local weather forecasting has high accuracy. Prediction of solar radiation is similar with observation results. Monthly average values of solar radiation are sufficiently good during March–September. Electrical energy generated by photovoltaic cells is almost proportional to the solar radiation amount. Effects of clouds on solar radiation can be removed by monthly averaging. The balance between supply and demand of electricity can be estimated using a standard curve obtained from the temporal average. When the amount of solar radiation every hour with average of more than 100 km radius area does not yield the standard curve, we can estimate the system of storage and auxiliary power necessary based on the evaluated results of imbalance between supply and demand.

  17. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hot water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly

  18. Geothermal Energy as source or energy production

    International Nuclear Information System (INIS)

    Lozano, E.

    1998-01-01

    This article shows the use and utilization of geothermal energy. This calorific energy can be used, through the wells perforation, in generation of electricity and many other tasks. In Colombia is possible the utilization of this energy in the electrical production due to the volcanic presence in the Western and Central mountain chains

  19. A sustainable energy development

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to encourage electric power production through renewable energies (such as wind energy with the Eole 2000 plan, solar water heaters in overseas departments, wood energy for space heating in buildings, photovoltaic energy), demand side management and cogeneration, and to enhance its purchase conditions by the government-owned EDF utility. Laws have been also introduced concerning air quality and the rational use of energy

  20. Biomass energy development

    International Nuclear Information System (INIS)

    Ng'eny-Mengech, A.

    1990-01-01

    This paper deals more specifically with biomethanation process and non conventional sources of biomass energy such as water hyacinths and vegetable oil hydrocarbon fuels. It highlights socioeconomic issues in biomass energy production and use. The paper also contains greater details on chemical conversion methods and processes of commercial ethanol and methanol production. (author). 291 refs., 6 tabs

  1. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  2. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  3. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  4. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  5. Future production of hydrogen from solar energy and water - A summary and assessment of U.S. developments

    Science.gov (United States)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The paper examines technologies of hydrogen production. Its delivery, distribution, and end-use systems are reviewed, and a classification of solar energy and hydrogen production methods is suggested. The operation of photoelectric processes, biophotolysis, photocatalysis, photoelectrolysis, and of photovoltaic systems are reviewed, with comments on their possible hydrogen production potential. It is concluded that solar hydrogen derived from wind energy, photovoltaic technology, solar thermal electric technology, and hydropower could supply some of the hydrogen for air transport by the middle of the next century.

  6. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  7. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  8. Energy and Sustainable Development

    International Nuclear Information System (INIS)

    2013-01-01

    None of the eight Millennium Development Goals (MDGs) adopted by the United Nations in 2000 directly addressed energy, although for nearly all of them - from eradicating poverty and hunger to improving education and health - progress has depended on greater access to modern energy. Thirteen years later, energy is being given more attention. The target date for the MDGs is 2015, and in 2012 the UN began deliberations to develop sustainable development goals to guide support for sustainable development beyond 2015. The Future We Want, the outcome document of the 2012 United Nations Conference on Sustainable Development (also known as Rio+20) gives energy a central role: ''We recognize the critical role that energy plays in the development process, as access to sustainable modern energy services contributes to poverty eradication, saves lives, improves health and helps provide for basic human needs''

  9. Energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Gururaja, J.

    1980-03-15

    The developing countries will require higher per capita energy for improving the quality of life. This paper examines the goals and strategies for development vis-a-vis those of the developed countries. Crucial issues in India are listed. The role of technology in the utilization of energy is discussed. Difficulties in choosing the technology are pointed out. The problem of integrating several alternative energy sources in villages is mentioned. Environmental issues are considered. (DLC)

  10. Energy indicators for sustainable development

    International Nuclear Information System (INIS)

    Vera, Ivan; Langlois, Lucille

    2007-01-01

    Energy is an essential factor in overall efforts to achieve sustainable development. Countries striving to this end are seeking to reassess their energy systems with a view toward planning energy programmes and strategies in line with sustainable development goals and objectives. This paper summarizes the outcome of an international partnership initiative on indicators for sustainable energy development that aims to provide an analytical tool for assessing current energy production and use patterns at a national level. The proposed set of energy indicators represents a first step of a consensus reached on this subject by five international agencies-two from the United Nations system (the Department of Economic and Social Affairs and the International Atomic Energy Agency), two from the European Union (Eurostat and the European Environment Agency) and one from the Organization for Economic Cooperation and Development (the International Energy Agency). Energy and environmental experts including statisticians, analysts, policy makers and academics have started to implement general guidelines and methodologies in the development of national energy indicators for use in their efforts to monitor the effects of energy policies on the social, economic and environmental dimensions of sustainable development

  11. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  12. Developing Collaborative Product Development Capabilities

    DEFF Research Database (Denmark)

    Mahnke, Volker; Tran, Yen

    2012-01-01

    innovation strategies’. Our analyses suggest that developing such collaboration capabilities benefits from the search for complementary practices, the combination of learning styles, and the development of weak and strong ties. Results also underscore the crucial importance of co-evolution of multi......Collaborative product development capabilities support a company’s product innovation activities. In the context of the fast fashion sector, this paper examines the development of the product development capabilities (PDC) that align product development capabilities in a dual innovation context......, one, slow paced, where the firm is well established and the other, fast paced, which represents a new competitive arena in which the company competes. To understand the process associated with collaborative capability development, we studied three Scandinavian fashion companies pursuing ‘dual...

  13. Clean Energy for Development

    OpenAIRE

    Wolfowitz, Paul

    2006-01-01

    Paul Wolfowitz, President of the World Bank, in the development community, the interaction of energy, environment, and poverty have emerged as a central challenge. Lack of consistent electricity in developing countries is a severe obstacle to doing business. It is also affecting school attendance, particularly among girls. Inefficient energy sources can also pose health problems—as many as 1.6 million deaths per year due to indoor smoke. Rich and poor countries alike need to apply energy-effi...

  14. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  15. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    NARCIS (Netherlands)

    Louwen, Atse|info:eu-repo/dai/nl/375268456; Van Sark, Wilfried G J H M|info:eu-repo/dai/nl/074628526; Faaij, André P C; Schropp, Ruud E I|info:eu-repo/dai/nl/072502584

    2016-01-01

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We

  16. EFFECTIVENESS OF SELECTION OF WHEAT TO MODERN REQUIREMENTS FOR SUSTAINABLE DEVELOPMENT OF AGRICULTURE III. ENERGY PRODUCTIVITY OF CROPS

    Directory of Open Access Journals (Sweden)

    Elisaveta Vasileva

    2014-03-01

    Full Text Available Aim of the study was to conclude on adaptation of modern varieties to the requirements of sustainable agriculture and hence the effectiveness of their methods of selection with respect to these requirements. The comparison between genotypes in two directions - by the selection methods by which they were established and according to the time of their creation. Energy assessment shows that the gross energy yield of grain is higher ( in average 5% over standard for varieties produced by the methods of the Intervarietal hybridization and during the period 1995 to 1999. While absolute maximum values of the energy productivity of grain (at N18 and maximum average total gross energy productivity of crops (4% above standard were detected in genotypes generated by the methods of mutagenesis by irradiation with gamma rays. Absolute maximum value of the energy productivity of crops were reported in cultivar Zdravko (at N18, which was established by the method of plant biotechnology by combining and somaclonal variation.

  17. Energetic development program in States and municipality-PRODEEM:Energy of locality in development with microsystems for production and energetic local use

    International Nuclear Information System (INIS)

    Loureiro Filho, I.

    1994-01-01

    This Initiative has as purpose to get the attention and to propose a form of work practices so that the area energy became to contribute indeed for the reduction of global underdevelopment, pursuing the reduction of the energy developing in particular. Such a work is denominated Program of energy development of the states and municipalities PRODEEM intends that the energy of local use are taken advantage of through micro systems, to satisfy the basic necessities of developing towns of the country

  18. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  19. Determining Mean Annual Energy Production

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Folley, Matt

    2016-01-01

    This robust book presents all the information required for numerical modelling of a wave energy converter, together with a comparative review of the different available techniques. The calculation of the mean annual energy production (MAEP) is critical to the assessment of the levelized cost...... of energy for a wave energy converter or wave farm. Fundamentally, the MAEP is equal to the sum of the product of the power capture of a set of sea-states and their average annual occurrence. In general, it is necessary in the calculation of the MAEP to achieve a balance between computational demand...

  20. Developing energy in Africa

    International Nuclear Information System (INIS)

    Favennec, J.P.

    2004-01-01

    Energy and economic growth are connected and the wealth of Western countries is based on a high availability of energy. Africa is a continent vast by its size, well populated and well supplied with fossil energy (oil, gas, coal) and renewable energy (hydroelectric, biomass, solar). But consumption is limited, without distribution infrastructures and initially, without capitals for necessary investments. The situation is particularly critical in Sub-Sahara Africa since the African energy consumption is mainly concentrated in South Africa and North Africa. An annual conference, the Energy Summit in Africa, brings together all players in the sector, from all the continent's countries, from Europe and America, in an attempt to establish recommendations for more availability and a better use of energy in Africa. The next summit is scheduled for November 23 to 25, 2004 in Dakar. The program relies on the Association for the Development of Energy in Africa, which will be created shortly. (author)

  1. Space-time development of the multi-particle production and hadron-nucleus interactions at high energies

    International Nuclear Information System (INIS)

    Kalinkin, B.N.; Shmonin, V.L.

    1975-01-01

    The problems which arised recently in studying the multiple production processes in nuclear matter are considered. It is shown that their solution is closely connected with concrete development of these processes in an elementary act. This makes it possible to point out the most realistic models of multiple production as well as to obtain an additional information necessary for their improvement

  2. ENERGY STAR Certified Products - Lighting

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories...

  3. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  4. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  5. Automatic control algorithm effects on energy production

    Science.gov (United States)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  6. Energy, sustainability and development

    International Nuclear Information System (INIS)

    Llewellyn Smith, Ch.

    2006-01-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  7. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  8. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  9. Global product development

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Ahmed-Kristensen, Saeema

    2011-01-01

    Globalisation has enabled companies to globalise their product development process. Today, everything from manufacturing to R&D can be globally distributed. This has led to a more complex and disintegrated product development process. This paper investigates the impacts companies have experienced...... operational solutions to counteract the negative impacts with varying degrees of success. This paper presents a unique look into global product development through an investigation of its impact on the organisation, the product development process, and the product. Furthermore, it shows the solutions...... as a result of this, and how they have been addressed. Data was collected through case studies of five Danish multinational corporations. The findings showed that the companies experienced several challenges when they globalised their product development process. They consequently implemented various...

  10. Economic Incentives in the Purchase and Use of Energy-Using Products: Past Practices and New Developments

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, D.J.

    2003-03-27

    This paper reviews the set of analytical tools commonly used to describe the purchase and use of energy-saving technologies and compares them with recent advances in applied microeconomics. Its goal is to determine if supplementing or replacing parts of the traditional tool kit will better equip the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) to design and promote the superior energy-using technologies of the future. The paper was prepared at the request of EERE's Jerry Dion, and is part of a larger set of white paper's intended to inform EERE's senior managers and program officers about the state of the art on a number of topics of special relevance to the EERE program. The advances in applied microeconomics discussed herein can be generally described as the theory of investment under uncertainty, behavioral economics, and the economics of asymmetrical information. While these concepts are quite familiar to economic methodologists and well entrenched in many applied topics, they are only now beginning to be applied to the field of energy technology analysis. If this work proves accurate, the new concepts would appear to hold substantial interest for those designing energy-saving technologies and promoting their penetration into markets. Two principal lessons arise from this exercise: First, because consumer demands for energy technologies are usually derived from their demands for products that make use of energy services, energy technologies are rarely evaluated in isolation. Hence, the analysis would benefit from much greater attention to the context and circumstances in which the technologies would be used. Second, in considering products that contain advanced energy technologies, consumers bring with them constrained budgets and competing demands for budget resources, face uncertain information, and are wary about advice on how to spend their money. Thus, decision-making is less mechanical and much more

  11. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  12. Capacity building for sustainable energy development

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2006-01-01

    Capacity Building for Sustainable Energy Development - Mission: To build capacity in Member States (MS) for comprehensive energy system, economic and environmental analyses to assist in: - making informed policy decisions for sustainable energy development; - assessing the role of nuclear power; - understanding environmental and climate change issues related to energy production and use

  13. Sectoral Energy, and Labour, Productivity Convergence

    International Nuclear Information System (INIS)

    Mulder, P.; De Groot, H.L.F.

    2007-01-01

    This paper empirically investigates the development of cross-country differences in energy- and labour productivity. The analysis is performed at a detailed sectoral level for 14 OECD countries, covering the period 1970-1997. A ρ-convergence analysis reveals that the development over time of the cross-country variation in productivity performance differs across sectors as well as across different levels of aggregation. Both patterns of convergence as well as divergence are found. Cross-country variation of productivity levels is typically larger for energy than for labour. A β-convergence analysis provides support for the hypothesis that in most sectors lagging countries tend to catch up with technological leaders, in particular in terms of energy productivity. Moreover, the results show that convergence is conditional, meaning that productivity levels converge to country-specific steady states. Energy prices and wages are shown to positively affect energy- and labour-productivity growth, respectively. We also find evidence for the importance of economies of scale, whereas the investment share, openness and specialization play only a modest role in explaining cross-country variation in energy- and labour-productivity growth

  14. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  15. Global product development

    DEFF Research Database (Denmark)

    Taylor, Thomas Paul; Ahmed-Kristensen, Saeema

    2016-01-01

    Selecting key performance indicators in conventional product development is a challenging task for project management and is compound by global product development. Informed from the findings of two in depth case studies conducted with large Danish manufacturing companies, in this paper we develo...

  16. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  17. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  18. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  19. DESIGN VERSUS PRODUCT DEVELOPMENT?

    Directory of Open Access Journals (Sweden)

    Edu Grieco Mazzini Junior

    2015-03-01

    Full Text Available Design or product development? The questioning in relation to the employment of such terminology dates back to possible misconceptions regarding interpretation and approach them. Therefore, it can be stated that there are differences between these two terms? In this context, we highlight two views concerning the origin of the design. The first character creative and based on pre-industrial revolution, based on projective and methodologies directed towards the practice of designing products. And second, where design is understood as an industrial process: the development of new products includes, besides a creative procedure are developed, and symbolic formal solutions for products, but also a technical procedure based on the definition of the requirements concerning the product engineering. Is this the most widely accepted interpretation? theoretical studies were conducted from interpretations of the concept of the design proposed by the International Council of Societies of Industrial Design – ICSDI (2012, and for the characterization of the process of product development, we sought to develop an analogy between these two terminologies and can be proved that the use of one of terminology will not cause deviations of interpretation, since both deal with the life cycle of the product. The main results obtained until now the definition of design proposed by the ICSID where it is characterized as a creative activity focused on the complete life cycle of products is the more approaches of the concept of product development.

  20. Plywood production wastes to energy

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.

    2017-11-01

    Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.

  1. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  2. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  3. Energy transition and legal transition: renewable energies development in France

    International Nuclear Information System (INIS)

    Darson, Alice

    2015-01-01

    The way to an energy transition will be reached with an integration of renewable energies in our energy mix. This development includes a legal transition because the current legal context that applies to green energies is not efficient and does not contribute to this emergency. Changing the legal frame becomes a necessity and particularly the way these energies are governed, planned and supported. It's also important that administrative procedures that regulate the implantation of energies production system are set. At last, this legal transition will have to conciliate imperatives linked to the development of renewable energies with those governing the protection of surroundings, all aiming to a sustainable development. (author) [fr

  4. Wind Energy for Sustainable Development

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2009-01-01

    The growing demand in energy and concern about depleting natural resources and global warming has led states worldwide to consider alternatives to the use of fossil fuel for energy production. Several countries especially in Europe have already increased their renewable energy share 6-10%, expected to increase to 20% by the year 2020. For Egypt excellent resources of wind and solar energy exist. The article discusses perspectives of wind energy in Egypt with projections to generate ∼ 3.5 GWe by 2022, representing ∼ 9% of the total installed power at that time (40.2 GW). Total renewable (hydro + wind + solar) are expected to provide ∼ 7.4 GWe by 2022 representing ∼ 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development

  5. Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy

    International Nuclear Information System (INIS)

    Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A.; Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S.

    2006-01-01

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center

  6. Development of hydrogen market: the outlook for demand, wing energy production, mass storage and distribution to vehicles in the regions

    International Nuclear Information System (INIS)

    Le Duigou, A.; Quemere, M.M.; Marion, P.; Decarre, S.; Sinegre, L.; Nadau, L.; Pierre, H.; Menanteau, Ph.; Rastetter, A.; Cuni, A.; Barbier, F.; Mulard, Ph.; Alleau, Th.; Antoine, L.

    2011-01-01

    The HyFrance3 project has provided a national framework for reflection, debate and strategic exchange between major public and industrial research players, namely for their hydrogen technology arms in France (Air Liquide, Total Refining and Marketing, EDF R and D, GDF SUEZ, CNRS-LEPII Energies Nouvelles, AFH2, ALPHEA, ADEME (co-financing and partner) and the CEA (coordinator). This project focuses on studying the landscape, trends and economic competitiveness of some links in the hydrogen chain, for industrial and energy applications, over a period referred to as 'short term' (2020-2030). Four study subjects were tackled: the prospective demand for hydrogen in industry (analysis of the current situation and outlook for 2030, in particular for refining based on two scenarios on mobility), production of hydrogen for transport uses from wind-produced electricity, mass storage that would have to be set up in the Rhone Alpes and PACA regions, to balance supply that is subject to deliberate (maintenance) or involuntary interruptions, and the distribution of hydrogen in the region, for automobile use (gas station network in the Rhone Alpes and PACA regions) by 2050 (with end period all-in costs between 0.4 eur/kg and 0.6 eur/kg, as a function of the price of energy and the distance from the storage site). (authors)

  7. Energy and Development

    Directory of Open Access Journals (Sweden)

    Gilles Carbonnier

    2012-03-01

    Full Text Available Published by Palgrave MacmillanThis chapter introduces the thematic dossier of International Development Policy on the intimate relationship between energy and development. The authors discuss the centrality of fossil fuels in the economic growth of the Western world since the nineteenth century and the key role of oil in the twentieth century and question the future of this development model in the face of geological and climatic constraints. They examine the gaps and misunderstandings that separate social sciences and natural sciences as well as recent attempts to establish interdisciplinary dialogue around ecological economics and industrial ecology. The authors then analyse what is at stake for developing countries, inequalities in access to energy resources, the failure of the global governance system to deal with mounting tensions associated with the depletion of oil and the environmental consequences of an ever increasing consumption of non-renewable resources.

  8. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  9. Prospects for Strengthening the Security of Ukraine’s Energy Supply through Development of Unconventional Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2016-05-01

    Full Text Available The article presents an analysis of the American experience in development of natural shale gas in the US, identifies the causes that led to the shale revolution. Its current state is characterized by achieving the peak production simultaneously with shift in the emphasis from natural shale gas to shale oil. The potential technically extracted gas reserves as well as trends in terms of the growth of conventional natural gas reserves and the development of trade in liquefied natural gas are regarded as global preconditions for enlargement of the shale natural gas output. Natural shale gas can be considered as an alternative project only for liquefied natural gas while, compared to pipeline gas, its production is uncompetitive. The national preconditions for development of the industry of nonconventional natural gas production are determined on the basis of the current trends in Ukraine’s gas market. The main obstacles to the realization of this direction are reduction of the gas needs and liberalization of natural gas trade on the basis of European principles. Economic evaluation of the feasibility of natural shale gas production made it possible to forecast its production cost at the wellhead at different depths and estimate its investment attractiveness in different aggregate states. On the basis of the approbation of the presented methodological approach carried out for the Dnieper-Donets and Carpathian shale basins, it was concluded that the investment attractiveness of the first one is higher, given its reservoir properties and the presence of deposits of nonconventional hydrocarbons in different states of aggregation.

  10. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  11. Energy efficiency and cleaner production

    International Nuclear Information System (INIS)

    Konstantinoff, M.; Grozeva, Iv.

    1999-01-01

    Energy is the fundamental driver of the economic growth in the todays society. It is an absolute prerequisite for the industrial development in the developed countries as well as for improving the quality of life and reducing the poverty in the developing world. It is expected that the energy demand in the developing countries will increase rapidly in the next decades, and will even exceed the level of consumption in the rich countries due to rising population and incomes. The burning of fossil fuel, however, inevitably leads to negative environmental impact, which no longer can be neglected

  12. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  13. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  14. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  15. Transdisciplinary product development

    Directory of Open Access Journals (Sweden)

    Tomaž Savšek

    2015-12-01

    Full Text Available Research Question (RQ: How can transdisciplinary approach increase the product development process in future industry? Purpose: The aim of the research is to develop a model of an effective product development in the automotive industry based on the transdisciplinary approach. Method: We used a qualitative research approach in order to develop a theoretical framework of transdisciplinarity. The framework comprises the concurrent engineering and experts from different disciplines. The framework was represented by a mathematical model which based on stochastic dynamic programming. Results: We developed a theoretical frameworkand a practical case of transdisciplinary product development in the automotive industry. We presented a mathematical model and information environment which supports such a model. Organization: The findings of the research will provide higher productivity, lower operating costs, change in personnel structure, higher added value, lower sales costs, lower administration costs, reduction in growth of expenses, and lower costs of work equipment. Society: The research impact on higher customer’s satisfaction, increased flexibility of operations, better quality of information, improved control of sources, less waste materials and less pollution, improved planning process, more favourable consideration of employees , improved portfolio management, and better corporate presentation of company. Originality: Transdisciplinary framework combines methods of concurrent engineering and interdisciplinary approach in a process of product development. The development of such a framework is a complete novelty and represents an original approach to product development, which will be particularly suitable for the smart factories of the future. Transdisciplinary framework was transformed in to a mathematical model based on stochastic dynamic programming. Model is supported by the existing information warehouse and represents a potential for

  16. Environmental consequences of energy production: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  17. Forecasting the Quantity and Activity of Fission Products in France in Future Years in the Light of Atomic Energy Development

    Energy Technology Data Exchange (ETDEWEB)

    Guirlet, J.; Lavie, J. M. [Commissariat a l' Energie Atomique, Saclay (France)

    1960-07-01

    One of the most important problems connected with the development of electrical production of nuclear origin is the disposal or utilization of radioactive waste. It is a new problem, with far-reaching economic and safety implications. There is thus real value in an attempt to evaluate, even approximately, the activities which may be expected in coming years, having regard to present plans for nuclear power installations in order to define the limits of research needed for a solution to the disposal of radioactive wastes.

  18. Rural energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Stern, R.

    1997-12-01

    The author discusses the worldwide problem and need for rural electrification to support development. He points out that rural areas will pay high rates to receive such services, but cannot afford the capital cost for conventional services. The author looks at this problem from the point of energy choices, subsides, initial costs, financing, investors, local involvement, and governmental actions. In particular he is concerned with ways to make better use of biofuels, to promote sustainable harvesting, and to encourage development of more modern fuels.

  19. A Framework For Product Development

    DEFF Research Database (Denmark)

    McAloone, Timothy Charles; Robotham, Antony John

    1999-01-01

    -aspect approach to product development; understanding the strategic conditions that affect product development; developing a coherent approach to product quality based on product-life thinking; addressing environmental needs in a proactive manner through innovation techniques; and understanding both...

  20. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  1. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  2. Energy production and human health

    International Nuclear Information System (INIS)

    Benson, J.R.; Brown, C.D.; Dixon-Davis, D.K.; Grahn, D.; Ludy, R.T.

    1977-01-01

    Progress is reported on the following research projects: development and evaluation of socioeconomic and demographic factors; and quantitative aspects of the impacts of energy-related effluents on human health. Environmental effects of electric power generation by gas, oil, coal, nuclear energy, and water were studied at 15 sites. A system of general demographic models was developed for projecting number of deaths and population size by sex, age, and cause of death through time for any defined initial population and set of vital rates

  3. Development of Production Systems

    DEFF Research Database (Denmark)

    Christiansen, Thomas Bøhm

    1997-01-01

    This paper presents the initial considerations related to a Ph.D. study initiated at IPV, DTU in February 1997, concerning the research subject "Development of Production Systems". The content and aim of this paper is to 1) to introduce the study by......This paper presents the initial considerations related to a Ph.D. study initiated at IPV, DTU in February 1997, concerning the research subject "Development of Production Systems". The content and aim of this paper is to 1) to introduce the study by...

  4. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  5. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  6. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  7. Energy productivity growth in the Dutch Greenhouse Industry

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Ondersteijn, C.J.M.

    2006-01-01

    Profitability of Dutch greenhouse firms is largely dependent on energy costs, and policy makers focus on reducing the use of energy by these firms. This article uses Russell measures of TE to develop indicators of energy productivity growth. Results show that energy productivity grew by 2.8%

  8. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  9. Bolivia renewable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  10. Product development leadership

    DEFF Research Database (Denmark)

    Lindgren, Peter

    2006-01-01

    Peter Lindgren introducerer i sin artikel begrebet ”Product Development Leadership”, som sætter fokus på produktudviklingens strategiske og markedsmæssige rolle. Begrebet omfatter bl.a. virksomhedens evne til at generere eller indfange ideer og udvikle disse via eksisterende eller nye måder...

  11. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  12. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  13. WE-NET. Substask 4. Development of hydrogen production technologies; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work), researches were conducted aiming at the establishment of a hydrogen production technology through electrolysis of polymer electrolyte solution. In fiscal 1998, element technologies were developed for the development of high-efficiency/large-capacity water electrolyzing plants using electrodeless deposition and hot pressing, research and investigation of optimum operating conditions were conducted, and a service plant conceptual design and a polymer electrolytic membrane were developed. In addition, literature was searched for the current state of ion exchange membranes and water electrolysis, both indispensable for the hydrogen production technology discussed in this paper. In the field of lamination of large cells (electrode surface:2500cm{sup 2}), an excellent energy efficiency level exceeding 90% set as the target for a large laminated cell performance test was achieved - 92.6% by electrodeless deposition and 94.4% by hot pressing. As for polymer membranes capable of resisting high temperatures, a membrane with an ionic conductivity of 0.066S/cm at 200 degrees C was newly developed. (NEDO)

  14. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  15. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  16. Environmental impact of energy production

    International Nuclear Information System (INIS)

    Lidgate, David

    1992-01-01

    Care of the environment is set to be one of the growth industries of the 1990s. Unfortunately, information as to the effect current life styles are having on the environment and, therefore, what remedial action is necessary, varies from the full to the non-existent and, worst of all, from the misleading to the incorrect. For various reasons, some aspects of technology have received greater attention from the media and environmental pressure groups than others. Energy production and conversion technologies, of course, are very much in this category. Indeed, the problem in these areas is not lack of information but a positive surfeit. (author)

  17. An a priori analysis of how solar energy production will affect the balance of payment account in one developing Latin American country

    Energy Technology Data Exchange (ETDEWEB)

    Stavy, Michael [Chicago, Illinois (United States)

    2000-07-01

    This paper studies a model developing Latin American country (hypotheria) with a weak currency (the hypo is the monetary unit), a trade deficit (including being a net importer of fossil fuels) and a sensitive balance of payments situation. There is an a priori analysis of the effect of domestic solar energy production on Hypotheria's positive effect is the BoP Value of domestic solar energy. Many forms of solar energy are not cost competitive with fossil fuels. Because solar energy production does not emit greenhouse Value and the BoP Value of solar energy should be used to reduce the cost of solar energy projects in Hypotheria and to make the solar energy cost competitive with fossil fuels. [Spanish] Este articulo estudia un modelo de un pais Latinoamericano en desarrollo (Hypoteria) con moneda debil (el hypo es la unidad monetaria), un deficit comercial (incluyendo el ser un importador neto de combustibles fosiles) y un balance precario en la situacion de pagos. Existe un analisis a priori sobre el efecto de la produccion domestica de energia solar en un efecto positivo de Hypoteria que es el Valor de la Balanza de Pagos (BoP) de la energia solar domestica. Muchas formas de energia solar no son competitivas en costo con los combustibles fosiles debido a que la produccion de energia solar no emite un Valor de invernadero, y el Valor de la Balanza de Pagos, debe ser utilizado para reducir los costos de los proyectos de energia solar en Hypoteria y asi hacer el costo de la energia solar competitiva con los combustibles fosiles.

  18. Rationale for energy research and development programme

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    This paper describes the rationale for the expenditure of government money on energy research and development. The Committee, organized in 1974, established the following order of project priorities: projects to determine current and future energy demand; projects concerned with the conservation and more efficient use of energy; projects concerned with the assessment of indigenous energy resources; projects concerned with the assessment of the human, financial, and organizational resources for energy production and use; and projects concerned with economic, technological, social, and environmental aspects of energy use and production over the next 15 years and beyond the next 15 years. Significant factors affecting the national energy economy, the strategy for energy research and development, and the results of committee activities are summarized. An energy scenario research is laid out. (MCW)

  19. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  20. Energy production and social marginalisation in China

    Energy Technology Data Exchange (ETDEWEB)

    Philip Andrews-Speed; Xin Ma

    2008-05-15

    The exploitation and production of primary energy resources and the supply of this energy is critical for China's economic development. Despite the obvious economic benefit to the nation, this energy production has had significant negative socio-economic impacts on certain groups of people at local and national scales. This paper documents three cases of energy production in China and demonstrates that, in each case, marginalisation of social groups has either been created or has been enhanced. These cases are the Three Gorges Dam, the Yumen oilfield, and township and village coal mines. The causes of this marginalisation have their roots in the structures, processes and approaches taken in the making and implementation of national policy in China, and are compounded by poor regulation and monitoring, poor civil rights, and the tension between central and local governments. The government which came to power in 2003 recognised the extent and importance of these social challenges relating to energy production, and has started to take steps to address them.

  1. The wood-electricity: development perspectives for the wood-based production of energy in France by 2015. Soil pollution. Soil contamination by hydrocarbon effluents: rehabilitation market analysis

    International Nuclear Information System (INIS)

    Barbier, C.

    1996-09-01

    A report proposes an economical analysis of the wood-based production of electricity in France, describes the different stages of this process, from supply (crop, tearing, transport, storage) through conversion (technologies, combustion or gasification) and to the output kWh (cost sensitivity analysis with respect to the evolution of other parameters). It describes the environmental impacts of wood-based electricity production and compares the quantities of pollutants emitted by this process with those emitted by other processes based on fossil energies. It identifies the main obstacles to the development of wood-based electricity production and proposes political and institutional measures inspired by the Danish experience. A second article is aimed at presenting an economic analysis of the cost of decontamination of hydrocarbon polluted sites in France (a majority of which are gas stations and storage sites)

  2. Development of coating materials and feeding processes for energy-optimized baking of carbon products. Final report. Entwicklung von Coating-Materialien und Zustellverfahren fuer den energie-optimalen Brennprozess von Kohlestoffprodukten. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K.J.; Schroeder, P.; Grimm, B.

    1986-01-01

    Carbon products, as for instance anodes for the aluminium industry, are worldwide baked in annular chamber furnaces with a lump fill of granular coke. The large thermal mass of this coke fill requires a high energy consumption and long baking times. This fill shall be replaced by a ceramic coating material in order to obtain shorter baking times and lower energy consumption. Within this development project, various coating materials, application techniques and baking processes were tested. The results show that carbon products of perfect quality can be obtained within much shorter baking times. In practice-like tests at a German factory producing refractory products it was found during a test period of one year, that the energy savings amount to 70%. For the production of carbon anodes in the aluminium industry energy savings up to 50% are possible, according to our test results. The corresponding plant designs have been developed within the framework of the R and D project. With 5 refs., 3 tabs., 10 figs.

  3. Leadership for product development

    DEFF Research Database (Denmark)

    Martensen, Anne; Dahlgaard, Jens Jørn

    1998-01-01

    by nonrecurring processes. Therefore, the general model requires an amplification and adjustment specific to this area. It will be discussed how the model can be suplemented with references to criterion parts and areas to address, especially relevant for a self-assessment of leadership in innovation. What should...... the criterion "leadership" comprise when the focus is on R and D? Eight new criterion parts will be discussed. It is believed, that the recommended approach will improve leadership for product development. Udgivelsesdato: JUL...

  4. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  5. Electrorheology for energy production and conservation

    Science.gov (United States)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  6. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m...

  7. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  8. Accounting for Human Health and Ecosystems Quality in Developing Sustainable Energy Products: The Implications of Wood Biomass-based Electricity Strategies to Climate Change Mitigation

    Science.gov (United States)

    Weldu, Yemane W.

    The prospect for transitions and transformations in the energy sector to mitigate climate change raises concerns that actions should not shift the impacts from one impact category to another, or from one sustainability domain to another. Although the development of renewables mostly results in low environmental impacts, energy strategies are complex and may result in the shifting of impacts. Strategies to climate change mitigation could have potentially large effects on human health and ecosystems. Exposure to air pollution claimed the lives of about seven million people worldwide in 2010, largely from the combustion of solid fuels. The degradation of ecosystem services is a significant barrier to achieving millennium development goals. This thesis quantifies the biomass resources potential for Alberta; presents a user-friendly and sector-specific framework for sustainability assessment; unlocks the information and policy barriers to biomass integration in energy strategy; introduces new perspectives to improve understanding of the life cycle human health and ecotoxicological effects of energy strategies; provides insight regarding the guiding measures that are required to ensure sustainable bioenergy production; validates the utility of the Environmental Life Cycle Cost framework for economic sustainability assessment; and provides policy-relevant societal cost estimates to demonstrate the importance of accounting for human health and ecosystem externalities in energy planning. Alberta is endowed with a wealth of forest and agricultural biomass resources, estimated at 458 PJ of energy. Biomass has the potential to avoid 11-15% of GHG emissions and substitute 14-17% of final energy demand by 2030. The drivers for integrating bioenergy sources into Alberta's energy strategy are economic diversification, technological innovation, and resource conservation policy objectives. Bioenergy pathways significantly improved both human health and ecosystem quality from coal

  9. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  10. The impact of predicted demand on energy production

    Science.gov (United States)

    El kafazi, I.; Bannari, R.; Aboutafail, My. O.

    2018-05-01

    Energy is crucial for human life, a secure and accessible supply of power is essential for the sustainability of societies. Economic development and demographic progression increase energy demand, prompting countries to conduct research and studies on energy demand and production. Although, increasing in energy demand in the future requires a correct determination of the amount of energy supplied. Our article studies the impact of demand on energy production to find the relationship between the two latter and managing properly the production between the different energy sources. Historical data of demand and energy production since 2000 are used. The data are processed by the regression model to study the impact of demand on production. The obtained results indicate that demand has a positive and significant impact on production (high impact). Production is also increasing but at a slower pace. In this work, Morocco is considered as a case study.

  11. Energy Research & Development

    Science.gov (United States)

    Skip to Main Content CA.gov California Energy Commission CA.gov | Contact | Newsroom | Quick Links convenience of our website visitors and is for informational purposes only. The California Energy Commission Google Translate™. The California Energy Commission does not endorse the use of Google TranslateÂ

  12. Energy, environment and sustainable development

    International Nuclear Information System (INIS)

    Omer, Abdeen Mustafa

    2008-01-01

    level of building performance (BP), which can be defined as indoor environmental quality (IEQ), energy efficiency (EE) and cost efficiency (CE). circle Indoor environmental quality is the perceived condition of comfort that building occupants experience due to the physical and psychological conditions to which they are exposed by their surroundings. The main physical parameters affecting IEQ are air speed, temperature, relative humidity and quality. circle Energy efficiency is related to the provision of the desired environmental conditions while consuming the minimal quantity of energy. circle Cost efficiency is the financial expenditure on energy relative to the level of environmental comfort and productivity that the building occupants attained. The overall cost efficiency can be improved by improving the indoor environmental quality and the energy efficiency of a building. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this paper. Throughout the theme several issues relating to renewable energies, environment and sustainable development are examined from both current and future perspectives. (author)

  13. Sustainable management of lakes in connection with mitigation of adverse effects of climate change, agriculture and development of green micro regions based on renewable energy production

    Directory of Open Access Journals (Sweden)

    Sandor Antal Nemethy

    2014-11-01

    Full Text Available Lake management is extremely complex and requires a coordinated effort of research institutions, community groups, individuals, landowners, and government. Lakes constitute an important group of natural resources due to their ecosystem services and often unique cultural environments. Climate change is a growing concern, which particularly strongly affects shallow lakes. The adverse impact of climate change is enhanced by extreme water level fluctuations and human factors such as environmental pollution from waste water discharge, large scale agriculture and shoreline constructions reducing or eliminating valuable wetlands. Since eutrophication is a leading cause of impairment of freshwater ecosystems, specific strategies to address a lake's nutrient enrichment must focus on activities in the watershed and, if needed, in-lake restoration techniques. Analyzing the key factors of sustainable local and regional development in the vicinity of lakes, assessing the environmental risks of pollution, large scale agriculture, waste management and energy production, we propose a complex, stakeholder based management system and holistic regional development in lake areas, which will preserve natural ecosystems without compromising the sustainable use of ecosystem services. There are available technologies to develop ecologically acceptable water level regulations, promote organic agriculture applying grey water irrigation, stop leachate from landfills and control invasive species. Regional and local production and use of renewable energy is essential both for environmental and economical sustainability. Renewable energy production should be well coordinated with agriculture, forestry, waste management and management of water resources of lakes and their watershed areas in a sustainable, holistic way through a participatory approach. This is particularly pronounced in connection with tourism as one of the main uses of lake-ecosystem services, but also an

  14. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  15. Renewable energy strategies for sustainable development

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    This paper discusses the perspective of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development. Such strategies typically involve three major technological changes: energy savings on the demand side, efficiency improvements in the energy...... production, and replacement of fossil fuels by various sources of renewable energy. Consequently, large-scale renewable energy implementation plans must include strategies of how to integrate the renewable sources in coherent energy systems influenced by energy savings and efficiency measures. Based...... on the case of Denmark, this paper discusses the problems and perspectives of converting present energy systems into a 100 percent renewable energy system. The conclusion is that such development will be possible. The necessary renewable energy sources are present, if further technological improvements...

  16. Barriers to retail marketing of renewable energy products in an energy-rich province

    International Nuclear Information System (INIS)

    Haner, S.A.

    1999-01-01

    Personal experiences in attempting to market photovoltaics and other renewable energy products in Alberta, a province rich in energy sources, are recounted as part of an exploration of ways to help industry to develop strategies that will advance the acceptance of renewable energy products, particularly in areas of the world that are not concerned about energy supply. Social acceptability, emphasis on a healthy and convenient lifestyle associated with renewable energy products, practical, user-friendly products, and competitive prices, are some of the key elements in successfully marketing renewable energy products

  17. Energy Security and Renewable Energy in Least Developed Countries

    International Nuclear Information System (INIS)

    Wohlgemuth, N.

    2006-01-01

    The Programme of Action for the Least Developed Countries (UN, 2001) states: The levels of production and consumption of energy in the majority of Least Developed Countries (LDCs) are inadequate and unstable. This clearly indicates a situation of energy insecurity. Starting from an encompassing definition of energy security (a country's ability to expand and optimise its energy resource portfolio and achieve a level of services that will sustain economic growth and poverty reduction), it becomes quickly clear that energy security in LDCs is a complex topic with numerous interlinkages to other sustainable development objectives. This paper attempts to give an overview of issues related to energy security in LDCs by focusing on the role renewable energy can play in that context.(author)

  18. Energy ratios in Finnish agricultural production

    Directory of Open Access Journals (Sweden)

    H. J. MIKKOLA

    2008-12-01

    Full Text Available The objective of this study was to assess energy ratios and net energy in plant production and energy ratios in animal production in Finland. Energy ratios and net energy were determined on the basis of plant- and animal-specific energy analyses. In plant production, energy ratios and net energy were assessed as a function of nitrogen fertilization, because indirect energy input in the form of agrochemicals was 54—73% from the total energy input and nitrogen was responsible for the major part of this. The highest energy ratio was 18.6 for reed canary grass. As a whole reed canary grass was superior to the other crops, which were barley, spring wheat, spring turnip rape, ley for silage, potato and sugar beet. Reed canary grass and sugar beet gained the highest net energy yields of 111–115 GJ ha-1. The optimum energy ratio was gained in general with less nitrogen fertilization intensity than farmers use. The energy ratios in pork production varied between 0.14–1.28 depending on what was included or excluded in the analysis and for milk production between 0.15–1.85. Ratios of 1.28 in pork production and 1.85 in milk production are unrealistic as they do not give any shelter to the animals, although they can be approached in very low-input production systems. If the ratio is calculated with feed energy content then the ratio is low, 0.14–0.22 for pork and 0.15 for milk. This shows that animals can convert 14–22 percent of the input energy to usable products. In pork production, the largest portion of the energy input was the ventilation of the building. In milk production milking and cooling consumes a lot of energy and for this reason the electricity consumption is high.;

  19. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  20. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  1. Financing energy development

    International Nuclear Information System (INIS)

    Kariwara, Y.

    1990-01-01

    The 1990s is likely to be a decade of double growth: in energy demand and environmental protection. This leads the author of this paper to ask the pertinent questions of where the money will come from, and in what form, to finance the growth in capacity to produce this energy and the technology required to produce and burn it cleanly. With a focus on Asian energy markets, this paper first illustrates the problem by describing the rapid growth of energy demand in the region. It describes the growth in Japan as well as China and the fast-growing economies of Hong Kong, Indonesia, Malaysia, the Philippines, Singapore, South Korea, Taiwan, and Thailand. Energy demand growth rates of almost 5 percent in the 1980s are expected to continue to grow at that rate at least until 2005, doubling today's level of consumption and putting the energy supply system under great strain. Because of the large sums involved, this paper pints out the necessity of inventing new, innovative devices for future fund raising. This will require the participation of institutions such as insurance companies and regional banks that have little experience in the energy field. This paper suggests that these and the established players in energy finance will have recourse to two new approaches: Build-Operate-Transfer and Trustee Borrowing schemes

  2. Energy problems in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Tasugi, Hirosaburo [Japan Industrial Tech. Association, Tokyo, Japan

    1989-06-20

    In order to rid the people's living of poverty in developing countries, first, the production of food has been planned to increase. And then, resource development and industrialization have been tried to improve with efforts. Because of such development and an increase in population, energy consumption has been increasing. Advanced countries have supported these countries in many ways, however, there is much difference in their assistance depend on various situations such as racial, religious, and political ones. Moreover, a gap between cities and farm villages has widen since infrastructure has not been fully equipped in developing countries. The electrification ratio is used as an index to show the degree of development in developing countries. It is low in the countries where development is lagging, particularly in farm villages. This gap is an urgent problem that faces developing countries. In order to cope with the actual conditions, advanced countries including Japan should be plan to reinforce their technological and economic assistance more suitable for farm villages. Furthermore, they should also improve the assistance system which includes a measure for environmental pollution control, considering the spot directly. 3 figs., 14 tabs.

  3. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  4. Developing a Decision Model of Sustainable Product Design and Development from Product Servicizing in Taiwan

    Science.gov (United States)

    Huang, Yu-Chen; Tu, Jui-Che; Hung, So-Jeng

    2016-01-01

    In response to the global trend of low carbon and the concept of sustainable development, enterprises need to develop R&D for the manufacturing of energy-saving and sustainable products and low carbon products. Therefore, the purpose of this study was to construct a decision model for sustainable product design and development from product…

  5. Sustainable development and energy indicators

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan

    2002-01-01

    Starting from the basic definition of sustainable development and its four dimensions, the role of indicators for sustainable energy development is analysed. In particular, it is shown that important energy efficiency indicators belong in fact to energy supply efficiency, while the end-use energy efficiency could be more pertinently represented by energy intensity indicators. Furthermore, the negentropic effects of science and technology related sustainable energy scenarios are pointed out. Finally, the sustainable development is related to wisdom, interpreted as a sum of knowledge, morality and timing. (Author)

  6. Development, energy, environment: changing the paradigm

    International Nuclear Information System (INIS)

    2006-01-01

    A first set of contributions comments the various risks and challenges which are to be faced in terms of energy, climate and environment: the deadlock of present 'laisser-faire' policies, recent findings in climate science in 2005, oil as the reason of a possible economic crisis in developing countries, recent evolution of energy systems. The next set of contributions discusses the possible solutions and their limits: CO 2 capture and sequestration in coal plants, nuclear renaissance, renewable energies, hydro-electricity, CO 2 capture by biomass, energy sobriety, urban morphology and transports in emerging cities, integration of service demand with energy supply, energy decentralized production

  7. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    International Nuclear Information System (INIS)

    Berthou, V.

    2000-01-01

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  8. Energy for sustainable rural development

    NARCIS (Netherlands)

    Hulscher, W.S.; Hulscher, W.S.; Hommes, E.W.; Hommes, E.W.

    1992-01-01

    Rural energy in developing countries is discussed with a view to sustainable development. The project-oriented approach in rural energy which has often dominated in the past, is contrasted with an overall strategy for sustainable rural energy demand and supply. An outline for a demand-oriented

  9. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  10. The role of energy policy in agricultural biogas energy production in Visegrad countries

    Directory of Open Access Journals (Sweden)

    Chodkowska-Miszczuk Justyna

    2017-03-01

    Full Text Available Energy production by agricultural biogas plants has recently recorded considerable growth in Visegrad countries. The development was enhanced by European Union’s efforts to increase the proportion of energy produced from renewable sources. The paper aims to assess the role of energy policy in the development of agricultural biogas energy production in Visegrad region. Conducted studies have shown that among various forms of support for energy production from renewable energy sources, the price system prevails, including the support by feed in tariffs and bonuses. Feed in tariffs were adopted in Czech Republic, Hungary and Slovakia. Another kind of support system – a quota system – was adopted in Poland, what includes tendering and certificate systems. The results confirm the adoption of legal framework was necessary step to enable agricultural biogas energy production in Visegrad countries, but itself it was not enough to stimulate development of agricultural biogas energy production significantly. Rapid development in each country was recorded only after the certain financial support systems took effect, what made production of agricultural biogas energy economically efficient for investors. The production of energy from agricultural biogas grew the most in the Czech Republic and Slovakia, where the financial support was the highest. Nevertheless, the protracted process of changes in legal framework and transformation of energy policy, certain measures including state-controlled price-making systems, risk regarding with auction system might hamper agricultural biogas energy production further development.

  11. Energy production and financial analysis of photovoltaic energy plants in Ivory Coast

    OpenAIRE

    Guaita Pradas, Inmaculada; Marí Soucase, Bernabé; BOKO, AKA

    2015-01-01

    One key factor for boosting economic growth in developing countries is the energetic independence of the countries. Renewable energies are well suited for such purpose even if effective dissemination of renewable energies is their production price. The energy production of solar plants is highly dependent of both sun radiation and climate data and therefore dependent of their location. This paper reports on the economic and financial calculations related to the energy production of a standard...

  12. Wind Energy Workforce Development & Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  13. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  14. Energy balance of the lavender oil production

    Directory of Open Access Journals (Sweden)

    Osman GÖKDOĞAN

    2016-06-01

    Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.

  15. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  16. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  17. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  18. Water use alternatives for Navajo energy production

    International Nuclear Information System (INIS)

    Abbey, D.

    1979-01-01

    The Navajo have substantial resources of coal and uranium, and water use is certain to accompany development of these resources. A variety of supplies, however, are available--water in storage in Navajo Reservoir, water in existing uses which may be transferred, and groundwater. Furthermore, the quantity of water use varies over a wide range depending on the use of water conservation technologies such as dry coolers and wastewater treatment units. Joint management of energy and water resources requires a basic understanding of the water supply and demand alternatives available to the energy industry. Thus, the uses of water for key energy activities--coal and uranium mining, coal transportation (slurry pipelines), and coal conversion (electricity and synthetic gas production) are reviewed. For those activities for which water conservation is feasible, the technologies and estimate costs ($/af saved) are described. The range of water requirements are then compared to energy and water resource estimates. Finally, alternative (not necessarily exclusive) criteria for energy and water resource management are discussed: a) promote energy activities with the lowest minimum water requirements; b) require industry to use low-quality water resources and the most effective water conservation technology; and c) maximize the economic return on Navajo water resources

  19. Stuart Energy's experiences in developing 'Hydrogen Energy Station' infrastructure

    International Nuclear Information System (INIS)

    Crilly, B.

    2004-01-01

    'Full text:' With over 50 years experience, Stuart Energy is the global leader in the development, manufacture and integration of multi-use hydrogen infrastructure products that use the Company's proprietary IMET hydrogen generation water electrolysis technology. Stuart Energy offers its customers the power of hydrogen through its integrated Hydrogen Energy Station (HES) that provides clean, secure and distributed hydrogen. The HES can be comprised of five modules: hydrogen generation, compression, storage, fuel dispensing and / or power generation. This paper discusses Stuart Energy's involvement with over 10 stations installed in recent years throughout North America, Asia and Europe while examining the economic and environmental benefits of these systems. (author)

  20. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  1. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  2. Consumer oriented new product development

    DEFF Research Database (Denmark)

    van Trijp, Hans C.M.; Grunert, Klaus G

    2014-01-01

    New product development is a necessary activity for a company’s competitiveness, profitability and growth. However, new product development is a risky activity as a large percentage of new product introductions fail to achieve their commercial targets. The present chapter reviews the existing evi...... evidence on new product success and failure factors. From that it introduces the perspective of consumer-oriented new product development as a way to balance new technological opportunity against identified consumer needs and desires....

  3. Energy in the Developing World

    Science.gov (United States)

    Gadgil, Ashok; Fridley, David; Zheng, Nina; Sosler, Andree; Kirchstetter, Thomas; Phadke, Amol

    2011-11-01

    The five billion persons at the lower economic levels are not only poor, but commonly use technologies that are less efficient and more polluting, wasting their money, hurting their health, polluting their cites, and increasing carbon dioxide in the atmosphere. Many first-world researchers, including the authors, are seeking to help these persons achieve a better life by collaborating on need-driven solutions to energy problems. Here we examine three specific examples of solutions to energy problems, and mitigation strategies in the developing world: (1) Energy Efficiency Standards and Labeling in China. Between 1990 and 2025, China will add 675 million new urban residents, all of whom expect housing, electricity, water, transportation, and other energy services. Policies and institutions must be rapidly set up to manage the anticipated rapid rise in household and commercial energy consumption. This process has progressed from legislating, and setting up oversight of minimum energy performance standards in 1989 (now on 30 products) to voluntary efficiency labels in 1999 (now on 40 products) and to mandatory energy labels in 2005 (now on 21 products). The savings from just the standards and labels in place by 2007 would result in cumulative savings of 1188 teraWatt—hours (TWh) between 2000-2020. By 2020, China would save 110 TWh/yr, or the equivalent of 12 gigaWatts (GW) of power operating continuously. (2) Fuel-efficient biomass cookstoves to reduce energy consumption and reduce pollution. Compared to traditional cooking methods in Darfur, the BDS cooks faster, reduces fuel requirement, and emits less carbon monoxide air pollution. A 2010 survey of 100 households showed that users reduced spending on fuelwood in North Darfur camps from 1/2 of household non-fuelwood budget to less than 1/4 of that budget. The survey showed that each 20 stove puts 330/year in the pocket of the women using the stove, worth 1600 over the stove-life of 5 years. Per capita income of

  4. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  5. Inertial fusion energy development strategy

    International Nuclear Information System (INIS)

    Coutant, J.; Hogan, W.J.; Nakai, S.; Rozanov, V.B.; Velarde, G.

    1995-01-01

    The research and development strategy for inertial fusion energy (IFE) is delineated. The development strategy must indicate how commercial IFE power can be made available in the first part of the next century, by which is meant that a Demonstration Power Plant (DPP) will have shown that in commercial operation IFE power plants can satisfy the requirements of public and employee safety, acceptably low impact on the environment, technical performance, reliability, maintainability and economic competitiveness. The technical issues associated with the various required demonstrations for each of the subsystems of the power plant (target, driver, reaction chamber, and remainder of plant (ROP) where the tritium for future targets is extracted and thermal energy is converted into electricity) are listed. The many developments required to make IFE commercially available can be oriented towards a few major demonstrations. These demonstrations do not necessarily each need separate facilities. The goals of these demonstrations are: (i) ignition demonstration, to show ignition and thermonuclear burn in an ICF target and determine the minimum required driver conditions; (ii) high gain demonstration, to show adequate driver efficiency-gain product; (iii) engineering demonstrations, to show high pulse rate operations in an integrated system and to choose the best designs of the various reactor systems; (iv) commercial demonstrations, to prove safe, environmentally benign, reliable, economic, near-commercial operation. In this document the present status of major inertial confinement research activities is summarized including a table of the major operating or planned facilities. The aspects involved in each of the required demonstrations are discussed. Also, for each of the subsystems mentioned above the technical developments that are needed are discussed. The document ends with a discussion of the two existing detailed IFE development plans, by the United States and Japan. 9

  6. Barriers towards integrated product development

    DEFF Research Database (Denmark)

    Sommer, Anita Friis; Dukovska-Popovska, Iskra; Steger-Jensen, Kenn

    2014-01-01

    The basis for product development in many large industrial companies is a traditional project management method positing non-overlapping phases, independent activities, and a dedicated project team. Research findings indicate that integrated product development methods increase performance compared...

  7. Energy and development in the Third World

    International Nuclear Information System (INIS)

    Buchanan, J.

    1982-08-01

    The subject is discussed in chapters, entitled: introduction (general statement of Third World problems); the other energy crisis - firewood and dung (erosion of traditional sources); Third World energy policies (concentration on commercial sources; fossil fuels; a grassroots approach); why not nukes (arguments against use of nuclear power, on grounds of economics, politics, unreliability, radiation hazards, potential earthquake hazards, radioactive waste management, proliferation of nuclear weapons); appropriate energy for what sort of development (renewable energy sources; energy conservation); problems of economics, politics and the technological fix (the Reagan solution; the Brandt report: the transnational corporations; 'North' and 'South'; production for need); a way out of the crisis. (U.K.)

  8. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  9. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  10. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  11. Market-based product development

    DEFF Research Database (Denmark)

    Bisp, Søren; Harmsen, Hanne

    1997-01-01

    A large body of research results on successful product development exists. The results are full of normative advice on how to conduct prod-uct development. At the same time studies have shown that product development practice has only to a very li extent been influenced by these research results...

  12. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  13. Sustainable development and nuclear energy

    International Nuclear Information System (INIS)

    2000-05-01

    This report has four chapters .In the first chapter world energy statute and future plans;in the second chapter Turkey's energy statute and future plans; in the third chapter world energy outlook and in the last chapter sustainable development and nuclear energy has discussed in respect of environmental effects, harmony between generations, harmony in demand, harmony in sociapolitic and in geopolitic. Additional multimedia CD-ROM has included

  14. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  15. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  16. The role of energy economists in promoting sustainable energy development

    International Nuclear Information System (INIS)

    Watkins, G.C.

    1992-01-01

    The role of energy in pursuit of policies seeking sustainable development is crucial. Correspondingly, the work of energy economists will be affected in many traditional areas of analysis and will require enhanced scope and new expertise. This would lead to a better understanding of the place of natural resources in the production process, better delineation of trade-offs between avoidance of ecological degradation and economic stagnation, and more interdisciplinary feed-back. (author)

  17. Renewable energy for productive uses in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  18. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  19. Micro Products - Product Development and Design

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Innovation within the field of micro and nano technology is to a great extent characterized by cross-disciplinary skills. The traditional disciplines like e.g. physics, biology, medicine and engineering are united in a common development process that can only take place in the presence of multi......-disciplinary competences. One example is sensors for chemical analysis of fluids, where chemistry, biology and flow mechanics all influence the design of the product and thereby the industrial fabrication of the product [1]. On the technological side the development has moved very fast, primarily driven by the need...... of the electronics industry to create still smaller chips with still larger capacity. Therefore the manufacturing technologies connected with micro/nano products in silicon are relatively highly developed compared to the technologies used for manufacturing micro products in metals, polymers and ceramics. For all...

  20. What drives renewable energy development?

    International Nuclear Information System (INIS)

    Alagappan, L.; Orans, R.; Woo, C.K.

    2011-01-01

    This viewpoint reviews renewable energy development in 14 markets that differ in market structure (restructured vs. not restructured), use of feed-in-tariff (FIT) (yes vs. no), transmission planning (anticipatory vs. reactive), and transmission interconnection cost allocated to a renewable generator (high vs. low). We find that market restructuring is not a primary driver of renewable energy development. Renewable generation has the highest percent of total installed capacity in markets that use a FIT, employ anticipatory transmission planning, and have loads or end-users paying for most, if not all, of the transmission interconnection costs. In contrast, renewable developers have been less successful in markets that do not use a FIT, employ reactive transmission planning, and have generators paying for most, if not all, of the transmission interconnection costs. While these policies can lead to higher penetration of renewable energy in the short run, their high cost to ratepayers can threaten the economic sustainability of renewable energy in the long-run. - Highlights: → Market structure seems to have little effect on renewable energy development. → Renewable energy development is more successful in markets that use a FIT. → Anticipatory transmission planning aids renewable energy development. → Low interconnection costs for developers also aids renewable energy development.

  1. PRODUCTIVITY CHARACTERISTICS AND DEVELOPMENT ...

    African Journals Online (AJOL)

    ACSS

    2016-02-23

    Feb 23, 2016 ... The pulp and kernels of the fruit are the only by-products marketed by women and mainly girls who .... characteristics of trees and fruit involved, 30 adult hermaphrodite ..... Ethnobotanical research and traditional health care in.

  2. Energy services and energy poverty for sustainable rural development

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2011-01-01

    In many rural areas, poor people still depend on wood and other biomass fuels for most of their household and income-generating activities. The difficult, time-consuming work of collecting and managing traditional fuels is widely viewed as women's responsibility, which is a factor in women's disproportionate lack of access to education and income, and inability to escape from poverty. Therefore, it is important for energy access programs to have a special focus on women. New options for energy access and sustainable livelihoods, like small-scale biofuels production, can have dramatic benefits for rural women, and their families and communities. Energy development, as both a driving force and a consequence of such tremendous changes, has had profound impact on economic, social, and environmental development. Rural energy has always been a critical issue due to years of energy shortage for both households and industries. Biomass, for long time, has been the only available fuel in many rural areas. The situation in rural areas is even more critical as local demand for energy outstrips availability and the vast majority of people depend on non-commercial energy supplies. Energy is needed for household uses, such as cooking, lighting, heating; for agricultural uses, such as tilling, irrigation and post-harvest processing; and for rural industry uses, such as milling and mechanical energy and process heat. Energy is also an input to water supply, communication, commerce, health, education and transportation in rural areas. (author)

  3. Consumer oriented new product development

    DEFF Research Database (Denmark)

    van Trijp, Hans C.M.; Grunert, Klaus G

    2014-01-01

    New product development is a necessary activity for a company’s competitiveness, profitability and growth. However, new product development is a risky activity as a large percentage of new product introductions fail to achieve their commercial targets. The present chapter reviews the existing...

  4. Platform-based production development

    DEFF Research Database (Denmark)

    Bossen, Jacob; Brunoe, Thomas Ditlev; Nielsen, Kjeld

    2015-01-01

    Platforms as a means for applying modular thinking in product development is relatively well studied, but platforms in the production system has until now not been given much attention. With the emerging concept of platform-based co-development the importance of production platforms is though...

  5. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  6. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  7. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  8. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  9. Developing Green Line Products

    DEFF Research Database (Denmark)

    Muñoz-Marin, Ana Maria; Lassen, Astrid Heidemann; Poulsen, Søren Bolvig

    2011-01-01

    This publication is based on the Master thesis “User-driven ecoinnovation process: Towards the implementation of the Green product line at JELD-WEN” written by Ana Maria Muñoz-Marin as her Graduation Project for the MSc. Global Innovation Management degree. The company-based experiment was carried...

  10. Between research and energy production

    International Nuclear Information System (INIS)

    Kirbus, F.B.

    1977-01-01

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.) [de

  11. Agrification: Agriculture for the industry and energy production

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new aspect of agrification is the production of alternative products, which can replace fossil sources. This substitution is necessary in order to replace hazardous materials and to find a solution for the problem of depletion of conventional energy sources and basic materials. Attention is paid to some developments in Germany: agricultural products for the production of energy, and new industrial applications for vegetable filaments. With regard to energy production from agricultrual products one should distinguish between (a) solid energy sources (biomass), f.e. straw, fast-growing wood, elephant's grass, hay and rapeseed, and (b) fluid and gaseous energy sources, f.e. purified and partly refined rapeseed oil, rapeseed oil methyl-ester (RME), ethanol from sugar beet, methanol from straw and hydrogen from straw and/or elephant's grass. 4 figs., 7 refs

  12. From Policy to Compliance: Federal Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    DeMates, Laurèn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scodel, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-09-06

    Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resources available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater

  13. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  14. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  15. Energy and Development in Emerging Countries

    International Nuclear Information System (INIS)

    Reilly, John; Vincent, Nicolas

    2015-03-01

    Energy is an important component of the economy and is a fundamental factor of production. In general we expect is use to grow in some relation to growth in economic activity. Empirically we see a closer relationship (higher E/GDP elasticity) in emerging economies where the energy intensive stage of development is still in process. Traditional fossil energy sources remain the least cost source of providing many or most energy services but present an environmental challenge. Managing the growth of energy use and its impact on the environment is a central challenge of 'green growth'. Examples of the interactions of energy development in China are used to provide a deeper understanding of these links. (author)

  16. Trends in the development of energy markets

    International Nuclear Information System (INIS)

    Penkov, P.; Donchev, A.; Stefanova, E.

    2000-01-01

    The 20th annual energy symposium (7-8 Dec., 1999, Houston) has been organized by 'Arthur Andersen' company. The main subjects presented are: research, monitoring and assessment of the market risk by BUMP system; electro-energy systems development; energy markets transformation including their liberalization and convergence; necessity of investment capital and possibilities for its effective increasing; structural reform in electric energy sector, in accordance with the European requirements. A review on the achievements and problems in the energy field in the Central and Eastern European countries during the years after the democratic changes is presented at the round table discussion. It is outlined the significance of the operating energy laws in this countries and increasing productivity, and efficiency of the former government electricity companies for the development of corporations. The process of transformation and privatization in some countries in Central and Eastern Europe: Hungary, Poland, Romania, Czech Republic, Latvia, Lithuania is analyzed. As a result of the reports delivered at the 20th yearly symposium, conclusions are made that even in the developed countries the production competition gets into trouble. The right field of market competition in electric-energy field isn't a struggle for production but it is a struggle for investments

  17. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  18. Biochemical and photosynthetic aspects of energy production

    Energy Technology Data Exchange (ETDEWEB)

    San Pietro, A [ed.

    1980-01-01

    Photosynthesis is the only method of solar energy conversion presently practiced on a large scale, supplying all food energy as well as fiber and wood. This book is an attempt to describe and evaluate biological processes that may serve in the future to provide alternative energy resources. Areas covered include marine biomass production, algal-bacterial systems, agricultural residues, energy farming and biological nitrogen fixation with an emphasis on the legumes.

  19. Energy solutions for sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, Hans [eds.

    2007-05-15

    The Risoe International Energy Conference took place 22 - 24 May 2007. The conference focused on: 1) Future global energy development options. 2) Scenario and policy issues. 3) Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere. 4) Local energy production technologies such as fuel cells, hydrogen, bio-energy and wind energy. 5) Centralized energy technologies such as clean coal technologies. 6) Providing renewable energy for the transport sector. 7) Systems aspects, differences between the various major regions throughout the world. 8) End-use technologies, efficiency improvements and supply links. 9) Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism. (au)

  20. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  1. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  2. Toxicological aspects of energy production

    International Nuclear Information System (INIS)

    Sanders, C.L.

    1986-01-01

    Part I reviews the principles of toxicology, describes the biological fate of chemicals in the body, discusses basic pathobiology, and reviews short-term toxicity tests. Part II describes the toxicology and pathology of pollutants in several important organ systems. The greatest emphasis is placed on the respiratory tract because of its high probability as a route of exposure to pollutants from energy technologies and its high sensitivity to pollutant related tissue damage. Part III describes the toxicological aspects of specific chemical classes associated with fossil fuels; these include polycyclic hydrocarbons, gases and metals. Part IV describes the biomedical effects associated with each energy technology, including coal and oil, fossil fuel and biomass conversions, solar and geothermal and radiological health aspects associated with uranium mining, nuclear fission and fusion, and with nonionising radiations and electromagnetic fields

  3. Environmental tools in product development

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Hauschild, Michael Zwicky; Jørgensen, Jørgen

    1994-01-01

    A precondition for design of environmentally friendly products is that the design team has access to methods and tools supporting the introduction of environmental criteria in product development. A large Danish program, EDIP, is being carried out by the Institute for Product Development, Technical...... University of Denmark, in cooperation with 5 major Danish companies aiming at the development and testing of such tools. These tools are presented in this paper...

  4. Productivity tips for developers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I like to read about productivity tools and techniques, but the problem is - most of them are completely overrated, the tips are not that useful or they are too difficult to implement. But, sometimes I can find some stuff that really makes me think "damn, how could I live without this before?!". Today, I would like to share some of them and hopefully hear about the tips and tricks that you use. Maybe we can find a way to share them somehow (github repo/forum)?

  5. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  6. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  7. Particle production at AGS energies

    International Nuclear Information System (INIS)

    Steadman, S.G.; Rothschild, P.J.; Sung, T.W.; Zachary, D.

    1995-01-01

    The authors discuss particle production from 14.6 A·GeV/c Si and 11.6 A·GeV/c Au projectiles on Al and Au targets. The second-level trigger utilized by E859 allows high precision measurements of K - , bar p, Λ and bar Λ. The bar Λ yield is larger than expected, and a surprisingly large fraction of the bar p's are observed to arise from the decay of bar Λ

  8. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  9. Nuclear energy and Ecuadorian agriculture development

    International Nuclear Information System (INIS)

    Molineros Andrade, J.

    1979-09-01

    The Ecuadorian Atomic Energy Commission has elaborated a plan for development of nuclear energy, the construction of a 1-3 MW Nuclear Reactor for Research and production of radioisotopes and of the related laboratories. Agriculture is a very important part of this plan, in the following areas: genetics, irrigation, plant and animal nutrition and metabolisms, and pest and disease control. Ecuadorian agriculture institutions have also been considered in this plan. (Author)

  10. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  11. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  12. Energy efficiency and econometric analysis of broiler production farms

    International Nuclear Information System (INIS)

    Heidari, M.D.; Omid, M.; Akram, A.

    2011-01-01

    The objective of this study was to determine the energy consumption per 1000 bird for the broiler production in Yazd province, Iran. The data were collected from 44 farms by using a face-to-face questionnaire method during January–February 2010. The collected information was analyzed using descriptive statistics, economic analysis and stochastic frontier production function. The production technology of the farmer was assumed to be specified by the Cobb–Douglas (CD) production function. Total input energy was found to be 186,885.87 MJ (1000 bird) −1 while the output energy was 27,461.21 MJ (1000 bird) −1 . The values of specific energy and energy ratio were calculated at 71.95 MJ kg −1 and 0.15, respectively. The sensitivity of energy inputs was estimated using the marginal physical productivity (MPP) method. The MPP value showed the high impact of human labor and machinery energy inputs on output energy. Returns to scale (RTS) values for broiler were found to be 0.96; thus, there prevailed a decreasing RTS for the estimated model. The net return was found positive, as 1386.53 $ (1000 bird) −1 and the benefit to cost ratio from broiler production was calculated to be 1.38. The study revealed that production of meat was profitable in the studied area. -- Highlights: ► We determined the energy use efficiency (EUE) for the broiler production as 0.15, indicating inefficiency use of energy in these farms. ► Total input and output energies were found to be 186,885.87 MJ (1000 bird) −1 and 27,461.21 MJ (1000 bird) −1 , respectively. ► Cobb–Douglas (CD) frontier production function was found useful in developing econometric model for broiler production. ► The results of budgetary analysis indicate production of meat in broiler farms is profitable in the studied area.

  13. Analysis of the energy development variants

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    Analysis of the variants of energy development is made as the third stage of a procedure of energy-economy interrelations dynamics study, the other two stages being the scenarios description and the formulation of the variants. This stage includes a research on the dimensions and the dynamics of the resources demands, the general features and the trends of the national energy development. There is a presentation of a comparative analysis of the variants in terms of economic indices and energy values, computed by the model IMPACT-B. A resource evaluation of the development variants is given in terms of investments, requirements (direct, indirect and total) and limited national resources demands of the energy system. The trends of the national energy development discussed are: trends characterizing the changes in the structure of the energy consumption, resulting from changes in the economy; trends of the energy system impact on the productivity of labor; general trends of the proportionality in the industrial, the household and services sector development. 16 refs., 16 figs., 4 tabs. (R.Ts.)

  14. Green development within Product families

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Willum, Ole; Frees, Niels

    2000-01-01

    occur, and uncover where the improvement potentials are in the product. The environmental knowledge obtained in this context will be valid for a number of years, and both the producer and other interested parties can use this information for setting priorities in their future planning. However, it can...... be very time consuming to perform an environmental Life Cycle Assessment (LCA), and it would be an advantage if a number of similar products - product families - could be handled in one and the same LCA as a whole. The project has presently developed a method for selecting and forming product families......From 1991 to 1996 the EDIP-methodology (Environmental Design of Industrial Products) was developed. One experience from the EDIP-project is that environmental assessment of products must give simple and operational conclusions, which can be acknowledged in the product development and by other...

  15. The renewable energy development framework - II. The foundations of renewable energy development: Economic foundations of renewable energies; International foundations of renewable energies; European foundations of renewable energy development; Foundations of renewable energy development in internal law

    International Nuclear Information System (INIS)

    Combes Motel, Pascale; Thebaut, Matthieu; Loic Grard; Michallet, Isabelle

    2012-01-01

    A first article analysis the reasons for the development of renewable energies (economic and environmental reasons, European commitments in terms of production objectives), how these renewable energies can be developed (acceptation by the population, administrative, technological, and financial constraints, political instruments related to market, taxes and purchase prices). A second article proposes a discussion about the way international law deals with renewable energies as far as texts as well as actors are concerned. The third article describes the European ambitions regarding renewable energies as a product of national perspectives (national action plans and projects) as well as of European perspectives (financing, integrated actions). The last article presents and comments various legal texts dealing with the development of renewable energies in France (texts concerning the right to energy, the environment law, planning tools, incentive measures)

  16. Energy investment in developing countries

    International Nuclear Information System (INIS)

    Rovani, Y.

    1982-01-01

    The developing countries are likely to represent the fastest growing component of the global energy demand over the next two decades. The paper presents considerations based on the World Bank's approach to the energy sector in these countries. It is considered that an accelerated development of conventional indigenous sources of energy is absolutely vital if developing countries are to attain a satisfactory rate of economic growth. The cost of the energy investment, the power sector issues, the optimal use of the resources, the role of the external financing and the need of technical assistance are reviewed. One emphasizes the role of the World Bank in analyzing and preparing projects, and in mobilizing financing from other official and commercial sources

  17. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  18. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  19. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  20. Inclusive production at LHC energies

    International Nuclear Information System (INIS)

    Merino, C.; Pajares, C.; Shabelski, Yu.M.

    2011-01-01

    We consider the first LHC data for pp collisions in the framework of Regge theory. The integral cross sections and inclusive densities of secondaries are determined by the Pomeron exchange, and we present the corresponding predictions for them. The first measurements of inclusive densities in the midrapidity region are in agreement with these predictions. The contribution of the baryon-number transfer due to String Junction diffusion in the rapidity space is at the origin of the differences in the inclusive spectra of particle and antiparticle in the central region, and this effect could be significant at LHC energies. We discuss the first data of ALICE and LHCb collaborations on the baryon/antibaryon asymmetry at LHC. (orig.)

  1. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  2. Energy in Brazil: Toward sustainable development?

    International Nuclear Information System (INIS)

    Pereira, Amaro Olimpio; Soares, Jeferson Borghetti; Gorini de Oliveira, Ricardo Gorini; Pinto de Queiroz, Renato

    2008-01-01

    The objective of this study is to analyze the evolution of the Brazilian energy sector with reference to the results of the business-as-usual scenario of the National Energy Outlook 2030 studies. The analysis was made with, as a starting point, energy indicators for sustainable development, which take into account social, economic and environmental aspects. The study demonstrates that the country has great availability of energy resources and that renewable sources can contribute to maintain a big participation in the production and use of energy, giving the country considerable advantages in economic and environmental terms. As regards the social aspect, on the other hand, the unequal distribution of income continues to be the country's principal weak point in achieving sustainable development

  3. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  4. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  5. Energy and economic development [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Machado, G.; Schaeffer, R.

    2006-01-01

    When energy specialists discuss the relationships between energy use and economic development, the focus is usually on how energy supports economic growth, alleviates poverty and increases people's well-being. On rare occasions, though, the effect that a country's choices for promoting economic development have on energy production and use is a matter of concern. The purpose of this chapter is to evaluate the way Brazil's choices for promoting economic development over time have impacted primary and final energy use in the country. Economic growth has different levels of quality, which lead to different economic development paths. Some paths are more effective than others in creating wealth and in protecting and preserving natural resources and the environment for future generations. Quality actually matters as much for economic development as for energy. This chapter is divided into four sections covering energy and economic development relationships, the evolution of final energy use in Brazil, strategies to enhance sustainable energy development in the country and a summary of main issues. In Section 5.1, energy and economic development relationships are discussed, setting the background for the analysis of the impacts on final energy use of some of Brazil's choices for promoting economic development. The section begins by focusing on the basics of energy and economic development relationships. It should be noted that most energy specialists usually discuss only the basics of energy and economic development (the 'energy in support of economic development' theme), but this approach alone is not enough to explain differences in countries' final energy use patterns, or to identify strategies to enhance sustainable energy development. In this sense, the main contribution of this section is to further illuminate the role of social and economic choices in determining the effectiveness of a given country's economic development and that country's primary and final

  6. Nuclear energy an asset for sustainable development

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The energy issue is now a worldwide concern. It is showed that nuclear energy combined with renewable energies are the only efficient response to face the challenge of climate warming by cutting drastically the emission of greenhouse gases in the electricity production. The second asset of nuclear energy is to be able to meet the growing need for electric power of developing countries. Energy conservation is a good thing to do in western countries but it is far to be sufficient. The success of France's nuclear energy program has enabled the country to be independent from other countries concerning its electricity production, to produce electricity at moderate and stable costs even on the long term, and to develop nuclear industry operators that are world leaders. According to the 28 june 2006 bill that clarifies the management of radioactive wastes, the disposal of high-level radioactive wastes in deep geological layers, will be put into service in 2025. The law has let the possibility of recovering the waste containers during a certain period after their burial if new solutions will have emerged. In the context of an expected renaissance of nuclear energy, the EPR (European Pressurized Reactor) is a valuable offer that must be developed. The construction of an EPR unit on the Flamanville site is necessary to perfect its design. (A.C.)

  7. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  8. Renewable energy research and development in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, M S

    1979-12-01

    Canadian research and development (R and D) in renewable energy began as a result of the oil crisis in 1974, and in keeping with government policy, is predominantly carried out in the private sector under contract to the federal government. The variety in technical maturity of the renewable energy technologies is reflected in the non-uniform funding levels among the five constituent programs. The greatest support is allotted to solar energy in recognition of its enormous potential, both in low to mid-temperature thermal and in photovoltaic applications. This report describes the technical content of these five renewable energy and R and D programs, and outlines the organization and management structures used to direct the effort. Biomass energy R and D concentrates on the harvesting, processing and conversion of wood wastes into convenient fuel forms. Near-term applications will continue to be in the forest products industries. Wind energy R and D in geothermal energy are focussed on identification and quantification of the resource. A five-megawatt experimental geothermal heating system is being established at the University of Regina. The hydraulic energy R and D program does not consider conventional hydro-electric systems which are well developed; rather, it primarily covers laboratory-scale tests on conversion devices for wave, tidal, and river flow energy systems. A substantial effort is also underway in analytic and modelling techniques for hydraulic energy systems of all types. 3 figs., 2 tabs.

  9. Recent developments in European energy markets

    International Nuclear Information System (INIS)

    Schubert, E.

    1981-01-01

    The industrial development in Europe which has created a remarkable prosperity was originally based on the availability of indigenous energy. At a later stage Europe accepted the offer of low cost crude from the world market. Since a few years we have lost our influence to moderately adjust prises to the changing circumstances in the world market for primary energies since - the multinationally operating companies have lost their balancing power and - the direct dialogue between producing and consuming countries has so far not resulted in any success. The use of the flowery expression energy crisis pretends that we are suffering from a lack of available primary energy. But the actual situation is more to the contrary. At the privailing energy price level there is a manifold offer. Considerable efforts, however, are necessary to create the prerequisits for an utilization of the options among different primary energies. Infrastructures have to be changed requiring impulse on the part of the state. There is no reason to assume a limited availability of crude oil and petroleum products for the use in such sectors in which an early substitution would cause an excessive economic burden. Besides lignite only nuclear energy does offer for the time beeing a remarkable contribution for a reduction of the energy bill in Europe. Starting with the power plants of the first generation which are sufficiently tested and via the breeder technology nuclear power production will most probably approach the aime of the utilization of renewable energies at reasonable costs over the long term. (orig.) [de

  10. Go offshore -Combining food and energy production

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Stuiver, Marian; Guanche, Raul

    European oceans will be subject to massive development of marine infrastructure in the near future. The development includes energy facilities, e.g. offshore wind farms, exploitation of wave energy, and also development and implementation of marine aquaculture This change of infrastructure makes ...

  11. ENERGY USE IN CITRUS PRODUCTION OF MAZANDARAN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The aim of this study was to evaluate energy use in citrus production in the Mazandaran Province in Iran. Data used in this study were obtained from 155 farmers using a face-to-face interview method. The total energy .... control mainly were mechanised and a few of them ... fertilisers was manual; while manure application.

  12. All energy production involves danger

    International Nuclear Information System (INIS)

    Pleym, H.

    1976-01-01

    s pointed out that while the protective ozone layer in the upper atmosphere is threatened by supersonic air traffic and releases of freon, there is an increase in the concentration of ozone in the biosphere. The biological effect of ozone in forming free radicals is similar to the biological effect of ionising rad radiation, and the normal atmospheric concentration of ozone produces 3600 times the number of free radicals per person per year as does a background radiation of 100 mrem per year. It is also pointed out that the limits for sulphur oxides and nitrogen oxides in the atmosphere are 100 and 5 times the background levels respectively, while the limit for radioactive release is 1/100 th of the background level. The transmission of solar energy from space stations by microwave is also thought to be dubious due to possible biological effects of such radiation. In conclusion a balanced view on the biological and environmental hazards of power generation from all sources, and not only nuclear, is called for. (JIW)

  13. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  14. Clean energy for sustainable development

    International Nuclear Information System (INIS)

    Piro, P.

    2002-01-01

    The question of energy in developing countries is now taking an increasingly significant place on the agenda of the major international forums. It is to be a central issue at the UN Summit on Sustainable Development in Johannesburg next August. (author)

  15. Health effects of energy development

    International Nuclear Information System (INIS)

    Myers, D.K.; Newcombe, H.B.

    1980-01-01

    Our accumulated technology has added roughly 50 years to the average life span of a human being in North America. Most of this increase in life span has occurred within the last 100 years. Cheap and safe supplies of energy are required for the industrial prosperity that has made this possible. The best estimates available all indicate that nuclear power and natural gas are the safest forms of contemporary energy production. The largest potential radiation hazard to which we are currently exposed appears to derive from our houses; increased attention by public health authorities to the control of this particular hazard may be warranted. (Auth)

  16. Overview of Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  17. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  18. Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  19. World energy use - 2000 developments

    International Nuclear Information System (INIS)

    Stritar, A.

    2001-01-01

    The paper is presenting the analysis of World energy consumption in the year 2000. Special emphasis is given to the contribution of primary energy use to the global greenhouse effect. The analysis is based on data published by British Petroleum. It is also an update of my analysis published at the same conference one year ago. It can be seen that nuclear power is still the fastest growing primary energy sector in the World, that its share in primary energy mix is increasing and that it is even the fastest increasing share of all sources. Nuclear consumption in Europe is still increasing, but surprisingly the use of coal has increased too in the last year. Consumption is rapidly increasing in North America, while nuclear share there is still fastest growing. In Asia the rate of nuclear growths has slowed down in the last year, gas is now the fastest growing primary energy source. In countries of the former Soviet Union the nuclear energy is the only sector that has reached the level of production of ten years ago. It is worrying that in the countries of OECD the coal consumption is increasing again. Finally, it is also very worrying that the overall consumption of fossil fuels worldwide is increasing. What will happen with the greenhouse effect?(author)

  20. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  1. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  2. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  3. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  4. Water Use of Fossil Energy Production and Supply in China

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-07-01

    Full Text Available Fossil energy and water resources are both important for economic and social development in China, and they are tightly interlinked. Fossil energy production consumes large amounts of water, and it is essential to investigate the water footprint of fossil energy production (WFEP in China. In addition, fossil energy is supplied to consumers in China by both domestic and foreign producers, and understanding the water footprint of fossil energy supply (WFES is also highly significant for water and energy development programs in the long-term. The objectives of this paper were to provide an estimation of the blue component of WFEP and WFES in China for the period from 2001 to 2014, and to evaluate the impact on water resources from energy production, the contribution of internal and external WFES, and water-energy related issues of the international energy trade by applying water footprint analysis based on the bottom-up approach. The results indicate that generally, the WFEP and WFES in China both maintained steady growth before 2013, with the WFEP increasing from approximately 3900 million m3/year to 10,400 million m3/year, while the WFES grew from 3900 million m3/year to 11,600 million m3/year. The fossil energy production caps of the 13th Five Year Plan can bring the water consumed for fossil energy production back to a sustainable level. Over the long-term, China’s energy trade plan should also consider the water and energy resources of the countries from which fossil energy is imported.

  5. Developing markets for renewable energy technologies

    International Nuclear Information System (INIS)

    Charters, W.W.S.

    2001-01-01

    Although renewable energy resources are now being utilised more on a global scale than ever before, there is no doubt their contribution to the energy economy can still be greatly increased. Recently international support for developing these relatively new sources of energy has been driven by their benefits as assessed by reduced environmental impact, particularly reduced greenhouse gas emissions. After several decades of continuous but somewhat erratic funding for research and development of renewables, it is time to take stock of the key issues to be addressed in terms of implementation of major renewable energy programmes on a large scale worldwide. One of the first steps in this process is the identification and encouragement of reliable continuous markets both in developed and developing nations. Future energy policy and planning scenarios should take into account the factors necessary to integrate renewables in all their diverse forms into the normal energy economy of the country. Other critical factors in market development will include the mass production of high quality, reliable and reasonable cost technical products and the provision of adequate finance for demonstrating market ready and near market renewables equipment. Government agencies need to aid in the removal of legislative and institutional barriers hindering the widespread introduction of non-conventional energy sources and to encourage the implementation of government purchasing schemes. Recent moves by companies in Australia to market 'green energy' to customers should also aid in the public awareness of the ultimate potential of renewables leading to greater use in the industrial, commercial and domestic sectors. (author)

  6. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  7. Offshore Wind Energy Systems Engineering Curriculum Development

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Jon G. [Univ. of Massachusetts, Amherst, MA (United States); Manwell, James F. [Univ. of Massachusetts, Amherst, MA (United States); Lackner, Matthew A. [Univ. of Massachusetts, Amherst, MA (United States)

    2012-12-31

    Utility-scale electricity produced from offshore wind farms has the potential to contribute significantly to the energy production of the United States. In order for the U.S. to rapidly develop these abundant resources, knowledgeable scientists and engineers with sound understanding of offshore wind energy systems are critical. This report summarizes the development of an upper-level engineering course in "Offshore Wind Energy Systems Engineering." This course is designed to provide students with a comprehensive knowledge of both the technical challenges of offshore wind energy and the practical regulatory, permitting, and planning aspects of developing offshore wind farms in the U.S. This course was offered on a pilot basis in 2011 at the University of Massachusetts and the National Renewable Energy Laboratory (NREL), TU Delft, and GL Garrad Hassan have reviewed its content. As summarized in this report, the course consists of 17 separate topic areas emphasizing appropriate engineering fundamentals as well as development, planning, and regulatory issues. In addition to the course summary, the report gives the details of a public Internet site where references and related course material can be obtained. This course will fill a pressing need for the education and training of the U.S. workforce in this critically important area. Fundamentally, this course will be unique due to two attributes: an emphasis on the engineering and technical aspects of offshore wind energy systems, and a focus on offshore wind energy issues specific to the United States.

  8. Solar Energy Development PEIS Information Center

    Science.gov (United States)

    skip navigation Solar Energy Development Programmatic EIS Home About the EIS Public Involvement Solar Energy Solar Energy Zones Maps Documents secondary menu News Frequently Asked Questions Glossary E the Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern

  9. Data on development of new energy technologies

    Science.gov (United States)

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  10. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  11. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  12. Energy-Performance as a driver for optimal production planning

    International Nuclear Information System (INIS)

    Salahi, Niloofar; Jafari, Mohsen A.

    2016-01-01

    Highlights: • A 2-dimensional Energy-Performance measure is proposed for energy aware production. • This is a novel approach integrates energy efficiency with production requirements. • This approach simultaneously incorporates machine and process related specifications. • The problem is solved as stochastic MILP with constraints addressing risk averseness. • The optimization is illustrated for 2 cases of single and serial machining operation. • Impact of various electricity pricing schemes on proposed production plan is analyzed. - Abstract: In this paper, we present energy-aware production planning using a two-dimensional “Energy-Performance” measure. With this measure, the production plan explicitly takes into account machine-level requirements, process control strategies, product types and demand patterns. The “Energy-Performance” measure is developed based on an existing concept, namely, “Specific Energy” at machine level. It is further expanded to an “Energy-Performance” profile for a production line. A production planning problem is formulated as a stochastic MILP with risk-averse constraints to account for manufacturer’s risk averseness. The objective is to attain an optimal production plan that minimizes the total loss distribution subject to system throughput targets, probabilistic risk constraints and constraints imposed by the underlying “Energy-Performance” pattern. Electricity price and demand per unit time are assumed to be stochastic. Conditional Value at Risk (CVaR) of loss distributions is used as the manufacturer’s risk measure. Both single-machine and production lines are studied for different profiles and electricity pricing schemes. It is shown that the shape of “Energy-Performance” profile can change optimal plans.

  13. Customer-driven Product Development

    DEFF Research Database (Denmark)

    Sommer, Anita Friis

    2011-01-01

    look for new ways to gain competitive advantage. In competitive markets there is a tendency of shorter product life cycles, and thus a competitive factor is to keep at pace with the market or even driving the market by developing new products. This research study seeks to investigate Customer......Demand chain management is a research area of increasing attention. It is the undertaking of reacting to customer requirements through a responsive chain going from customers through a focal company towards raw material distributors. With faster growing markets and increasing competition, companies......-driven Product Development (CDPD) from a demand chain management perspective. CDPD is the counterpart to typical research and development processes, which has no direct customer involvement. The proposition is that letting customers initiate and participate in the product development process...

  14. Integrating Product and Technology Development

    DEFF Research Database (Denmark)

    Meijer, Ellen Brilhuis; Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2016-01-01

    .g. managing dependencies) and opportunities (e.g. streamlining development). This paper presents five existing reference models for technology development (TD), which were identified via a systematic literature review, where their possible integration with product development (PD) reference models......Although dual innovation projects, defined in this article as the concurrent development of products and technologies, often occur in industry, these are only scarcely supported methodologically. Limited research has been done about dual innovation projects and their inherent challenges (e...... was investigated. Based on the specific characteristics desired for dual innovation projects, such as integrated product development and coverage of multiple development stages, a set of selection criteria was employed to select suitable PD and TD reference models. The integration and adaptation of the selected...

  15. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  16. Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator

    International Nuclear Information System (INIS)

    Wang, Ke; Wei, Yi-Ming

    2016-01-01

    Given that different energy inputs play different roles in production and that energy policy decision making requires an evaluation of productivity change in individual energy input to provide insight into the scope for improvement of the utilization of specific energy input, this study develops, based on the Luenberger productivity indicator and data envelopment analysis models, an aggregated specific energy productivity indicator combining the individual energy input productivity indicators that account for the contributions of each specific energy input toward energy productivity change. In addition, these indicators can be further decomposed into four factors: pure efficiency change, scale efficiency change, pure technology change, and scale of technology change. These decompositions enable a determination of which specific energy input is the driving force of energy productivity change and which of the four factors is the primary contributor of energy productivity change. An empirical analysis of China's energy productivity change over the period 1997–2012 indicates that (i) China's energy productivity growth may be overestimated if energy consumption structure is omitted; (ii) in regard to the contribution of specific energy input toward energy productivity growth, oil and electricity show positive contributions, but coal and natural gas show negative contributions; (iii) energy-specific productivity changes are mainly caused by technical changes rather than efficiency changes; and (iv) the Porter Hypothesis is partially supported in China that carbon emissions control regulations may lead to energy productivity growth. - Highlights: • An energy input specific Luenberger productivity indicator is proposed. • It enables to examine the contribution of specific energy input productivity change. • It can be decomposed for identifying pure and scale efficiency changes, as well as pure and scale technical changes. • China's energy productivity growth may

  17. Development of renewable energies apart from biomass on farms

    International Nuclear Information System (INIS)

    Brule, K.; Pindard, A.; Jaujay, J.; Femenias, A.

    2009-01-01

    This paper proposes an overview and a prospective glance at the development of renewable energies in farms, apart those which are based on the production or use of biomass. Some indicators are defined (energy production and consumption). Stake holders are identified. Some retrospective major and emerging trends are discussed. The major trends are: growth and diversification of renewable energy production, calling to renewable energy production in farms. The emerging trends are: a recent increase of renewable energy production in farms apart from biomass, locally stressed land market, economic profitability of photovoltaic installations due to purchase tariffs. Some prospective issues are discussed: technical support, financial support, development of other energy sources, and tax policy on fossil energy used in agriculture. Three development hypotheses are discussed

  18. Modelling and optimization of integrated system to energy production for sustainable development of fruits agrobusiness; Modelagem e otimizacao do sistema integrado da producao de energia para desenvolvimento sustentavel do agronegocio de frutas

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Daniely de Barros [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Eletrica; Andrade, Rodrigo Freitas; Ourique, Jorge Eduardo da Silva [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Selvam, P.V. Pannir [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Ambiental

    2004-07-01

    Great problems are found by who need to get a power plant capable to mostly make possible the deriving food production of the fruits. The use of the electric energy of the plants and micron-plant is one of the main factors for the rise in the cost of the production. The use of alternative sources of energy sells at a loss a little this cost. Of this form, this project of integrated system of production of energy for agroindustry, supported for the CNPq, becomes advantageous all the investments that come to be made in this direction. The objective of the research is to develop a new synthesis of processes for use of vegetal biomass (wood) for production of the applied electric energy in the process of manufacture of jelly of fruits with co-production of activated coal. Our project of residual biomass produces energy from the wood saw pyrolysis and gasification. And also uses the substitution of the glucose found in the sugar for the pectin, proceeding from the rinds of fruits. Comparative results indicate that this substantiates (pectin) is sufficiently efficient in the control of the cholesterol level of the blood and also is very rich in the energy supply for the people who consume them. After carried through bibliographical research on the current state of the technology of the production of energy based on the vegetal biomass of firewood, processes of term conversion, reactor of activation and equipment, to leave of this had been developed engineering projects, with the use of the tool Super ProDesigner 4.9. Some simulations of processes of fast pyrolysis, gasification, separation of bio oil, generation of energy including system of integration of energy production as innovation of the considered work had been made. To leave of this, two scenes had been developed: one, the current process of production and the other, our innovation, being studied at great length the project of investment and costs, analysis of viability and cash flux using software Orcamento

  19. Determination of Energy Use Efficiency of Sesame Production

    OpenAIRE

    BARAN, Mehmet Firat

    2018-01-01

    In this research it was aimed to determine an energy use efficiency of sesame production in Şanlıurfa province, during the production season of 2015. In order to determine the energy use efficiency of sesame production, trials and measurement were performed in sesame farm in the Bozova district of Şanlıurfa province. As energy inputs, human labour energy, machinery energy, chemical fertilizers energy, irrigation water energy, chemicals energy, diesel fuel energy and seed energy as were calcul...

  20. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  1. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  2. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  3. The renewable energy development framework - I. The challenge of renewable energy development. Territorial challenges

    International Nuclear Information System (INIS)

    Fournier, Mauricette; Grison, Jean-Baptiste; Rieutort, Laurent

    2012-01-01

    The authors comment the evolutions of renewable energy production in the world during the last thirty years and notice how the geography of this production and of the associated consumption has changed while still displaying contrasts. They also notice the diversification of actors (big companies as well as small and medium sized companies and local communities). Then, they highlight the challenges of renewable energies at the local level: these energies can be tools for local development and competitiveness, but are also matters of either cooperation or conflict (they comment factors related to social acceptance or non-acceptance of wind farm projects in France)

  4. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  5. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  6. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  7. Strategy of Energy Development Until 2015

    International Nuclear Information System (INIS)

    Vilemas, J.; Miskinis, V.; Galinis, V.; Zukauskas, V.; Valentukevicius, V.

    2002-01-01

    lowest expenses for the development of the electric energy system and higher reliability of energy supply the Electric Power Plant of Lithuania and thermal electric power plants of Vilnius and Kaunas should be modernised. After 2010, it is expedient to solve the problem of satisfying the increased needs of energy primarily by constructing new thermal electric power plants. Strategic provisions are presented in the strategy also concerning the trends of development of other energy sectors (heat supply, natural gas, oil and its products, local, renewable and waste energy resources). In the final part of the strategy the main provisions concerning the increase of the efficiency of energy consumption, reduction of a negative effect on the environment, improvement of energy management and market liberalisation are formulated. The implementation of these provisions will have a great impact on the further development of energy. The strategy recommends the Government to prepare the programme for preparation of energy specialists in compliance with modern requirements and to support priority trends in scientific research. (author)

  8. Environmentally-friendly product development: methods and tools

    National Research Council Canada - National Science Library

    Abele, Eberhard; Anderl, R; Birkhofer, Herbert

    2005-01-01

    ... to assess a product's environmental effects. Fig. 1. Vision of Environment as a key target for product development vvi Preface Product related environmental issues are getting more and more political and public awareness. Development of environmentally friendly products has become an action item for both, politics and industry (UNFCCC 1997). Energy...

  9. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  10. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  11. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  12. Developing solar energy in France

    International Nuclear Information System (INIS)

    Alary-Grall, L.

    2003-01-01

    3 years ago the 'Soleil' program was launched and today 660.000 m 2 of solar cells have been installed which has made France to rank 4 behind Germany, Greece and Austria in terms of the use of solar energy. The 'Soleil' program, that will end in 2006, aims at developing solar energy in France and is composed of 4 axis: 1) the contribution to the funding of solar equipment through enticing financial helps, 2) the implementation of a quality plan for the installers of solar equipment, 3) the setting of a quality label for innovative and efficient solar equipment and 4) the promoting of solar energy to the professionals of the construction sector. (A.C.)

  13. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  14. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  15. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  16. Water for energy and fuel production

    CERN Document Server

    Shah, Yatish T

    2014-01-01

    Water, in all its forms, may be the key to an environmentally friendly energy economy. Water is free, there is plenty of it, plus it carries what is generally believed to be the best long-term source of green energy-hydrogen. Water for Energy and Fuel Production explores the many roles of water in the energy and fuel industry. The text not only discusses water's use as a direct source of energy and fuel-such as hydrogen from water dissociation, methane from water-based clathrate molecules, hydroelectric dams, and hydrokinetic energy from tidal waves, off-shore undercurrents, and inland waterways-but also: Describes water's benign application in the production of oil, gas, coal, uranium, biomass, and other raw fuels, and as an energy carrier in the form of hot water and steam Examines water's role as a reactant, reaction medium, and catalyst-as well as steam's role as a reactant-for the conversion of raw fuels to synthetic fuels Explains how supercritical water can be used to convert fossil- and bio-based feed...

  17. Financing the alternative: renewable energy in developing and transition countries

    OpenAIRE

    Brunnschweiler, Christa N.

    2006-01-01

    This paper examines the determinants of credit allocation to renewable energy firms in developing and transition countries. Using a simple en- dogenous growth model, we show that the development of the renewable energy sector, i.e. the diversification of renewable energy resources used in primary energy production, depends on the quality of financial intermedia- tion, debtor information costs to banks, and financing needs of renewable energy firms. Policies should aim at increasing financial ...

  18. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235 U and 239 Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material ( 235 U or 239 Pu) or concentrated material ( 235 U mixed with small quantities of 238 U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238 U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238 U or Thorium with the regeneration of fissile material in 239 Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238 U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using

  19. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  20. Iran and regional energy development

    International Nuclear Information System (INIS)

    1998-01-01

    Topics reviewed in these conference proceedings in the first session include domestic imperatives covering the economy, social imperatives - civil society and the rule of law, and the overall investment climate. Session 2 focuses on Iran and the energy sector with papers on oil and gas pipelines, and the effect of sanctions. Session 3 deals with Iran and the Persian Gulf with papers on new developments in Iran and its Arab neighbours, and Iran and Arab attempts to manage oil output. Session 4 concentrates on business and investment perspectives with papers on the low oil and gas prices and the new competition for investment capital, the investment climate, the building of connection with Iran, and identifying the predominant trends. A keynote address by the former deputy Foreign Minister of Iran examines regional energy development

  1. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  2. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  3. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  4. Production of renewable energies in the Mulhouse region. Present situation and production perspectives - Study report June 2015

    International Nuclear Information System (INIS)

    Horodyski, Catherine

    2015-06-01

    After having briefly defined renewable energies, and outlined the benefits of their development, this report first proposes an overview of the present situation of renewable energy production in the Mulhouse region. Thus, it distinguishes hydraulic, photovoltaic, biomass, biogas, solar thermal, geothermal, aero-thermal, aqua-thermal, and fatal energies, and energy recovery from waste waters. It also addresses other resources to be exploited such as wind energy, deep geothermal energy, methanization, and electric production for direct usage. The next part proposes a brief assessment of the development potential with quantitative objectives and perspectives of development for renewable energies. The third part briefly addresses the influence of such a development on land planning

  5. Perspectives of development of the nuclear energy in China

    International Nuclear Information System (INIS)

    2002-04-01

    The coal is the main primary energy source in China. In spite of the economic development, the coal consumption decreases regularly since the last years. It is the consequences of the energy policy of China which closed little coal mines of poor productivity. The today energy balance of China lays on two supplying sources: 70 % coal and 24 % hydro energy. To face the increasing economic development China will need a complementary electric power production source. In this context, this document presents the today nuclear energy situation in the chinese energy policy, the perspectives for the french nuclear industry and the possible chinese-french collaboration. (A.L.B.)

  6. Alaska: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  7. Washington: a guide to geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

    1980-01-01

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  8. Waste incineration with production of clean and reliable energy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlas, Martin; Tous, Michal; Klimek, Petr; Bebar, Ladislav [Brno University of Technology, Department of Process and Environmental Engineering (UPEI VUT Brno), Brno (Czech Republic)

    2011-08-15

    Discussion about utilization of waste for energy production (waste-to-energy, WTE) has moved on to next development phase. Waste fired power plants are discussed and investigated. These facilities focus on electricity production whereas heat supply is diminished and operations are not limited by insufficient heat demand. Present results of simulation prove that increase of net electrical efficiency above 20% for units processing 100 kt/year (the most common ones) is problematic and tightly bound with increased investments. Very low useful heat production in Rankine-cycle based cogeneration system with standard steam parameters leads to ineffective utilization of energy. This is documented in this article with the help of newly developed methodology based on primary energy savings evaluation. This approach is confronted with common method for energy recovery efficiency evaluation required by EU legislation (Energy Efficiency - R1 Criteria). New term highly-efficient WTE is proposed and condition under which is the incinerator classified as highly efficient are specified and analyzed. Once sole electricity production is compelled by limited local heat demand, application of non-conventional arrangements is highly beneficial to secure effective energy utilization. In the paper a system where municipal solid waste incinerator is integrated with combined gas-steam cycle is evaluated in the same manner. (orig.)

  9. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  10. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  11. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  12. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  13. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  14. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  15. Visions on energy production technologies for Finland up to 2030

    International Nuclear Information System (INIS)

    Kara, Mikko

    2003-01-01

    The energy sector will face major challenges in the coming decades. Global demand for primary energy is continuously increasing, as are its related environmental effects. On the other hand, the limited resources of especially oil and gas will lead to increasing price instability. Deregulation of energy markets is a challenge for the infrastructure. This deregulation is leading to restructuring of the energy market. States and owners of energy companies and energy policy decision-makers will find it difficult to play this double role. At European level and in Finland the biggest challenge is the attainment of the Kyoto target and then further reduction of greenhouse gas emissions. Renewables, nuclear power and growing imports of natural gas from Russia will play a crucial role in Finland. This presentation focuses on the development of the energy production technologies that are most important for Finland's energy supply and energy technology exports. In order to analyse the possible role of various emerging and evolving technologies in the future energy system of Finland, three scenarios has been created for a comprehensive energy system model. The model is based on a bottom-up, technology oriented representation of the energy system, including both the supply and end-use sector. Mathematically, the model is a quasi-dynamic linear optimisation model that stimulates the behaviour of energy-economic decision-making by minimising the total present value of all costs and other expenditures in the energy system during the entire time horizon under consideration. (BA)

  16. Interest in energy wood and energy crop production among Finnish non-industrial private forest owners

    International Nuclear Information System (INIS)

    Raemoe, A.-K.; Jaervinen, E.; Latvala, T.; Toivonen, R.; Silvennoinen, H.

    2009-01-01

    EU targets and regulations regarding energy production and the reduction of greenhouse gas emissions have been tightening in the 2000s. In Finland the targets are planned to be achieved mainly by increasing the use of biomass. Wood already accounts for a marked proportion of Finnish energy production, but additional reserves are still available. Energy crop production also has considerable potential. Practically all Finnish farmers are also forest owners. Therefore, private forest owners are in a decisive position regarding the supply of energy wood and crops in Finland. In this paper the future supply of biomass is examined according to their past behaviour, intentions and attitudes. Finnish forest owners have a positive attitude towards the use of wood and crops in energy production. Price is becoming more critical as a motive for the supply of energy wood. Recreation and nature conservation play a smaller role than factors related to wood production and forest management as for motives for harvesting energy wood. However, almost a half of forest owners in this study were uncertain of their willingness to supply biomass. This is partly due to limited knowledge of the issues involved in energy wood and agricultural energy crop production and the underdeveloped markets for energy biomass. In order to achieve the targets, supply should be activated by further developing market practices, information, guidance and possibly other incentives for landowners. In general, there is interest among landowners in increasing the supply of energy biomass. However, the growth of supply presumes that production is an economically attractive and competitive alternative, that the markets are better organized than at present, and that more comprehensive information is available about bioenergy and biomass markets and production techniques.

  17. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  18. Investigation of agricultural residues gasification for electricity production in Sudan as an example for biomass energy utilization under arid climate conditions in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Bakhiet, Arig G

    2008-05-15

    This study examines the possibility of electricity production through gasification of agricultural residues in Sudan. The study begins in Chapter 1, by providing general contextual analysis of the energy situation (production and consumption patterns) in Sudan with specific focus on electricity. It proceeded to study the potential of Petroleum, Biomass and other renewable sources for electricity production. Dramatic increase in electricity production was found to be essential especially through decentralised power plants as the current electricity production services cover {proportional_to} 13 % of the population of Sudan. Biomass potential in Sudan justifies the use of agricultural residues as energy source; its potential was estimated by {proportional_to} 350000 TJ/a. Further, the urban centres of arid regions in western Sudan were identified as the target group for this study. In chapter 2, specific investigations for selected study area through field work using statistical tools such as questionnaires, interviews and field observation show that income is highly correlated to electricity consumption. The flat rate system did not result in higher consumption thus the assumption that this consumption will not drastically change in the next 10 years could be accepted. As orientation value for BGPP, 8000 tons of GN.S are available annually, the average electricity consumption is {proportional_to} 4 kWh/day/family while acceptable price could be 40 SDD/kWh (0.15 Euro). In chapter 3, literature review was carried to spot out the comparative merits of the gasification technology and the most optimum gasifying and electricity production system. As a result downdraft gasifier and ICE were suggested as suitable systems. In chapter 4, fuel properties and fuel properties of agricultural residues were studied, different samples were tested and the results were presented. The main conclusions derived were: fuel properties of agricultural residues are modifiable properties, so

  19. Energy statistics: A manual for developing countries

    International Nuclear Information System (INIS)

    1991-01-01

    Considerable advances have been made by developing countries during the last 20 years in the collection and compilation of energy statistics. the present Manual is a guide, which it is hoped will be used in countries whose system of statistics is less advanced to identify the main areas that should be developed and how this might be achieved. The generally accepted aim is for countries to be able to compile statistics annually on the main characteristics shown for each fuel, and for energy in total. These characteristics are mainly concerned with production, supply and consumption, but others relating to the size and capabilities of the different energy industries may also be of considerable importance. The initial task of collecting data from the energy industries (mines, oil producers, refineries and distributors, electrical power stations, etc.) may well fall to a number of organizations. ''Energy'' from a statistical point of view is the sum of the component fuels, and good energy statistics are therefore dependent on good fuel statistics. For this reason a considerable part of this Manual is devoted to the production of regular, comprehensive and reliable statistics relating to individual fuels. Chapters V to IX of this Manual are concerned with identifying the flows of energy, from production to final consumption, for each individual fuel, and how data on these flows might be expected to be obtained. The very different problems concerned with the collection of data on the flows for biomass fuels are covered in chapter X. The data needed to complete the picture of the national scene for each individual fuel, more concerned with describing the size, capabilities and efficiency of the industries related to that fuel, are discussed in chapter XI. Annex I sets out the relationships between the classifications of the various types of fuels. The compilation of energy balances from the data obtained for individual fuels is covered in chapter XIII. Finally, chapter

  20. Recent developments in drying of food products

    Science.gov (United States)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  1. Policy issues in Ethiopian energy development

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    One of the most serious constraints to current survival and future development in Ethiopia is energy. The question of energy for survival is dependent on biomass which is being rapidly depleted;at the current rate of deforestation, Ethiopia will be bare of forests in 20 years. There are several points to emphasize in establishing a forestry policy which include: 1) Accurate costing of per unit of production 2) Selection of appropriate species by ecological zone 3) Land management improvements 4) Suitable Land Tenure Systems It is possible to outline general principles for energy-forestry management, namely: 1) Around densely settled areas, encourage the production of trees as a cash crop 2) In dry areas, encourage agroforestry to enchance total biomass productivity 3) Require state farms and all new settlement as far as possible to be self supporting in fuel through settlement woodlots 4) Enforce 'Green (Energy) Belts' around major urban areas. Without forestry, there will be no fuel. Except for hydroelectricity and geothermal, there are no substantial, really proven indigenous reserves: even the exploitation of hydropower and geothermal potential is totally dependent on foreign technology.

  2. Energy in developing countries and the role of nuclear energy

    International Nuclear Information System (INIS)

    Goldemberg, Jose

    1986-01-01

    The role of nuclear energy in developing countries is discussed with respect to energy consumption, energy needs and energy future. The application of Article IV of the Non-Proliferation Treaty (NPT) is examined for the developing countries. It is suggested that a revision of the NPT is needed to encourage effective nuclear disarmament. (UK)

  3. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  4. Innovating the Product Development Organisation

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Hein, Lars

    1997-01-01

    The organisational innovation of the product development function is a doubtful affair since we can hardly describe why a specific organisation works. In this article two comprehensive innovation campaigns in Danish industry are described with reference to the nature, content and results...... of innovative processes and as the crux an attempt to explain principal elements in the changes of attitudes and behaviour in companies....

  5. The energy-development-environment nexus

    International Nuclear Information System (INIS)

    Schneider, Bertrand

    1992-01-01

    Energy is the key factor in tackling two of the major problems now facing humanity: the environment and development. Adequate and appropriate energy supplies are essential to economic and social development, especially for Third World countries, but at the same time energy production and utilization are responsible for much of the damage being done to the environment. As everyone now knows, the combustion of fossil fuels is the main source of greenhouse gases and of the threat to the stability of world climate. Nuclear power, which once seemed an answer to the constantly increasing demand for energy, is now challenged by public opinion in many countries as a result of various nuclear accidents and the problems of processing and storing nuclear waste. So how do we extricate ourselves from the energy environment-development tangle? Clearly, advanced countries have an interest in transferring environment-friendly technologies to developing countries in order to reduce the pollution which puts the global as well as the local environment at risk. The North is, by and large, becoming aware of the choices involved in protecting the environment versus industrial growth and unlimited use of motor vehicles. For the South, these choices are a luxury they can ill afford, given the imperative of rapid development. The solution must be for greater international co-operation, with the North assisting the South (and the former Communist bloc) financially and through transfer of appropriate technologies at affordable cost. Reconciling the environment and development with respect to the energy cycle is a task of fundamental importance for the future. The prime responsibility for this task obviously lies with industries, but action is also required from governments, to enable them to play their part effectively. Advanced countries must demonstrate that development is fully compatible with protecting the environment. They can do so by using market forces, provided that the appropriate

  6. Energy control and sustainable development

    International Nuclear Information System (INIS)

    2002-01-01

    The contributions are dealing with the different aspects of energy control: key figures of the world consumption, evolution perspectives (energy control and energy demand in middle- and long-term world scenarios, global challenges, European perspectives, energy control in public decision in France, the new French energy accounting), regional differences (energy control in the United States, Russia, China, India, Brazil, West Africa, Mediterranean Sea), energy control and society (electricity privatisation in Salvador, regulatory approach or voluntary agreements for domestic appliances, comparison of energy control and renewable energies in France, complex accounting for energy demand control in a consumption society)

  7. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  8. Renewable energy for rural development to protect environmental pollution from energy sources

    International Nuclear Information System (INIS)

    Mathur, A.N.

    2001-01-01

    Energy is the key input for technological industrial, social and economical development of a nation. The present energy scenario is heavily biased towards the conventional energy sources, such as petroleum products, coal, atomic energy, etc., which are finite in nature and causes environmental pollution. The energy utilization pattern is also meant for the energy requirement in urban areas. To meet the growing energy requirement of rural areas through the conventional energy sources will cause serious harmful effect on the environmental pollution. The man's thurst to use more energy after about 150 thousand years ago, invention of wheel, use of petroleum products for power generation and invention of steam and coal has brought him to use the energy sources for his comfort irrespective of the environmental consideration. The extensive use of energy operated devices in domestic, industrial, transport and for agriculture sectors in urban and rural areas have resulted in economical development of the society

  9. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  10. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  11. Report by the mission for the study of marine renewable energies to the Minister of productive recovering, the Minister of ecology, sustainable development and energy, the Minister delegate by the Minister of ecology, sustainable development and energy in charge of transports, sea and fishing

    International Nuclear Information System (INIS)

    Boye, Henri; Nataf, Jean-Michel; Caquot, Emmanuel; Clement, Pascal; La Cochetiere, Loic de; Sergent, Philippe

    2013-03-01

    After having presented a set of recommendations aimed at the development of the marine renewable energy sector in France, and recalled some definitions, this report presents the different marine energies, technologies and uses (tide energy, offshore wind energy, wave energy, sea thermal energy, osmotic energy, and so on), proposes an overview of the cooperation and research-development environment (private sector, public sector, national financing, Europe and international, interest of a public-private partnership) and an overview of the main industrial and economic challenges. It addresses the relationship between marine renewable energies and environmental issues (technology impact, perspectives of improvement, opinion of associations committed in the protection of the environment). It proposes an analysis of the law and regulatory context, and the creation of a specific law regime. It finally addresses issues related to planning, zoning and dialogue, and harbour planning

  12. Recent development of energy supply and demand in China, and energy sector prospects through 2030

    International Nuclear Information System (INIS)

    Wang Yanjia; Gu Alun; Zhang Aling

    2011-01-01

    Facing multiple pressures, including its commitment to energy efficiency improvement, the current worldwide recession, and global warming concerns, China is making great efforts to maintain its continuous economic growth and reduce pollutant emissions. Many policies to encourage investing in energy efficiency and renewable energy have been issued. This article provides insights into the latest development of energy production, energy consumption and energy strategic planning and policies in China, and also describes the analysis, carried out by the authors as part of the Asian Energy Security project using the Long-range Energy Alternatives Planning (LEAP) modeling tool, of the impacts of implementing new and expected energy and environmental policies.

  13. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  14. Production of Energy Efficient Preform Structures (PEEPS)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  15. Energy production for environmental issues in Turkey

    Science.gov (United States)

    Yuksel, Ibrahim; Arman, Hasan; Halil Demirel, Ibrahim

    2017-11-01

    Due to the diversification efforts of energy sources, use of natural gas that was newly introduced into Turkish economy, has been growing rapidly. Turkey has large reserves of coal, particularly of lignite. The proven lignite reserves are 8.0 billion tons. The estimated total possible reserves are 30 billion tons. Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. It is expected that the demand for electric energy in Turkey will be 580 billion kWh by the year 2020. Turkey's electric energy demand is growing about 6-8% yearly due to fast economic growing. This paper deals with energy demand and consumption for environmental issues in Turkey.

  16. Renewable energy policy and wind energy development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zitzer, Suzanne E [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Department Urban Ecology, Environmental Planing and Transport

    2009-07-15

    The author of the contribution under consideration reports on the renewable energy policy and wind energy development in the Federal Republic of Germany. First of all, the author describes the historical development of the renewable energy policy since the 1970ies. Then, the environmental policies of the Red-Green Coalition (till to 2005) and of the Grand Coalition (since 2005) as well as the Renewable Energy Sources Act are described. The next section of this contribution is concern to the development of wind energy in the Federal Republic of Germany under consideration of onshore wind energy and offshore wind energy.

  17. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  18. Evaluation of electrical energy production patterns

    International Nuclear Information System (INIS)

    Conti, F.; Graziani, G.; Zanantoni, C.

    1975-06-01

    The main features and typical applications of the code TOTEM, developed by the CCR under request of DG XVII are described. The code is used to evaluate the physical and economical consequences of electrical power station installation policies. The input data are: the time-dependent electrical energy demand and its load duration curve, the physical and economical characteristics of the power stations, and the splitting of the energy between the various types of stations, apart from the energy produced by a plutonium burner and plutonium producer, which is calculated by the code. The output includes; costs, fuel consumption, separative work requirements

  19. Nanoenergy Nanotechnology Applied for Energy Production

    CERN Document Server

    Leite, Edson

    2013-01-01

    Low dimensional systems have revolutionized the science and technology in several areas. However, their understanding is still a great challenge for the scientific community. Solar energy conversion devices based on nanostructured materials have shown exceptional gains in efficiency and stability. In this context, nanostructures allow an improvement of surface properties, transport and charge transfer, as well as direct application as sensors and storage devices and energy conversion. This book discuss the recent advances and future trends of the nanoscience in solar energy conversion and storage. It explores and discusses recent developments both in theory as well as in experimental studies and is of interest to materials scientists, chemists, physicists and engineers.

  20. Green energy criteria and life cycle assessment in assessing environmental competitiveness of energy products

    International Nuclear Information System (INIS)

    Maelkki, H.; Hongisto, M.; Turkulainen, T.; Kuisma, J.; Loikkanen, T.

    1999-01-01

    The liberalisation of energy markets has increased the need to enlarge the information base of fuel chains, to evaluate the environmental quality of energy products transparently and to communicate results in a credible way. The preparedness of energy purchasers, producers and sellers to support energy choices of their customers and to meet the information requirements of various stake holders can be strengthened. The environmental impacts related to energy products are turning into a significant dimension of competitiveness. Possibilities to promote market-driven environmental protection mechanisms and to construct incentives, which cover the whole energy production system exist and can be supported. Knowledge of environmental impacts of various energy products can be increased by means of several supplementary instruments like eco-profiles, environmental labels and life cycle assessments of products. Life cycle assessment forms a systematic basis of information, which supports the environmental communications directed to various stake holders. In this study selected public LCA-studies concerning energy production have been compared, criteria of green energy have been charted and their outlook has been assessed. In addition the development of an LCA- based relative environmental performance indicator system, which supports various transparent comparisons, has been outlined. The mapping of methodological differences of published LCA-studies regarding various energy alternatives proves, that there is differences e.g. in allocation principles, system boundaries, and age of source information and in many other details. These discrepancies should be known, because they also affect the results. That is why the use of available LCA studies as a basis for comparative assertions may be problematic. The renewability of an energy source is a threshold requirement in eco-energy criteria formulated and introduced by Finnish, Swedish and Norwegian nature conservation

  1. Marine renewable energies: status and development perspectives

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes an overview of the marine renewable energy (MRE) market, of the development perspectives, of the industrial, academic and institutional actors, of current technologies and technologies under development, and of French and European research and development programs. These energies comprise: tidal energy, the exploitation of sea temperature differences with respect with depth, wave energy, marine current power energy, osmotic and marine biomass energy

  2. Energy and durable development: the place of the renewable energies

    International Nuclear Information System (INIS)

    2001-01-01

    The 29 may 2000, took place at the UNESCO, a colloquium on the place of the renewable energies facing the economic development. This document presents the opening presentation of A. Antolini and L. Jospin and the colloquium papers and debates in the following four domains: the energy challenges of the durable development, the renewable energies sources facing the european directive, the thermal renewable energies (solar, geothermics and biomass) and the greenhouse effect, the world market of the renewable energies. (A.L.B.)

  3. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  4. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  5. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  6. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    Billfalk, Lennart; Haegermark, Harald

    2009-03-01

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO 2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments

  7. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  8. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  9. Development of RI Target Production Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kim, Cheol Jung; Kim, Taek Soo; Rho, Si Pyo; Park, Hyun Min; Lim, Gwon; Cha, Yong Ho; Han, Jae Min

    2010-04-01

    This project was accomplished with an aim of productive technical development on the 'enriched target' which is used essentially in radioisotope production. The research was advanced systematically with target production pilot system configuration and core technical development. We composed Yb-176 productive pilot system which equip the chemical purification technique of medical treatment level and proved its capability. Possibilities to separate Zn-67 by the method of using the polarizing light in principle and to separate Zn-70 by the method of using the double optical pumping in theory were also proved. RI target production technologies are recognized excessively with monopolistic techniques of part atomic energy advanced nations such as Russia and US and they are come, but we prepared the opportunity will be able to complete a full cycle of like (RI material production -> RI target production -> RI application) with this project accomplishment. When considering only the direct demand of stable isotope which is used in various industrial, we forecast with the fact that RI target markets will become larger with the approximately 5 billion dollars in 2020 and this technology will contribute in the domestic rising industry creation with high value added

  10. Estimation of external costs of energy production in Finland

    International Nuclear Information System (INIS)

    Estlander, A.; Otterstroem, T.

    1994-01-01

    The goal of the project is to develop a method for estimation of external costs of energy production in Finland. The purpose of the method is to take into account all the most important impacts on health, materials and the environment. The study will assess environmental effects of emissions from Finnish energy production on people and the environment locally (population centres), nationally (Finland) and globally. The different energy production forms to be included in the study are heat and electric energy generated with coal, natural gas, fuel oil and peat (not industry's energy production). Local and national environmental impact assessment is carried out within the Finnish borders. The economic influence of emissions (in particular greenhouse gases) originating outside Finland but with global impact will also be assessed, as far as Finland is concerned. When studying the amounts of emissions the whole fuel chain is taken into account: production, processing or transport, storage in the different stages of the chain of use, and end use. The main components under review are SO 2 , NO x , CO 2 , H x C y , CO, particulates and a couple of heavy metals. In addition. the study considers ozone (O 3 ), which is formed in the atmosphere. The primary monetary valuation method used is the indirect monetarization. which is based on dose-response functions and the use of both market prices and willingness-to-pay assessments. The method to be developed during the project for monetary valuation of effects caused by emissions on health, materials and the environment can be utilized in further monetarization studies. The results of the work can used to assess the profitability of energy production plants and energy companies from the economic point of view

  11. Developing products and services for a deregulated market while regulated

    International Nuclear Information System (INIS)

    Haites, E.F.

    1997-01-01

    Products and services developed for a deregulated electric power industry were discussed. The wide-ranging discussion covered products created by unbundling existing services, new products and services related to energy use, products created by expansion into communications services, and the pricing of products and services. In addition to products and services, the discussion also covered strategies for a deregulated market and the challenges of raising equity capital in a regulated environment

  12. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  13. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  14. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  15. Application of solar energy to agricultural production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The presentations in this report were a result of research and development projects funded and managed by Interagency Agreements between the Department of Energy and the Department of Agriculture. The performing institutions were selected on the basis of peer reviews of invited and/or unsolicited proposals. During the time period covered, approximately 9 years, hundreds of technical reports and presentations have been made. The audience for these reports has included other researchers, manufacturers, sales people, contractors and end users of the information. As a result, thousands of installations have been made. Some of these have been highly successful, while others have been less successful, and some have failed. Nevertheless, these projects have shown areas where solar energy can be profitably applied to replace non-renewable forms of energy for agricultural production; areas where the use of solar energy is marginal; and areas where the use of solar energy is not profitable with current costs of non-renewable energy.

  16. ENERGY USE IN APPLE PRODUCTION IN THE ESFAHAN ...

    African Journals Online (AJOL)

    journal

    Apple production needs to improve the efficiency of energy consumption and to employ renewable energy. ... derived from Neyman method (Ozkan et al.,. 2004). .... management might reduce the indirect energy .... Handbook of Energy.

  17. Fiscal year 1985 Department of Energy authorization. Volume I. Hearing before the Subcommittee on Energy Research and Production and the Subcommittee on Energy Development and Applications, US House of Representatives, Ninety-Eighth Congress, Second Session, March 13, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Volume I of the hearing record covers the March 13, 1984 testimony of Martha Hesse, Assistant DOE Secretary for Management and Administration, on the fiscal year 1985 budget request for DOE administration. Ms. Hesse discussed specific budget justifications, including funding for the Technical Information Services, in-house energy management, and policy initiatives, such as the realignment of some functions within the department, the introduction of an integrated accouting and personnel and payroll systems, and other efforts to reduce overhead costs. She reported a three percent drop in staffing level. Following a prepared statement by Ms. Hesse and introductory remarks by committee members, the bulk of the hearing record contains responses to committee questions.

  18. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  19. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  20. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.

    1993-01-01

    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  1. The feasibility of biomass production for the Netherlands energy economy

    International Nuclear Information System (INIS)

    Lysen, E.H.; Daey Ouwens, C.; Van Onna, M.J.G.; Blok, K.; Okken, P.A.; Goudriaan, J.

    1992-05-01

    The title study aims at providing a reliable overview of the technical and financial parameters for the available and potential methods of energy production through biomass. In the study the production of biomass has been separated as much as possible from the transport and the conversion of energy carriers such as fuels or electricity. The assessment of the feasibility is based upon data analysis in phase A of the study and subsequent interviews with key institutes and industries in the Netherlands in phase B. The problems in agriculture and environment justify an active policy with respect to the use of biomass for the Netherlands' energy economy. The developments and the programmes in other European countries and the USA, the fact that a good infrastructure is present in the Netherlands, and the possible spin-off for developing countries justify this conclusion. It is recommended to initiate a focused national programme in the field of biomass energy, properly coordinated with the present ongoing Energy from Waste programme (EWAB) and with ongoing international programmes. The programme should encompass both research and development, as well as a few demonstration projects. Research to reduce costs of biomass is important, largely through reaching higher yields. In view of the competitive kWh costs of combined biomass gasifier/steam and gas turbines systems, based upon energy and environmental considerations, development and demonstration of this system is appropriate. 14 figs., 24 tabs., 6 app., 99 refs

  2. Airports offer unrealized potential for alternative energy production.

    Science.gov (United States)

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  3. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  4. Sustainable energy consumption and production - a global view

    Energy Technology Data Exchange (ETDEWEB)

    Hernes, H.

    1995-12-31

    The paper gives a global view of sustainable energy consumption and production both in developed and developing countries. There is a need of replacing fossil fuel sources with renewable energy at a speed parallel to the depletion of the oil and gas sources. According to the author, the actual growth in developing countries` use of oil, coal and other sources of energy has almost tripled since 1970. Future population growth alone will spur a further 70% jump in energy use in 30 years, even if per capita consumption remains at current levels. For the OECD countries, energy use rose one fifth as much as economic growth between 1973 and 1989. Countries like China and India, and other developing countries, have huge coal reserves and energy needs. Policy makers have to integrate environmental concerns in decision making over the choice between different fuels, energy technologies and stricter environmental standards. Life cycle analyses can contribute to the development of overall indicators of environmental performance of different technologies. According to the IPCC (Intergovernmental Panel on Climate Change), anthropogenic CO{sub 2} emissions must be reduced by more than 60% in order to stabilize the CO{sub 2} concentration in the atmosphere. 8 refs.

  5. Developing Students' Energy Literacy in Higher Education

    Science.gov (United States)

    Cotton, Debby R. E.; Miller, Wendy; Winter, Jennie; Bailey, Ian; Sterling, Stephen

    2015-01-01

    Purpose: This paper aims to investigate students' energy literacy at a UK university, and recommends ways in which it can be enhanced using a behaviour change model. Developing students' energy literacy is a key part of the "greening" agenda, yet little is known about how students develop their ideas about energy use and energy saving at…

  6. Nuclear energy development in Europe

    International Nuclear Information System (INIS)

    Banal, Michel

    1975-01-01

    The present state of the nuclear development in Europe is discussed. Power plants already operating and those presently being built or to be put in operation before 1980 are considered. Only the large industrial countries near France are dealt with, the situation of the Eastern countries being too different to be envisaged in the same paper. A table gives the whole electric power production and its nuclear component for the more important industrial countries in 1974, the respective powers of the power plants operating on january 1, 1975 and those that must be in operation in 1980 and 1985, in the same countries, France, the U.K., Germany, Spain, Italy, Sweden and Belgium are successively considered [fr

  7. The development of nuclear energy in China

    International Nuclear Information System (INIS)

    Chavardes, D.

    2001-01-01

    In China the consumption of coal has been steadily decreasing for a few years while the economic growth rate is being maintained at 10% a year. Today the production of electricity relies on coal for 81%, on hydraulics for 17% and on nuclear energy for 0.4%. The demand for electric power increases by 7.5% a year, and at this rate the demand will double in a decade. The resort to only coal or hydraulics to sustain such a development, would have too substantial impacts on the environment (CO 2 emission, climate changing, flooding of entire regions) to be viable, so the way is paved for nuclear energy. The new 10. five-year plan supports the development of nuclear energy and Chinese authorities might agree to build 4 power plant units in the eastern and southern coastal zones. France has a valuable history of cooperation with China concerning nuclear energy. 2 reactors are successfully operating at Daya-bay and Framatome is building 2 other units on the Ling-Ao site. Framatome has succeeded in the Chinese demand for localizing a part of the manufacturing work in China. (A.C.)

  8. Development perspectives of nuclear energy in Morocco

    International Nuclear Information System (INIS)

    Mekki-Berrada, A.

    1987-01-01

    Morocco is on the way to developing and gaining access to advanced technologies which will allow it to take good advantage of its natural resources. Most of the fuels necessary for electricity production have to be imported. Nuclear energy appears a better alternative to imported oil or coal, mainly due to kWh price competitivness, great potential of uranium in phosphates and to the limitations placed on the coal option by harbour and transport infrastructure. The first nuclear power plant is planned to go into operation in the year 2000

  9. Renewable energies for the production of bricks

    International Nuclear Information System (INIS)

    Moedinger, F.

    2006-01-01

    The research for alternatives to the classical, mainly fossil, sources of energy sources within a high energy consumption sector as brick making can certainly be very rewarding. Within this framework the production of biogas by anaerobic digestion of locally available biomasses and the integration of such a facility in a brick yard where all fermentation wastes, both liquid and solid, can be used can be considered a strategic and profitable business goal: reduction of the dependence on fossil fuels. From an environmental point of view the substitution of fossil fuels with fuels from renewable sources is certainly desire able. Into account might also be taken the possible profitable trade of emission certificates of different type

  10. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  11. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  12. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  13. Wind energy development as a part of Poland's industrial development

    DEFF Research Database (Denmark)

    Stoerring, Dagmara; Hvelplund, Frede Kloster

    2003-01-01

    The paper concludes with recommendations on how to make wind energy development a part of the industrial development in Poland by introducing renewable energy support mechanisms to improve the conditions for companies to develop wind technology in Poland....

  14. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  15. Drell-Yan production at collider energies

    International Nuclear Information System (INIS)

    Neerven, W.L. Van

    1995-01-01

    We present some results of the Drell-Yan cross sections dσ/dm and σ tot which includes the O (α s 2 ) contribution to the coefficient function. In particular we study the total cross section σ tot for vector boson production and dσ/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme (bar MS versus DIS) and the factorization scale

  16. Selecting Suitable Sites for Wind Energy Development in Ghana ...

    African Journals Online (AJOL)

    Selecting Suitable Sites for Wind Energy Development in Ghana. ... In the event of shortages in petroleum products, these power plants will have ... Layers of these criteria setting were combined using the overlay function in a GIS environment.

  17. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  18. Strategic environmental assessment for energy production

    International Nuclear Information System (INIS)

    Jay, Stephen

    2010-01-01

    Amongst the approaches that have developed to improve environmental protection within the energy sector, strategic environmental assessment (SEA) has received relatively little attention. This is despite its potential to overcome some of the shortcomings associated with project-level assessment by intervening at higher levels of energy system planning. In this article, a review is presented of the extent to which SEA has been adopted and otherwise promoted in strategic energy planning processes in a wide range of countries throughout the world (with an emphasis on European Union nations). In this regard, the growing importance of regulatory compliance is underlined, especially within the EU, with a particular focus upon the application of SEA to grid systems. The case of the Belgian transmission system is described, illustrating a proactive approach to SEA. But the difficulties inherent in introducing SEA to an increasingly fragmented and liberalised sector are also drawn out, leading to suggestions by which these difficulties may be addressed.

  19. Long term energy-related environmental issues of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, S. [University of Chile, Santiago (Chile). Dept. of Mechanical Engineering; Maldonado, P.; Barrios, A.; Jaques, I. [University of Chile, Santiago (Chile). Energy Research Program

    2002-02-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO{sub 2}/ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO{sub 2}/t of refined copper content (56% lower than in 1994). CO{sub 2} emissions have been estimated considering both fuel and electricity process requirements. (author)

  20. Long term energy-related environmental issues of copper production

    International Nuclear Information System (INIS)

    Alvarado, S.; Maldonado, P.; Barrios, A.; Jaques, I.

    2002-01-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO 2 /ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO 2 /t of refined copper content (56% lower than in 1994). CO 2 emissions have been estimated considering both fuel and electricity process requirements. (author)

  1. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    Science.gov (United States)

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  2. Engaging in Productive Sector Development

    DEFF Research Database (Denmark)

    Whitfield, Lindsay; Buur, Lars

    Through a comparison of sector cases in Mozambique and Ghana, the paper analyzes why and how African states engage in developing productive sectors and with what success. It argues that successful state interventions depend on four factors: (1) sustained political support by the government...... in the four factors and thus different economic outcomes. Specifically, cocoa, export is a case of sustained political support, palm oil is a case of poorly implemented industrial policy, and horticulture export is a case of political neglect of an industry. In concluding, the paper emphasizes the political...

  3. Engaging in productive sector development

    DEFF Research Database (Denmark)

    Buur, Lars; Whitfield, Lindsay

    Through a comparison of sector cases in Mozambique and Ghana, the paper analyzes why and how African states engage in developing productive sectors and with what success. It argues that successful state interventions depend on four factors: (1) sustained political support by the government...... in the four factors and thus different economic outcomes. Specifically, cocoa, export is a case of sustained political support, palm oil is a case of poorly implemented industrial policy, and horticulture export is a case of political neglect of an industry. In concluding, the paper emphasizes the political...

  4. Efficient integration of renewable energy into future energy systems. Development of European energy infrastructures in the period 2030 to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Carolin; Uhlig, Jeanette; Zoch, Immo (eds.)

    2011-10-15

    In consideration of strategic climate mitigation, energy security and economic competitiveness goals, the EU passed the Directive 2009/28/EC, including a binding target of 20 per cent renewable energy consumption in the EU by 2020. This target is comprehensive and includes energy generation, transport, heating and cooling sectors. In 2008, renewable energy consumption in the EU was about 10 per cent. So meeting the 20 per cent renewable energy objective will require massive changes in energy production, transmission and consumption in the EU. Furthermore, it is obvious that the development of the energy system will not stop in 2020, but that it will continue towards 2050 and beyond. Over the past century, the European electricity system was developed in line with a national utilit y perspective which heavily emphasised large, centralised conventional power production. Investment decisions for new energy infrastructure and technology were typically made at the national level. In the future, much more energy production will be based on local or regional renewable energy sources (RES). Many consumers may also become energy producers feeding into the infrastructures. Transnational energy transfers will gain in importance. These changes will require very different electricity and gas infrastructures and decision-making processes from today. Lack of infrastructure capacity is already a barrier for the further deployment of RES-based energy production in some regions in Europe. (orig.)

  5. Energy sector developments in Venezuela

    International Nuclear Information System (INIS)

    Pantin, R.

    1997-01-01

    The current state and future development of the oil, gas and coal sector in Venezuela was discussed. Venezuela has oil reserves of 73 billion barrels, gas reserves of 143 TCF and coal reserves of 6 billion BOE. The country has a refining capacity of 2.9 million barrels per day, a petrochemical capacity of 7.7 million tons per year, and a coal capacity of 4.6 million tons per year. The largest refiners in Venezuela are Shell, Exxon, PDVSA, Mobil, BP, Chevron and Texaco. In 1996 the total oil and derivatives exports for Venezuela were 2.8 million barrels per day. Fifty-eight companies from 14 countries participate in the Venezuelan upstream market. Fifteen operating agreements have been awarded to 27 companies from nine countries. Third round operating agreements have been awarded to 26 companies and profit sharing agreements are in force involving 14 companies. Four vertically integrated projects (Maraven-Conoco, Maraven-Total, Corpoven-Arco-Texaco-Phillips, and Lagoven-Mobil-Veba) are currently underway. The Orimulsion(R) project, the refining system, the natural gas production, marketing and transmission system, associated future projects for the 1997-2006 time frame, and developments in the field of petrochemicals also have been reviewed. 21 figs

  6. Energy and economic development (environmental implications)

    International Nuclear Information System (INIS)

    Zorzoli, G.B.

    1992-01-01

    An examination, for developed countries, of significant correlations among economic growth, electric energy intensity and elasticity, per capita values of gross national product and greenhouse gas emissions, indicates notable possibilities for a healthier global environment with increased world-wide diffusion of clean and rational energy use technologies coupled with substantial economic growth. This scenario, however, is contrasted by worrisome doubts as to the chances for a successful outcome of recently proposed tenable growth policies when it is pointed out that forecasts, based on current demographic trends, call for a doubling of the world population in the near future. The foreseen unrestrained population explosion, leading to an unprecedented proliferation in the use of fossil fuels, now appears to represent the most serious threat to the global environment

  7. Environmental Policies, Product Market Regulation and Innovation in Renewable Energy

    International Nuclear Information System (INIS)

    Nesta, Lionel; Vona, Francesco; Nicolli, Francesco

    2012-10-01

    We investigate the effectiveness of policies in favor of innovation in renew- able energy under different levels of competition. Using information regarding renewable energy policies, product market regulation and high-quality green patents for OECD countries since the late 1970's, we develop a pre-sample mean count-data econometric specification that also accounts for the endogeneity of policies. We find that renewable energy policies are significantly more effective in fostering green innovation in countries with deregulated energy markets. We also find that public support for renewable energy is crucial only in the generation of high-quality green patents, whereas competition enhances the generation of green patents irrespective of their quality. (authors)

  8. Manure and energy crops for biogas production. Status and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.; Nielsen, A.M.; Murto, M.; Christensson, K.; Rintala, J.; Svensson, M.; Seppaelae, M.; Paavola, T.; Angelidaki, I.; Kaparaju, P.L.

    2008-07-01

    This study has evaluated the development of biogas technology in three Nordic countries and analysed the effects of using nine model energy crops as supplement to manure feedstocks in biogas plants. The study compares the global warming impacts and the energy balance for the nine crops used for heat and power production. The energy balances and impacts on greenhouse gases of the studied crops differ between the countries. In Sweden and Denmark, the same crops turned out to be the most promising in terms of energy yield and impact on greenhouse gases. In general, the same crops that score high in terms of energy yield also score high in reducing the amount of greenhouse gases. Based on the examined parameters, it can be concluded that the most promising crops are Jerusalem artichoke, beets, maize, and, in Finland, reed canary grass as well. (au)

  9. Neighborhood Energy/Economic Development project

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Energy costs impact low income communities more than anyone else. Low income residents pay a larger percentage of their incomes for energy costs. In addition, they generally have far less discretionary energy use to eliminate in response to increasing energy prices. Furthermore, with less discretionary income, home energy efficiency improvements are often too expensive. Small neighborhood businesses are in the same situation. Improved efficiency in the use of energy can improve this situation by reducing energy costs for residents and local businesses. More importantly, energy management programs can increase the demand for local goods and services and lead to the creation of new job training and employment opportunities. In this way, neighborhood based energy efficiency programs can support community economic development. The present project, undertaken with the support of the Urban Consortium Energy Task Force, was intended to serve as a demonstration of energy/economic programming at the neighborhood level. The San Francisco Neighborhood Energy/Economic Development (NEED) project was designed to be a visible demonstration of bringing the economic development benefits of energy management home to low-income community members who need it most. To begin, a Community Advisory Committee was established to guide the design of the programs to best meet needs of the community. Subsequently three neighborhood energy/economic development programs were developed: The small business energy assistance program; The youth training and weatherization program; and, The energy review of proposed housing development projects.

  10. Renewables in residential development. An integrated GIS-based multicriteria approach for decentralized micro renewable energy production in new settlement development. A case study of the eastern metropolitan area of Cagliari, Sardinia, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Palmas, Claudia [Cagliari Univ. (Italy). Dept. of Land Engineering; Abis, Emanuela [Cagliari Univ. (Italy). Dept. of Architecture; Haaren, Christina von [Leibniz Univ. of Hannover (Germany). Dept. of Environmental Planning; Lovett, Andrew [East Anglia Univ., Norwich (United Kingdom). School of Environmental Sciences

    2011-07-01

    In recent years there has been an increasing interest in using micro renewable energy sources to heat and power homes. However, planning has not yet developed methodological approaches for integrating such objectives of optimized energy efficiency with other environmental requirements and concerns of sustainable residential development. This study addresses such integration by first presenting an approach to assess the different potentials of the landscape for generating renewable energy (solar, wind, geothermic, biomass). Subsequently, optimized locations for residential development according to other sustainability criteria are identified and the two sets of results integrated by systematic GIS operations. The methodological approach for evaluating spatial variations in energy potential and producing the energy potential maps was based on existing methods for assessing the energy potential of the landscape which were adapted to the local scale and data availability. In the case of bioenergy potential a new method was developed. Other environmental criteria for deciding about sustainable locations for residential areas with different types of micro generation were identified through a survey of more than 100 expert respondents. This survey involved pairwise comparisons of relevant factors, which were then translated using the Analytical Hierarchy Process into relative weights. Subsequently these weights were applied to factor maps in a GIS via a weighted linear combination method to obtain suitable areas for new settlements and preferred locations for micro renewable technologies in the eastern metropolitan area of Cagliari, Sardinia. (orig.)

  11. Achievement report for fiscal 1998. Research and development of new technologies for storing farm products utilizing low-temperature energy (2nd fiscal year); 1998 nendo seika hokokusho. Teion energy wo riyoshita nosanbutsu no shinki chozo gijutsu no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim of the work was to create new industrial technologies utilizing low-temperature energy satisfying local needs through developing new technologies, including air conditioning technologies high in reliability and excellent in energy efficiency. The objectives of the effort were to elucidate the behavior of moisture in the atmosphere below the freezing point and to develop farm product preserving technologies, to develop highly efficient energy conversion technologies for use in the low-temperature zone, latent heat storing cold heat technologies, and system evaluation. Constructed in connection with the last-said system evaluation were three technologies, which were a below-zero high-humidity air conditioning technology based on the outcome of agricultural verification of farm product storage, energy-efficient low-temperature storage of farm products which was a combination of a low-temperature oriented energy-efficient energy conversion technology and a clathrate hydrate-aided cold heat storing technology, and a technology applicable to business in the low-temperature processing field accessorial to the said technologies. They were compared with the conventional technologies, and then it was found that the most energy-efficient system, as endorsed by a 40-50% reduction it caused in electricity rate, was a combination of a low-temperature storage, frozen food storage, hydrate cold heat storage tank, recovery facility for farm waste incineration-produced waste heat, and a pulse tube freezer. (NEDO)

  12. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  13. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  14. Next Generation Biopharmaceuticals: Product Development.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian

    2018-04-11

    Therapeutic proteins show a rapid market growth. The relatively young biotech industry already represents 20 % of the total global pharma market. The biotech industry environment has traditionally been fast-pasted and intellectually stimulated. Nowadays the top ten best selling drugs are dominated by monoclonal antibodies (mABs).Despite mABs being the biggest medical breakthrough in the last 25 years, technical innovation does not stand still.The goal remains to preserve the benefits of a conventional mAB (serum half-life and specificity) whilst further improving efficacy and safety and to open new and better avenues for treating patients, e.g., improving the potency of molecules, target binding, tissue penetration, tailored pharmacokinetics, and reduced adverse effects or immunogenicity.The next generation of biopharmaceuticals can pose specific chemistry, manufacturing, and control (CMC) challenges. In contrast to conventional proteins, next-generation biopharmaceuticals often require lyophilization of the final drug product to ensure storage stability over shelf-life time. In addition, next-generation biopharmaceuticals require analytical methods that cover different ways of possible degradation patterns and pathways, and product development is a long way from being straight forward. The element of "prior knowledge" does not exist equally for most novel formats compared to antibodies, and thus the assessment of critical quality attributes (CQAs) and the definition of CQA assessment criteria and specifications is difficult, especially in early-stage development.

  15. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  16. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  17. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  18. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  19. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  20. Developing macroeconomic energy cost indicators

    International Nuclear Information System (INIS)

    Oberndorfer, Ulrich

    2012-01-01

    Indicators are more and more drawn on for policy making and assessment. This is also true for energy policy. However, while numerous different energy price figures are available, subordinate energy cost indicators are lacking. This paper lays out a general concept for such indicator sets and presents a flexible framework for representative and consistent energy cost indicators with an underlying weighting principle based on consumption shares. Their application would provide interesting new insights into the relationship between energy cost burdens of different sectors and countries. It would allow for more rigorous analysis in the field of energy economics and policy, particularly with regard to market monitoring and impact assessment as well as ex-post-policy analysis.

  1. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Gonzalez, E.

    2005-01-01

    To sustain decent environmental conditions, it is essential to contain the emission of greenhouse gases. to a great extent, this can be achieved by reducing the almost exclusive dependence of fossil fuels for producing electricity and by championing nuclear energy and the renewable, which in the end are the least contaminating. Specifically, operation of the European nuclear fleet avoids the yearly emission of 700 million tons of CO 2 to the atmosphere. The need to combat climate change is very serious and increasingly imminent, especially if we remember that the World Health Organization has said that climate change could eventually cause 300,000 deaths. The different social players are aware of the problem. In fact, the European Union's Cabinet of Ministers approved the post-kyoto Environmental Strategy, which underlines the need to reduce CO e missions by 80% by the year 2050. It seems obvious that, in the long run, technological research and development will be fundamental pieces in the battle against environmental change and in the effort to one day provide 2,000 million people with access to electricity. (Author)

  2. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  3. Integrated energy planning for sustainable development

    International Nuclear Information System (INIS)

    2008-09-01

    Improving access to energy is a multi-faceted challenge that has far-reaching implications and long-lasting obligations. Energy is essential to all human activities and, indeed, critical to social and economic development. Lack of energy is a contributing factor to states of perpetual poverty for individuals, communities, nations and regions. In contrast, access to energy opens many new opportunities; and meeting the United Nations Millennium Development Goals cannot be accomplished without access to affordable energy services

  4. Integrated energy planning for sustainable development

    International Nuclear Information System (INIS)

    2008-12-01

    Improving access to energy is a multi-faceted challenge that has far-reaching implications and long-lasting obligations. Energy is essential to all human activities and, indeed, critical to social and economic development. Lack of energy is a contributing factor to states of perpetual poverty for individuals, communities, nations and regions. In contrast, access to energy opens many new opportunities; and meeting the United Nations Millennium Development Goals cannot be accomplished without access to affordable energy services

  5. LIVESTOCK PRODUCTION FOR A SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Giuseppe Maiorano

    2014-02-01

    Full Text Available The development of society is based on the existence of food resources. The past half-century has seen marked growth in food production, allowing for a dramatic decrease in the proportion of the world’s people that are hungry, despite a doubling of the total population. Recently, the FAO predicted a higher increase of the consumption of foods of animal origin by 2050. So far, the increased demand for food has been supplied by agriculture due to an improvement of techniques, an increase of cultivated land areas and an increase of water and energy consumption. The environmental assessment of human activities is presently a hot topic. It is not only important from an ecological perspective, but also from the view of efficient utilization of limited natural resources. The livestock sector that increasingly competes for scarce resources (land, water, and energy has a severe impact on air, water and soil quality because of its emissions. The environmental impact of food of animal origin is currently quantified by so-called CO2eq-footprints. Therefore, in the future, it will be necessary to achieve a sustainable supply of food, especially of animal origin, because land and other production factors are not unlimited resources. This lecture deals with related problems linked to the production of foods of animal origin and some possible sustainable solutions for the increasing demand of these products, by means of a detailed analysis of the carbon footprint by the livestock, as well as the land requirement, biodiversity, energy and water footprint in livestock production.

  6. New Product Development and Business Strategy of Research and Development

    International Nuclear Information System (INIS)

    Lee, Sun Cheol

    1998-05-01

    The contents of this book are new product development strategy of the top business, commercialization and new product development, development case analysis and framework of new product development, investigation strategy for idea of new product development, case analysis of research as development and goal of new product development, case analysis and planning and management for new product development, innovative item development and technical management against confusion, the map for determination procedure of development, strategy of market and goods and development strategy cases in leading company.

  7. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  8. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  9. Contribution of the clean development mechanism to sustainable energy production. The energy sector in the West African Economic and Monetary Union - Case study: Benin, Burkina Faso, Niger and Togo

    Energy Technology Data Exchange (ETDEWEB)

    Satoguina, H.

    2007-07-01

    This study assesses the contribution of the CDM to Sustainable Development in energy sectors in the West African Economic and Monetary Union, concentrating on Benin, Burkina Faso, Niger and Togo. Through a cross-sectional survey of different stakeholder groups, the prospective sustainable development criteria for the CDM are examined and prospective small-scale CDM projects are analysed. One efficient option to reduce transaction costs to small scale CDM projects is the creation of a regional centre for capacity building and project pre-validation. This study analyses how the WAEMU could be used as a vehicle to attract CDM financing. (orig.)

  10. Condition of nuclear energy policy development in Ukraine

    International Nuclear Information System (INIS)

    Hudyma, A.; Piriashvili, B.; Khakimov, Y.; Khrushtchov, D.

    2000-01-01

    The preservation and strengthening of economic and political stability of the state depends first of all on the situation in the main branches of economy. One of such branches is the energy sector, whose level of development defines the place and the role of the state in the world community. On the other hand, the status of the energy sector, one of the major elements ensuring political and economic stability, determines energy security as well. Besides, the concept of energy sector development in general and nuclear energy in particular should be based on the real geopolitical situation, which Ukraine has faced after USSR disintegration. Therefore, the energy policy development is the most important link in the development of the state itself, for importance of this policy goes far beyond the frameworks of the energy sector. Besides, it is necessary to note, that the new geopolitical conditions have abruptly changed the course of economic and social development of the country. Frist of all, it was reflected in the significant drop of its energy security that resulted in: first sharp fall own fuel resources production and electric power generation; second significant reduction in inflow of energy resources to Ukraine. Such situation is stipulated by the general drop in the demand for power resources due to general fall in industrial and agricultural production, as well as by the sharp decrease in own energy resources production and absence of sufficient financial means for the acquisition of the deficient power resources import

  11. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  12. The energy and electric development in Viet Nam

    International Nuclear Information System (INIS)

    Nguyen Khac, Nhan

    2015-11-01

    After a description of the Vietnamese geography and economy, this report presents the Vietnamese energy system, comments the status and origin of electricity production in this country (shares of hydraulic, gas turbine, coal production, and imports). Then, the author presents the various aspects defined within the electric energy development plan for 2011-2020 with a projection until 2030: development principles, objectives, instructions for production plants and for grids, and investments. He proposes a focus on hydroelectricity (meteorological data regarding precipitations, status and power of existing dams, situation and negotiation about the Mekong, problems associated with the development of hydroelectricity in Vietnam), and a focus on the relationship between nuclear energy and climate change (safety issues due to climate change, nuclear plant projects are postponed, the only strategic choice is a massive exploitation of renewable energies). In the last part, the author discusses predictions regarding energy demand, and the associated planning and programming to face this increasing demand

  13. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  14. Renewable Energy Development in India

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.M.

    2007-07-01

    India has done a significant progress in the power generation in the country. The installed generation capacity was 1300 megawatt (MW) at the time of Independence i.e. about 60 years back. The total generating capacity anticipated at the end of the Tenth Plan on 31-03-2007, is 1, 44,520 MW which includes the generation through various sectors like Hydro, Thermal and Nuclear. Emphasis is given to the renewable energy programme towards gradual commercialization. This programme is looked after by the Ministry of Non-Conventional Sources of energy. Since the availability of fossil fuel is on the decline therefore, in this backdrop the norms for conventional or renewable sources of energy (RSE) is given importance not only in India but has attracted the global attention. The main items under RSE are as follows: (i) Hydro Power (ii) Solar Power (iii) Wind Power (iv) Bio-mass Power (v) Energy from waste (vi) Ocean energy, and (vii) Alternative fuel for surface transportation. Evolution of power transformer technology in the country during the past five decades is quite impressive. There are manufacturers in the country with full access to the latest technology at the global level. Some of the manufacturers have impressive R&D set up to support the technology. Renewable energy is very much promoted by the Chinese Government. At the same time as the law was passed, the Chinese Government set a target for renewable energy to contribute 10% of the country's gross energy consumption by 2020, a huge increase from the current 1%. It has been felt that there is rising demand for energy, food and raw materials by a population of 2.5 billion Chinese and Indians. Both these countries have large coal dominated energy systems in the world and the use of fossil fuels such as coal and oil releases carbon dioxide (CO2) into the air which adds to the greenhouse gases which lead to global warming. (auth)

  15. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  16. Energy solutions for sustainable development. Proceedings

    DEFF Research Database (Denmark)

    production technologies such as fuel cells, hydrogen, bio-energy and wind energy • Centralized energy technologies such as clean coal technologies • Providing renewable energy for the transport sector • Systems aspects, differences between the various major regions throughout the world • End-use technologies......, efficiency improvements and supply links • Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism...

  17. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  18. Renewables in residential development. An integrated GIS-based multicriteria approach for decentralized micro-renewable energy production in new settlement development. A case study of the eastern metropolitan area of Cagliari, Sardinia, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Palmas, Claudia; Haaren, Christina von [Hannover Univ. (Germany). Dept. of Environmental Planning; Abis, Emanuela [Cagliari Univ. (Italy). Dept. of Civil, Environmental Engineering and Architecture; Lovett, Andrew [East Anglia Univ., Norwich (United Kingdom). School of Environmental Sciences

    2012-12-15

    In recent years, there has been an increasing interest in using micro-renewable energy sources. However, planning has not yet developed methodological approaches (1) for spatially optimizing residential development according to the different renewable energy potentials and (2) for integrating objectives of optimized energy efficiency with other environmental requirements and concerns. This study addresses these topics by firstly presenting a new concept for the regional planning. The methodological approach for the evaluation of spatial variations in the available energy potential was based on the combination of existing methods adapted to the local scale and data availability. For assessing the bioenergy potential, a new method was developed. Other environmental criteria for deciding about sustainable locations were identified through a survey of more than 100 expert respondents. This survey involved pairwise comparisons of relevant factors, which were then translated into relative weights using the Analytical Hierarchy Process. Subsequently, these weights were applied to factor maps in a Geographical Information System using a weighted linear combination method. In the test region, the eastern metropolitan area of Cagliari, Sardinia, this analysis resulted in the designation of suitable areas for new settlements and preferred locations for microrenewable technologies. Based on expert preferences, a number of alternatives for future housing development were identified, which can be integrated in the early stages of land use or development plans. The method proposed can be an effective tool for planners to assess changes and to identify the best solution in terms of sustainable development. (orig.)

  19. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  20. The Challenges of New Product Development in a Developing Economy

    OpenAIRE

    M. O. Oduola; A. M. Yakubu

    2017-01-01

    New Product Development (NPD) involves creating a new product from concept to the market. The product could be entirely new or rebranding. It is a critical focus of any production firm. The increase in volume of new competitive products is an indicator of any fast growing production concern. However the challenges that could affect development of a new product in a developing economy include, but not limited to the following: Inadequate infrastructural facilities, lack of funding, low technol...

  1. Energy use and gross margin analysis for sesame production in ...

    African Journals Online (AJOL)

    As the negative impacts of energy by-products affect the climate, the knowledge and efficient use of energy in crop production will minimise environmental problems and promote sustainable agriculture as an economic production system in Nigeria and else where. The aim of the study was to evaluate energy use and gross ...

  2. Managing a Product Development Team

    Science.gov (United States)

    Lehtonen, Kenneth E.; Barrett, Larry

    2003-01-01

    Orbiting 380 miles above the earth, NASA s Hubble Space Telescope (HST) has returned a wealth of scientific data about our universe and galaxies beyond highlighted by spectacular images of the birth and death of stars, colliding galaxies, and other extra-worldly events. Despite its tremendous success for almost two decades, the HST ground support system experienced down-to-earth problems prior to the turn of the century, namely budgetary ones. To keep HST operating efficiently to 201 2 and beyond, the Vision 2000 project was conceived with the primary goal of substantially reducing the costs of operating and maintaining the spacecraft ground systems. Taking advantage of this atypical management opportunity, a set of Product Development Teams (PDTs) were established, whose charter was to re-engineer the ground system, and in doing so, reduce the remaining life-of-mission operating and maintenance costs, while providing improved reliability and increased capabilities.

  3. Energy consumption and economic development

    International Nuclear Information System (INIS)

    Tremblay, M.T.

    1994-01-01

    Speaking as an economic planner, the author of this address suggests a scenario that is rather pessimistic for the future of nuclear energy. He emphasizes that technological change will lead to economic growth, but then supposes that improvements in hydrogen energy and solar energy, combined with global competition, may lead to a fall rather than an increase in oil prices early in the next century. The 10 year lead time for bringing a nuclear station from design to commissioning makes it difficult to predict the economics of operation

  4. One gluon, two gluon: multigluon production via high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2006-01-01

    We develop an approach for calculating the inclusive multigluon production within the JIMWLK high energy evolution. We give a formal expression of multigluon cross section in terms of a generating functional for arbitrary number of gluons n. In the dipole limit the expression simplifies dramatically. We recover the previously known results for single and double gluon inclusive cross section and generalize those for arbitrary multigluon amplitude in terms of Feynman diagramms of Pomeron - like objects coupled to external rapidity dependent field s(η). We confirm the conclusion that the AGK cutting rules in general are violated in multigluon production. However we present an argument to the effect that for doubly inclusive cross section the AGK diagramms give the leading contribution at high energy, while genuine violation only occurs for triple and higher inclusive gluon production. We discuss some general properties of our expressions and suggest a line of argument to simplify the approach further

  5. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  6. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  7. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  8. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Gylling, Morten

    2003-01-01

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO 2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  9. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  10. Green energy products in the United Kingdom, Germany and Finland

    Science.gov (United States)

    Hast, Aira; McDermott, Liisa; Järvelä, Marja; Syri, Sanna

    2014-12-01

    In liberalized electricity markets, suppliers are offering several kinds of voluntary green electricity products marketed as environmentally friendly. This paper focuses on the development of these voluntary markets at household level in the UK, Germany and Finland. Since there are already existing renewable energy policies regulating and encouraging the use of renewable energy, it is important to consider whether voluntary products offer real additional benefits above these policies. Problems such as double counting or re-marketing hydropower produced in existing plants are identified. According to our study, the demand varies between countries: in Germany the number of green electricity customers has increased and is also higher than in the UK or Finland. Typically the average additional cost to consumer from buying green electricity product instead of standard electricity product is in the range of 0-5% in all studied countries, although the level of price premium depends on several factors like electricity consumption. Case study of Finland and literature show that the impacts of green energy are not solely environmental. Renewable energy can benefit local public policy.

  11. Energy consumption and economic development after the energy price increases of 1973

    International Nuclear Information System (INIS)

    Danielewski, J.

    1993-01-01

    The interdependence between energy consumption and economic development are highlighted in this research, which focuses on energy price rises between 1973 and 1989. Three groups of countries are identified, developing and developed market economies and centrally planned economies. Two areas of interdependence are examined, firstly the dynamic relationship between primary energy consumption growth and real economic growth and secondly the static relationship between primary energy consumption and national income. In the period under review, developing market economies reacted most strongly to higher energy prices, with lower energy consumption while maintaining real growth in the Gross Domestic Product. However developing countries and centrally planned economies increased their energy consumption per unit of national income although the rate of increase slowed after 1975. (UK)

  12. Comparison between exergy and energy analysis for biodiesel production

    International Nuclear Information System (INIS)

    Amelio, A.; Van de Voorde, T.; Creemers, C.; Degrève, J.; Darvishmanesh, S.; Luis, P.; Van der Bruggen, B.

    2016-01-01

    This study investigates the exergy concept for use in chemical engineering applications, and compares the energy and exergy methodology for the production process of biodiesel. A process for biodiesel production was suggested and simulated in view of the energy and exergy analysis. A method was developed to implement the exergy concept in Aspen Plus 7.3. A comparison between the energy and the exergy approach reveals that the concepts have similarities but also some differences. In the exergy study, the reaction section has the largest losses whereas in the energy study separation steps are the most important. An optimization, using both concepts, was carried out using the same parameters. The optimized results were different depending on the objective function. It was concluded that exergy analysis is crucial during the design or redesign step in order to investigate thermodynamic efficiencies in each part of the process. - Highlights: • New flowsheet for the production of biodiesel simulated with Aspen Plus. • Calculation of the exergetic costs and several interesting indexes. • Comparison of exergy and energy analysis for the process studied.

  13. A comparative analysis of environmental impacts of non-fossil energy production methods

    OpenAIRE

    Kiss Adam

    2014-01-01

    The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. Howev...

  14. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...

  15. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  16. Energy development of the USSR from 1917 to 1950

    International Nuclear Information System (INIS)

    Martin-Amouroux, Jean-Marie

    2015-10-01

    The author proposes an historical overview of energy policy and energy development in the USSR, from its creation to 1950. He outlines that these policy and development were based on a huge stock of coal. Thus, the main efforts have been focused on the development of coal extraction to support an industrial development. The author comments how the political structure and organisation resulted in a public, monolithic and planned industry. He also comments energy needs to be satisfied during the three first five-year plans, the level of energy and electricity productions (comparison with other countries). He outlines that coal has been preferred for a long time to hydrocarbon for energy production, comments the emergence of new mineral fields beside Donbass, and shows that coal has also been the main basis for electrification

  17. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  18. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  19. Gradual prospects of development of railway energy

    Directory of Open Access Journals (Sweden)

    Eliseev V.A.

    2017-08-01

    Full Text Available in the analytical review of the Energy Strategy of the RZD Holding, the target indicators of its activities are set out and the tasks of the energy policy are listed. At the identified stages of the strategy implementation, the identified priorities, benchmarks and development mechanisms were noted. The relation of the strategy to the regulatory state regulations and documents is shown, and the domestic railroad train energy – to save energy and improve the country's energy efficiency.

  20. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  1. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    International Nuclear Information System (INIS)

    Deason, Wesley Ray

    2015-01-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today's electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by -dumping steam', or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  2. The regional control of the canadian energy production

    International Nuclear Information System (INIS)

    Petitlaurent, S.; Sarrazin, J.

    2004-12-01

    This document provides information and presents data on the energy situation in many regions of Canada. The first part deals with the petroleum and the bitumen shales of Alberta (reserves, exploitation and production, environmental impacts), the second part discusses with the hydroelectricity choice of Quebec and the 2004 crisis. The nuclear situation of Ontario is presented in the third part (nuclear park, programs, uranium reserves, research and development on Candu reactors), while the fourth part deals with the renewable energies (wind power and biomass). The canadian situation facing the Kyoto protocol is discussed in the last part. (A.L.B.)

  3. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    OpenAIRE

    Klāvs G.; Kundziņa A.; Kudrenickis I.

    2016-01-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas ut...

  4. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  5. Role of forest biomass energy in developing countries

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1996-01-01

    Forest biomass holds a significant position for energy production in developing countries. Its importance is elucidated through various activities performed by the rural industries. The socio-economic and environmental aspects in utilizing this type of energy are also discussed. (Author)

  6. Green product development : What does the country product space imply?

    NARCIS (Netherlands)

    Fraccascia, Luca; Giannoccaro, Ilaria; Albino, Vito

    This paper contributes to green product development by identifying the green products with the highest potential for growth in a country. To address our aim, we use the concept of product proximity and product space and, borrowing from the results of recent studies on complexity economics, we

  7. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition. As...

  8. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2001-01-01

    The characteristics of nuclear energy are reviewed and assessed from a sustainable development perspective highlighting key economic, environmental and social issues, challenges and opportunities relevant for energy policy making.. The analysis covers the potential role of nuclear energy in increasing the human and man-made capital assets of the world while preserving its natural and environmental resource assets as well as issues to be addressed in order to enhance the contribution of nuclear energy to sustainable development goals. (author)

  9. Energy Issues and Problems in Developing Countries

    International Nuclear Information System (INIS)

    Mehdizadeh, Saeed

    1999-01-01

    In general, the developing countries due to changes in supply and demand for energy in the world, are facing several problems, such as: 1. Energy growth. 2.Energy consumption 3.Environmental protection. The objective of this paper is to study the problems caused by the increase in the energy consumption of the developing countries. also several guideline and solution schemes are recommended for these problems

  10. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  11. Development, energy, environment: changing the paradigm; Developpement, Energie, Environnement: changer de paradigme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A first set of contributions comments the various risks and challenges which are to be faced in terms of energy, climate and environment: the deadlock of present 'laisser-faire' policies, recent findings in climate science in 2005, oil as the reason of a possible economic crisis in developing countries, recent evolution of energy systems. The next set of contributions discusses the possible solutions and their limits: CO{sub 2} capture and sequestration in coal plants, nuclear renaissance, renewable energies, hydro-electricity, CO{sub 2} capture by biomass, energy sobriety, urban morphology and transports in emerging cities, integration of service demand with energy supply, energy decentralized production

  12. Product design and development engineering

    International Nuclear Information System (INIS)

    Lee, Kookhwan

    2008-01-01

    This book gives design of molded plastics, design of press product, design of die casting products, the application of communication terminal design, application and design of machine elements(screw, spring, bearing, gear, retaining ridge, drawing standards, KS and JIS material marks list), 3D CAD, concurrent engineering of product design, creative concept design.

  13. New clean energy enterprises and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Usher, Eric [United Nations Environment Programme, Rural Energy Enterprise Development (REED), Paris (France); Xiaodong Wang [United Nations Foundation, Climate Change Program, Washington, DC (United States)

    2002-06-01

    Though hundreds of billions of dollars have been invested, past development efforts have been largely unable to break the cycle of poverty - a cycle that is directly linked to the provision of energy. Too often, the potential of local enterprises to provide essential energy services has been ignored. Yet such an enterprise is one of the most potent engines for shifting towards a local human capacity to produce and distribute modern energy services. This recognition lies at the heart of REED, an approach to developing new sustainable energy enterprises that use clean, efficient and renewable energy technologies to meet the energy needs of underserved populations. (Author)

  14. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  15. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  16. ENERGY USE ANALYSIS FOR RICE PRODUCTION IN NASARAWA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Hussaini Yusuf Ibrahim

    2012-12-01

    Full Text Available The study was conducted to analyze energy use for in rice production in Nasarawa state Nigeria using a sample of 120 randomly selected rice farmers. Energy productivity, energy efficiency and specific energy were computed and simple descriptive statistics was used for data analysis. The energy use pattern shows that, rice production consumed an average total energy of 12906.8 MJha-1, with herbicide energy input contributing the largest share (53.55 %. Human labour had the least share (0.74 % of the total energy input used. The energy productivity, Specific energy and energy efficiency were 0.3 MJ-1, 3.6 MJ-1 and 4.1 respectively. A total of 10925.0 MJ of energy was used in the form of indirect energy and 1981.8MJ was in the direct form of energy. Non-renewable energy forms contributed the largest share (80.63 % of the total energy input used for rice production in the study area. Rice production in the study area was observed to be mainly dependent on non-renewable and indirect energy input especially herbicide. Thus, the study recommends the introduction of integrated weed management system in order to reduce cost and dependence on a non-renewable input for weed control.

  17. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 4. Development of hydrogen production technology; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes development of hydrogen production technology as a part of the WE-NET project. For the solid polymer water electrolysis method higher in efficiency and lower in cost than the previous methods, 5 companies have developed element technologies for improving electrolysis cells and synthesis technologies of hot solid polymer electrolyte based on each proper catalyst electrode production method. In fiscal 1996, the initial study on large-scale systems by middle laboratory cells was made as well as improvement of electrolysis performance by small laboratory cells and endurance tests. Among the previous methods such as a hot press method (bonding of an ion exchange membrane to an electrode), an electroless plating method (preparation of porous surface onto a membrane electrode assembly), a zero gap method (preparation of high-efficiency high-current density cells), and a sintered porous electrode method (carrying of the mixture of catalytic powder and ion exchange resin-dissipated solution onto sintered metallic porous electrode surface), the former two methods were adopted for development of bench-scale cells as effective promising methods. 192 refs., 183 figs., 108 tabs.

  18. Potential development of bioethanol production in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N.; Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, Novi Sad 21000, Vojvodina (RS)

    2009-12-15

    The Autonomous Province of Vojvodina is an Autonomous Province in Serbia, containing about 27% of its total population according to the 2002 Census. Contribution of renewable energy sources in total energy consumption of Vojvodina contemporary amounts to less than 1%, apropos 280 GWh/year. By combining of methods of introduction of new and renewable sources, systematic application of methods for increasing of energetic efficacy, as well as of introduction of the new technologies, percentage of contribution of the non-conventional energy sources in Vojvodina could be increased to as much as 20%. This paper presents the potential of development of bioethanol production in Vojvodina. Production of bioethanol on small farms can be successfully applied for processing of only 30 kg of corn per day, with obtaining of crude ethanol in the so-called 'brandy ladle' and use of lygnocellulosic agricultural wastes as an energy source. In a case of construction of a larger number of such plants, the only possible solution is seen in the principle of construction of the so-called 'satellite plants', which will on small farm produce crude ethanol, with obtaining and consumption of stillage for animal feeding, and consumption of agricultural wastes as energetic fuels. If stillage is to be used as feed in wet feeding, it is estimated that, because of restrictions established by the magnitude of animal farm, the upper limit of capacity of such enterprises that process is at some 10-15 tons of corn per day, and production of 3000-3500 hL of absolute ethanol per day. In such a case, for animal feeding necessary is to have herd with 1300-1700 of milking cows or 5000-25,000 heads of sheep and/or pigs. Technological model of separate grain processing ad bioethanol production from dextrose hydrolysates of starch is interesting for countries possessing plants for bioethanol production from molasses and plants for cereals processing into starch and dextrose hydrolysates

  19. Singular Strategic Project for the Development, Demonstration and Evaluation of Energy Crop Biomass-based Energy Production in Spain (On Cultivos); Proyecto Singular y Estragetico para el desarrollo, demostracion y evaluacion de la produccion de energia en Espana a partir de la biomasa de cultivos energeticos (On Cultivos)

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, E.; Maleta, E. J.; Carrasco, J. E.

    2008-07-01

    The Singular Strategic Project (PSE) On Cultivos, Development, demonstration and evaluation of the viability of energy crop biomass-based energy production in Spain, has been under way since 2005. This article describes the project objectives and general data indicating the current project status and the most relevant preliminary results obtained since it began. The On Cultivos PSE is proving to be an effective tool to channel the R and D efforts required to achieve the integral commercial implementation of energy crops in Spain. (Author) 4 refs.

  20. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...... and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...

  1. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  2. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    Science.gov (United States)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  3. Decision making in global product development

    DEFF Research Database (Denmark)

    Søndergaard, Erik Stefan; Ahmed-Kristensen, Saeema

    2014-01-01

    Many engineering companies experience new challenges when globalising product development. Global product development (GPD) is a relatively nascent research area, and previous research reveals the need for decision support frameworks. This research investigates how decisions are made when compani...

  4. Initial study - compilation and synthesis of knowledge about energy crops from field to energy production

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Bubholz, Monika; Forsberg, Maya; Myringer, Aase; Palm, Ola; Roennbaeck, Marie; Tullin, Claes

    2007-11-15

    Energy crops constitute an yet not fully utilised potential as fuel for heating and power production. As competition for biomass increases interest in agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp is increasing. Exploiting the potential for energy crops as fuels will demand that cultivation and harvest be coordinated with transportation, storage and combustion of the crops. Together, Vaermeforsk and the Swedish Farmers' Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilisation of bioenergy from agriculture to combustion for heat and power production in Sweden. The vision is that during the course of the 2006 - 2009 programme, decisive steps will be taken towards a functioning market for biofuels for bioenergy from agriculture. This survey has compiled and synthesised available knowledge and experiences about energy crops from field to energy production. The aim has been to provide a snapshot of knowledge today, to identify knowledge gaps and to synthesise knowledge we have today into future research needs. A research plan proposal has been developed for the research programme

  5. Green energy strategies for sustainable development

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim; Ay, Murat

    2006-01-01

    In this study we propose some green energy strategies for sustainable development. In this regard, seven green energy strategies are taken into consideration to determine the sectoral, technological, and application impact ratios. Based on these ratios, we derive a new parameter as the green energy impact ratio. In addition, the green energy-based sustainability ratio is obtained by depending upon the green energy impact ratio, and the green energy utilization ratio that is calculated using actual energy data taken from literature. In order to verify these parameters, three cases are considered. Consequently, it can be considered that the sectoral impact ratio is more important and should be kept constant as much as possible in a green energy policy implementation. Moreover, the green energy-based sustainability ratio increases with an increase of technological, sectoral, and application impact ratios. This means that all negative effects on the industrial, technological, sectoral and social developments partially and/or completely decrease throughout the transition and utilization to and of green energy and technologies when possible sustainable energy strategies are preferred and applied. Thus, the sustainable energy strategies can make an important contribution to the economies of the countries where green energy (e.g., wind, solar, tidal, biomass) is abundantly produced. Therefore, the investment in green energy supply and progress should be encouraged by governments and other authorities for a green energy replacement of fossil fuels for more environmentally benign and sustainable future

  6. Energy conservation opportunities: audit vis-a-vis mine productivity

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, G.H.

    2009-07-01

    Mining operation, whether opencast or underground, with modern equipment is highly energy intensive, needing energy conservation and management to ensure efficiency, cost effectiveness, and overall productivity. Exhaustible primary energy resources such as coal, lignite, oil, and nuclear fuels are being mined out to meet our energy needs. An attempt has been made in this paper to highlight the energy conservation opportunities, energy audit, the relevant Energy Conservation Act 2001 and certain energy saving measures leading to higher productivity followed by a few case study examples. 3 refs.

  7. Development of radioisotope production in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G [Philippine Nuclear Research Institute, Quezon (Philippines)

    1998-10-01

    The Philippine Nuclear Research Institute (PNRI) started its activities on radioisotope production more than three decades ago, when the Philippine Research Reactor (PRR-1) started operating at its full rated power of 1 MW. Since then, several radionuclides in different chemical forms, were routinely produced and supplied for use in nuclear medicine, industry, agriculture, research and training, until the conversion of the PRR-1 to a 3 MW TRIGA type reactor. After the criticality test of the upgraded reactor, a leak was discovered in the pool liner. With the repair of the reactor still ongoing, routine radioisotope production activities have been reduced to dispensing of imported bulk {sup 131}I. In the Philippines, radioisotopes are widely used in nuclear medicine, with {sup 131}I and {sup 99m}Tc as the major radionuclides of interest. Thus the present radioisotope production program of PNRI is directed to meet this demand. With the technical assistance of the International Atomic Energy Agency (IAEA), PNRI is setting up a new {sup 131}I production facility. The in-cell equipment have been installed and tested using both inactive and active target, obtained from BATAN, Indonesia. In order to meet the need of producing {sup 99}Mo-{sup 99m}Tc generators, based on low specific activity reactor-produced {sup 99}Mo, research and development work on the preparation of {sup 99m}Tc gel generators is ongoing. (author)

  8. Hot Dry Rock Geothermal Energy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  9. Product/Service-System Development

    DEFF Research Database (Denmark)

    Tan, Adrian; McAloone, Timothy Charles; Gall, Catherine

    2007-01-01

    Product/service-systems’ (PSS) are innovation strategies where instead of focusing on the value of selling physical products, one focuses on the value of the utility of products and services throughout the product’s life period. This approach enables companies to provide customers with offerings...... that continuously deliver value and create a strong competitive advantage. PSS attempts to transcend the old industrial credo that value is embedded in products and the consideration of ‘cost-quality-time’ relates to the physical artefact. While there is increasing interest in PSS, limited research has been done...

  10. Energy production and use in Dutch agriculture

    NARCIS (Netherlands)

    Dekkers, W.A.; Lange, J.M.; Wit, de C.T.

    1974-01-01

    Energy relationschips in the agriculture of one of the most densely populated areas of the world, the Nether lands, are described. The Netherlands appear selfsupporting in food energy. However, if one takes account of energy consumption in horticulture, the direct and indirect fossil energy cost

  11. Supply side energy management for sustainable energy ( development in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M.A.; Harijan, K.; Memon, M.

    2005-01-01

    Pakistan is an energy deficient country. Indigenous reserves of oil and gas are limited and the country heavily depends on imported energy. The indigenous coal is of poor quality. Environmental pollution and greenhouse gas emissions from energy use are becoming significant environmental issues in the country. Sustainability is regarded as a major consideration for both urban and rural development in Pakistan. People in the country have been exploiting the natural resources with no consideration to the effects-both short term (environmental) and long term (resource crunch). The urban areas of the country depend to a large extent on commercial energy sources. The rural areas use non-commercial sources like firewood, agricultural wastes and animal dung. Even this is decreasing over the years, with the villagers wanting to adopt the ready to use sophisticated technology. The debate now is to identify a suitable via media. The option that fills this gap aptly is the renewable energy source. This paper analyses the supply side management of energy resources in relation to sustainable energy development. The present study shows that for achieving long-term environmental sustainable development, renewable energy is the major option that could meet the growing energy needs in Pakistan. (author)

  12. Evolving Product Information in Aligning Product Development Decisions across Disciplines

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; de Lange, Jos; Lutters, Diederick; ten Klooster, Roland

    2015-01-01

    Today's product development is fragmented across various disciplines all with their own fields of expertise. Maintaining overview in consequences and implications of decisions is difficult, since many stakeholders are involved. To optimise the product development, many methods are developed based on

  13. Energy for development in the real world

    International Nuclear Information System (INIS)

    Geel, P. van

    2005-01-01

    Developing countries have a right to economic growth. They need it to combat poverty. But growth is impossible without access to modern energy. If we are to do something about that, we must start with the basic needs of developing countries. At least one-third of humanity, most of whom live in rural areas in developing countries, do not have an adequate supply of energy to meet their daily needs, or for health care and education. This limited and unreliable energy supply is a direct obstacle to economic development. Millions of people spend a lot of time trying to gather enough firewood to survive. Companies cannot operate because of power cuts. Schools and hospitals cannot function properly. Energy is also needed to cool medicines, and to provide light so that children can do their homework in the evenings. The industrialised world must help developing countries to secure an energy supply. And more importantly, an energy supply that is sustainable

  14. Australian energy consumption and production to 2014-15

    International Nuclear Information System (INIS)

    Dickson, A.

    1999-01-01

    The medium to long term outlook for the Australian energy sector is examined, drawing on the ABARE report Australian Energy: Market Developments and Projections to 2014-2015. It is estimated that recent market developments, in particular in the electricity and gas markets, and ongoing policy responses to such things as global climate change, will continue to have profound implications for the energy sector over the medium to longer term. In this environment of uncertainty, high quality and timely information on the future of the energy sector is critical to decision makers. The major input into ABARE's energy projections is the information collected in the biennial fuel and electricity survey. The principal sectors covered by the survey include the mining, manufacturing electricity and gas production sectors. There is also some coverage in the government administration, defence, communications and community services sectors (for example, hospitals and universities). Energy consumption in the sectors not adequately covered by the survey are projected using economic models. These include agriculture, construction, wholesale and retail trade, transport other than rail, finance and insurance, government administration and defence, health and community services, property and business services, cultural and recreational services, personal and other services and residential services. The fuel and electricity survey covers about 5,300 separate establishments in 3,000 organisations. Information is collected on current and expected energy consumption patterns and levels. The projections for these sectors are therefore based on consumers' own expectations about factors that will influence their energy use. Responses to the survey are also supplemented by ABARE projections of the energy requirements of known and planned new projects, such as new minerals processing plants or gas pipelines coming on stream

  15. Renewable Energy Project Development Assistance (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  16. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  17. Assessment of environmental external effects in the production of energy

    DEFF Research Database (Denmark)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E.

    1995-01-01

    A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project the environm......A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project...... the environmental damages for the energy production technologies are compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized....

  18. US Energy Industry Financial Developments

    International Nuclear Information System (INIS)

    1992-09-01

    In the second quarter of 1992, the financial performance of the US petroleum industry continued to deteriorate, as weakening domestic economic growth slowed the demand for refined petroleum products. Net income for 119 petroleum companies--including 19 major oil and gas producers--declined 2 percent between the second quarter of 1991 and the second quarter of 1992, and was down 35 percent for the first 6 months of 1992. Unless otherwise stated, all quarterly comparisons relate to the second quarter of 1992 versus the second quarter of 1991. Weak margins reduce downstream earnings; higher prices increase oil and gas production earnings; industry downsizing improves financial results; oil and gas drilling remains depressed; cool spring helps gas companies but disappoints electric utilities

  19. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  20. Nuclear energy for developing countries

    International Nuclear Information System (INIS)

    Kemery, L.S.

    1980-01-01

    This paper examines the circumstances which must prevail before a reasonable technical, administrative and sociological case can be made to justify the introduction of nuclear power technology to a developing country. The role played by the IAEA in responding to needs of developing countries is considered and problems of nuclear plant safety and materials safeguards discussed. Plans for nuclear power in several developing countries are outlined