WorldWideScience

Sample records for energy development annual

  1. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  3. Annual Energy Review, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  4. Annual Energy Review 2001

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2002-11-01

    The Annual Energy Review (AER) is a statistical history of energy activities in the United States. It documents trends and milestones in U.S. energy production, trade, storage, pricing, and consumption. Each new year of data that is added to the time series—which now reach into 7 decades—extends the story of how Americans have acquired and used energy. It is a story of continual change as the Nation's economy grew, energy requirements expanded, resource availability shifted, and interdependencies developed among nations.

  5. Annual Energy Review 1999

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn

  6. International energy annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.

  7. Annual Energy Review 2007

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2008-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....”

  8. Renewable energy annual 1995

    International Nuclear Information System (INIS)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic

  9. Renewable energy annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  10. Annual Energy Review 2011

    Energy Technology Data Exchange (ETDEWEB)

    Fichman, Barbara T. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2012-09-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, and renewable energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  11. Supplement to the annual energy outlook 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This section of the Supplement to the Annual Energy Outlook 1995 present the major assumptions of the modeling system used to generate the projections in the Annual Energy Outlook 1995 (AEO95). In this context, assumptions include general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports listed in Appendix B. A synopsis of the National Energy Modeling System (NEMS), the model components, and the interrelationships of the modules is presented. The NEMS is developed and maintained by the office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projection of domestic energy-economy markets in the midterm time period and perform policy analyses requested by various government agencies and the private sector.

  12. Talisman Energy : 2002 annual report

    International Nuclear Information System (INIS)

    2003-01-01

    Financial information from Calgary-based Talisman Energy was presented in this annual report and a review of their 2002 operations was made available for the benefit of shareholders. Talisman Energy is one of Canada's leading natural gas producers and a successful international operator. In 2002, the company posted its fourth consecutive year of record cash flow per share and production was up 6 per cent to 445,000 boe per day, a record high. Production in the North Sea was increased by 15 per cent as 2 new oil fields were brought on stream. The major oil and gas development projects in Malaysia and Vietnam are more than 60 per cent complete. Talisman also announced the sale of its 25 per cent interest in Sudan. This annual report includes an auditor's report of the companies financial statements and summarized the company's energy resource activities. An operations review was also presented along with consolidated financial statements, summarized balance sheet of assets, liabilities/surplus and net assets, and common share information. Revenue and expenditure statements were summarized by source. tabs., figs

  13. Annual Energy Review 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fichman, Barbara T. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2010-08-01

    The Annual Energy Review (AER) is the U.S. Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding the content of the AER and other EIA publications.

  14. IEA Wind Energy Annual Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    2001-05-01

    The twenty-third IEA Wind Energy Annual Report reviews the progress during 2000 of the activities in the Implementing Agreement for Co-operation in the Research and Development on Wind Turbine Systems under the auspices of the International Energy Agency (IEA). The agreement and its program, which is known as IEA R&D Wind, is a collaborative venture among 19 contracting parties from 17 IEA member countries and the European Commission.

  15. Annual Energy Review 2006

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2007-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  16. Annual Energy Review 2004

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2005-08-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  17. Annual Energy Review 2005

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2006-07-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  18. International energy annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.

  19. Husky Energy Inc. : 2000 annual report

    International Nuclear Information System (INIS)

    2001-01-01

    Financial information from Husky Energy Inc. was presented in this first annual report and a review of their 2000 operations was made available for the benefit of shareholders. Husky Energy is an integrated energy and energy-related company. With the acquisition of Renaissance Energy Ltd. in August 2000, Husky Energy became one of Canada's largest petroleum companies in terms of production and the value of its asset base. Upstream activities were focused in Western Canada, offshore Eastern Canada and in China. Sales and operating revenues in 2000 were $5,090 million, up 82 per cent from 1999. Strong commodity prices increased production volumes from new developments and acquisitions. The midstream business contributed to the profitability of the company. The acquisition of Renaissance Energy provided proved reserves of 390 million boe. The acquisition cost of reserves was about $6.50 per boe on a proved plus half-probable basis. Annual production volumes in 2000 averaged 176,800 boe per day, up considerably from 1999 due to the acquisition of the Valhalla and Wapiti properties in Western Canada. This report summarized the company's energy resource activities and presented an operations review as well as consolidated financial statements, and common share information. Revenue and expenditure statements were summarized by source. tabs., figs

  20. Determining Mean Annual Energy Production

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Folley, Matt

    2016-01-01

    This robust book presents all the information required for numerical modelling of a wave energy converter, together with a comparative review of the different available techniques. The calculation of the mean annual energy production (MAEP) is critical to the assessment of the levelized cost...... of energy for a wave energy converter or wave farm. Fundamentally, the MAEP is equal to the sum of the product of the power capture of a set of sea-states and their average annual occurrence. In general, it is necessary in the calculation of the MAEP to achieve a balance between computational demand...

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  3. Pluri-annual energy programming - The Energy transition for green growth. Synthesis

    International Nuclear Information System (INIS)

    2016-01-01

    The Energy Transition for Green Growth Act and its attendant action plans are designed to give France the means to make a more effective contribution to tackling climate change and reinforce its energy independence, while striking a better balance in its energy mix and creating jobs and business growth. This document summarizes the content of the Pluri-annual energy programming, which is the consistent action framework of the French energy transition: improving energy efficiency and reducing fossil fuels consumption, accelerating the development of renewable energy sources, maintaining a high-level of security of supply in the respect of environmental requirements, preparing tomorrow's energy system, developing clean mobility, taking account of the socio-economic issues of the energy transition and acting with the regions in this way

  4. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  5. Hemp: A more sustainable annual energy crop for climate and energy policy

    International Nuclear Information System (INIS)

    Finnan, John; Styles, David

    2013-01-01

    The objective of this study was to compare the fuel-chain greenhouse gas balance and farm economics of hemp grown for bioenergy with two perennial bioenergy crops, Miscanthus and willow, and two more traditional annual bioenergy crops, sugar beet and oil seed rape (OSR). The GHG burden of hemp cultivation is intermediate between perennial and traditional annual energy crops, but net fuel chain GHG abatement potential of 11 t/CO 2 eq./ha/year in the mid yield estimate is comparable to perennial crops, and 140% and 540% greater than for OSR and sugar beet fuel chains, respectively. Gross margins from hemp were considerably lower than for OSR and sugar beet, but exceeded those from Miscanthus when organic fertilizers were used and in the absence of establishment grants for the latter crop. Extrapolated up to the EU scale, replacing 25% of OSR and sugar beet production with hemp production could increase net GHG abatement by up to 21 Mt CO 2 eq./year. Hemp is a considerably more efficient bioenergy feedstock than the dominant annual energy crops. Integrated into food crop rotations, hemp need not compete with food supplies, and could provide an appealing option to develop more sustainable non-transport bioenergy supply chains. - Highlights: ► The GHG burden of hemp is intermediate between perennial and annual energy crops. ► Replacing 25% of OSR/beet with hemp could increase GHG abatement by 21 Mt/CO 2 eq./year. ► Hemp is a more efficient bioenergy feedstock than the dominant annual energy crops

  6. Method for calculating annual energy efficiency improvement of TV sets

    International Nuclear Information System (INIS)

    Varman, M.; Mahlia, T.M.I.; Masjuki, H.H.

    2006-01-01

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification

  7. Method for calculating annual energy efficiency improvement of TV sets

    Energy Technology Data Exchange (ETDEWEB)

    Varman, M. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)]. E-mail: indra@um.edu.my; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2006-10-15

    The popularization of 24 h pay-TV, interactive video games, web-TV, VCD and DVD are poised to have a large impact on overall TV electricity consumption in the Malaysia. Following this increased consumption, energy efficiency standard present a highly effective measure for decreasing electricity consumption in the residential sector. The main problem in setting energy efficiency standard is identifying annual efficiency improvement, due to the lack of time series statistical data available in developing countries. This study attempts to present a method of calculating annual energy efficiency improvement for TV set, which can be used for implementing energy efficiency standard for TV sets in Malaysia and other developing countries. Although the presented result is only an approximation, definitely it is one of the ways of accomplishing energy standard. Furthermore, the method can be used for other appliances without any major modification.

  8. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Science.gov (United States)

    2010-01-01

    ... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND... § 305.5 Determinations of estimated annual energy consumption, estimated annual operating cost, and...

  9. Energy conservation indicators. 1982 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.

    1982-09-01

    A series of Energy Conservation Indicators were developed for the Department of Energy to assist in the evaluation of current and proposed conservation strategies. As descriptive statistics that signify current conditions and trends related to efficiency of energy use, indicators provide a way of measuring, monitoring, or inferring actual responses by consumers in markets for energy services. Related sets of indicators are presented in some 40 one-page indicator summaries. Indicators are shown graphically, followed by several paragraphs that explain their derivation and highlight key findings. Indicators are classified according to broad end-use sectors: Aggregate (economy), Residential, Commercial, Industrial, Transportation and Electric Utilities. In most cases annual time series information is presented covering the period 1960 through 1981.

  10. Annual Energy Review 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-14

    This twelfth edition of the Annual Energy Review (AER) presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1993. Because coverage spans four and a half decades, the statistics in this report are well-suited to long-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels and electricity. The AER also presents Energy Information Administration (EIA) statistics on some renewable energy sources. EIA estimates that its consumption series include about half of the renewable energy used in the United States. For a more complete discussion of EIA`s renewables data, see p. xix, ``Introducing Expanded Coverage of Renewable Energy Data Into the Historical Consumption Series.`` Copies of the 1993 edition of the Annual Energy Review may be obtained by using the order form in the back of this publication. Most of the data in the 1993 edition also are available on personal computer diskette. For more information about the diskettes, see the back of this publication. In addition, the data are available as part of the National Economic, Social, and Environmental Data Bank on a CD-ROM. For more information about the data bank, contact the US Department of Commerce Economics and Statistics Administration, on 202-482-1986.

  11. Annual Energy Review 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This twelfth edition of the Annual Energy Review (AER) presents the Energy Information Administration's historical energy statistics. For most series, statistics are given for every year from 1949 through 1993. Because coverage spans four and a half decades, the statistics in this report are well-suited to long-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels and electricity. The AER also presents Energy Information Administration (EIA) statistics on some renewable energy sources. EIA estimates that its consumption series include about half of the renewable energy used in the United States. For a more complete discussion of EIA's renewables data, see p. xix, ''Introducing Expanded Coverage of Renewable Energy Data Into the Historical Consumption Series.'' Copies of the 1993 edition of the Annual Energy Review may be obtained by using the order form in the back of this publication. Most of the data in the 1993 edition also are available on personal computer diskette. For more information about the diskettes, see the back of this publication. In addition, the data are available as part of the National Economic, Social, and Environmental Data Bank on a CD-ROM. For more information about the data bank, contact the US Department of Commerce Economics and Statistics Administration, on 202-482-1986

  12. Annual Energy Review 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-10-01

    This twenty-ninth edition of the Annual Energy Review (AER) presents the U.S. Energy Information Administration’s (EIA) most comprehensive look at integrated energy statistics. The summary statistics on the Nation’s energy production, consumption, trade, stocks, and prices cover all major energy commodities and all energy-consuming sectors of the U.S. economy from 1949 through 2010. The AER is EIA’s historical record of energy statistics and, because the coverage spans six decades, the statistics in this report are well-suited to long-term trend analysis.

  13. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  14. Renewable energy annual 1996

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary

  15. Renewable energy annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  16. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  17. Husky Energy Inc. : 2002 annual report

    International Nuclear Information System (INIS)

    2003-01-01

    Financial information from Calgary-based Husky Energy Inc. was presented in this annual report and a review of their 2002 operations was made available for the benefit of shareholders. Husky Energy is one of Canada's largest producers of oil and gas. It is an integrated energy and energy-related company consisting of 3 segments, upstream, midstream and refined products. The report lists the major achievements for 2002 and plans for 2003. Among the achievements is the first oil production from Terra Nova and Wenchang and the commencement of the White Rose oil field development project. In the midstream and refined products businesses, Husky Energy achieved record volumes of more than 850,000 barrels of oil equivalent per day and a new record for asphalt sales. The company also received several awards for their performance in the areas of health, safety and the environment. It was noted that 2003 will likely be characterized by more volatility in commodity prices, and natural gas prices are expected to remain strong. Husky is expected to increase production of both oil and gas in 2003. This annual report includes an auditor's report of the company's financial statements and summarized the company's energy resource activities. An operations review was also presented along with consolidated financial statements, summarized balance sheet of assets, liabilities/surplus and net assets, and common share information. Revenue and expenditure statements were summarized by source. tabs., figs

  18. Empirical Study on Annual Energy-Saving Performance of Energy Performance Contracting in China

    Directory of Open Access Journals (Sweden)

    Hongquan Ruan

    2018-05-01

    Full Text Available A lack of trust in Energy Service Company (ESCo is the most critical factor affecting the development of Energy Performance Contracting (EPC in China, compared with other constraints. One cannot easily estimate the energy-saving performance of an EPC project. Under that condition, lack of trust may cause the Energy-Consuming Unit (ECU to suspect the energy-saving performance promised by the ESCo, thus leaving potentially profitable projects without necessary funding. Currently, specific studies taking an across-projects viewpoint on annual energy-saving performance of EPC projects in multiple subsectors, objectively and quantitatively, are lacking. This paper studies the regression relationships of annual energy-saving quantity in terms of revamping cost and the regression relationships of annual cost saving in terms of revamping cost. The regression results show that there are statistically significant correlations in the above relationships in the nine subsectors investigated. This is significant for ESCos and ECUs, because knowledge on energy-saving performance could contribute to EPC investment decisions and trust relationships between ESCos and ECUs. Then, a multiple linear regression model of revamping cost is set up to analyze its influencing factors. The model indicates that the subsector the sample belongs to, financing, registered capital of the ESCo, and contract period have significant effects on revamping cost. Thus, policy implications regarding innovation of EE promotion technology, clarifying ESCos’ exit mechanism, innovation of financing mechanism, and improving the market credit environment for promoting investment in EPC projects, are provided.

  19. Teaching the relation between solar cell efficiency and annual energy yield

    International Nuclear Information System (INIS)

    Sark, Wilfried G J H M van

    2007-01-01

    To reach a sustainable world the use of renewable energy sources is imperative. Photovoltaics (PV) is but one of the technologies that use the power of the sun and its deployment is growing very fast. Several master programs have been developed over the world, including Utrecht University, that teach these technologies. Within the framework of a course on energy conversion technologies, we have developed a classroom problem that focuses on the difference between PV efficiency and annual yield for the two locations: the Utrecht University campus and the African Sahara desert. In spreadsheet format, students calculate annual yield, and they find a best method to do so. The exercise can be done in about three hours, and students will learn that the annual yield in the Sahara is only twice that at Utrecht University,

  20. Energy Systems Studies Program annual report, fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    Beller, M. (ed.)

    1976-06-01

    This is the fourth annual progress report of the Energy Systems Studies Program supported at Brookhaven National Laboratory by the Energy Research and Development Administration (ERDA), Office of the Assistant Administrator for Planning and Analysis. The program is coordinated under the designation of a National Center for Analysis of Energy Systems (NCAES). Five working groups with specific program responsibilities are: policy analysis, economic analysis, biomedical and environmental assessment, technology assessment, and energy data and models. Future scenarios of the implementation of groups of technologies and new resources are developed. The socio-economic and environmental consequences are analyzed in detail and impact analyses are performed. Progress during FY 1976 is summarized in the following areas: energy system model development; energy-economic model development; technology assessments and support; economic analyses; and energy model data base activities. The program plan for FY 1977 is presented. (MCW)

  1. International energy annual, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    This report is prepared annually and presents the latest information and trends on world energy production, consumption, reserves, trade, and prices for five primary energy sources: petroleum, natural gas, coal, hydroelectricity, and nuclear electricity. It also presents information on petroleum products. Since the early 1980's the world's total output of primary energy has increased steadily. The annual average growth rate of energy production during the decade was 1.9 percent. Throughout the 1980's, petroleum was the world's most heavily used type of energy. In 1989, three countries--the United States, the USSR, and China--were the leading producers and consumers of world energy. Together, these countries consumed and produced almost 50 percent of the world's total energy. Global production and consumption of crude oil and natural gas liquids increased during the 1980's, despite a decline in total production and demand in the early part of the decade. World production of dry natural gas continued to rise steadily in the 1980's. For the last several years, China has been the leading producer of coal, followed by the United States. In 1989, hydroelectricity supply declined slightly from the upward trend of the last 10 years. Nuclear power generation rose slightly from the 1988 level, compared with the marked growth in earlier years. Prices for major crude oils all increased between 1988 and 1989, but remained well below the price levels at the beginning of the decade. 26 figs., 36 tabs

  2. Annual energy performance of R744 and R410A heat pumping systems

    International Nuclear Information System (INIS)

    Jin, Zhequan; Eikevik, Trygve M.; Nekså, Petter; Hafner, Armin; Wang, Ruzhu

    2017-01-01

    Highlights: • Annual energy performance of R744 and R410A heat pumping systems is compared. • Several dynamic models of heat pumping systems are developed. • Annual energy efficiency of R744 hybrid ground-coupled heat pumping system. • The seasonal COPc and COPh of R744 hybrid system are 3.55 and 3.32. • The superiority of R744 system on the integration of two heat sinks is discussed. - Abstract: This work compares the annual energy performance of heat pumping systems using R744 and R410A as refrigerant. Focus is the annual energy efficiency of R744 hybrid ground-coupled heat pumping system. The hybrid system uses both ambient air and ground as heat sinks in the cooling mode. This is important to eliminate the underground heat accumulation phenomenon in warm climates. Several quasi-steady state models of heat pumping systems, using R744 and R410A, have been developed. Simulation results show that the annual COP_c and COP_h of an R744 hybrid system reaches 3.55 and 3.32, and its cooling performance is 42% better than for a R744 ASHP and 23% better than for a R744 GCHP system. The annual energy performance factor of a R410A ASHP system is better than for a R744 hybrid system, but the COP_c for the R410A system will be lower when the ambient temperature is higher than 30 °C.

  3. Energy in Croatia 2003. Annual Energy Report

    International Nuclear Information System (INIS)

    2004-11-01

    Reports have kept domestic and international audience continuously informed about the latest relations and developments in the Croatian energy system. Annual report presents all characteristic indicators of the Croatian energy system in 2003, outlines their development over a longer past period, and suggests a future course of development of basic energy system indicators. Total primary energy supply in the Republic of Croatia in 2003 was 5.2 percent higher compared to the previous year. The gross domestic product increased by 4.3 percent over the same period. This means that energy intensity, primary energy supply per unit of gross domestic product, increased by 0.9 percent. Compared to the european Union average Croatian energy intensity was approximately 32 percent higher. Total primary energy production, on the other hand, decreased by 1.1 percent compared to 2002. This means that primary energy self-supply, which fell to 46.4 percent, reached its lowest level to-date in the observed period. The remaining energy needs were met by imports, which increased by 1.7 percent. In the structure of total primary energy supply, decrease has been observed only in energy conversion losses, while all other categories increased. Final energy demand increased by 6.7 percent in 2003, with the levels recorded in different sectors ranging from 2.5 percent in industry to 7.5 and 8 percent in transport and other sectors, respectively. In terms of final energy demand, an increase has been recorded in all energy forms except natural gas, whose consumption showed stagnation. This is due to lower consumption in the energy transformation sector and a significant 9.2 percent increase in its final energy demand. A continuous increase in electricity consumption - which reached 4.8 percent in the observed period - is worth nothing. Energy forms which recorded highest consumption increase levels in 2003 are coal (16 percent) and diesel fuel (15 percent). In contrast to the fast increase in

  4. TRUE multi-annual energy planning

    International Nuclear Information System (INIS)

    Bringault, Anne; Cormier, Cyrille; Arditi, Maryse

    2016-01-01

    A multi-annual energy planning (PPE) has been introduced by the French government to transcribe the objectives of the law on energy transition into evolutions for energy consumption and production for different periods (2016-2018 and 2019-2023). This publication first indicates various assessments for these periods regarding energy consumption, electricity consumption, fossil energy consumption, renewable energy production, the share of electric renewable energies, and the decrease of the nuclear share. These objectives are then discussed with respect to different scenarios, and notably a reference scenario

  5. Assumptions for the Annual Energy Outlook 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report serves a auxiliary document to the Energy Information Administration (EIA) publication Annual Energy Outlook 1992 (AEO) (DOE/EIA-0383(92)), released in January 1992. The AEO forecasts were developed for five alternative cases and consist of energy supply, consumption, and price projections by major fuel and end-use sector, which are published at a national level of aggregation. The purpose of this report is to present important quantitative assumptions, including world oil prices and macroeconomic growth, underlying the AEO forecasts. The report has been prepared in response to external requests, as well as analyst requirements for background information on the AEO and studies based on the AEO forecasts

  6. Annual Report 2002 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    2003-06-01

    Annual Report of the Institute of Atomic Energy described the results of the research works carried out at the Institute in 2002 year. The Report contains the information on technical and research studies developed by all Institute Departments and Laboratories

  7. FY2014 Energy Storage R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-03-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at the following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.

  8. Annual energy review 2003

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherin E. [Energy Information Adminstration (EIA), Washington, DC (United States)

    2004-09-30

    The Annual Energy Review 2003 is a statistical history of energy activities in the United States in modern times. Data are presented for all major forms of energy by production (extraction of energy from the earth, water, and other parts of the environment), consumption by end-user sector, trade with other nations, storage changes, and pricing. Much of the data provided covers the fossil fuels—coal, petroleum, and natural gas. Fossil fuels are nature’s batteries; they have stored the sun’s energy over millennia past. It is primarily that captured energy that we are drawing on today to fuel the activities of the modern economy. Data in this report measure the extraordinary expansion of our use of fossil fuels from 29 quadrillion British thermal units (Btu) in 1949 to 84 quadrillion Btu in 2003. In recent years, fossil fuels accounted for 86 percent of all energy consumed in the United States. This report also records the development of an entirely new energy industry—the nuclear electric power industry. The industry got its start in this country in 1957 when the Shippingport, Pennsylvania, nuclear electric power plant came on line. Since that time, the industry has grown to account for 20 percent of our electrical output and 8 percent of all energy used in the country. Renewable energy is a third major category of energy reported in this volume. Unlike fossil fuels, which are finite in supply, renewable energy is essentially inexhaustible because it can be replenished. Types of energy covered in the renewable category include conventional hydroelectric power, which is power derived from falling water; wood; waste; alcohol fuels; geothermal; solar; and wind. Together, these forms of energy accounted for about 6 percent of all U.S. energy consumption in recent years.

  9. Suncor Energy annual report 2003

    International Nuclear Information System (INIS)

    2004-01-01

    Suncor Energy Inc. is an integrated Canadian energy company with three operating segments: (1) oil sands production of light sweet and light sour crude oil, diesel fuel and other custom blends from oil sands mined in the Athabasca region of northeastern Alberta, (2) natural gas exploration, acquisition development, production, transportation and marketing of natural gas and crude oil in Canada and the United States, and (3) Sunoco, the marketing of petroleum and petrochemical products, mostly in Ontario and Quebec. This annual report includes the customary consolidated financial statements including the accounts of Suncor Energy Inc. and its subsidiaries and the company's proportionate share of the assets, liabilities, revenues, expenses and cash flows of joint ventures. The report states that the steady increase of Suncor's share price over the last decade reflects the company's growing oil production and expanding earnings and cash flow. It also reflects investor confidence in Suncor's ability to generate high returns. tabs., figs

  10. Annual Report 2003 of the Institute of Atomic Energy

    International Nuclear Information System (INIS)

    2004-06-01

    Annual report of the Institute of Atomic Energy, Swierk (PL), described the results of the research work carried out at the Institute in 2003 year. The report contains detailed information on technical and research studies developed by all Institute Departments and Laboratories

  11. Multi-annual energy plan of Martinique 2015/2018 - 2019/2023

    International Nuclear Information System (INIS)

    2015-11-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Martinique island (French West Indies). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 4-years period (2015-2018) followed by a second 5-years period (2019-2023)

  12. Multi-annual energy plan for Corsica 2016-2018/2019-2023

    International Nuclear Information System (INIS)

    2015-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Corsica Island (Mediterranean Sea). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  13. Multi-annual energy plan for Mayotte 2016-2018 / 2019- 2023

    International Nuclear Information System (INIS)

    2016-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Mayotte Island (Indian Ocean). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  14. Energy and climate change: the main analyses of Regards sur la Terre. An annual publication on sustainable development

    International Nuclear Information System (INIS)

    Jacquet, P.; Tubiana, L.; Colombier, Michel; Loup, Jacques; Laponche, Bernard; Martin-Amouroux, Jean-Marie; Chateau, Bertrand; Kieken, Hubert; Kleiche, Mustapha; Heller, Thomas C.; Mathy, Sandrine; Hourcade, Jean-Charles; Goldemberg, Jose; Pizer, William A.

    2007-01-01

    In November 2006, the French Development Agency, AFD (Agence francaise de developpement) and the Institute for Sustainable Development and International Relations, IDDRI (Institut du developpement durable et des relations internationales) launched an annual publication on sustainable development in a global perspective, Regards sur la Terre, published by Les Presses de Sciences Po (Paris). Regards sur la Terre includes an analysis of the most important international events of the last twelve months in the field of sustainable development, along with a thematic section, which in the first edition focused on energy and climate change. This booklet presents the overall introduction of the 2007 publication and the introduction of its thematic section, as well as a selection of the main chapters dealing with the theme of energy and climate change. Contents: Awakening and crisis of confidence; Reorienting our Societies; Energy in the world: Challenges and prospects; Challenges and constraints for energy supply: The coal hard facts; Satisfying energy growth in emerging countries; Diversifying power generation in China; From Rio to Marrakech: Development in climate negotiations; An international coordination regime come what may; The perspective of developing countries; An American 'point of view'

  15. Fourth Annual Report on Energy Efficiency

    International Nuclear Information System (INIS)

    Di Franco, Nino; Bertini, Ilaria; Federici, Alessandro; Moneta Roberto

    2015-01-01

    Here we present the main elements of the annual report on energy efficiency 2015. The results indicate that, thanks to national policies for energy efficiency, Italy saved over 7.5 million tons of oil equivalent per year in the period 2005-2013. Compared to the National Plan for Energy Efficiency 2014, the report shows that the 2020 objectives have already been achieved for more than 20%, with residential (35.7% of the target) and industry (26.6%) among the sectors that contributed most to this result. Substantial savings could result from the agribusiness sector through the dissemination of efficient technologies in the logistics and large retail chains. A key role lies with the banks: 86% of banks has developed products dedicated to efficiency, necessitating guidelines for replicability of projects, and audit and rating to assess their quality [it

  16. Annual Energy Review 1997

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    1998-07-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 1997. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is in keeping with responsibilities given to the Energy Information Administration (EIA) in Public Law 95–91 (Department of Energy Organization Act), which states, in part, in Section 205(a)(2) that: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  17. International energy annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.

  18. International energy annual 1995

    International Nuclear Information System (INIS)

    1996-12-01

    The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided

  19. Energy in Croatia 2002. Annual Energy Report

    International Nuclear Information System (INIS)

    2003-01-01

    The review, in its own recognisable way, consists of the most recent and settled data on the Croatian energy system for the period up to and including the year 2002. Some data appertain to a longer time period with the aim of an easier insight into long-term prospects. In 2002 total primary energy supply exceeded the year before by 1.3 percent. Owing to the simultaneous growth of the gross domestic product by 5.2 percent, energy intensity decreased thus marking the third year of a positive trend. However, it has to be mentioned that energy intensity, which expresses the total energy consumed per unit of gross domestic product, exceeded the level of the developed European countries by 33 percent, although it was still more favourable than in the majority of transition countries. Supply from own sources fell to the less than 50 percent, and energy import, with oil in the leading position, recorded an average annual increase of 4.7 percent. In 2002 transformation losses as well as transportation and distribution losses decreased thus bringing about the already mentioned total energy consumption growth of 1.3 percent and final demand increase by 2.3 percent - this means that the energy system was more efficient. The year 2002 recorded a consumption increase in traffic by 6.2 percent, in other sectors by 3 percent, while industry realised a decrease by 3.9 percent. It should be emphasised that diesel fuel recorded a major increase and in the whole structure almost reached the level of the motor gasoline. From 1995 till the end of the period observed the gas distribution network was doubled in length. The report includes other interesting information about our energy system, i.e. capacities, energy, source prices, as well as environmental impact from the energy sector

  20. International energy annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The International Energy Annual presents current data and trends for production, consumption, stocks, imports, and exports for primary energy commodities in more than 190 countries, dependencies, and areas of special sovereignty. Also included are prices on crude petroleum and petroleum products in selected countries. This report is published to keep the public and other interested parties fully informed with respect to primary energy supplies on a global basis. The data presented have been largely derived from published sources and from United States Embassy personnel in foreign posts. The data have been converted to units of measurement and thermal values familiar to the American public

  1. Fusion Energy Division annual progress report period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  2. Fusion Energy Division annual progress report period ending December 31, 1986

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport

  3. Annual energy review 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This eleventh edition of the Annual Energy Review (AER) presents the Energy Information Administration's historical energy statistics. For most series, statistics are given for every year from 1949 through 1992. Because coverage spans four decades, the statistics in this report are well-suited to tong-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, all major energy commodities, including fossil fuels and electricity. The AER also presents statistics on some renewable energy sources. For the most part, fuel-specific data are expressed in physical units such as barrels, cubic feet, and short tons. The integrated summary data in Section 1 are expressed in Btu. The Btu values are calculated using the conversion factors in Appendix A. Statistics expressed in Btu are valuable in that they allow for comparisons among different fuels and for the calculation of in the integrated summary statistics such as US consumption of Energy. The AER emphasizes domestic energy statistics

  4. Supplement to the Annual Energy Outlook 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration's (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010

  5. Annual energy review 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector for 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).

  6. Annual Energy Review 2000

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2001-08-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications.

  7. Multi-annual energy plan 2016/2018/2019/2023 of Guadeloupe. Decree no. 2017-570 from april 19, 2017 relating to the multi-annual energy plan of Guadeloupe

    International Nuclear Information System (INIS)

    2017-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Guadeloupe island (French West Indies). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  8. Annual energy review 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Annual Energy Review (AER) is a historical data report that tells many stories. It describes, in numbers, the changes that have occurred in US energy markets since the midpoint of the 20th century. In many cases, those markets differ vastly from those of a half-century ago. By studying the graphs and data tables presented in this report, readers can learn about past energy supply and usage in the United States and gain an understanding of the issues in energy and the environment now before use. While most of this year`s report content is similar to last year`s, there are some noteworthy developments. Table 1.1 has been restructured into more summarized groupings -- fossil fuels, nuclear electric power, and renewable energy -- to aid analysts in their examination of the basic trends in those broad categories. Readers` attention is also directed to the electricity section, where considerable reformatting of the tables and graphs has been carried out to help clarify past and recent trends in the electric power industry as it enters a period of radical restructuring. Table 9.1, which summarizes US nuclear generating units, has been redeveloped to cover the entire history of the industry in this country and to provide categories relevant in assessing the future of the industry, such as the numbers of ordered generating units that have been canceled and those that were built and later shut down. In general, the AER emphasizes domestic energy statistics. Sections 1 through 10 and Section 12 are devoted mostly to US data; Section 11 reports on international statistics and world totals. 140 figs., 141 tabs.

  9. International Energy Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-14

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

  10. International energy annual, 1991

    International Nuclear Information System (INIS)

    1992-12-01

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules

  11. International Energy Annual, 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules

  12. Proceedings of the fourth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Braski, D.N. (comps.)

    1990-08-01

    The Fourth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on may 15--17, 1990. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The work is divided into the following categories: (1) Ceramics, (2) New Alloys, (3) Corrosion and Erosion, and (4) Technology Assessment and Technology Transfer. Individual projects are processed separately for the data bases.

  13. 1982 Annual Energy Review

    International Nuclear Information System (INIS)

    1983-04-01

    Total energy consumption in the United States equaled 70.9 quadrillion British thermal units (Btu) in 1982, a decline of 4.1% compared to 1981. Depressed economic activity was a major factor in reducing total energy demand. However, conservation also played a role as energy consumption per dollar of GNP continued to fall. Most of the decline in energy use involved petroleum and natural gas. Reduced petroleum demand translated into a 21.7% reduction in net petroleum imports. Natural gas demand and production fell, prompted by reduced economic activity and a substantial increase in prices. Crude oil prices fell for the first time in more than a decade. Weakened market conditions adversely affected the rate of domestic oil and gas exploration and development activities. Nonetheless, domestic crude oil production rose 1.2%. International activities were highlighted by a decline in crude oil production, especially by members of the Organization of Petroleum Exporting Countries (OPEC), a decrease in crude oil prices, and a substantial increase in electricity production by nuclear-powered utility plants in non-Communist countries. Energy production in the United States in 1982 remained essentially unchanged from that of 1981, as small gains in hydroelectric power and nuclear power production were offset by losses in natural gas production. For the third straight year, energy consumption in the United States declined. Whereas declines in 1980 and 1981 resulted primarily from consumer response to higher prices and conservation, the 1982 decline reflected primarily an economic slowdown, especially in industry. Annual per capita consumption fell to 306 million Btu, the lowest level since 1967. Changes in energy prices in 1982 were mixed. Whereas most petroleum prices declined, prices of natural gas, coal, and electricity rose

  14. Short-term energy outlook, annual supplement 1994

    International Nuclear Information System (INIS)

    1994-08-01

    The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts

  15. Queensland Energy Advisory Council 1984 annual review

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Council consists of senior officials of Government Departments involved with various aspects of assessment, production, distribution and utilisation of energy resources. Noted in the annual review are functions of QEAC; activities; overview of Queensland's energy position; non renewable resources; coal; electricity; crude oil; natural gas; PGL; oil shale; uranium; renewable resources; solar energy; wind energy and biomass.

  16. Short-term energy outlook annual supplement, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-06

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  17. Assumptions for the Annual Energy Outlook 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report is an auxiliary document to the Annual Energy Outlook 1993 (AEO) (DOE/EIA-0383(93)). It presents a detailed discussion of the assumptions underlying the forecasts in the AEO. The energy modeling system is an economic equilibrium system, with component demand modules representing end-use energy consumption by major end-use sector. Another set of modules represents petroleum, natural gas, coal, and electricity supply patterns and pricing. A separate module generates annual forecasts of important macroeconomic and industrial output variables. Interactions among these components of energy markets generate projections of prices and quantities for which energy supply equals energy demand. This equilibrium modeling system is referred to as the Intermediate Future Forecasting System (IFFS). The supply models in IFFS for oil, coal, natural gas, and electricity determine supply and price for each fuel depending upon consumption levels, while the demand models determine consumption depending upon end-use price. IFFS solves for market equilibrium for each fuel by balancing supply and demand to produce an energy balance in each forecast year

  18. International Energy Agency 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    The IEA Executive Director's Annual Report 2013 is the second of a regular annual series reporting on the IEA’s operational and organisational achievements, as well as challenges and events over the year. It was presented to the IEA Governing Board and is also released publicly to ensure transparency and to take stock of the organisation's activities from a strategic perspective. 2013 was a banner year for the IEA, given continued changes in the global energy economy as well as the IEA Ministerial meeting in November which brought together Energy Ministers from all 28 IEA member countries, accession countries Chile and Estonia, seven key partner countries - Brazil, China, India, Indonesia, Mexico, Russian Federation and South Africa - as well as more that 30 top-level executives from the energy industry. Key Ministerial outcomes included the first IEA Ministers' Joint Statement on Climate Change and a declaration of association by six key partner countries to build multilateral cooperation with the IEA.

  19. International Energy Agency 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    The IEA Executive Director's Annual Report 2013 is the second of a regular annual series reporting on the IEA’s operational and organisational achievements, as well as challenges and events over the year. It was presented to the IEA Governing Board and is also released publicly to ensure transparency and to take stock of the organisation's activities from a strategic perspective. 2013 was a banner year for the IEA, given continued changes in the global energy economy as well as the IEA Ministerial meeting in November which brought together Energy Ministers from all 28 IEA member countries, accession countries Chile and Estonia, seven key partner countries - Brazil, China, India, Indonesia, Mexico, Russian Federation and South Africa - as well as more that 30 top-level executives from the energy industry. Key Ministerial outcomes included the first IEA Ministers' Joint Statement on Climate Change and a declaration of association by six key partner countries to build multilateral cooperation with the IEA.

  20. Annual Energy Review 2002

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2003-10-01

    The Annual Energy Review (AER) presents the Energy Information Administration’s historical energy statistics. For many series, statistics are given for every year from 1949 through 2002. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable energy sources. Publication of this report is required under Public Law 95–91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the Energy Information Administration (EIA) under Section 205(a)(2), which states: “The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information....” The AER is intended for use by Members of Congress, Federal and State agencies, energy analysts, and the general public. EIA welcomes suggestions from readers regarding data series in the AER and in other EIA publications. Related Publication: Readers of the AER may also be interested in EIA’s Monthly Energy Review, which presents monthly updates of many of the data in the AER. Contact our National Energy Information Center for more information.

  1. Renewable energy annual 1998, with data for 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This is the fourth annual report published by the Energy Information Administration (EIA) which presents information on renewable energy consumption, capacity, and electricity generation data; US solar thermal and photovoltaic collector manufacturing activities; and US geothermal heat pump manufacturing activities. It updates and provides more detail on renewable energy information than what`s published in the Energy Information Administration`s (EIA) Annual Energy Review 1997. The renewable energy resources included in the report are: biomass (wood, wood waste, municipal solid waste, ethanol, and biodiesel); geothermal; wind; solar (solar thermal and photovoltaic); and hydropower. However, hydropower is also regarded as a conventional energy source because it has furnished a significant amount of electricity for more than a century. Therefore, the contribution of hydropower to total renewable energy consumption is discussed, although hydropower as an individual energy source is not addressed. Since EIA collects data only on terrestrial (land-based) systems, satellite and military applications are not included in this report. 13 figs., 44 tabs.

  2. Atomic Energy of Canada Limited, annual report, 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements.

  3. Atomic Energy of Canada Limited, annual report, 1995-1996

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements

  4. Institute of Atomic Energy - Annual Report 1998

    International Nuclear Information System (INIS)

    Swiboda, G.

    1999-01-01

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute in 1998. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  5. Institute of Atomic Energy - Annual Report 1999

    International Nuclear Information System (INIS)

    Swiboda, G.

    2000-01-01

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1999. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well

  6. Multi-annual energy plan 2016-2018 and 2019-2023 of French Guiana

    International Nuclear Information System (INIS)

    2016-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for French Guiana overseas region. It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  7. Annual energy outlook 1993 with projections to 2010

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Information Administration's (EIA's) Annual Energy Outlook 1993 (AEO93) presents forecasts for energy prices, supply, demand, and imports over the period 1990 to 2010. These projections take into account existing legislation, including the Energy Policy Act of 1992. Even though the world oil market remains relatively tight, the long-term outlook for oil prices has been revised downward since the Annual Energy Outlook 1992 as expectations for both the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC production potential have been revised upward. Domestic natural gas prices are also expected to be lower than projected last year, in part because of a more optimistic outlook for drilling technology. Finally, lower growth in the demand for electricity is expected because of the Energy Policy Act of 1992, which mandates efficiency standards for new energy-using equipment. These are the most striking differences between last year's EIA evaluation of long-term energy market trends and this year's evaluation

  8. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O' Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  9. Short-term energy outlook annual supplement, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding

  10. Manitoba Energy and Mines annual report 1998-1999

    International Nuclear Information System (INIS)

    1999-03-01

    This annual report states the objectives and achievements of each of the Department of Energy and Mines branches in the same sequence as in the Dept.'s appropriation structure in the Main Estimates of the Expenditure for the Province. Details of the Dept.'s financial performance, together with a 5 year historical table of departmental spending and staffing levels, are provided in the Financial Information Section. Manitoba's oil and gas sector, though small by regional or international standards, is a significant part of the provincial economy. In 1998, Manitoba produced 634,071 cubic m of oil having a total value of about 27% of the province's refined petroleum products needs. In 1998, the petroleum industry spend more than $61 million in Manitoba to explore and develop new oil pools, and to operate the approximately 1,900 active wells in the province. The petroleum industry employs directly and indirectly over 600 people. In 1998/99, royalties, production taxes and revenue from the leasing of Crown owned oil and gas rights added $34 million to the Provincial treasury. The Petroleum and Energy Branch administers the Oil and Gas Act regulations governing the exploration, development, production, transportation and storage of crude oil and natural gas. The Dept. in conjunction with the Manitoba Oil Museum hosted the 1998 Manitoba Oil Show. Manitobans spend about $2.8 billion annually to heat and light their homes, power business, industry and agriculture and fuel their transportation needs. The installed provincial electrical generating capacity is 5,137 megawatts, and the Branch administers the Energy Act. refs

  11. Annual Energy Outlook 2009 with Projections to 2030

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    The Annual Energy Outlook 2009 (AEO2009), prepared by the Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2030, based on results from EIA’s National Energy Modeling System (NEMS). EIA published an “early release” version of the AEO2009 reference case in December 2008.

  12. Israel Atomic Energy Commission 1997 Annual Report

    International Nuclear Information System (INIS)

    1997-01-01

    The 1997 Annual Report is published in a special year for Israel, marking the 50th anniversary of its independece and statehood. From its inception, and the election of a distinguished scientist as its first president, Israel has regarded science and technology as a central pillar for future AEC development and a lever for improved quality of life of its people. The Israel Atomic Energy Commission, which will be celebrating its own anniversary in a few years, has made a modest but significant contribution to the establishment and growth of the technological infrastructure of the country. The first article in this Annual Report focuses attention on yet another aspect of our continuing investigation of the basic properties of technologically interesting and important materials, presented in our 1994 and 1996 Annual Reports. The current entry describes an application of the nuclear Time Differential Perturbed Angular Correlation technique to the study of the structure and properties of metal-hydrogen compounds, of potential interest within the framework of future, environmentally attractive hydrogen-burning energy systems, and in fusion power reactors. The second article also relates to some basic aspects of nuclear fusion. A theoretical study of the behavior and properties of laser-generated hot plasmas resulted in the proposal of a new confinement scheme, in which a plasma generated by circularly polarized laser light is confined in a miniature magnetic bottle created by magnetic fields induced in the plasma by the same light. The paper discusses the conditions under which such confinement and ensuing energy gain may be achieved. Measurements of actual axial magnetic fields generated in plasma by intense circularly polarized laser light are also reported. The third report describes one of our ongoing efforts to improve and streamline the techniques and procedures used in medical applications of radioisotopes. Replacement of the customary )311 solutions for

  13. Israel Atomic Energy Commission 1997 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The 1997 Annual Report is published in a special year for Israel, marking the 50th anniversary of its independece and statehood. From its inception, and the election of a distinguished scientist as its first president, Israel has regarded science and technology as a central pillar for future AEC development and a lever for improved quality of life of its people. The Israel Atomic Energy Commission, which will be celebrating its own anniversary in a few years, has made a modest but significant contribution to the establishment and growth of the technological infrastructure of the country. The first article in this Annual Report focuses attention on yet another aspect of our continuing investigation of the basic properties of technologically interesting and important materials, presented in our 1994 and 1996 Annual Reports. The current entry describes an application of the nuclear Time Differential Perturbed Angular Correlation technique to the study of the structure and properties of metal-hydrogen compounds, of potential interest within the framework of future, environmentally attractive hydrogen-burning energy systems, and in fusion power reactors. The second article also relates to some basic aspects of nuclear fusion. A theoretical study of the behavior and properties of laser-generated hot plasmas resulted in the proposal of a new confinement scheme, in which a plasma generated by circularly polarized laser light is confined in a miniature magnetic bottle created by magnetic fields induced in the plasma by the same light. The paper discusses the conditions under which such confinement and ensuing energy gain may be achieved. Measurements of actual axial magnetic fields generated in plasma by intense circularly polarized laser light are also reported. The third report describes one of our ongoing efforts to improve and streamline the techniques and procedures used in medical applications of radioisotopes. Replacement of the customary 311 solutions for

  14. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  15. Annual report 2001[International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2001. The report outlines the IAEA activities in the following fields: nuclear power, nuclear fuel cycle and waste management technology, comparative assessment for sustainable energy development; food and agriculture, human health, marine environment and water resources, applications of physical and chemical sciences, nuclear safety, radiation safety, radioactive waste safety, co-ordination of safety activities, safeguards, security of material, verification in Iraq pursuant to UNSC resolutions, management of technical co-operation for development, policy-making, management and support.

  16. EDF Group - Annual Report 2008. Leading the energy change

    International Nuclear Information System (INIS)

    2009-01-01

    The EDF Group is a leading player in the energy industry, present in all areas of the electricity value chain, from generation to trading, along with network management and the natural gas chain. The Group has a sound business model, evenly balanced between regulated and deregulated activities. It is the leader in the French and British electricity markets and has solid positions in Germany and Italy. The Group has a portfolio of 38.1 million customers in Europe and the world's premier nuclear generation fleet. Given its R and D capability, its track record and expertise in nuclear generation and renewable energy, together with its energy eco-efficiency offers, EDF offers competitive solutions that reconcile sustainable economic development and climate preservation. EDF's goal is to deliver solutions that allow every customer to help create a world of competitive, low-carbon energies. This document is EDF Group's annual report for the year 2008. It contains information about Group profile, governance, business, development strategy, sales and marketing, positions in Europe and international activities. The document is made of several reports: the Activity and Sustainable Development Report, the Financial Report, the Sustainable Development Report and the Sustainable Development Indicators

  17. Institute for Energy Technology, Annual Report 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The annual report gives a brief account of the activities of Institute for Energy Technology and presents a fairly comprehensive anasis of the budgetary dispositions in 1981 and, for comparison, 1980. (RF)

  18. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  19. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    2003-01-01

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  20. Swiss Federal Energy Research Commission - Annual report 2008

    International Nuclear Information System (INIS)

    Maus, K.

    2009-01-01

    This annual report presents a review of the activities carried out by the Swiss Federal Energy Research Commission CORE in the year 2008. Main points of interest were the definition of a new CORE vision, a review of all research programmes, co-operation and co-ordination with public and private institutes, active consultancy, recommendations for further education and training, improved international information exchange and good communication with business, politics and the general public. The definition of a concept for Swiss energy research for the period 2012 to 2016 is mentioned. The annual report also reports on an internal visit made to various laboratories of the Swiss Federal Institute of Technology in Lausanne and the Energy Center in Zurich. The focussing of CORE activities on particular themes is discussed

  1. Intra-annual wave resource characterization for energy exploitation: A new decision-aid tool

    International Nuclear Information System (INIS)

    Carballo, R.; Sánchez, M.; Ramos, V.; Fraguela, J.A.; Iglesias, G.

    2015-01-01

    Highlights: • A decision-aid tool is developed for computing the monthly performance of WECs. • It allows the generation of high-resolution monthly characterization matrices. • The decision-aid tool is implemented to the Death Coast (N Spain). • The monthly matrices can be obtained at any coastal location within the Death Coast. • The tool is applied to a coastal location of a proposed wave farm. - Abstract: The wave energy resource is usually characterized by a significant variability throughout the year. In estimating the power performance of a Wave Energy Converter (WEC) it is fundamental to take into account this variability; indeed, an estimate based on mean annual values may well result in a wrong decision making. In this work, a novel decision-aid tool, iWEDGE (intra-annual Wave Energy Diagram GEnerator) is developed and implemented to a coastal region of interest, the Death Coast (Spain), one of the regions in Europe with the largest wave resource. Following a comprehensive procedure, and based on deep water wave data and high-resolution numerical modelling, this tool provides the monthly high-resolution characterization matrices (or energy diagrams) for any location of interest. In other words, the information required for the accurate computation of the intra-annual performance of any WEC at any location within the region covered is made available. Finally, an application of iWEDGE to the site of a proposed wave farm is presented. The results obtained highlight the importance of the decision-aid tool herein provided for wave energy exploitation

  2. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  3. Ontario Energy Corporation annual report 1981. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Ontario Energy Corporation's mission of providing leadership and investment capital for selected energy ventures brought its total participation in projects from $16.4 million to $669 million, and its total assets increased from $44.4 million to $693 million during the year. The annual report review major operations with Ontario Energy Resources Ltd., Onexco Ltd., Ontario Alternate Energy Ltd., Ontario Power Share Ltd., and Ontario Energy in Transportation Ltd. The financial report includes a balance sheet, income and retained earnings statement, and a summary of financial changes during the reporting period. 1 figure, 4 tables. (DCK)

  4. The National Energy Board's annual report to Parliament 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The National Energy Board (NEB) informs Canadians about energy market trends. This annual report provides a summary of Canadian energy supply, consumption, production, prices and trade with an emphasis on developments in 2004, a year marked by high and volatile energy prices led by crude oil prices. Although exploration efforts increased, producers were led to develop non-traditional supply sources due to the declining supply of domestic conventional crude oil and flat domestic natural gas production. 2004 saw the expansion of crude oil production from the East coast offshore and from Alberta's oil sands. The year also saw the development of natural gas supply sources in Canada's North, the development of coalbed methane sources and the import of liquefied natural gas. Regulatory highlights for 2004 include applications for new pipeline facilities, new international power lines, tolls and tariff filings, and activities on frontier lands. In 2004 Canada's energy industry accounted for 6 per cent of Canada's Gross Domestic product and employed 300,000 people. Revenue from energy exports accounted for 15 per cent of all Canadian exports. Total energy production in Canada increased by about 2 per cent in 2004, compared with a decline of 0.2 per cent in 2003. Petroleum and natural gas accounted for more than 75 per cent of total energy production. Export revenues remained similar to 2003 levels due to high oil prices. Hydroelectric production declined for the second year in a row due to drought conditions. Renewable and other energy sources increased by nearly 4 per cent, while nuclear energy production increased over 20 per cent due to refurbished nuclear generators in Ontario. tabs., figs

  5. Classification of methods for annual energy harvesting calculations of photovoltaic generators

    International Nuclear Information System (INIS)

    Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J.

    2014-01-01

    Highlights: • The paper presents a novel classification of methods for annual energy harvesting calculation of grid-connected PV systems. • The methods are classified in direct and indirect methods. • Direct methods directly calculate the energy. Indirect methods calculate the energy from the power. • The classification can help the PV professionals in order to choose the most suitable method for each application. - Abstract: Estimating the energy provided by the generators of grid-connected photovoltaic systems is important in order to analyze their economic viability and supervise their operation. The energy harvesting calculation of a photovoltaic generator is not trivial; there are a lot of methods for this calculation. The aim of this paper is to develop a novel classification of methods for annual energy harvesting calculation of a generator of a grid-connected photovoltaic system. The methods are classified in two groups: (1) those that indirectly calculate the energy, i.e. they first calculate the power and from this, they calculate the energy, and (2) those that directly calculate the energy. Furthermore, the indirect methods are grouped in two categories: those that first calculate the I–V curve of the generator and from this, they calculate the power, and those that directly calculate the power. The study has shown that the existing methods differ in simplicity and accuracy, so that the proposed classification is useful in order to choose the most suitable method for each specific application

  6. The National Energy Strategy: A balanced program?. Proceedings of the nineteenth annual Illinois energy conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The Nineteenth Annual Illinois Energy Conference was held in Chicago, Illinois November 1991. It was organized by the Energy Resources Center, University of Illinois at Chicago with major support provided by the US Environmental Protection Agency, the US Department of Energy, the Illinois Commerce Commission, the Illinois Department of Energy and Natural Resources, and the Citizens Council on Energy Resources. The conference program was developed by a planning committee who drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The members of the planning committee were brought together for a full-day session where they were asked to assess the political, economic, and social impacts of the proposed National Energy Strategy as it relates to Illinois and the Midwest region. Within this context, the planning committee identified several major issues including: (1) Is the proposed plan a balanced strategy; (2) What are the NES impacts on the transportation sector; (3) What are the opportunities for improved efficiency in the Electric Utility Sector; and (4) What is the role of advanced research and development.

  7. International Energy Agency 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The IEA Executive Director’s Annual Report 2012 is the first of a regular annual series reporting on the IEA’s operational and organisational achievements, as well as challenges and events over the year. It is presented to the IEA Governing Board and released publicly to ensure transparency and also to take stock of the organisation’s activities from a strategic perspective. 2012 was a transitional year for the IEA, given fundamental changes in the global energy economy as well as internal management and budget issues. At the same time demand for IEA products set new records, and the public and political impact of IEA work through effective communication was measured as high.

  8. [SaskEnergy, Inc.]. Annual report, 1997

    International Nuclear Information System (INIS)

    1998-01-01

    Annual report of SaskEnergy Inc., a Crown corporation established in 1992 to provide a secure supply of natural gas to over 293,000 customers. The report provides an overview of the year's activities; a corporate profile; financial and operating highlights; details on distribution, transmission and storage; corporate and social responsibility; and the future outlook. Financial statements are included

  9. [SaskEnergy, Inc.]. Annual report 1998

    International Nuclear Information System (INIS)

    1999-01-01

    Annual report of SaskEnergy Inc., a Crown corporation established in 1992 to provide a secure supply of natural gas to over 293,000 customers. The report provides an overview of the year's activities; a corporate profile; financial and operating highlights; details on distribution, transmission and storage; corporate and social responsibility; and the future outlook. Financial statements are included

  10. California Energy Systems for the 21st Century 2016 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Van Randwyk, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boutelle, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weed, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-25

    The California Energy Systems for the 21st Century (CES-21) Program is a public-private collaborative research and development program between the California Joint Utilities1 and Lawrence Livermore National Laboratory (LLNL). The purpose of this annual report is to provide the California Public Utilities Commission (CPUC or Commission) with a summary of the 2016 progress of the CES-21 Program.

  11. Proceedings of the tenth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1996-08-01

    The Tenth Annual Conference on Fossil Energy Materials was held in Knoxville, Tennessee, on May 14-16, 1996. The meeting was sponsored by the U.S. Department of Energy`s (DOE) Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer. This conference is held each year to review the work on all of the projects of the program. The final program for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. Selected items have been processed separately for inclusion in the Energy Science and Technology database.

  12. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  13. Energy Materials Coordinating Committee (EMaCC). Annual Technical Report, Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-07-31

    The Energy Materials Coordinating Committee Annual Report (attached, DOE/SC-0040) provides an annual summary of non-classified materials-related research programs supported by various elements within the Department of Energy. The EMaCC Annual Report is a useful working tool for project managers who want to know what is happening in other divisions, and it provides a guide for persons in industry and academia to the materials program within the Department. The major task of EMaCC this year was to make the Annual Report a more user-friendly document by removing redundant program information and shortening the project summaries.

  14. Proceedings of the ninth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1995-08-01

    The Ninth Annual Conference on Fossil Energy materials was held in Oak Ridge, Tennessee, on May 16--18, 1995. The meeting was sponsored by the US Department of Energy`s (DOE) Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology assessment and transfer. This conference is held each year to review the work on all of the projects of the Program. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  15. Proceedings of the 18th Annual Conference on Fossil Energy Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, RR

    2004-11-02

    The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff members at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.

  16. ECN, energy innovation Annual Report 1988

    International Nuclear Information System (INIS)

    1989-06-01

    This Annual Report includes a brief survey of the nuclear research activities of the Netherlands Energy Research Center (ECN) in Petten during 1988. They cover the following subjects: reactor safety, processing, storage and disposal of radioactive waste, advanced nuclear reactors, radiation protection, nuclear analysis, and contributions to the European thermonuclear-fusion research. (H.W.). 22 figs.; 32 fotos; 1 tab

  17. Annual Report to Congress of the Atomic Energy Commission for 1970

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1971-01-29

    The document represents the 1970 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1970'' followed by 14 Chapters, 8 appendices and an index. Chapters are as follows: (1) The Industrial Base; (2) Environmental and Safety Aspects; (3) Licensing and Regulating the Atom; (4) Source, Special, and Byproduct Nuclear Materials; (5) National Defense Programs; (6) Reactor Development and Technology; (7) Space Nuclear Systems; (8) Isotopic Systems Development; (9) Peaceful Nuclear Explosives; (10) International Affairs and Cooperation; (11) Nuclear Educational Activities; (12) Biomedical and Physical Research; (13) Administrative and Management Matters; and, (14) License Reviews and Adjudicatory Proceedings.

  18. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  19. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  20. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  1. Energy and environmental policy in a period of transition. Proceedings of the twenty-third annual Illinois energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Twenty-Third Annual Illinois Energy Conference entitled, ``Energy and Environmental Policy in a Period of Transition`` was held in Chicago, Illinois on November 20--21, 1995. The conference program explored how federal policy in energy and environment is changing and how these shifts will impact the economy of the Midwest. The conference was divided in four plenary sessions. Session 1 focused on the national policy scene where speakers discussed proposed legislation to change federal energy and environmental policy. Session 2 looked at the future structure of the energy industry, projecting the roles of natural gas, the electric utility industry, and independent power producers in the overall energy system of the 21st century. Session 3 examined current federal policy in research and development as a baseline for discussing the future role of government and industry in supporting research and development. In particular, it looked at the relationship between energy research and development and global competitiveness. Finally, Session 4 attempted to tie these issues together and consider the impact of national policy change on Illinois and the Midwest.

  2. Energy and environmental policy in a period of transition. Proceedings of the twenty-third annual Illinois energy conference

    International Nuclear Information System (INIS)

    1995-01-01

    The Twenty-Third Annual Illinois Energy Conference entitled, ''Energy and Environmental Policy in a Period of Transition'' was held in Chicago, Illinois on November 20--21, 1995. The conference program explored how federal policy in energy and environment is changing and how these shifts will impact the economy of the Midwest. The conference was divided in four plenary sessions. Session 1 focused on the national policy scene where speakers discussed proposed legislation to change federal energy and environmental policy. Session 2 looked at the future structure of the energy industry, projecting the roles of natural gas, the electric utility industry, and independent power producers in the overall energy system of the 21st century. Session 3 examined current federal policy in research and development as a baseline for discussing the future role of government and industry in supporting research and development. In particular, it looked at the relationship between energy research and development and global competitiveness. Finally, Session 4 attempted to tie these issues together and consider the impact of national policy change on Illinois and the Midwest

  3. Annual Report: Unconventional Fossil Energy Resource Program (30 September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Guthrie, George [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-09-30

    Yee Soong, Technical Coordinator, George Guthrie, Focus Area Lead, UFER Annual Report, NETL-TRS-UFER-2013, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 2013, p 14.

  4. 3rd annual biomass energy systems conference

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The main objectives of the 3rd Annual Biomass Energy Systems Conference were (1) to review the latest research findings in the clean fuels from biomass field, (2) to summarize the present engineering and economic status of Biomass Energy Systems, (3) to encourage interaction and information exchange among people working or interested in the field, and (4) to identify and discuss existing problems relating to ongoing research and explore opportunities for future research. Abstracts for each paper presented were edited separately. (DC)

  5. Annual report 1993-94 (Atomic Energy of Canada Ltd., Ottawa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Annual report of AECL, the legal name of Atomic Energy of Canada Limited. This annual report presents information on research, CANDU, and AECL around the world. A financial review is included, along with management responsibility, an Auditor`s report, financial statements, a five-year financial summary, and a list of directors and locations.

  6. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  7. Developing energy in Africa

    International Nuclear Information System (INIS)

    Favennec, J.P.

    2004-01-01

    Energy and economic growth are connected and the wealth of Western countries is based on a high availability of energy. Africa is a continent vast by its size, well populated and well supplied with fossil energy (oil, gas, coal) and renewable energy (hydroelectric, biomass, solar). But consumption is limited, without distribution infrastructures and initially, without capitals for necessary investments. The situation is particularly critical in Sub-Sahara Africa since the African energy consumption is mainly concentrated in South Africa and North Africa. An annual conference, the Energy Summit in Africa, brings together all players in the sector, from all the continent's countries, from Europe and America, in an attempt to establish recommendations for more availability and a better use of energy in Africa. The next summit is scheduled for November 23 to 25, 2004 in Dakar. The program relies on the Association for the Development of Energy in Africa, which will be created shortly. (author)

  8. Annual Energy Outlook 2016 With Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-01

    The Annual Energy Outlook 2016 (AEO2016), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040. The projections, focused on U.S. energy markets, are based on results from EIA’s National Energy Modeling System (NEMS). NEMS enables EIA to make projections under alternative, internallyconsistent sets of assumptions. The analysis in AEO2016 focuses on the Reference case and 17 alternative cases. EIA published an Early Release version of the AEO2016 Reference case (including U.S. Environmental Protection Agency’s (EPA) Clean Power Plan (CPP)) and a No CPP case (excluding the CPP) in May 2016.

  9. Proceedings of the sixth annual conference on fossil energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy's Office of Fossil Energy through the Advanced Research and Technology Development (AR TD) Materials Program, and ASM International. The objective of the AR TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  10. Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The Radiological and Medical Sciences Research Institute was established in 2009, as the forth research institute of the Ghana Atomic Energy Commission. This Annual Report provides an overview of the major activities of the Institutes in the year 2014. Major items covered in the report include: Strategic objectives; Collaborations; Personnel and Organisational Structure; Facilities and Technical Services; Summary of Research and Development Projects; Human Resource Development; Publications and Technical Reports.

  11. Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Ferrara, Giovanni; Ferrari, Lorenzo

    2015-01-01

    Highlights: • Proposal for a new design criterion for H-Darrieus turbines based on the energy-yield maximization. • 21,600 design cases analyzed to identify the best solutions for each installation site (i.e. average wind speed). • Critical analysis of the best design choices in terms of turbine shape, dimensions, airfoils and constraints. • Notable energy increase provided by the new design approach. • Each site requires a specific turbine concept to optimize the energy yield. - Abstract: H-Darrieus wind turbines are gaining popularity in the wind energy market, particularly as they are thought to represent a suitable solution even in unconventional installation areas. To promote the diffusion of this technology, industrial manufacturers are continuously proposing new and appealing exterior solutions, coupled with tempting rated-power offers. The actual operating conditions of a rotor over a year can be, however, very different from the nominal one and strictly dependent on the features of the installation site. Based on these considerations, a turbine optimization oriented to maximize the annual energy yield, instead of the maximum power, is thought to represent a more interesting solution. With this goal in mind, 21,600 test cases of H-Darrieus rotors were compared on the basis of their energy-yield capabilities for different annual wind distributions in terms of average speed. The wind distributions were combined with the predicted performance maps of the rotors obtained with a specifically developed numerical code based on a Blade Element Momentum (BEM) approach. The influence on turbine performance of the cut-in speed was accounted for, as well as the limitations due to structural loads (i.e. maximum rotational speed and maximum wind velocity). The analysis, carried out in terms of dimensionless parameters, highlighted the aerodynamic configurations able to ensure the largest annual energy yield for each wind distribution and set of aerodynamic

  12. Section for nuclear physics and energy physics - Annual Report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1991. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  13. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1992-04-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1992. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed

  14. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  15. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  16. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  17. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2009-08-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  18. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H [eds.

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  19. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2010-06-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  20. Multi-annual energy plan. Part relating to the Ponant islands. The Energy transition for green growth

    International Nuclear Information System (INIS)

    2016-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for the inhabited and non-interconnected Ponant Islands (Ouessant, Molene, Sein). It establishes the priority actions for all energy sources with respect to demand control, supply diversification, supply security, supply and demand management, renewal of production means. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  1. China institute of atomic energy annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by China Institute of Atomic Energy in 1991, which concerns nuclear physics (theories, experimentation), high power laser, mathematics, accelerators, reactor science and technology, radiochemistry, radiochemical engineering and analytical chemistry, isotopes, radiation protection and environmental protection

  2. Ghana Atomic Energy Commission. 1996 annual report : using nuclear energy and techniques to alleviate hunger, diseases and control of environmental pollution

    International Nuclear Information System (INIS)

    1998-03-01

    The 1996 annual report reflects the activities of the Ghana Atomic Energy Commission (GAEC) on an institutional basis. It provides an overview and indicates the many ways in which the GAEC contributes to the development of nuclear science in the fields of agriculture, industry and medicine

  3. Swiss Federal Energy Research Commission - Annual report 2009

    International Nuclear Information System (INIS)

    Maus, K.

    2010-02-01

    This annual report for the Swiss Federal Office of Energy (SFOE) provides an overview of the work carried out by the Swiss Federal Energy Research Commission CORE in 2009. The commission's main work included preparation work for the revised energy research concept for the period 2013 - 2016, a review of all research programmes operated by the Swiss Federal Office of Energy SFOE, the enhancement of cooperation with public and private research and promotion institutions, the coordination and consultation of research institutions and the improvement of international information exchange. The report summarises coordination work with the many CORE programmes and defines strategic main areas of interest for future work

  4. Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration

    NARCIS (Netherlands)

    Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H.A.; Boer, R. de; Finck, C.J.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F.

    2013-01-01

    Long-term, compact thermal energy storage (TES) is essential to the development of cost-effective solar and passive building-integrated space heating systems and may enhance the annual technical and economic performance of solar domestic hot water (DHW) systems. Systems should provide high energy

  5. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  6. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  7. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1979-12-01

    The research reported in this volume was undertaken during FY 1979 within the Energy & Environment Division of the Lawrence Berkeley Laboratory. This volume will comprise a section of the Energy & Environment Division 1979 Annual Report, to be published in the summer of 1980. Work reported relate to: thermal performance of building envelopes; building ventilation and indoor air quality; a computer program for predicting energy use in buildings; study focused specifically on inherently energy intensive hospital buildings; energy efficient windows and lighting; potential for energy conservation and savings in the buildings sector; and evaluation of energy performance standards for residential buildings.

  8. Netherlands Energy Research Foundation Annual Report 1987

    International Nuclear Information System (INIS)

    1988-06-01

    This Annual Report includes a brief survey of the nuclear research activities of the Netherlands Energy Research Center (ECN) in Petten during 1987. They cover the following subjects: reactor safety, processing, storage and disposal of radioactive waste, advanced nuclear reactors, radiation protection, nuclear analysis, and contributions to the European thermonuclear-fusion research. (H.W.). 20 figs.; 18 fotos; 1 tab

  9. 1999 Annual Report: Delivering energy value

    International Nuclear Information System (INIS)

    2000-01-01

    Union Gas Limited, a subsidiary of Westcoast Energy Company, is a major Canadian natural gas utility, providing energy delivery and related services to 1.1 million residential, commercial and industrial customers in over 400 communities in northern, southwestern and eastern Ontario. Union Gas also provides natural gas storage and transportation services for other utilities and energy market participants in Ontario, Quebec and the northeastern United States. In 1999 the Company had revenues of 1.5 billion, net income of $ 95 million, and assets totalling $ 3.8 billion. Net income was down from $ 109 million in 1998, due mainly to the impact of the sale of the Company's retail merchandise program to Union Energy, a lower approved rate of return on common equity. Full-time employees number about 2,500. Total throughput for 1999 was 34.6 billion cubic metres of natural gas, up 8.9 per cent from 1998. The Company undertook significant reorganization and restructuring during 1999, to emphasize critical business processes. The reorganization, which saw the divestiture of the retail merchandise programs to an unregulated affiliate, Union Energy, resulted in a flat, flexible and efficient enterprise, more capable of timely response to changing market opportunities and customer needs. Union Gas also filed application with the Ontario Energy Board for rates for the year 2000 and beyond, using the performance-based regulation framework; completed construction of a $ 16 million, 90 km pipeline to make natural gas service available to Parry Sound; Launched 'enoms' a new Internet-based natural gas nominations system; completed the first phase of the $ 17 million Century Pools storage development project, and applied to build the second phase, comprising a $37 million addition to the storage pools at the Mandasumin, Bluewater and Oil City pools; and completed several smaller projects totalling $ 5.2 million to give access to natural gas to 2,300 new customers at various parts of

  10. NEA activities in 1992. 21. Annual report of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1993-01-01

    This annual report gives informations on OECD Nuclear Energy Agency activities in 1992. This report is divided into ten chapters: 1 Trends in nuclear power. 2 Nuclear development and the fuel cycle. 3 Reactor safety and regulation. 4 Radiation protection. 5 Radioactive waste management. 6 Nuclear science. 7 Joint projects. 8 Legal affairs. 9 Informations programs. 10 Relations with non-member countries

  11. Building envelope influence on the annual energy performance in office buildings

    Directory of Open Access Journals (Sweden)

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  12. Annual meeting on nuclear technology '92. Technical session 'Nuclear energy discussion'

    International Nuclear Information System (INIS)

    1992-05-01

    The report contains the six special papers red at the 1992 annual conference on nuclear engineering at Karlsruhe, all of which are individually retrievable from the database. They deal with the following subjects: historical development of the basic trends of technology criticism; communication problems in connection with the conveying of technical facts; psycho-sociological patterns of technology anxiety-mental infection or risk consciousness; field of tension between technology and journalism; handling of insecurities; ethical justifiability of nuclear energy use. (HSCH) [de

  13. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  14. Energy Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Wolff, P.P.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division's mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division's expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division's programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination

  15. Annual Report to Congress of the Atomic Energy Commission for 1967

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-31

    The document represents the 1967 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Summary of Atomic Energy Programs in 1967 and includes 17 Chapters, 11 appendices and an index. Chapters are as follows: (1) Source and Special Nuclear Materials; (2) Safeguards and Materials Management; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power Units; (10) Isotopic Radiation Applications; (11) The Plowshare Program; (12) International Cooperation Activities; (13) Informational Activities; (14) Nuclear Education and Training; (15) Basic Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  16. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  17. Annual report 2001. General direction of energy and raw materials

    International Nuclear Information System (INIS)

    2001-01-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  18. Annual energy reviews-2009

    International Nuclear Information System (INIS)

    2010-01-01

    The important items related to energy in 2009 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand and supply are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trends on boiler, industrial furnace, engine, thermal energy system, high efficiency power generation technology are explained. And, on the last item, trend on environment problem and developmental trend on environmental conservation technology are explained. (J.P.N.)

  19. Annual energy reviews-2007

    International Nuclear Information System (INIS)

    2008-01-01

    The important times related to energy in 2007 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand and supply are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trends on boiler, industrial furnace, engine, thermal energy system, high efficiency power generation technology are explained. And, on the last item, trend on environment problem and developmental trend on environmental conservation technology are explained. (J.P.N.)

  20. Annual energy reviews-2005

    International Nuclear Information System (INIS)

    2006-01-01

    The important items related to energy in 2005 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand and supply are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trends on boiler, industrial furnace, engine, thermal energy system, high efficiency power generation technology are explained. And, on the last item, trend on environment problem and developmental trend on environmental conservation technology are explained. (J.P.N.)

  1. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  2. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  3. Annual energy reviews-2000

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Here were described as important items related to energy in 2000 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous. On the first item, here were described on trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand. On the second item, here were described on petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources. On the third item, here were described on combustion theory, trend on boiler trend on industrial furnace, trend on engine, trend on energy system, and trend on high efficiency power generation technology. And, on the fourth item, here were described on trend on environment problem, and developmental trend on environmental conversion technology. And, on the last item, standards on energy, and main international conferences on energy and environment. (G.K.)

  4. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  5. Annual increments, specific gravity and energy of Eucalyptus grandis by gamma-ray attenuation technique

    International Nuclear Information System (INIS)

    Rezende, M.A.; Guerrini, I.A.; Ferraz, E.S.B.

    1990-01-01

    Specific gravity annual increments in volume, mass and energy of Eucalyptus grandis at thirteen years of age were made taking into account measurements of the calorific value for wood. It was observed that the calorific value for wood decrease slightly, while the specific gravity increase significantly with age. The so-called culmination age for the Annual Volume Increment was determined to be around fourth year of growth while for the Annual Mass and Energy Increment was around the eighty year. These results show that a tree in a particular age may not have a significant growth in volume, yet one is mass and energy. (author)

  6. Annual energy reviews-2003

    International Nuclear Information System (INIS)

    2004-01-01

    The important items related to energy in 2003 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trend on boiler trend on industrial furnace, trend on engine, trend on high efficiency power generation technology are explained. And, on the last item, trend on environment problem, and developmental trend on environmental conversion technology are explained. (J.P.N.)

  7. Annual energy reviews-2004

    International Nuclear Information System (INIS)

    2005-01-01

    The important items related to energy in 2004 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous are described. On the first item, trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand are explained. On the second item, petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources are explained. On the third item, combustion theory, trend on boiler trend on industrial furnace, trend on engine, trend on high efficiency power generation technology are explained. And, on the last item, trend on environment problem, and developmental trend on environmental conversion technology are explained. (J.P.N.)

  8. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S.

    2008-01-01

    This paper presents an artificial neural network (ANN) approach for annual electricity consumption in high energy consumption industrial sectors. Chemicals, basic metals and non-metal minerals industries are defined as high energy consuming industries. It is claimed that, due to high fluctuations of energy consumption in high energy consumption industries, conventional regression models do not forecast energy consumption correctly and precisely. Although ANNs have been typically used to forecast short term consumptions, this paper shows that it is a more precise approach to forecast annual consumption in such industries. Furthermore, the ANN approach based on a supervised multi-layer perceptron (MLP) is used to show it can estimate the annual consumption with less error. Actual data from high energy consuming (intensive) industries in Iran from 1979 to 2003 is used to illustrate the applicability of the ANN approach. This study shows the advantage of the ANN approach through analysis of variance (ANOVA). Furthermore, the ANN forecast is compared with actual data and the conventional regression model through ANOVA to show its superiority. This is the first study to present an algorithm based on the ANN and ANOVA for forecasting long term electricity consumption in high energy consuming industries

  9. Crestar Energy Inc. : annual information form for the year ended December 31, 1998

    International Nuclear Information System (INIS)

    1999-01-01

    Crestar Energy Inc. is an Alberta based company which is involved in the exploration, acquisition, development, production and marketing of crude oil, natural gas and natural gas liquids in western Canada. Their exploration and development operations are organized into the Southern Region and the Western Region. This abridged version of the annual report provides information on the company's business strategy, natural gas and petroleum production history, land holdings, reserves, exploration and development expenditures, and management's discussion and analysis of the Company's financial condition and results of operations. Selected consolidated financial information is also included. tabs

  10. Atomic Energy of Canada Limited annual report 1987-88

    International Nuclear Information System (INIS)

    1988-01-01

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1988 covers: Research Company; CANDU Operations; Radiochemical Company; Medical Products Division; The Future; Financial Sections; Board of Directors and Officers; and AECL locations

  11. Energies and raw material. Annual report; Energies et matieres premieres. Rapport annuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The annual report of the french General Direction of the Energy and the Raw Material (DGEMP) deals with the energy policy. The following subjects are analysed: the french program of fight against the global warming; the biogas; the radioactive wastes management program; the french nuclear industry re-organization; Tchernobyl; the electric power and gas public service; the risk prevention concerning the electric power production; the international Gaz De France protocol; the closing of the Ales mine; the cooperation ELF and TOTAL; the french para-petroleum industry; the raw material prices; the french mining situation; the french energy policy audit by the AIE; the energy accidents of december. The DGEMP organization chart with contacts and the publications are also included. (A.L.B.)

  12. Effect of length of measurement period on accuracy of predicted annual heating energy consumption of buildings

    International Nuclear Information System (INIS)

    Cho, Sung-Hwan; Kim, Won-Tae; Tae, Choon-Soeb; Zaheeruddin, M.

    2004-01-01

    This study examined the temperature dependent regression models of energy consumption as a function of the length of the measurement period. The methodology applied was to construct linear regression models of daily energy consumption from 1 day to 3 months data sets and compare the annual heating energy consumption predicted by these models with actual annual heating energy consumption. A commercial building in Daejon was selected, and the energy consumption was measured over a heating season. The results from the investigation show that the predicted energy consumption based on 1 day of measurements to build the regression model could lead to errors of 100% or more. The prediction error decreased to 30% when 1 week of data was used to build the regression model. Likewise, the regression model based on 3 months of measured data predicted the annual energy consumption within 6% of the measured energy consumption. These analyses show that the length of the measurement period has a significant impact on the accuracy of the predicted annual energy consumption of buildings

  13. Atomic Energy of Canada Limited annual report 1986-87

    International Nuclear Information System (INIS)

    1987-01-01

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1987 covers the followings subjects: report from the president; research company; CANDU operations; radiochemical company; the future; financial section and board of directors and officers

  14. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutula, Raymond A. [DOE Solar Energy Technologies Program, Washington, D.C. (United States)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  15. Annual energy reviews-2002

    International Nuclear Information System (INIS)

    2003-01-01

    Here were described as important items related to energy in 2002 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous. On the first item, here were described on trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand. On the second item, here were described on petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources. On the third item, here were described on combustion theory, trend on boiler trend on industrial furnace, trend on engine, trend on high efficiency power generation technology. And, on the fourth item, here were described on trend on environment problem, and developmental trend on environmental conversion technology. (J.P.N.)

  16. Supplement to the annual energy outlook 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This report is a companion document to the Annual Energy Outlook 1994 (AEO94), (DOE/EIA-0383(94)), released in Jan. 1994. Part I of the Supplement presents the key quantitative assumptions underlying the AEO94 projections, responding to requests by energy analysts for additional information on the forecasts. In Part II, the Supplement provides regional projections and other underlying details of the reference case projections in the AEO94. The AEO94 presents national forecasts of energy production, demand and prices through 2010 for five scenarios, including a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. These forecasts are used by Federal, State, and local governments, trade associations, and other planners and decisionmakers in the public and private sectors.

  17. Annual energy reviews-2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Here were described as important items related to energy in 2001 fiscal year on present state on 1) energy demand and supply, 2) development and research trends on application technology of energy resources, 3) development and research trends on technology of energy conversion, 4) environment, and 5) miscellaneous. On the first item, here were described on trend on energy demand and supply, present state of energy supply, and trend of business field on energy demand. On the second item, here were described on petroleum, coal, natural gas, nuclear energy, natural energy, waste resources, and secondary energy resources. On the third item, here were described on combustion theory, trend on boiler trend on industrial furnace, trend on engine, trend on energy system, and trend on high efficiency power generation technology. And, on the fourth item, here were described on trend on environment problem, and developmental trend on environmental conversion technology. (J.P.N.)

  18. The multi-annual Energy Plan - Executive summary. The energy transition for the green growth

    International Nuclear Information System (INIS)

    2017-07-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms our commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help us to meet our objectives to keep greenhouse gas emissions to a minimum in line with our commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment in France

  19. Section for nuclear physics and energy physics - Annual report

    International Nuclear Information System (INIS)

    1994-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1993. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects nd work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using the CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics. In theoretical physics the group is concerned with the many-body description of nuclear properties as well as with the foundation of quantum physics

  20. Annual Report to Congress of the Atomic Energy Commission for 1968

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informational and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  1. Annual Report to Congress of the Atomic Energy Commission for 1966

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1967-01-31

    The document represents the 1966 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Summary of Atomic Energy Programs in 1966 and includes 18 Chapters, 11 appendices and an index. Chapters are as follows: (1) Licensing and Regulating the Atom; (2) Reactor and Other Nuclear Facility Licensing; (3) The Regulation of Radioactive Materials; (4) Source and Special Nuclear Materials; (5) The Nuclear Defense Effort; (6) Naval Propulsion Reactors; (7) Reactor Development and Technology; (8) Space Nuclear Systems; (9) Isotopic Heat and Power Applications; (10) Isotopic Radiation Applications; (11) The Plowshare Program; (12) International Cooperation Activities; (13) Research Facilities and Projects; (14) Nuclear Education and Training; (15) Informational Activities; (16) Operational Safety; (17) Industrial Participation Aspects; and, (18) Administrative and Management Matters.

  2. Annual Report to Congress of the Atomic Energy Commission for 1969

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informational and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.

  3. 2nd Annual European Energy and Transport Conference. Building energy and transport infrastructures for tomorrow's Europe

    International Nuclear Information System (INIS)

    2003-01-01

    This is already the second in a series of Annual Energy and Transport Conferences launched last year on the initiative of the Directorate-General for Energy and Transport and dedicated to combining a number of formerly scattered Europe-wide events into a single event with the aim of raising the profile of the two sectors and improving coherence. The theme chosen in 2001 was safety and security. The 2002 conference provided the forum for a debate on Europe's major infrastructure networks. The main targeted objectives are Firstly, practical, in-depth discussion of the future shape of the major trans-European energy and transport networks by 2010-2020 and, secondly, dissemination of the results of European research and technological development (RTD) programmes. The conference also provided a platform to float ideas and present programmes, approaches and results obtained at European or national level in these sectors. (Author)

  4. Hydro-Quebec 2005 annual report : people with energy

    International Nuclear Information System (INIS)

    2006-01-01

    Hydro-Quebec generates, transmits and distributes electricity mainly produced by renewable energy sources. Its sole shareholder is the Quebec government. This annual report reviewed the operations of Hydro-Quebec, and provided data on energy sales, production and details of the utility's environmental programs. Information on Hydro-Quebec subsidiaries in 2005 was presented in the following separate sections: Hydro-Quebec Production; Hydro-Quebec TransEnergie; Hydro-Quebec Distribution; Hydro-Quebec Equipement; and the Societe d'energie de la Baie James. In 2005, Hydro-Quebec Distribution signed contracts for an initial block of 990 MW of wind power and issued a tender call for an additional 2000 MW of wind power. A generator balancing service was created and authorized by the Regie de l'energie. Hydro-Quebec customers have achieved energy savings of nearly 450 GWh in 2005. The commissioning of Toulnustouc generating station was achieved 5 months ahead of schedule. The 526 MW facility will generate 2.7 TWh annually. Work at the Chute-Allard and Rapide-des-Coeurs sites has continued, as well as construction at Mercier and Peribonka and Eastmain-1. Income from continuing operations came to $2.25 billion, a $124 million increase that was attributed to a rise in domestic sales and net short-term exports. The income was offset by higher pension expenses, depreciation and amortization, as well as by cost of supply on external markets and financial expenses. All other operating expenses were lower than in 2004. Capital spending for the transmission system reached its highest level since 1997, with $793 million invested, including $336 million to meet growth. Data on the company's financial performance, executive changes and reorganization were provided. Financial statements included a review and analysis of financial transactions, an auditor's report, as well as customary notes to the consolidated financial statement including balance sheets, assets, liabilities and

  5. Multi-annual energy plan for Reunion Island. Adopted by the plenary assembly of the Regional Council of Reunion

    International Nuclear Information System (INIS)

    2015-01-01

    The multi-annual energy plan aims at completing the transition towards an energy system which is more efficient, less wasteful, more diverse and therefore more resilient. It reaffirms France's commitment to reducing energy consumption, particularly energy from fossil fuels. The future of France's energy sector lies in striking a harmonious balance between different energy sources. These strategic decisions will help to meet France's objectives to keep greenhouse gas emissions to a minimum in line with its commitments to the EU and to the Paris Climate Agreement, to protect human health and the environment and to ensure access to energy at a reasonable cost whilst stimulating economic activity and employment. This document is the multi-annual energy plan for Reunion Island (Indian Ocean). It establishes the priority actions for all energy sources with respect to supply control, supply diversification, supply security, development of storage facilities and networks. It covers a first 3-years period (2016-2018) followed by a second 5-years period (2019-2023)

  6. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  7. Theory and design of an Annual Cycle Energy System (ACES) for residences

    Energy Technology Data Exchange (ETDEWEB)

    Nephew, E.A.; Abbatiello, L.A.; Ballou, M.L.

    1980-05-01

    The basic concept of the Annual Cycle Energy System (ACES) - an integrated system for supplying space heating, hot water, and air conditioning to a building - and the theory underlying its design and operation are described. Practical procedures for designing an ACES for a single-family residence, together with recommended guidelines for the construction and installation of system components, are presented. Methods are discussed for estimating the life-cycle cost, component sizes, and annual energy consumption of the system for residential applications in different climatic regions of the US.

  8. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  10. Department of Atomic Energy: Annual report, 1983-84

    International Nuclear Information System (INIS)

    1984-01-01

    The annual report of the Department of Atomic Energy for the financial year 1983-84 describes its activities under the headings: Nuclear Power, Research and Development, Public Sector Undertakings, and Other Activities. The report surveys: (1) the performance of nuclear power plants at Tarapur, Kota and Kalpakkam, heavy water plants, fuel fabrication and reprocessing plants, and waste management facilities, (2) the research and development activities of Bhabha Atomic Research Centre at Bombay and its constituent units at various locations in the country, Reactor Research Centre at Kalpakkam, the aided institutes, namely, Tata Institute of Fundamental Research and Tata Memorial Centre, both at Bombay, and Saha Institute of Nuclear Physics at Calcutta, (3) performance of public sector undertakings: Indian Rare Earths Ltd., Uranium Corporation of India Ltd., and Electronics Corporation of India Ltd., (4) progress of nuclear power projects at Narora and Kakrapar, Orissa Sand Complex Project, MHD project at Tiruchirapalli, DHRUVA (formerly known as R-5) project at Bombay, Fast Breeder Test Reactor and 500 MW Prototype Fast Breeder Reactor projects at Kalpakkam, and heavy water projects at Thal-Vaishet and Manuguru, and (5) other activities including technology transfer; training; service to industry, agriculture and medicine in use of radioisotopes and radiation, export of radioisotopes, allied products and nuclear instruments; international relations; countrywide radiation safety programme, exploration of atomic minerals; information and publicity etc. An Atomic Energy Regulatory Board was established during the report year for the special purpose of carrying out regulatory and safety functions specified in the Atomic Energy Act of the Government of India. (M.G.B.)

  11. Annual energy reviews-1995

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The general demand and supply of energy in the world, and the circumstances of electric power, iron and steel, and transportation industries in Japan are reported. Regarding coal, the fundamentals and the trend of research and development related to coal, the trends of coal mining industry and coke, aromatic compound, tar, carbon and coal ash industries are reported. Regarding petroleum, the fundamentals and the trend of research and development related to petroleum, the trends of petroleum industry and petroleum refining and petrochemical industries are reported. Regarding gases, the trends of developing natural gas and liquefied natural gas, town gas and the production of synthetic gases are reported. Regarding nuclear power, the state of nuclear power stations, the establishment of nuclear fuel cycle and the research and development of the utilization of nuclear power are reported. Regarding natural energy, the state of utilizing solar energy, geothermal energy, wind energy and ocean energy is reported. The uses of oil sand and oil shale, biomass and waste, hydrogen and alcohol are reported. The theory of combustion, the trends of cogeneration and heat pumps, the trends of boilers, industrial furnaces, engines, and high efficiency electric power generation technologies are reported. The trends of environmental problems and waste problems and the preservation of atmospheric environment are reported. (K.I.)

  12. Energy Innovation. IVO Group`s Research and Development Report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S. [eds.

    1996-11-01

    This annual booklet of the IVO Group`s research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  13. Energy Innovation. IVO group`s research and development report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S.; Fletcher, R. [eds.

    1997-11-01

    This annual booklet of the IVO Group`s research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  14. Energy Innovation 1996. IVO Group's Research and Development Report

    International Nuclear Information System (INIS)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S.

    1996-01-01

    This annual booklet of the IVO Group's research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  15. TECO Energy, Inc. 1992 annual report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Achievements of TECO Energy, Inc., during 1992 are summarized in the annual report which includes financial data for the year up to 31 December 1992. Work continues on Tampa Electric's Polk Power Station, utilizing IGCC technology planned to come on line in 1995/6. Many energy conservation projects have been completed such as one to promote energy efficient cordless electric lawnmowers. TECO Transport and Trade continued to expand its transloading and shipping business. TECO Coal completed its acquisition of additional low-sulfur coal reserves in eastern Kentucky and Tennessee. Although Tampa Electric is its principal customer, in 1992 shipments of coal were made to other customers. Earnings from TECO Coalbed Methane more than doubled in 1992, a major factor being the federal tax credit available on production. In 1992, the company acquired most of the interests of its operator, Taurus Exploration. In 1992 on additional 47 wells were drilled. TECO Power Services completed construction of a 295 MW combined-cycle power plants known as the Hardee Power Station in central Florida

  16. Atomic Energy of Canada Limited annual report 1985-86

    International Nuclear Information System (INIS)

    1986-01-01

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1986 covers the following subjects: report from the chairman and the president; research company; CANDU operations; radiochemical company; employee performance; nuclear Canada; Financial section; and board of directors and officers

  17. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    1997-12-01

    The publication creates a condensed review of the state of affairs within our energy system. It includes the latest data for 1996, which were at the same time compared to the situations from the previous four years in order to achieve a more accurate insight into all the related problems. The relation of the gross domestic product (GDP) and the electric energy consumption illustrates the fact that the economic conditions are closely connected to the development of the energy sector. In 1996 the gross domestic product was 4.2% higher than in the year before and the electric energy consumption increased by approximately the same figure. It rose from the consumed 12958.0 GWh in 1995 to 12877.9 GWh in 1996, i.e. 4.2%. The total energy consumption in 1996 increased by entire 10.8%, amounting to 352.56 PJ, this predominantly being a result of growing hydro power and natural gas consumption. The immediate energy consumption grew by 8.3%, from 185.96 PJ in 1995 to 201.35 PJ in 1996. Apart from the data included in the review, there are also other presentations referring to the energy generation and consumption in Croatia. A special chapter comprises an analysis of oil and gas system, i.e. hydrocarbon and coal reserves as well as the capacities required for oil and gas processing and transportation. The attention was directed to positive environmental incentives, as the energy sector is responsible for more than 90% of all polluting substances. Apart from the economic and financial indices, the publication includes the prices for electric energy, natural gas and oil derivations as well as maps showing the route of the gas and JANAF systems and the transmission electric energy network. The review puts forward some positive achievements in the development of our energy sector, which create the basis for continued efforts in order to bring about the desired objectives. This will be realized by defining the legislation system and the institutions ensuring high-quality market

  18. Brazilian energy statistics - 1989. Annual bulletin of the Brazilian National Committee of the World Energy Conference

    International Nuclear Information System (INIS)

    1989-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydraulic energy, petroleum, natural gas and coal. It contains data on ethyl alcohol derived from sugar cane and some aspects about nuclear energy in Brazil. Graphs, annual statistics and historical data of electric power, petroleum and petroleum products, natural gas, coal and alcohol are also included. 17 figs., 12 tabs

  19. Modeling and optimization of energy consumption in multipurpose batch plants - 2006 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Szijjarto, A.

    2006-12-15

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2006 on the development of a model that is able to make prognoses concerning the energy consumption of chemical batch processes and thus enable these to be optimised. In the year under review, reliable models and software modelling tools were developed. The tools are based on commercially available simulation software. The authors note that the bottom-up model presented in the previous reports is powerful and robust enough to treat a significant amount of the process data in reasonable time. The model was tested for the modelling of energy consumption in the case-study plant during a period of two months. Up to 30 batches of 9 different products were produced in this period. The resolution of the model is discussed, which is very useful for identification of the process steps with the highest energy consumption. Energy-saving potential is noted. Based on these results, one product was chosen which is to be investigated in the final stage of the project in order to optimise the energy consumption of the case-study plant. The authors note that the methodology and software tools developed can be later applied for other products or chemical batch plants.

  20. FY2010 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-28

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs). Over the past few years, the emphasis of these efforts has shifted from high-power batteries for HEV applications to high-energy batteries for PHEV and EV applications.

  1. Annual report 2005 General Direction of the Energy and raw materials

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  2. NEA activities in 1991. 20. Annual report of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1992-01-01

    This annual report gives informations on OECD Nuclear Energy Agency activities in 1991. This report is divided into ten chapters: 1 Trends in nuclear power. 2 Nuclear development and the fuel cycle. 3 Nuclear safety and regulation. 4 Radiation protection. 5 Radioactive waste management and disposal. 6 Nuclear science: Reactor physics, nuclear data, NEA data bank. 7 Joint projects and coordinated research programs. 8 Legal affairs. 9 informations programs. 10 relations with non-member countries

  3. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  4. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  5. Energy in Croatia 2007, Annual Energy Report

    International Nuclear Information System (INIS)

    2008-01-01

    With a great deal of pleasure we present the sixteenth edition of the review Energy in Croatia. With this Review the Ministry of Economy, Labor and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiency indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiency trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2006 and 2007, made following the EUROSTAT and IEA methodologies. Total annual energy consumption in Croatia in 2007 increased by 1.5 percent from the previous year. At the same time gross domestic product increased by 5.6 percent, which resulted in a continuing energy intensity reduction, by 3.8 percent. In relation the European Union (EU 27), energy intensity in Croatia was 16.5 percent above the European average. In 2007 the Croatian production of primary energy decreased by 6.4 percent. The production decrease was recorded in most of primary energy forms. The only energy forms with growing production in 2007 were natural gas production and energy from renewable sources. Due to unfavorable hydrology in 2007, hydro power utilization decreased by 27.4 percent

  6. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  7. FY2012 Progress Report for Energy Storage Research & Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nation’s light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

  8. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  9. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  10. Making good progress. SwissEnergy 2nd annual report 2002/03

    International Nuclear Information System (INIS)

    2003-01-01

    The second annual report for the Swiss Federal Office of Energy's 'SwissEnergy' programme presents the activities carried out and the results achieved within the framework of the programme, which aims to help implement Switzerland's climate change policy. SwissEnergy is a national programme in which the government, the cantons, local authorities, the private sector, consumer and environmental organisations, as well as public and private-sector agencies work together as partners. In the first part of the report, strategies - including increasing energy efficiency and the promotion of the use of renewable forms of energy - are described, as are the measures taken, which focus on voluntary efforts by trade and industry. Also, the programme's organisation in four sectors - public sector and buildings, trade and industry, mobility and renewable energy - are described. The second part of the report is dedicated to activities carried out in 2002/2003 and describes economic and policy developments, project management activities and those carried out in the four sectors. The third section discusses the impact of the programme's activities in 2002 on Switzerland's energy consumption and its contribution to the implementation of Switzerland's climate policy. The evaluation procedures used to establish the impact and their accuracy are discussed. The report also discusses the programme's impact on investment and employment in Switzerland

  11. The National Energy Board's annual report 2002 to Parliament

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001 Canada's energy industry accounted for about 6 per cent of Canada's Gross Domestic product and employed 293,000 people. The National Energy Board informs Canadians about energy market trends. This annual report provides a summary of Canadian energy supply, consumption, production, prices and trade with an emphasis on developments in 2001. The National Energy Board dealt with applications for new pipeline facilities, new international power lines, tolls and tariff filings as well as approvals for exploration and development activity north of sixty. The year 2001 began with record high natural gas prices throughout North America, a crisis in the electricity market in California, and the highest oil prices since the 1991 Gulf war. Normal levels in oil and gas prices returned by the spring of 2001. In 2001, the Canadian pipeline infrastructure responded well to the market demands, delivering approximately $85 billion of natural gas, crude oil and petroleum products. The notable change was that the Alliance Pipeline and Vector Pipeline systems were in their first year of full operation, providing alternatives to TransCanada PipeLines system to deliver western Canadian natural gas to central Canadian markets. These new pipelines have created more competition between pipeline systems. There has also been significant consolidation within the industry. The events of September 11, 2001 emphasized the need to ensure security of Canada's natural gas and oil pipeline infrastructure. Most pipelines have been pro-active in protecting the overall security of the pipeline network in Canada. The Board also ensures that pipelines are operated in a manner that protects the environment, conducting audits of the environmental programs of regulated companies. There were no incidents in 2001 that resulted in severe degradation of the environment in which Canadian pipelines operate. tabs., figs

  12. Brazilian energy statistics - 1988. Annual bulletin of the Brazilian National Committee of the World Energy Conference

    International Nuclear Information System (INIS)

    1988-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydraulic energy, petroleum, natural gas and coal. It contains data on ethyl alcohol derived from sugar cane and some information about the Brazilian Action Plan for the petroleum sector, nuclear energy, ecology and Chernobyl. Graphs, annual statistics and long range data of electric power, petroleum and derivates, natural gas, coal and alcohol are also included. 19 figs., 15 tabs

  13. U.S. Department of Energy FY 1994 and 1995 annual performance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This is the Department of Energy`s first Annual Performance Report. The topics of the report include a new era for the US DOE, sustainable energy, science and technology, national security--reducing the global nuclear danger, environmental quality, economic productivity through a competitive economy and the critical success factors--assessing the way the US DOE does business.

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  15. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  16. Annual energy outlook 1994: With projections to 2010

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Annual Energy Outlook 1994 (AEO94) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projects and analyses of energy supply, demand, and prices through 2010, based for the first time on results from the National Energy Modeling System (NEMS). NEMS is the latest in a series of computer-based energy modeling systems used over the past 2 decades by EIA and its predecessor organization, the Federal Energy Administration, to analyze and forecast energy consumption and supply in the midterm period (about 20 years). Quarterly forecasts of energy supply and demand for 1994 and 1995 are published in the Short-Term Energy Outlook (February 1994). Forecast tables for 2000, 2005, and 2010 for each of the five scenarios examined in the AEO94 are provided in Appendices A through E. The five scenarios include a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. Appendix F provides detailed comparisons of the AEO94 forecasts with those of other organizations. Appendix G briefly described the NEMS and the major AEO94 forecast assumptions. Appendix H summarizes the key results for the five scenarios.

  17. Energy Program annual report, 1991

    International Nuclear Information System (INIS)

    Pasternak, A.

    1992-08-01

    The Energy Program emphasizes applied R ampersand D for energy technologies that will be important to the US in the next fifty years and which may be important long after that. Historically, we have focused on coal gasification; the development of alternative liquid fuels from oil shale, coal, and natural gas; transportation uses of electric power from refuelable batteries; geothermal energy; and support of nuclear energy through the development of new technologies for the disposal of high-level nuclear waste. Our current program addresses three objectives of the National Energy Strategy: (1) To enhance energy security by ensuring stable costs, increasing energy supplies, and developing alternatives to Middle East oil. (2) To improve environmental quality by implementing energy technologies that effect better air and water quality, improve land use, and protect global environmental systems. (3) To encourage economic growth through technologies that reduce the costs of energy production, storage, transport, transmission, and distribution; promote efficiency by reducing costs and end-user services; and strengthen resiliency and flexibility of energy systems. We have just begun a major program to commercialize the technology to extract oil from the large US reserves (greater than 700 billion barrels) of oil shale. Perhaps the single greatest barrier to the public acceptance of nuclear power is the perceived lack of a technical solution to the permanent disposal of wastes. We have developed new concepts that are aimed at improving the likelihood of technical assurance of long-term containment

  18. Annual report 2004. Laboratory of Energy Engineering and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, L.; Zevenhoven, R. (eds.)

    2005-07-01

    This fifth annual report in this series, covering year 2004, gives an overview of the research, education and other activities of the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. From the research point of view, the laboratory continues in the Nordic Energy Research Program (2003-2006) in the field of CO{sub 2} capture and storage, and in the EU project 'ToMeRed' on toxic trace elements emissions control. The laboratory is also the operating agent for the IEA project 'Energy systems integration between society and industry'. The bulk of the research can be classified into three groups, in short: energy systems; spraying and combustion and combustion and waste treatment. This research takes mainly place in national and international consortia, but sometimes also in a direct cooperation with one industry partner. Some of the work involves the use and development of models and sub- models for the simulation and optimisation of energy systems and processes. Commercial softwares like Aspen Plus and Prosim are important tools for our work as well. Besides this, single particle modelling can be applied to fuel droplets, fuel particles or particles found in metallurgical industry. We make CFD calculations with commercial codes are made as well, while working on the improvement of (sub-) models for multiphase fluid dynamics.

  19. Annual energy outlook 1997 with projections to 2015

    International Nuclear Information System (INIS)

    1996-12-01

    The Annual Energy Outlook 1997 (AEO97) presents midterm forecasts of energy supply, demand, and prices through 2015 prepared by the Energy Information Administration (EIA). These projections are based on results of EIA's National Energy Modeling System (NEMS). This report begins with a summary of the reference case, followed by a discussion of the legislative assumptions and evolving legislative and regulatory issues. ''Issues in Focus'' discusses emerging energy issues and other topics of particular interest. It is followed by the analysis of energy market trends. The analysis in AEO97 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present summaries of the reference case forecasts in units of oil equivalence and household energy expenditures. Twenty-three other cases explore the impacts of varying key assumptions in NEMS--generally, technology penetration, with the major results shown in Appendix F. Appendix G briefly describes NEMS and the major AEO97 assumptions, with a summary table. 114 figs., 22 tabs

  20. Annual energy outlook 1997 with projections to 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Annual Energy Outlook 1997 (AEO97) presents midterm forecasts of energy supply, demand, and prices through 2015 prepared by the Energy Information Administration (EIA). These projections are based on results of EIA`s National Energy Modeling System (NEMS). This report begins with a summary of the reference case, followed by a discussion of the legislative assumptions and evolving legislative and regulatory issues. ``Issues in Focus`` discusses emerging energy issues and other topics of particular interest. It is followed by the analysis of energy market trends. The analysis in AEO97 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present summaries of the reference case forecasts in units of oil equivalence and household energy expenditures. Twenty-three other cases explore the impacts of varying key assumptions in NEMS--generally, technology penetration, with the major results shown in Appendix F. Appendix G briefly describes NEMS and the major AEO97 assumptions, with a summary table. 114 figs., 22 tabs.

  1. FY2009 Annual Progress Report for Energy Storage Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-19

    The energy storage research and development effort within the VT Program is responsible for researching and improving advanced batteries and ultracapacitors for a wide range of vehicle applications, including HEVs, PHEVs, EVs, and fuel cell vehicles (FCVs).

  2. Founders Energy Ltd. 1998 annual report : fiscally prudent, value driven balanced growth strategy

    International Nuclear Information System (INIS)

    1999-01-01

    Founders Energy Ltd is a growth-oriented junior resource company engaged in the acquisition and development of oil and natural gas properties in Alberta, British Columbia and Saskatchewan. The annual review provides details of the company's operations and relevant financial performance during the 1998 fiscal year. In brief, the company realized significant increases in production and reserves, top quartile findings and development costs. It reported significant increases in leverage to natural gas through exploration success at Pouce Coupe and the acquisition of Opal Energy Inc.. It established new core areas in west-central Alberta, Peace River Arch and west-central Saskatchewan. It achieved a better balanced risk profile through geographical diversification and better balance to exploration and development. It increased undeveloped land area to 160,268 net acres and added 11.5 million barrels of established reserves at a finding cost of $ 6.28 per barrel. Financial highlights include increased gross revenue, increased net income per share, and increased shareholders' equity. tabs., figs

  3. Annual Energy Outlook 2013 with Projections to 2040

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Annual Energy Outlook 2013 (AEO2013), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040, based on results from EIA’s National Energy Modeling System. The report begins with an “Executive summary” that highlights key aspects of the projections. It is followed by a “Legislation and regulations” section that discusses evolving legislative and regulatory issues, including a summary of recently enacted legislation and regulations, such as: Updated handling of the U.S. Environmental Protection Agency’s (EPA) National Emissions Standards for Hazardous Air Pollutants for industrial boilers and process heaters; New light-duty vehicle (LDV) greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for model years 2017 to 2025; Reinstatement of the Clean Air Interstate Rule (CAIR) after the court’s announcement of intent to vacate the Cross-State Air Pollution Rule (CSAPR); and Modeling of California’s Assembly Bill 32, the Global Warming Solutions Act (AB 32), which allows for representation of a cap-and-trade program developed as part of California’s GHG reduction goals for 2020. The “Issues in focus” section contains discussions of selected energy topics, including a discussion of the results in two cases that adopt different assumptions about the future course of existing policies, with one case assuming the elimination of sunset provisions in existing policies and the other case assuming the elimination of the sunset provisions and the extension of a selected group of existing public policies—CAFE standards, appliance standards, and production tax credits. Other discussions include: oil price and production trends in AEO2013; U.S. reliance on imported liquids under a range of cases; competition between coal and natural gas in electric power generation; high and low nuclear scenarios through 2040; and the impact of growth in natural gas

  4. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    International Nuclear Information System (INIS)

    Grove, L.K.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change

  5. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Grove, L.K. (ed.)

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  6. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9 GW and 0.8 GW, onshore and offshore, respectively, in 2011. The total capacity in Europe is 96 GW......Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  7. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  8. Pluri-annual programming of energy (PPE): an escalation policy

    International Nuclear Information System (INIS)

    Perves, J.P.

    2016-01-01

    Concerning the pluri-annual programming of energy for the 2018-2023 period, the French government proposes to accelerate the deployment of wind and solar energies in order to reach 43.000 - 49.200 MW globally in 2023. To compare wind and solar energies totaled 16.500 MW in 2015. The 2023 level will represent around 70% of the today's nuclear power production. This energy policy will require a huge investment of 60 billions euros by 2023. It appears that offshore wind energy is not favoured because of its important costs and this acceleration will imply more wind turbines installed on land which can have a negative impact on the environment. Furthermore wind and solar energies will require other sources of energy to compensate seasonal effects, the back-up energy may be nuclear but it would increase the kWh cost because nuclear energy will be under-used. The gain in CO_2 will be null because the electricity production in France is largely de-carbonized thanks to the use of nuclear energy. A more progressive deployment of renewable energies in the French energy mix is recommended. (A.C.)

  9. Husky Energy Inc. 2004 annual report : building on the horizon

    International Nuclear Information System (INIS)

    2005-01-01

    Financial information from Calgary-based Husky Energy Inc. was presented in this annual report and a review of their 2004 operations was made available for the benefit of shareholders. Husky Energy is one of Canada's largest producers of oil and gas. It is an integrated energy and energy-related company consisting of 3 segments: upstream, midstream and refined products. The report lists major achievements for 2004 as well as plans for future activities. Husky share prices at December 31 2004 were $34.25. Total shareholder return was 50 per cent, including ordinary and special dividends. Achievements for 2004 included 420 cold productions heavy wells drilled and new discoveries in the Ekwan/Bivouac and Lynx/Copton areas. International achievements included three successful wells drilled in Wenchang, China. In the midstream and refined products businesses, Husky Energy has achieved more than 900,000 barrels of oil equivalent per day as well as setting a new asphalt sales record. In addition, engineering for a de bottlenecking project is 60 per cent complete. Husky Energy has also commenced blending of the new Western Canada Select crude oil stream. Plans for 2005 included growth in heavy oil production up to 10 per cent, construction of the Tucker Oil Sands Project, additional drilling in Wenchang, China and the completion of 80 per cent of the Lloydminster ethanol plant. This annual report includes an auditor's report of the company's energy resource activities. An operations review was also presented along with consolidated financial statements, a summarized balance sheet of assets, liabilities/surplus and net assets, and common share information. Revenue and expenditure statements were summarized by source. tabs., figs

  10. 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    Talisman Energy Inc. is the largest Canadian-based independent oil and gas producer. Its main business activities include exploration, development, production and marketing of natural gas, natural gas liquids and crude oil. Main operating centres are in Canada, the North Sea, Indonesia and Sudan. Talisman Energy is also pursuing a number of high potential exploration ventures in Algeria and Trinidad. The Company has experienced a 30 per cent annual production growth rate over the last five years and has consistently increased its reserve base, while maintaining competitive finding and development costs. This report contains an extensive review of activities and achievements in each of Talisman Energy Inc.'s exploration and operating areas during 1998, a consolidated financial statement, a management discussion and analysis of production and financial performance, and a review of corporate governance. Future prospects are also discussed. Continued growth of 10 to 15 per cent annually over the next two years is anticipated as a result of management's current investment program. tabs

  11. EDF Group - Annual Report 2007. European leader for tomorrow's energies

    International Nuclear Information System (INIS)

    2008-01-01

    The EDF Group is a leading player in the European energy industry, active in all areas of the electricity value chain, from generation to trading and network management. The leader in the French electricity market, the Group also has solid positions in the United Kingdom, Germany and Italy, with a portfolio of 38.5 million European customers and a generation fleet which is unique in the world. It intends to play a major role in the global revival of nuclear and is increasingly active in the gas chain. The Group has a sound business model, evenly balanced between regulated and deregulated activities. Given its R and D capability, its track record and expertise in nuclear, fossil-fired and hydro generation and in renewable energies, together with its energy eco-efficiency offers, EDF is well placed to deliver competitive solutions to reconcile sustainable economic growth and climate preservation. This document is EDF Group's annual report for the year 2007. It contains information about Group profile, governance, business, development strategy, sales and marketing, positions in Europe and international activities. The document is made of several reports: the Activity and Sustainable Development Report, the Financial Report, the Sustainable Development Report, the Sustainable Development Indicators, and the Report by the Chairman of EDF Board of Directors on corporate governance and internal control procedures

  12. Annual Report to Congress of the Atomic Energy Commission for 1964

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1965-01-29

    The document represents the 1964 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report is divided into 6 areas for 1964, plus 8 appendices and the index. Section names are: Part One, The Atomic Energy Program - 1964; Part Two, Production and Weapons Programs; Part Three, Nuclear Reactor Programs; Part Four, Other Major Activities; Part Five, Support-Type Activities; and Part Six, Regulatory Activities.

  13. Energy development and environmental protection: we can have both

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This article is excerpted from a speech given by Ruth Caplan, Chair, National Energy Committee, Sierra Club, at Energy Magazine's Fourth Annual International Energy Conference, Hotel Roosevelt, New York City, November 24-25, 1980. When the environmental community speaks of alternative energy it is referring to renewable energy sources. Its preferred energy future begins with energy conservation and development of renewables. This path will relieve pressure for developing all our fossil resources at once. It will allow us to begin leasing in the least environmentally sensitive areas; to develop a small number of shale processing facilities and to study the impacts before building more; to be sure that the synthetic fuel processes which are commercialized minimize environmental and health impacts; to be sure that strip mined land can be reclaimed and that water resources are husbanded for foods as well as fuel; and to proceed without dismantling the Clean Air Act. Environmental concerns are set forth on the following: strip coal mining; oil shale development; oil and gas leasing along the Overthrust Belt; and nuclear waste disposal

  14. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  15. Trends in the development of energy markets

    International Nuclear Information System (INIS)

    Penkov, P.; Donchev, A.; Stefanova, E.

    2000-01-01

    The 20th annual energy symposium (7-8 Dec., 1999, Houston) has been organized by 'Arthur Andersen' company. The main subjects presented are: research, monitoring and assessment of the market risk by BUMP system; electro-energy systems development; energy markets transformation including their liberalization and convergence; necessity of investment capital and possibilities for its effective increasing; structural reform in electric energy sector, in accordance with the European requirements. A review on the achievements and problems in the energy field in the Central and Eastern European countries during the years after the democratic changes is presented at the round table discussion. It is outlined the significance of the operating energy laws in this countries and increasing productivity, and efficiency of the former government electricity companies for the development of corporations. The process of transformation and privatization in some countries in Central and Eastern Europe: Hungary, Poland, Romania, Czech Republic, Latvia, Lithuania is analyzed. As a result of the reports delivered at the 20th yearly symposium, conclusions are made that even in the developed countries the production competition gets into trouble. The right field of market competition in electric-energy field isn't a struggle for production but it is a struggle for investments

  16. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  17. Capturing Inter-Annual Variability of PV Energy Production in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Roberts, Billy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rosenlieb, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-25

    Long-term variability of solar resource is an important factor in planning a utility-scale photovoltaic (PV) generation plant, and annual generation for a given location can vary significantly from year to year. Based on multiple years of solar irradiance data, an exceedance probability is the amount of energy that could potentially be produced by a power plant in any given year. An exceedance probability accounts for long-term variability and climate cycles (e.g., monsoons or changes in aerosols), which ultimately impact PV energy generation. Study results indicate that a significant bias could be associated with relying solely on typical meteorological year (TMY) resource data to capture long-term variability. While the TMY tends to under-predict annual generation overall compared to the P50, there appear to be pockets of over-prediction as well.

  18. Hot Dry Rock Geothermal Energy Development Project. Annual report, fiscal year 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The feasibility of extracting geothermal energy from hot dry rock in the earth's crust was investigated. The concept being investigated involves drilling a deep hole, creating an artificial geothermal reservoir at the bottom of the hole by hydraulic fracturing, and then intersecting the fracture with a second borehole. At the beginning of FY77, the downhole system was complete, but the impedance to the flow of fluid was too high to proceed confidently with the planned energy extraction demonstration. Therefore, in FY77 work focused on an intensive investigation of the characteristics of the downhole system and on the development of the necessary tools and techniques for understanding and improving it. Research results are presented under the following section headings: introduction and history; hot dry rock resource assessment and site selection; instrumentation and equipment development; drilling and fracturing; reservoir engineering; energy extraction system; environmental studies; project management and liaison; and, looking back and ahead. (JGB)

  19. First-Annual Global Clean Energy Manufacturing Report Shows Strong Domestic Benefits for the United States

    Energy Technology Data Exchange (ETDEWEB)

    EERE Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-02-01

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) commissioned the Clean Energy Manufacturing Analysis Center to conduct the first-ever annual assessment of the economic state of global clean energy manufacturing. The report, Benchmarks of Global Clean Energy Manufacturing, makes economic data on clean energy technology widely available.

  20. Swiss Federal Energy Research Commission - Annual report 2008; Eidgenoessische Energieforschungskommission CORE. Jahresbericht 2008

    Energy Technology Data Exchange (ETDEWEB)

    Maus, K.

    2009-07-01

    This annual report presents a review of the activities carried out by the Swiss Federal Energy Research Commission CORE in the year 2008. Main points of interest were the definition of a new CORE vision, a review of all research programmes, co-operation and co-ordination with public and private institutes, active consultancy, recommendations for further education and training, improved international information exchange and good communication with business, politics and the general public. The definition of a concept for Swiss energy research for the period 2012 to 2016 is mentioned. The annual report also reports on an internal visit made to various laboratories of the Swiss Federal Institute of Technology in Lausanne and the Energy Center in Zurich. The focussing of CORE activities on particular themes is discussed

  1. The Energy National Mediator. Activity 2008. Annual report

    International Nuclear Information System (INIS)

    2009-01-01

    This document is the first annual report published by the Energy National Mediator, an independent public institution created in 2006, the missions of which are to recommend solutions to some disputes between electricity and natural gas consumers and producers, and to inform consumers about their rights. The report presents and discusses these both missions, comments the challenges and problems the institution has faced, the approach it has adopted, notably in the relationship with producers and consumers, and the obtained results

  2. Radiation Protection Institute,Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The Radiation Protection Institute of the Ghana Atomic Energy Commission was established to provide scientific and technical support for executing the operational functions of the Radiation Protection Board. The 2014 Annual Report highlights the operational activities of Institutes. Also presented is a list of research projects, publications and abstracts of technical reports.

  3. 2003 annual report. Information and health, defense, energy

    International Nuclear Information System (INIS)

    2004-01-01

    This document is the 2003 annual report of the French atomic energy commission (CEA). It presents, first, the main highlights of the research activity of the CEA in three domains: the national defense (the Simulation program and the share of the technical means with the scientific community, the nuclear warheads, the nuclear propulsion, the cleansing of the Rhone valley facilities, the monitoring of treaties respect and the fight against proliferation and terrorism; the energy: the researches on nuclear wastes, the optimization of industrial nuclear systems, the innovations devoted to future nuclear systems, the new energy-related technologies, the basic energy research; the technologies devoted to information and health: micro- and nano-technologies, the software technologies, the basic research. It presents also the main research facilities opened to the community of scientific and industrial users, the training activities, partnerships, agreements and the improvements made in the general organization of the CEA: scientific evaluation, planning, optimization, manpower, international relations, communication, risk management, certification, radiation protection and environmental monitoring. The financial data are added at the end of the document. (J.S.)

  4. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  5. International Atomic Energy Agency Annual Report 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  6. Energy Analysis Program 1990 annual report

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ''Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings

  7. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  8. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  9. Annual report 2003[International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Annual Report reviews the results of the Agency's programme according to the three 'pillars' of technology, safety and verification. The main part of the report, starting on page 9, generally follows the programme structure as it applied in 2003. The introductory chapter, seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. Additional information on specific issues can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review and Technical Co-operation Report. This material is also available on the Agency's WorldAtom web site (http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2003/). All sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to Technology are: Nuclear Power; Nuclear Fuel Cycle and Material Technologies; Analysis for Sustainable Energy Development; Nuclear Science; Food and Agriculture; Human Health; Water Resources; Protection of the Marine and Terrestrial Environments; Physical and Chemical Applications. Topics related to safety discussed in this report are: Safety of Nuclear Installations; Radiation Safety; Management of Radioactive Waste; Security of Material. Topics related to Verification are Safeguards and Verification in Iraq Pursuant to UNSC Resolutions. A separate chapter is devoted to Management of Technical Cooperation for Development.

  10. Energy demands in the 21st century: the role of biofuels in a developing country

    International Nuclear Information System (INIS)

    Quaye, E.C.

    1996-01-01

    In most developing countries more than 25% of total energy use comes from biofuels. In Ghana, the figure is between 70-80%. Bioenergy is mainly used for cooking and heating, and is also important in rural or cottage industries. As a developing country, Ghana's economic growth remains coupled to the availability and supply of energy. About 29% of this energy is obtained through hydropower and imported petroleum. The two hydropower installations generate about 1102 MW annually mainly for domestic and industrial uses. At the current 3.0% average annual population growth rate, a population of about 35 million is expected by 2025. Coupled with the country's efforts to promote industrialization, future energy demand is expected to increase several fold. This paper provides an overview of Ghana's current energy situation and discusses the role of bioenergy in the future energy demand of the country. The paper concludes with a recommendation for a major shift in energy policy to accommodate the conversion of biofuels into versatile energy carriers in a decentralised system to meet the energy requirements of the people and to provide a basis for rural development and employment. (Author)

  11. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  12. Energy Analysis Program 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  13. Annual report 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This annual report presents the CEA (Atomic Energy Research Center) activities and research programs during the year 2002. the first part is devoted to the scientific development in the defense, nuclear energy, technology, fundamental research and valuation domains. The second and third parts present respectively the development conditions with the environment safety and the means of development with the human resources, the information technology, the training and the public relations. The fourth part situates the Cea enterprise in the economy and the fifth part the Cea development in the Europe and the world. The last part is the financial accounting. (A.L.B.)

  14. Annual report 1991 TECO Energy Inc

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Achievements of TECO energy during 1991 are summarized in the annual report which includes financial statements for the year up to 31 December 1991. Methane production from coal seams in the Black Warrior Basin of Alabama, by TECO Coalbed Methane, increased to 55 million cubic feet per day. The purchase of Gulf-States Paper's interest in two coalbed methane projects brought TECO's total commitment in coalbed methane to 135 million dollars. TECO Coal acquired additional reserves of low-sulphur coal in bringing total holdings to 175 million tons. Work continued on construction of TECO Power Services' combined cycle power plant. Tampa Electric announced plans to build a power plant in Polk County using the latest coal gasification technology TECO Transport ampersand Trade's shipping and transloading companies performed well during the year

  15. Analysis to develop a program for energy conservation in irrigated agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Cone, B.W.; Brix, V.L.; Eakin, D.E.; Laughlin, B.M.

    1978-09-01

    It is estimated by the FEA that 0.26 quadrillion Btus of energy is annually required to irrigate crops in the USA. The development of a DOE program for energy conservation in irrigation is described. Information is included on: studies of how this energy consumption can be reduced and by how much; engineering and economic studies of irrigation equipment and methods; proposals for improving the efficiency of pumps and prime movers; projects selected for demonstrating irrigation energy conservation; and recommendations for further research. (LCL)

  16. National report card on energy efficiency : 2. annual report card on government activities

    International Nuclear Information System (INIS)

    2000-01-01

    This second annual report card produced by the Canadian Energy Efficiency Alliance is a means by which to monitor the efforts of Canada's federal, provincial and territorial governments in energy efficiency activities. The Alliance works in partnership with manufacturers, utilities, governments, builders, labour, consumer groups and environmental organizations. Energy efficiency is one of the primary tools governments can use to meet the Kyoto climate change commitment. The issue of climate change was examined in greater depth in this second annual report card. Ten specific measures that each government should take in order to be efficiency leaders were identified. These included minimum standards and regulations for buildings and appliances, supporting energy efficiency in the marketplace, and leadership programs to improve energy efficiency and achieve emission reduction targets. Efficiency in transportation was not included in this report card. A brief summary of what the federal government, as well as each provincial and territorial government are doing to promote energy efficiency was included. Each jurisdiction was given a grade. The Yukon received the highest mark of A minus. Saskatchewan received the lowest, and only failed mark. It was emphasized that public and private utilities also play a key role in supporting energy efficiency in Canada. 2 tabs

  17. Department of Atomic Energy, annual report, 1980-81

    International Nuclear Information System (INIS)

    1981-01-01

    The annual report of the Department of Atomic Energy (DAE) of the Government of India for the period of the fiscal year 1980-81 surveys the work of DAE, its various constituent units and aided institutions. The main thrust of the DAE's programme in the country is directed towards peaceful uses of atomic energy - primarily for generation of electric power and also for application of radioisotopes and radiation in medicine, agriculture, and industry. The research and development (R and D) activities of the Bhabha Atomic Research Centre (BARC) at Bombay, the major R and D establishment of DAE, in the fields of nuclear physics, solid state physics, chemistry and materials science, isotope and radiation applications, reactor technology and radioactive waste management are described in detail. The R and D activities of the Reactor Research Centre at Kalpakkam and the aided institutions such as the Tata Institute of Fundamental Research and the Tata Memorial Centre, both at Bombay, and the Saha Institute of Nuclear Physics at Calcutta are reviewed in brief. Progress of the MHD project, the heavy water plant projects, the thermal research reactor R-5 project at BARC and nuclear power plant projects at Narora and Kalpakkam is surveyed. Performance of industrial production units such as nuclear power stations at Tarapur and Kota, the Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED - the radiation sterilisation plant for medical products, the Indian Rare Earths Ltd., the Electronics Corporation of India Ltd., and the Uranium Corporation of India Ltd., is reported. India's participation in the activities of the International Atomic Energy Agency and collaboration with other countries are also mentioned. (M.G.B.)

  18. Annual report 1997--1998. AECL research number AECL-11964

    International Nuclear Information System (INIS)

    1998-01-01

    This is the Annual report of AECL, the legal name of Atomic Energy of Canada Limited. Its mandate is to undertake research into nuclear energy and to develop commercial applications for its developments. This annual report presents information on marketing and commercial operations, product development, CANDU research, waste management and nuclear sciences, environmental management and site refurbishment. A financial review is included, along with management responsibility, an Auditor's report, financial statements, a five-year financial summary, and a list of directors and locations

  19. No consistent association between consumption of energy-dense snack foods and annual weight and waist circumference changes in Dutch adults

    NARCIS (Netherlands)

    Hendriksen, M.A.H.; Boer, J.M.A.; Huaidong, D.U.; Feskens, E.J.M.; A, van der D.

    2011-01-01

    Background: There is conflicting evidence regarding an association between the consumption of energy-dense snack (EDS) foods and the development of overweight. Objective: In the current study, we examined whether there was an association between the intake of EDS foods and annual weight and waist

  20. Annual review of energy. Volume 6

    Science.gov (United States)

    Hollander, J. M.; Simmons, M. K.; Wood, D. O.

    Developments in the areas of energy resources and supply technologies, energy end use and conservation, energy policy, energy-related risks and the sociopolitical aspects of energy are reviewed. Progress in solar energy technologies over the last five years is discussed, along with the implications for reactor safety of the accident at Three Mile Island, the derivation of biomass fuels from agricultural products and the application of probabilistic risk assessment to energy technologies. Attention is also given to a program for national survival during an oil crisis, energy conservation in new buildings, the development of a United States synthetic fuel industry, the role of OPEC policies in world oil availability, the social impacts of soft and hard energy systems, and the energy implications of fixed rail mass transportation systems. Additional topics include the energy consumptions of industries, the relative economics of nuclear, coal and oil-fired electricity generation, and the role of petroleum price and allocation regulations in the management of energy shortages.

  1. Workforce Training and Economic Development Fund: 2015 Annual Progress Report

    Science.gov (United States)

    Iowa Department of Education, 2015

    2015-01-01

    The Department of Education, Division of Community Colleges, will annually provide the State Board of Education with The Workforce Training and Economic Development (WTED) Fund Annual Progress Report. Administration and oversight responsibility for the fund was transferred from the Iowa Economic Development Authority to the Iowa Department of…

  2. Annual Energy Outlook 2011 with Projections to 2035

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-04-01

    The projections in the Energy Information Administration's (EIA) Annual Energy Outlook 2011 (AEO2011) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2011 Reference case provides the basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies. But AEO2011 is not limited to the Reference case. It also includes 57 sensitivity cases (see Appendix E, Table E1), which explore important areas of uncertainty for markets, technologies, and policies in the U.S. energy economy. Key results highlighted in AEO2011 include strong growth in shale gas production, growing use of natural gas and renewables in electric power generation, declining reliance on imported liquid fuels, and projected slow growth in energy-related carbon dioxide (CO2) emissions even in the absence of new policies designed to mitigate greenhouse gas (GHG) emissions. AEO2011 also includes in-depth discussions on topics of special interest that may affect the energy outlook. They include: impacts of the continuing renewal and updating of Federal and State laws and regulations; discussion of world oil supply and price trends shaped by changes in demand from countries outside the Organization for Economic Cooperation and Development or in supply available from the Organization of the Petroleum Exporting Countries; an examination of the potential impacts of proposed revisions to Corporate Average Fuel Economy standards for light-duty vehicles and proposed new standards for heavy-duty vehicles; the impact of a series of updates to appliance standard alone or in combination with revised building codes; the potential impact on natural gas and crude oil production of an expanded offshore resource base

  3. Policies and legislation driving Taiwan's development of renewable energy

    International Nuclear Information System (INIS)

    Liou, Hwa Meei

    2010-01-01

    Under the current wave of international responses to the growing threat of climate change, Taiwan cannot afford to step back from its goal of advancing its renewable energy, strengthening its energy self sufficiency and energy security. This paper will first analyze the high level dependency structure of Taiwan's energy demands; then we will explore Taiwan current situation in terms of renewable energy development; furthermore from an overview of the course of changes and development in Taiwan's energy policy, highlight the commitment to and aims of Taiwan's Renewable Energy Development, made by the government at the Annual National Energy Conference. Fourth, we shall analyse technological R and D, incentives, taxes, market reforms and other related policy tools. Fifth, in light of public announcements and budgets set in recent years for Taiwan's renewable energy research plan, highlight main strategies being given impetus by the government. Sixth, the author will discuss the implications of recent significant legal reforms to the development of renewable energy in Taiwan and from the correlating aspects of industrial structures and energy consumption, take the first steps in emphasizing the urgent need for adjustments to be made to Taiwan's industrial structure. Finally, this paper will conclude by examining current policies, legislation and strategies which are in place to promote this area in Taiwan and discuss the potential competitiveness and future scenarios which the development of Renewable Energy could mean for Taiwan. (author)

  4. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  5. Annual report of the Japan Atomic Energy Research Institute for fiscal 2002

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) is comprehensively promoting the research and development (R and D) activities to make the best use of variety of potentials of atomic energy. In the field of nuclear energy, researches on advanced nuclear engineering systems, high-temperature engineering experimentation and nuclear fusion are forwarded to realize long-range stable supply of energy. Researches on safety of nuclear facilities, health physics and science and technology for society have been conducted in the safety category mainly according to 'Annual Plan for Safety Research' to play and important part in long-range utilization of power generation by LWRs and to meet the expectations of people by maintaining reliability and openness associated with 'safety and confidence'. As a diversification of nuclear science and technology, various radiation application activities such as neutron science, advanced photon science and synchrotron radiation science and application research of charged particles and radioisotopes have been promoted, which contribute to drastic advance in the fields of materials and life science etc. and to establishment of new industries. Along with these activities, basic and fundamental researches including advanced basic research, materials science research, nuclear environmental science research and advanced computational science and engineering are in progress. In addition, JAERI is devoted to the technology development in radioactive waste management and nuclear facility dismantling and also to international cooperation and training activities etc. in the peaceful use of nuclear energy. The research activities for FY 2002 are reviewed in this issue. (J.P.N.)

  6. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    2001-12-01

    The review, in its own recognisable way, consists of the most recent and settled data for the year 2001, i.e. for the period from 1996 until 2001. We have, however, added data appertaining to a longer time period together with future expectations with the aim of an easier insight into long-term prospects. In 2001 total primary energy supply increased by 3.3 percent compared to the preceding year. Owing to the simultaneous growth of the gross domestic product by 4.1 percent, energy intensity decreased and consequently a positive trend continues. Energy intensity, which expressed the total energy consumed per unit of gross domestic product, exceeds the realised level of the developed European countries, but it is still more favourable than in the majority of transition countries. We would particularly like to stress the fact about the recorded growth of primary energy production by 7 percent, which in 2001 occurred partly as the consequence of favourable hydrological conditions and partly of a considerable increase in natural gas production. Supply from own sources grew to 52.8 percent. In 2001, natural gas production in the structure of the domestic production amounted to more than 36 percent. Energy import recorded an increase of 2.2 percent, whereby the portion of the imported crude oil was 65 percent. In 2001 transformation losses increased by 15.9 percent, transportation and distribution losses by 22.6 percent, energy sector own use by 10.3 percent, while non-energy consumption decreased by 15 percent. This brought about the situation that, together with the above mentioned growth of the total energy consumed of 3.3 percent, final demand grew by 2.6 percent - 2.3 percent in other sectors, 1.1 percent in traffic with the simultaneous increase in industry of 5.1 percent. Apart from these data, the publication comprises other interesting facts about our energy system, its capacities, energy source prices and environmental impact

  7. Further development of the SEA-Clam wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.; Peatfield, A.M.

    1984-04-01

    The final design of the SEA-Clam as a unit for a large 2 GW scheme has been described. This is the leading wave energy device arising out of the UK National Wave Energy Program and is seen as having the greatest potential for further development particularly for smaller scale applications. The small scale market for wave energy is examined and the design and cost parameters evaluated for the 250 kW to 1000 kW range of SEA-Clam units. Building a demonstration prototype rated at 650 kW and producing an annual average output of 250 kW is identified as the next step towards the commercial exploitation of wave energy.

  8. Proceedings of the Canadian Wind Energy Association's 2010 annual conference and exhibition

    International Nuclear Information System (INIS)

    2010-01-01

    The wind power industry is now experiencing rapid growth in many of the developed countries who seek to expand their renewable energy portfolios and reduce harmful emissions into the atmosphere. The annual Canadian Wind Energy Association (CanWEA) conference and exhibition provides a forum for members of the wind power industry as well as various other experts and stakeholders to exchange information and to discuss innovations and technologies designed to increase wind power capacity in Canada. The environmental impacts of wind turbines were examined, as well as some of the issues that are currently inhibiting growth of the wind power industry. New construction and operational strategies were presented. Business approaches for ensuring adequate investment in the industry were reviewed, and recommendations for government regulations and renewable energy investment incentives were provided. Advances in forecasting were outlined, and issues currently influencing the electric power industry in relation to wind power, reliability, and growth were also discussed. Methods of ensuring the reliability and safety of turbines in the event of icing and other meteorological events were also presented. The conference was divided into the following 5 tracks over a 3 day period: (1) project assessment, (2) project development, (3) business development, (4) technical, and (5) small wind. Each track was further sub-divided into sessions that covered a range of topics. Twenty-nine presentations were included in a poster session. The conference featured 118 presentations, of which 108 have been catalogued separately for inclusion in this database. refs., tabs.

  9. Annual energy outlook 1998 with projections to 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Annual Energy Outlook 1998 (AEO98) is the first AEO with projections to 2020. Key issues for the forecast extension are trends in energy efficiency improvements, the effects of increasing production and productivity improvements on energy prices, and the reduction in nuclear generating capacity. Projections in AEO98 also reflect a greater shift to electricity market restructuring. Restructuring is addressed through several changes that are assumed to occur in the industry, including a shorter capital recovery period for capacity expansion decisions and a revised financial structure that features a higher cost of capital as the result of higher competitive risk. Both assumptions tend to favor less capital-intensive generation technologies, such as natural gas, over coal or baseload renewable technologies. The forecasts include specific restructuring plans in those regions that have announced plans. California, New York, and New England are assumed to begin competitive pricing in 1998. The provisions of the California legislation for stranded cost recovery and price caps are incorporated. In New York and New England, stranded cost recovery is assumed to be phased out by 2008.

  10. NERSC 2001 Annual Report; ANNUAL

    International Nuclear Information System (INIS)

    Hules, John

    2001-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2001 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects); information about NERSC's current systems and services; descriptions of Berkeley Lab's current research and development projects in applied mathematics, computer science, and computational science; and a brief summary of NERSC's Strategic Plan for 2002-2005

  11. Annual energy outlook 1999, with projections to 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Annual Energy Outlook 1999 (AEO99) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA`s National Energy Modeling System (NEMS). The report begins with an Overview summarizing the AEO99 reference case. The next section, Legislation and Regulations, describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. Issues in Focus discusses current energy issues--the economic decline in East Asia, growth in demand for natural gas, vehicle emissions standards, competitive electricity pricing, renewable portfolio standards, and carbon emissions. It is followed by the analysis of energy market trends. The analysis in AEO99 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present a summary of the reference case forecasts in units of oil equivalence and household energy expenditures. The AEO99 projections are based on Federal, State, and local laws and regulations in effect on July 1, 1998. Pending legislation and sections of existing legislation for which funds have not been appropriated are not reflected in the forecasts. Historical data used for the AEOI99 projections were the most current available as of July 31, 1998, when most 1997 data but only partial 1998 data were available.

  12. The implementation of a multi-annual agreement for energy efficiency in The Netherlands

    International Nuclear Information System (INIS)

    Dinica, Valentina; Bressers, Hans Th. A.; Bruijn, Theo de

    2007-01-01

    The paper analyses the implementation of the second multi-annual agreement for energy efficiency concluded in the Netherlands with industrial sectors for the period 2002-2010. It aims to investigate whether the multi-annual agreement MJA2, as a voluntary instrument, is sufficiently stimulating behavioral change at the target group level, and sustained transformation of production and management patterns towards significant gains in energy efficiency. The analysis uses a Structure-Conduct-Performance analytical framework for implementation processes in order to: (a) analyze the setting of implementation, actor roles, attitudes and interactions; (b) discuss emerging obstacles and positive experiences with the implementation of the three core policy instruments envisaged: energy management system, process efficiency measures, and 'expansion themes' measures. Based on this policy recommendations are formulated regarding voluntary agreements in general, using the Structure-Conduct-Performance framework of implementation analysis, and regarding how the implementation process of MJA2 in particular could be improved

  13. Annual Report to Congress of the Atomic Energy Commission for 1965

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8) Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.

  14. Energy management and development of renewable energies: status of markets and jobs - Strategy et Etudes Nr 34

    International Nuclear Information System (INIS)

    Gaudin, Thomas; Vesine, Eric

    2012-01-01

    This paper presents and comments the results of an annual study of the status and evolutions of markets and jobs related to the main activities regarding the improvement of energy efficiency and the development of renewable energies in France. Data are given for the period 2006-2012. After a strong growth between 2006 and 2009, data reveal a lower but still positive growth. The evolution of jobs notably suffers from the decreased growth of the domestic market

  15. International Atomic Energy Agency Annual Report 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  16. Atomic Energy of Canada Limited 2007 annual financial report

    International Nuclear Information System (INIS)

    2007-01-01

    This is the annual report of Atomic Energy of Canada Limited for the year ending March 31, 2007 and summarizes the financial activities of AECL during the period 2006-2007. The highlights for this period include increase in consolidated commercial revenue by 40%, progress on the Cernavoda reactor, increased investment in the safety and performance of the CANDU fleet and a memorandum of understanding with Natural Resources Canada to govern implementation of a five-year waste management and decommissioning plan.

  17. U.S. Geological Survey—Energy and wildlife research annual report for 2017

    Science.gov (United States)

    Khalil, Mona

    2017-09-08

    IntroductionTerrestrial and aquatic ecosystems provide valuable services to humans and are a source of clean water, energy, raw materials, and productive soils. The Nation’s food supply is more secure because of wildlife. For example, native pollinators enhance agricultural crops, and insect-eating bats provide pest control services worth billions of dollars to farmers annually. Fish and wildlife are also vital to a vibrant outdoor recreation and tourism industry. Recreational activities, such as hunting, shooting, boating, and angling, generated \\$1.1 billion in excise taxes paid to State wildlife agencies in 2017. National parks, wildlife refuges, and monuments accounted for $35 billion in economic output and 318,000 jobs nationwide in 2016. Additional economic benefits are generated from the use and enjoyment of wildlife in State-owned lands and waters.Although the United States is rich in natural resources, human activity continues to place new pressures on fish and wildlife and the habitats they rely on. The United States became the world’s top producer of petroleum and natural gas products in 2012, surpassing Russia’s natural gas production levels in 2009 and Saudi Arabia’s petroleum production in 2013. The U.S. Energy Information Administration projects that the demand for liquid fuel, natural gas, and renewable energy will show strong growth in the next 20 years. Wind energy has demonstrated consistent growth since 2007 with now more than 53,000 wind turbines contributing to power grids in 41 States, Guam, and Puerto Rico. Solar energy has seen rapid growth since 2013 and made up nearly one-third of the total electricity generation additions in 2016. Yet as our Nation works to advance energy security and sustain wildlife, some conflicts have surfaced. Impacts of an expanding energy infrastructure include fragmentation and loss of habitat as well as mortality of birds, bats, fish, and other animals from interactions with energy generation facilities

  18. Queensland Energy Advisory Council's, annual review and energy statistics, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Queensland Energy Advisory Council (QEAC) role covers all forms of energy including renewable, non-renewable, commercialised and non-commercialised energy forms or proposals. While coal developments and electricity matters are discussed and monitored at meetings, the Mines Department and the State Electricity Commission, respectively, retain responsibility for most aspects in these energy sectors. In such cases QEAC's expertise and role is limited and is advisory. In other areas such as energy conservation, management of liquid fuel emergencies, natural gas supply and demand, solar energy, coal conversion, and ethanol production, QEAC made a significant contribution to policy development in 1981/82.

  19. Global energy futures and human development: a framework for analysis

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    2001-01-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  20. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  1. Laboratory Directed Research and Development FY2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  2. Annual Report to Congress of the Atomic Energy Commission for 1963

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1964-01-30

    The document represents the 1963 Annual Report of the Atomic Energy Commission (AEC) to Congress. Beginning with this year's report, an index is included as part of the document, rather than as a separate publication.The report is divided into 7 areas for 1963, plus 11 appendices and the index. Section names are: Part One, The Atomic Energy Program - 1963; Part Two, Production and Weapons Programs; Part Three, Nuclear Reactor Programs; Part Four, Public Safety; Part Five, Other Major Activities; Part Six, Support-Type Activities; and Part Seven, Regulatory Activities.

  3. The first Studsvik AB - JAEA meeting for cooperation in nuclear energy research and development

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Yanagihara, Satoshi; Karlsson, Mikael; Stenmark, Anders

    2009-01-01

    Based on the implemental agreement between the Studsvik AB and the Japan Atomic Energy Agency (JAEA) for cooperation in nuclear energy research and development, the first annual meeting was held at Oarai Research and Development Center, Japan Atomic Energy Agency. In this meeting, information exchange on two cooperation areas, 'Radioactive waste treatment technology including recycling of materials' and 'Technical developments for the neutron irradiation experiments in materials testing reactors', was carried out, and future plan in cooperation was discussed. This report describes contents of information exchange and discussions in two cooperation areas. (author)

  4. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers)

  5. Atomic Energy of Canada Limited 2008 annual financial report

    International Nuclear Information System (INIS)

    2008-01-01

    This is the annual report of Atomic Energy of Canada Limited for the year ending March 31, 2008 and summarizes the financial activities of AECL during the period 2007-2008. The major highlights for this period include increase of consolidated revenue by 4%, significant progress on Liquid Waste Transfer and Storage (LWTS) and the Fuel Packaging and Storage (FPS) project, feasibility study of a new ACR-1000 plant in New Brunswick and a memorandum of understanding with CNSC for pre project design review of ACR-1000.

  6. Atomic Energy of Canada Limited annual report 2002-2003

    International Nuclear Information System (INIS)

    2003-01-01

    This is the annual report of Atomic Energy of Canada Limited for the year ending March 31, 2003 and summarizes the activities of AECL during the period 2002-2003. It outlines the strategic objectives that include growing the market and market share, maximize return on resources, evolve the business structure to support business growth, grow knowledge assets, be a technology and knowledge-based innovative leader, leverage intellectual property to provide marketable products and services and establish nuclear power as a clean air and public policy solution.

  7. British annual energy review of 1992/93

    International Nuclear Information System (INIS)

    1993-09-01

    This document from the British Energy Association consists of contributions from United Kingdom authors on aspects of power generation and energy supply. The review covers the year 1992 to 1993 and features a survey on renewable energy developments in the United Kingdom. The articles stress links between energy availability and social and economic development, as well as the environmental impact of the various energy sources discussed. (UK)

  8. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  9. The Atomic Energy Commission's Annual Report to Congress for 1959. Major Activities in the Atomic Energy Programs, January - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    The document represents the first annual reporting versus semiannual reporting of the Atomic Energy Commission (AEC) to Congress. The report consists of three parts: Part One, The Atomic Energy Industry in 1959 and Related Activities; Part Two, Major Activities in Atomic Energy Programs; and Part Three, Management of Radioactive Wastes. Nineteen appendices are also included.

  10. VISION: Illuminating the Pathways to a Clean Energy Economy - JISEA 2016 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This report demonstrates JISEA's successes over the past year and previews our coming work. The 2016 Annual Report highlights JISEA accomplishments in low-carbon electricity system research, international collaboration, clean energy manufacturing analysis, 21st century innovation strategy, and more. As we look to the coming year, JISEA will continue to navigate complex issues, present unique perspectives, and envision a clean energy economy.

  11. Renewable Energy Development in Hermosa Beach, California

    Science.gov (United States)

    Morris, K.

    2016-12-01

    The City of Hermosa Beach, California, with the support of the AGU's TEX program, is exploring the potential for renewable energy generation inside the City, as part of the implementation of the City's 2015 Municipal Carbon Neutral Plan. Task 1: Estimate the technical potential of existing and future technologies Given the City's characteristics, this task will identify feasible technologies: wind, solar, tidal/wave, wastewater biogas, landfill biogas, microscale anaerobic digestion (AD), and complementary energy storage. Some options may be open to the City acting alone, but others will require working with municipal partners and private entities that provide services to Hermosa Beach (e.g., wastewater treatment). Energy storage is a means to integrate intermittent renewable energy output. Task 2: Review transaction types and pathways In this task, feasible technologies will be further examined in terms of municipal ordinances and contractual paths: (a) power purchase agreements (PPAs) with developers, under which the City would purchase energy or storage services directly; (b) leases with developers, under which the City would rent sites (e.g., municipal rooftops) to developers; (c) ordinances related to permitting, under which the City would reduce regulatory barriers to entry for developers; (d) pilot projects, under which the City would engage with developers to test new technologies such as wind/wave/microscale AD (pursuant to PPAs and/or leases); and (e) existing projects, under which the City would work with current wastewater and landfill contractors to understand (i) current plans to develop renewable energy, and (ii) opportunities for the City to work with such contractors to promote renewable energy. Task 3: Estimate costs by technology Finally, the last task will gather existing information about the costs, both current and projected, of the feasible technologies, including (i) overnight construction cost (capital); (ii) integration costs (e

  12. Proceedings of Canada Forum 4. annual conference : powering up Aboriginal energy : clean energy driving Aboriginal economic development across Canada

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [Lumos Energy, Ottawa, ON (Canada); Aboriginal Clean Energy Network, Ottawa, ON (Canada); Buckell, J. [Michipicoten First Nation, Wawa, ON (Canada)] (comps.)

    2010-07-01

    This conference provided a form to discuss issues related to renewable energy and methods of creating successful and sustainable business models and plans in Aboriginal communities. The Government of Canada's new Federal Framework for Aboriginal Economic Development promotes partnerships supporting Aboriginal businesses in order to maximize access to capital. More than $350 billion in major resource and energy developments have been identified in or near Aboriginal communities. The tools available for small, medium and large-sized Aboriginal businesses were discussed along with financing sources and mechanisms for creating equity in renewable energy projects. Speakers also addressed the need for new transmission to serve renewable generation; recognition of rights in sharing the land; and Ontario's Aboriginal Energy Partnerships Program which provides an opportunity for First Nations and Metis to work with the government and private sector to build, own and operate new electricity transmission. Other topics presented at the conference included biomass district heating; bioenergy projects; wind partnerships with Aboriginal communities; hydroelectric development; and northern and remote communities. The conference featured 11 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. Proceedings of Canada Forum 4. annual conference : powering up Aboriginal energy : clean energy driving Aboriginal economic development across Canada

    International Nuclear Information System (INIS)

    Henderson, C.; Buckell, J.

    2010-01-01

    This conference provided a form to discuss issues related to renewable energy and methods of creating successful and sustainable business models and plans in Aboriginal communities. The Government of Canada's new Federal Framework for Aboriginal Economic Development promotes partnerships supporting Aboriginal businesses in order to maximize access to capital. More than $350 billion in major resource and energy developments have been identified in or near Aboriginal communities. The tools available for small, medium and large-sized Aboriginal businesses were discussed along with financing sources and mechanisms for creating equity in renewable energy projects. Speakers also addressed the need for new transmission to serve renewable generation; recognition of rights in sharing the land; and Ontario's Aboriginal Energy Partnerships Program which provides an opportunity for First Nations and Metis to work with the government and private sector to build, own and operate new electricity transmission. Other topics presented at the conference included biomass district heating; bioenergy projects; wind partnerships with Aboriginal communities; hydroelectric development; and northern and remote communities. The conference featured 11 presentations, of which 3 have been catalogued separately for inclusion in this database.

  14. 2004 annual report. Defense, safety, energy, information, health. CEA in the center of big European challenges

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the 2004 annual report of the French atomic energy commission (CEA). It presents the R and D activities of the CEA in three main domains: 1 - defense and safety, maintaining perenniality of nuclear dissuasion and nuclear safety: supplying nuclear weapons to armies, maintaining dissuasion capability with the simulation program, sharing R and D means with the scientific community and the industrial world, designing and maintaining naval nuclear propulsion reactors, cleansing Marcoule and Pierrelatte facilities, monitoring treaties and fighting against proliferation and terrorism; 2 - energy, developing more competitive and cleaner energy sources: nuclear waste management, optimization of industrial nuclear activities, future nuclear systems and new energy technologies, basic research on energy, radiobiology and toxicology; 3 - information and health, valorizing industry thanks to technological research and supplying new tools for health and medical research: micro- and nano-technologies, software technologies, basic research for industrial innovation, nuclear technologies for health and bio-technologies. (J.S.)

  15. CAES Annual Report FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kortny Rolston

    2011-10-01

    The Center for Advanced Energy Studies was created to lead research programs important to the nation, attract students and faculty to the Idaho universities and act as a catalyst for technology-based economic development. CAES is striving to meet those goals by continuing to develop its infrastructure and equipment capabilities, expand its research portfolio and bolster Idaho's energy workforce. This Annual Report details the progress CAES made in FY 2011 toward fulfilling its research, education and economic development missions.

  16. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  17. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  18. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  19. Annual report 2005

    International Nuclear Information System (INIS)

    2005-01-01

    Areva is a world energy expert on technological solutions for nuclear power generation and electricity transmission and distribution. This 2005 annual report provides information on the Group results in the following domains: information pertaining to the transaction, general information on the company and share capital, information on company operations, new developments and future prospects, assets, financial position, financial performance, corporate governance, recent developments and outlook. (A.L.B.)

  20. Conference summaries of the Canadian Nuclear Association 30. annual conference, and the Canadian Nuclear Society 11. annual conference

    International Nuclear Information System (INIS)

    1990-01-01

    This volume contains conference summaries for the 30. annual conference of the Canadian Nuclear Association, and the 11. annual conference of the Canadian Nuclear Society. Topics of discussion include: energy needs and challenges facing the Canadian nuclear industry; the environment and nuclear power; the problems of maintaining and developing industrial capacity; the challenges of the 1990's; programmes and issues for the 1990's; thermalhydraulics; reactor physics and fuel management; nuclear safety; small reactors; fuel behaviour; energy production and the environment; computer applications; nuclear systems; fusion; materials handling; and, reactor components

  1. Energy in Croatia 2004, Annual Energy Report

    International Nuclear Information System (INIS)

    2005-11-01

    in total final demand coincides with 9.1 percent increase in industry sector's energy demand followed up by 2.9 and 0.9 percent increase in transport sector and other sectors' demand respectively.The overall consumption by individual energy sources records, in general, increase. Only in the case of oil derivates, total consumption went 10.1 percent down as a repercussion of less consumption of residual fuel oil by 32.1 percent, extra-light fuel oil by 5.6 percent and leaded motor gasoline by significant 45.5 percent compared to the previous year. Also, there is an important contribution of the Republic of Croatia to development of Union for the Coordination of Transmission of Electricity (UCTE). The report offers numerous other interesting indicators involved in the Croatian energy system, such as energy form process, primary energy reserves and air-pollutant emissions from energy sectors

  2. Large Energy Development Projects: Lessons Learned from Space and Politics

    International Nuclear Information System (INIS)

    Schmitt, Harrison H.

    2005-01-01

    The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will provide an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components

  3. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    Science.gov (United States)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  4. Energy and environment. Annual report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.G.; Lizama, L.R. (eds.)

    1976-01-01

    Progress is reported on the following programs: geothermal and geosciences; controlled thermonuclear research; chemical processing; instrument development; environment; energy use and conservation; energy analysis; and engineering sciences.

  5. Energy and Environment Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Camp, J.A. (ed.)

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  6. Development of Quebec's energy in a sustainable development context : summary; Le developpement energetique du Quebec dans un contexte de developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, K.; Lemieux, D.; Lambert, N.; Lachance, J.G. [Eco Ressources Consultants, Montreal, PQ (Canada); Bourque, F.; Benoit, P.A. [Reseau des ingenieurs du Quebec, Montreal, PQ (Canada)

    2009-04-30

    As a net energy importer, issues of energy security are becoming increasingly important in Quebec. Since Quebec's energy policy is largely based on the development of hydropower, its energy development has already been consistent with sustainable development. Industry remains the largest energy consumer in Quebec, followed by the transportation sector, and the residential, commercial and agricultural sectors. Total energy consumption in the province is expected to increase by 1.2 per cent annually between 2001-2016. Although competitive electricity prices in Quebec have contributed to strengthening the provincial economy, it has been argued that the low price of electricity does not promote energy efficiency nor the development of alternative energy sources. Quebec imports all of its crude oil and natural gas. Energy production in the province is currently confined to electricity generation and refining of petroleum products at 3 main refineries. In 2005, the installed electrical capacity was 92.2 per cent hydropower, 5.3 per cent thermal power, 1.5 per cent nuclear power, and 0.9 per cent wind power. The vast majority of this installed capacity (78 per cent) is owned by Hydro-Quebec. Wind capacity is expected to reach 3,500 MW by 2017, representing about 8 per cent of Quebec's total electrical capacity. Guidelines have been identified in Quebec's energy strategy for 2006-2015 to promote energy efficiency and innovation of new energy technologies covering all markets and all forms of energy, including geothermal energy, solar energy and ethanol produced from forest residues, agricultural wastes and municipal wastes. The government's overall goal is to generate both energy savings and a reduction in annual greenhouse gas emissions.

  7. Annual report of the Japan Atomic Energy Research Institute for fiscal 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) is comprehensively promoting the research and development (R and D) activities to make the best use of variety of potentials of atomic energy. In the field of nuclear energy, researches on advanced nuclear engineering systems, high-temperature engineering experimentation and nuclear fusion are forwarded to realize long-range stable supply of energy. Researches on safety of nuclear facilities, nuclear fuel cycles, radioactive waste processing/management and environmental radioactivities have been conducted in the safety category according to 'Annual Plan for Safety Research'. And researches on health physics have been implemented to establish the fundamentals of scientific and rational radiation protection. As a diversification of nuclear science and technology, various radiation application activities such as neutron science, advanced photon science and synchrotron radiation science and application research of charged particles and radioisotopes have been promoted, which contribute to drastic advance in the fields of materials and life science etc. and to establishment of new industries. Along with these activities, basic and fundamental researches including advanced basic research, materials science research, nuclear environmental science research and advanced computational science and engineering are in progress. In addition, operation management of JMTR, JRR-3 and JRR-4 were performed. And JAERI also implemented safety management and research information management activities etc. in the peaceful use of nuclear energy. The research activities for FY 2003 are reviewed in this issue. (J.P.N.)

  8. CONNECT: Linking Energy, Security, and Prosperity in the 21st Century - JISEA 2017 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-02

    This report demonstrates 2016 highlights of the Joint Institute for Strategic Energy Analysis' (JISEA's) work. The Annual Report overviews JISEA's research and analysis accomplishments in natural gas and methane emissions; nuclear-renewable hybrid energy systems; the 21st Century Power Partnership; and more.

  9. The Atomic Energy Commission's Annual Report to Congress for 1961. Major Activities in the Atomic Energy Programs, January - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    The document represents the 1961 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report consists of four parts: Part One, The Atomic Energy Industry for 1961 and Related Activities; Part Two, Nuclear Power Programs for 1961; Part Three, Major Activities in Atomic Energy Programs; and Part Four, Regulatory Activities. Sixteen appendices are also included.

  10. Annual report 1982

    International Nuclear Information System (INIS)

    1983-06-01

    This annual report gives a survey of the activities of ECN at The Hague and Petten, Netherlands, in 1982. These activities are concerned with energy generation and development and with scientific and technical applications of thermal neutrons, which are available from the High Flux Reactor and the Low Flux Reactor at Petten. The Energy Study Centre (ESC), a special department of ECN, is engaged with social-economic studies on energy generation and utilization. ESC also investigates the consequences of energy scenarios. The Bureau Energy Research Projects (BEOP) coordinates and administers all national research projects, especially on flywheels, solar energy, wind power and coal combustion. After a survey of staffing and finances the report ends with a list of ECN publications

  11. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 4: Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1990-04-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains 20 papers. Part 4 of the Pacific Northwest Laboratory Annual Report of 1989 to the DOE Office of Energy Research includes those programs funded under the title Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category and each Field Task proposal/agreement is introduced by an abstract that describes the projects reported in that section. These reports only briefly indicate progress made during 1989. 74 refs., 29 figs., 6 tabs.

  12. Development of solar energy education IASEE-Argentina, Arquisur and Alfa-built

    International Nuclear Information System (INIS)

    Schiller, S. de; Evans, J.M.

    1997-01-01

    Three educational experiences are presented in this paper on the development of national and regional networks to incorporate renewable energy in curricular programmes. IASEE-Argentina, established in 1990 as the National Section of IASEE, the International Association for Solar Energy Education, was designated in 1993 as the Education Working Group of ASADES, the Argentine Association of Solar Energy. It holds annual meetings to coincide with the ASADES conference. Arquisur is a regional network established by Architectural Faculties of State Universities within the Mercosur Region, covering Argentina, southern Brazil, Paraguay and Uruguay, to promote exchange and development between the 19 faculties involved. A Working Group set up by Arquisur with members from four countries developed the programme for short post-graduate courses on bioclimatic design and rational energy use in buildings, which has been given in Argentina and Uruguay. Alfa-Built, a project supported by the European Union for promoting academic exchange in the field of energy efficient building is also introduced. This paper presents the development and initial results of these educational experiences. (author)

  13. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    International Nuclear Information System (INIS)

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  14. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    International Nuclear Information System (INIS)

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics

  15. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1996. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. Using CACTUS multidetector system, several experiments have been completed. Some results have been published while more data remains to be analyzed. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  16. Section for nuclear physics and energy physics - Annual report January 1 to December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This annual report summarizes the research and development activities of the Section for Nuclear Physics and Energy Physics at the University of Oslo in 1997. It includes experimental and theoretical nuclear physics, as well as other fields of physics in which members of the section have participated. The report describes completed projects and work currently in progress. As in previous years, the experimental activities in nuclear physics have mainly been centered around the Cyclotron Laboratory with the SCANDITRONIX MC-35 Cyclotron. The main auxiliary equipment consists of a multi-detector system CACTUS, and presently with a unique locally designed silicon strip detector array SIRI. In experimental nuclear physics the section staff members are engaged within three main fields: nuclei at high temperature, high spin nuclear structure and high and intermediate energy nuclear physics.

  17. Annual report of Nuclear Human Resource Development Center. April 1, 2014 - March 31, 2015

    International Nuclear Information System (INIS)

    2017-06-01

    This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year (FY) 2014. In FY 2014, we flexibly designed special training courses corresponding with the outside training needs, while organizing the annually scheduled regular training programs. We also actively addressed the challenging issues on human resource development, such as to enhance the collaboration with academia and to organize international training for Asian countries. Besides these regular courses, we also organized the special training courses based on the outside needs, e.g. Nuclear Regulatory Authority or the people in Naraha town in Fukushima Prefecture. JAEA continued its cooperative activities with universities. In respect of the cooperation with graduate school of The University of Tokyo, we accepted nuclear major students and cooperatively conducted lectures and practical exercises for one year. In terms of the collaboration network with universities, the joint course was successfully held with six universities through utilizing the remote education system. Besides, the intensive summer course and practical exercise at Nuclear Fuel Cycle Engineering Laboratories were also conducted. Furthermore, JAEA had re-signed the agreement “Japan Nuclear Education Network” with 7 Universities in Feb. 2015 for the new participation of Nagoya University from FY 2015. Concerning International training, we continuously implemented the Instructor Training Program (ITP) by receiving the annual sponsorship from Ministry of Education, Culture, Sports, Science and Technology. In FY 2014, eight countries (i.e. Bangladesh, Indonesia, Kazakhstan, Malaysia, Mongolia, Philippines, Thailand and Vietnam) joined this Instructor training courses such as “Reactor Engineering Course”. Furthermore, we organized nuclear technology seminar courses, e.g. “Basic Radiation Knowledge for School Education”. In respect of

  18. 1982 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.; Grow, G.R. (eds.)

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  19. 1982 laser program annual report

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications

  20. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  1. Building America Systems Integration Research Annual Report: FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  2. Building America Systems Integration Research Annual Report. FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Gestwick, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  3. Energy Systems Group. Annual Progress Report 1984

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Larsen, Hans Hvidtfeldt; Villadsen, B.

    The report describes the work of the Energy Systems Group at Risø National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff...

  4. US energy policy and Arctic gas development

    International Nuclear Information System (INIS)

    Beecy, D.

    2004-01-01

    This presentation provided a perspective of Arctic energy resource development and the impact that science and technology will have on the American National Energy Policy (NEP). The role of the NEP is to provide energy security for the United States by ensuring dependable, affordable and sustainable energy for the future. The United States Department of Energy (DOE) conducts a wide range of energy and research activities that contribute to energy efficiency advances that help meet rising energy demand and reduce pollution emissions. In May 2001, the NEP proposed 100 recommendations, of which half focus on energy efficiency and developing renewable energy sources. The Clean Coal Power Initiative is also based on technological innovation and focuses on a program called FutureGen to build and operate a zero emission coal-fired power plant to produce both electricity and hydrogen. These initiatives could result in major changes in America's energy scenario. The provisions of the Energy Bill in streamlining the regulatory process for the proposed Alaska gas pipeline were outlined. The 2004 Annual Energy Outlook for the United States indicates that a pipeline from the Mackenzie Delta to Alberta would be constructed first, followed by one from Alaska. The North Slope Alaska natural gas pipeline will likely be operational by 2018 and add 4.5 BCF per day to meet growing natural gas demand in the United States. The National Petroleum Council's report on America's long-term natural gas supply and demand situation claims that lower-48 and traditional Canadian natural gas basins will be able to supply 75 per cent of the U.S. demand by the year 2025. The remainder will be made up by Alaskan natural gas, liquefied natural gas (LNG) and gas from new sources in Canada such as coalbed methane, methane hydrates, and oil sands

  5. Energy Systems Group annual progress report 1984

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Villadsen, B.

    1985-02-01

    The report describes the work of the Energy Systems Group at Risoe National Laboratory during 1984. The activities may be roughly classified as development and use of energy-economy models, energy systems analysis, energy technology assessment and energy planning. The report includes a list of staff members. (author)

  6. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers). The conference proceedings where divided into two parts. This item refers particularly to the second part

  7. 2016 Annual Technology Baseline (ATB)

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen; Feldman, David; Sigrin, Benjamin; Lantz, Eric; Stehly, Tyler; Augustine, Chad; Turchi, Craig; O' Connor, Patrick; Waldoch, Connor

    2016-09-01

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  8. US Department of Energy National Solid Waste Information Management System (NSWIMS) annual report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.

    1989-09-01

    This report is generated annually from the National Solid Waste Information Management System (SWIMS) database. The SWIMS database operates under NOMAD2, fourth generation database management system. The database resides on an IBM 3083 mainframe with a virtual machine operating system. This system was implemented to meet the requirements of Energy Research and Development Administration Manual. The SWIMS database has kept pace with requirements of subsequent directives and complies with current Department of Energy (DOE) orders for retention of data on the management of solid low-level radioactive waste (LLW). SWIMS provides a comprehensive method for collecting and maintaining data related to management of US DOE and Department of Defense (DOE/Defense) related LLW. 33 figs., 29 tabs.

  9. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Grove, L.K. [ed.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  10. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The resources of international co-operation, notably through the Nuclear Energy Agency, can substantially help 'keep the nuclear option open' in a sustainable development perspective, for example by helping preserve and develop scientific and technical know-how, maintaining adequate human resources both in quantity and quality, contributing to greater cost-effectiveness of nuclear operations, and improving stakeholder confidence in radioactive waste management solutions. The 1999 Annual Report of the Nuclear Energy Agency illustrates various facets of the international co-operation made available to Member governments which assists them in rising to these challenges: Nuclear Development and the Fuel Cycle, Nuclear Safety and Regulation, Radiation Protection, Radioactive Waste Management, Nuclear Science, Data Banks, Legal Affairs, Joint Projects and Other Co-operative Projects. (author)

  11. Annual report 1999

    International Nuclear Information System (INIS)

    1999-01-01

    The resources of international co-operation, notably through the Nuclear Energy Agency, can substantially help 'keep the nuclear option open' in a sustainable development perspective, for example by helping preserve and develop scientific and technical know-how, maintaining adequate human resources both in quantity and quality, contributing to greater cost-effectiveness of nuclear operations, and improving stakeholder confidence in radioactive waste management solutions. The 1999 Annual Report of the Nuclear Energy Agency illustrates various facets of the international co-operation made available to Member governments which assists them in rising to these challenges: Nuclear Development and the Fuel Cycle, Nuclear Safety and Regulation, Radiation Protection, Radioactive Waste Management, Nuclear Science, Data Banks, Legal Affairs, Joint Projects and Other Co-operative Projects. (author)

  12. International Atomic Energy Agency Annual Report 2014 [Russian Version

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  13. International Atomic Energy Agency Annual Report 2014 [French Version

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  14. International Atomic Energy Agency Annual Report 2014 [Chinese Version

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  15. International Atomic Energy Agency Annual Report 2014 [Arabic Version

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  16. International Atomic Energy Agency Annual Report 2014 [Spanish Version

    International Nuclear Information System (INIS)

    2015-01-01

    Along with an examination of the state of worldwide nuclear-related developments last year, the IAEA Annual Report 2014 provides a comprehensive look at the Agency’s activities over the course of the year. From coordinating 125 research projects to conducting 2114 nuclear verification inspections worldwide, the IAEA’s 2560 employees continued to work on a wide range of areas to meet the evolving needs of Member States. The Annual Report, published in August, will be discussed and endorsed at the IAEA’s General Conference in September. Serving 162 Member States, two more than the year before, the IAEA’s activities in 2014 focused on the following areas, in line with its mandate: • Nuclear Energy: The IAEA assisted Member States in the introduction of nuclear power programmes and in the efficient and safe use of nuclear energy, fostering innovation and building capability in energy planning, analysis, and nuclear information and knowledge management. • Nuclear Sciences and Applications: The IAEA continued to assist Member States in building, strengthening and maintaining capacities in the safe, peaceful and secure use of nuclear technology. • Nuclear Safety and Security: The IAEA and its Member States continued to strengthen nuclear safety worldwide, including through the implementation of the Action Plan on Nuclear Safety, which had been endorsed by the General Conference in 2011 after the accident at the Fukushima Daiichi nuclear power plant earlier that year. The IAEA also supported States, upon request, in their efforts to achieve effective security wherever nuclear and other radioactive materials are in use. • Nuclear Verification: The IAEA implemented safeguards in 180 States and as at the end of every year, it drew conclusions for each State for which safeguards were applied. • Technical Cooperation: The IAEA assisted Member States in their efforts to achieve the Millennium Development Goals and in preparation for the post-2015 Sustainable

  17. Survey on the possibility of introducing new energy to regional development plans

    Science.gov (United States)

    1988-03-01

    This report covers nationwide large-scale resort plans and at the same time studies the possibility of introducing new energy systems, mainly cogeneration, and their effects. Japanese industrial structure is rapidly moving toward information and service areas, and the development of resorts has become very active. With the increase of resort demands, much is expected of resort development as a means of regional promotion. Special features of energy consumption in resort facilities are that annual demand is large, that energy consumption fluctuates greatly, and that energy supply cost is high. These features are especially conspicuous in smaller facilities. Most suited for resort lodging facilities is a co-generation system, especially a diesel engine system. This system is expected to conserve energy; but to promote this system, it is necessary to revise the preferential tax treatment and Fire Service Act to meet the actual circumstances, and to develop a highly reliable system that can be operated unattended. An economical system in view of overall costs is also essential.

  18. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors

  19. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  20. Proceedings of the Canadian Wind Energy Association's 2010 annual conference and exhibition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The wind power industry is now experiencing rapid growth in many of the developed countries who seek to expand their renewable energy portfolios and reduce harmful emissions into the atmosphere. The annual Canadian Wind Energy Association (CanWEA) conference and exhibition provides a forum for members of the wind power industry as well as various other experts and stakeholders to exchange information and to discuss innovations and technologies designed to increase wind power capacity in Canada. The environmental impacts of wind turbines were examined, as well as some of the issues that are currently inhibiting growth of the wind power industry. New construction and operational strategies were presented. Business approaches for ensuring adequate investment in the industry were reviewed, and recommendations for government regulations and renewable energy investment incentives were provided. Advances in forecasting were outlined, and issues currently influencing the electric power industry in relation to wind power, reliability, and growth were also discussed. Methods of ensuring the reliability and safety of turbines in the event of icing and other meteorological events were also presented. The conference was divided into the following 5 tracks over a 3 day period: (1) project assessment, (2) project development, (3) business development, (4) technical, and (5) small wind. Each track was further sub-divided into sessions that covered a range of topics. Twenty-nine presentations were included in a poster session. The conference featured 118 presentations, of which 108 have been catalogued separately for inclusion in this database. refs., tabs.

  1. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This

  2. International Atomic Energy Agency annual report 2006

    International Nuclear Information System (INIS)

    2007-01-01

    The Annual Report reviews the results of the Agency's programme according to the three pillars of technology, safety and verification. The main part of the report generally follows the programme structure as given in The Agency's Programme and Budget 2006-2007 (GC(49)/2). The introductory chapter seeks to provide a thematic analysis, based on the three pillars, of the Agency's activities within the overall context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2006 and Background to the Safeguards Statement. For the convenience of readers, these documents are available on the CD-ROM attached to the inside back cover of this report. Additional information covering various aspects of the Agency's programme is provided on the attached CD-ROM, and is also available on the Agency's web site at http://www.iaea.org/Worldatom/Documents/Anrep/Anrep2006/. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The topics covered in the chapter related to technology are: nuclear power; nuclear fuel cycle and materials technologies; capacity building and nuclear knowledge maintenance for sustainable energy development; nuclear science; food and agriculture; human health; water resources; assessment and management of marine and terrestrial environments; radioisotope production and radiation technology; safety and security; incident and emergency preparedness and response; safety of nuclear installations; radiation and transport safety; management of radioactive waste; nuclear security

  3. Energy revolution: From a fossil energy era to a new energy era

    Directory of Open Access Journals (Sweden)

    Caineng Zou

    2016-01-01

    Full Text Available This paper aims to predict the future situation of global energy development. In view of this, we reviewed the history of energy use and understood that new energy sources will usher in a new era following oil & gas, coal and wood one after another in the past time. Although the fossil energy sources are still plenty in the world, great breakthroughs made in some key technologies and the increasing demand for ecological environmental protection both impel the third time of transformation from oil & gas to new energy sources. Sooner or later, oil, gas, coal and new energy sources will each account for a quarter of global energy consumption in the new era, specifically speaking, accounting for 32.6%, 23.7%, 30.0% and 13.7% respectively. As one of the largest coal consumer, China will inevitably face up to the situation of tripartite confrontation of the coal, oil & gas and new energy. The following forecasting results were achieved. First, the oil will be in a stable period and its annual production peak will be around 2040, reaching up to 45 × 108 t. Second, the natural gas will enter the heyday period and its annual production peak will be around 2060, reaching up to 4.5 × 1012 m3, which will play a pivotal role in the future energy sustainable development. Third, the coal has entered a high-to-low-carbon transition period, and its direct use and the discharged pollutants will be significantly reduced. In 2050, the coal will be dropped to 25% of the primary energy mix. Last, the development and utilization of new energy sources has been getting into the golden age and its proportion in the primary energy mix will be substantially enhanced. On this basis, we presented some proposals for the future energy development in China. At first, we should understand well that China's energy production and consumption has its own characteristics. Under the present situation, we should strengthen the clean and efficient use of coal resources, which

  4. Energy Innovation 1998. IVO group`s research and development report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P; Laiho, Y; Kaikkonen, H; Leisio, C; McConchie, R; Fletcher, R [eds.

    1998-07-01

    The IVO Group is a Finnish company mastering all aspects of the entire energy chain, and also operating extensively on the international market. The Group`s operations concentrate on five business areas: energy, engineering, operation and maintenance, grid services, and energy measurement. The personnel numbers well over 8 800, and the turnover is about FIM 14 billion. The services to customers include the supply of electricity and heat, the planning, construction, operation and maintenance of power plants and transmission systems, the transmission of power, and other services requiring expertise in all the key fields of energy engineering. Mastery of the entire energy chain gives us a substantial competitive edge on international markets, where the IVO Group has been a player for decades. The operations have expanded to the other Nordic countries, which now constitute the home market. Focal areas also include Great Britain, Central and Eastern Europe and Southeast Asia. The IVO Group annually invests some FIM 250 million in research and development. A large proportion of this money is used for the development of environmentally benign solutions

  5. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  6. Design optimization of radial flux permanent magnetwind generator for highest annual energy input and lower magnet volumes

    Energy Technology Data Exchange (ETDEWEB)

    Faiz, J.; Rajabi-Sebdani, M.; Ebrahimi, B. M. (Univ. of Tehran, Tehran (Iran)); Khan, M. A. (Univ. of Cape Town, Cape Town (South Africa))

    2008-07-01

    This paper presents a multi-objective optimization method to maximize annual energy input (AEI) and minimize permanent magnet (PM) volume in use. For this purpose, the analytical model of the machine is utilized. Effects of generator specifications on the annual energy input and PM volume are then investigated. Permanent magnet synchronous generator (PMSG) parameters and dimensions are then optimized using genetic algorithm incorporated with an appropriate objective function. The results show an enhancement in PMSG performance. Finally 2D time stepping finite element method (2D TSFE) is used to verify the analytical results. Comparison of the results validates the optimization method

  7. Environmental Development Plan for Transportation Energy Conservation. FY 79 update

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. K.; Bernard, III, M. J.

    1978-12-15

    This is the first annual update of the Environment Development Plan (EDP) for the DOE Division of Transportation Energy Conservation program. It identifies the ecosystem, resource, physical environment, health, safety, and socioeconomic concerns associated with the division's transportation programs. These programs include the research, development, demonstration and assessment (RDD and A) of seventeen transportation technologies and several strategy and policy development and implementation projects. The transportation technologies projects deal with highway transport including electric vehicles, marine transport and pipeline transport. This EDP presents a research and assessment plan for resolving any potentially adverse environmental concerns stemming from these programs.

  8. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Gylling, Morten

    2003-01-01

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO 2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  9. Annual Report to Congress of the Atomic Energy Commission for 1971

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, James R.

    1971-01-31

    The document represents the 1971 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1971'' followed by 3 Parts, each with various chapters, plus a final index. Parts and Chapters are as follows. Part One, Regulatory Activities, has Chapters (1) Licensing and Regulation; (2) Reactor Licensing; and (3) Materials Control. Part Two, Environmental Safety, has Chapters (4) Environmental Considerations; (5) Radioactive Wastes; and (6), Operational Safety. Part Three, Operating and Developmental Functions, has Chapters (7) National Defense; (8) Reactor Technology; (9) Nuclear Materials; (10) Applications Research; (11) Basic Research; (12) International Affairs; and, (13) Educational and Administrative.

  10. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  11. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  12. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  13. Framework for projecting employment and population changes accompanying energy development

    Energy Technology Data Exchange (ETDEWEB)

    Stenehjem, E.J.; Metzger, J.E.

    1980-05-01

    This report provides a framework which energy planners can use to readily estimate the size and timing of the population and employment changes associated with energy development. The direct employment requirements for eight different technologies are listed. This direct employment requirement can be combined with the set of employment multipliers and other information provided to obtain practical estimates of the employment and population impacts of new energy development. Some explanation is given for the variation of the multipliers among counties in the same region. A description is presented of a demographic model for deriving the annual population changes that can be expected as a result of in-migrating workers and their families. Several hypothetical examples of the procedure for making the calculations are discussed as practical exercises in using the multipliers. The necessary data are provided for obtaining estimates of population and employment changes in any county in the US.

  14. Oil and gas activities in the program energy research and development (PERD)

    International Nuclear Information System (INIS)

    Billette, N.; Marshall, S.-L.

    2002-01-01

    A broad range of non-nuclear energy research and development activities are covered under the umbrella of the Program of Energy Research and Development (PERD) managed by Natural Resources Canada. The research and development budget amounts to 52.5 million dollars annually, and is distributed across twelve federal departments and agencies. Horizontal coordinated research activities are taking place. Of this total budget, approximately 14 million dollars annually are spent to carry out oil and gas research and development activities by five federal departments and one agency. A results-based management for PERD was recently implemented by the Office of Energy Research and Development in an effort to improve the strategic management. Some of the efforts are directed toward research in the following general classification: upstream activities, offshore and frontier activities, and cross-cutting activities. Upgrading technologies and advanced separation technologies with the focus on oil sands bitumen represent the main issues addressed under the heading upstream activities. The major issues studied in the offshore and frontier activities are: basin assessment and geotechnics, wind-wave-current modelling, managing sea ice, ice-structure interactions, transportation safety, marine operations and ship design, management of offshore drilling and production waste, oil spills remediation and environmental impact assessment of offshore wastes and produced waters. Flaring, pipelines and soil and groundwater remediation are topics classified under the heading cross-cutting activities. The authors provided an overview of the activities and identified the future trends in PERD to meet the requirements of the various stakeholders and the Canadian population. 1 tab

  15. Oil and gas activities in the program energy research and development (PERD)

    Energy Technology Data Exchange (ETDEWEB)

    Billette, N.; Marshall, S.-L. [Natural Resources Canada, Ottawa, ON (Canada)

    2002-06-01

    A broad range of non-nuclear energy research and development activities are covered under the umbrella of the Program of Energy Research and Development (PERD) managed by Natural Resources Canada. The research and development budget amounts to 52.5 million dollars annually, and is distributed across twelve federal departments and agencies. Horizontal coordinated research activities are taking place. Of this total budget, approximately 14 million dollars annually are spent to carry out oil and gas research and development activities by five federal departments and one agency. A results-based management for PERD was recently implemented by the Office of Energy Research and Development in an effort to improve the strategic management. Some of the efforts are directed toward research in the following general classification: upstream activities, offshore and frontier activities, and cross-cutting activities. Upgrading technologies and advanced separation technologies with the focus on oil sands bitumen represent the main issues addressed under the heading upstream activities. The major issues studied in the offshore and frontier activities are: basin assessment and geotechnics, wind-wave-current modelling, managing sea ice, ice-structure interactions, transportation safety, marine operations and ship design, management of offshore drilling and production waste, oil spills remediation and environmental impact assessment of offshore wastes and produced waters. Flaring, pipelines and soil and groundwater remediation are topics classified under the heading cross-cutting activities. The authors provided an overview of the activities and identified the future trends in PERD to meet the requirements of the various stakeholders and the Canadian population. 1 tab.

  16. Annual meeting on nuclear technology '88. Technical session on focal points of the atomic energy law and the radiation protection law in 1988

    International Nuclear Information System (INIS)

    1988-06-01

    This issue of Annual Meeting on Nuclear Technology reports presents the papers of the technical session on 'Focal points of the atomic energy law and the radiation protection law in 1988'. The titles are: Is there a binding link between decisions of the atomic energy authority and criminal law? Conclusions to be drawn from the Alkem case court decision. - Recent developments in atomic energy law. - Current radiation protection law. - Codetermination at plant level in a nuclear installation. - The legal position of foreigners from neigbour countries in the field of atomic energy law. The licensing of nuclear installations near the border. (RST) [de

  17. Annual report 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This annual report provides information on the energies and raw materials policy for 2002. The first part, devoted to the supplying safety, deals with the petroleum situation in 2002, the new perspectives for the continental shelf exploitation, the heavy metals prices evolution and the renewable energies promotion. The second part on the markets opening presents the new legislation of the energy markets, the new juridical framework of the natural gas transportation network, EdF, GdF and the National Company of the Rhone situation, the markets liberalization. The third part deals with the today subjects as the sustainable development, the nuclear situation, the high voltage power lines and the environment, the end of the mines exploitation in France, the energy policy facing the climatic change, the National Debate on the energies, the directive on the energy efficiency of buildings. (A.L.B.)

  18. 1995 annual report. Ghana Atomic Energy Commission : using nuclear energy and techniques to alleviate hunger, diseases and control of environmental pollution

    International Nuclear Information System (INIS)

    1996-01-01

    The 1995 annual report reflects the activities of the Ghana Atomic Energy Commission (GAEC) on an institutional basis. It provides an overview of the outcomes achieved and the current activities of the GAEC grouped under its core nuclear science areas

  19. Development of wind turbines for safe operation in alpine environments - Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, S.; Abhari, R.

    2009-08-15

    Many favourable sites for wind farms, particularly in the Swiss Alps, are located in cold, wet regions where the build-up of ice is a risk and therefore limits the installation of wind turbines. The aim of this work is to quantify and understand in detail the effects of blade icing on wind turbine performance and to propose mitigation strategies. The project is unique in that it is carried out using a multi-disciplinary approach that combines (1) analysis of field data, (2) controlled experiments on a sub-scale wind turbine model and (3) 3D Computational Fluid Dynamics. In part (1) the wind data and full-scale wind turbine power and icing measurements from the Alpine Test Site Guetsch over one year are analysed. Icing on the blades is estimated to cause approximately a 2% loss in Annual Energy Production (AEP). Other losses due to the particular location of the turbine in complex terrain are found to reduce the expected AEP by up to 23%. These major losses must be further investigated in controlled experiments. The analysis of photographs of ice on the blades, alongside numerical simulations, enables five ice geometries to be defined for Guetsch atmospheric conditions (altitude: 2331 m above sea level). One further 'extreme' ice shape is also defined, which is representative of ice formed on wind turbines installed at lower altitude sites such as the Berne Jura (altitude: 800 to 1500 m). In part (2), experiments are undertaken in the new sub-scale wind turbine test facility at ETH Zuerich using a novel method to quantify performance. The defined ice shapes are attached to the blades and the performance compared. The five shapes representative of the ice formed at Guetsch are found to reduce the Annual Energy Production by up to 2%. However, the 'extreme' ice shape could result in a loss in Annual Energy Production of up to 17%. Furthermore, the presence of ice on the most outboard 5% of the blade is found to be key to performance. Ice removal or

  20. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  1. Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hively, LM

    2003-02-13

    NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (<10{sup -3}/year) in the operational environment. Moreover, the ONLY way to guarantee a controlled failure sequence is to seed progressively larger faults in the equipment or to overload the equipment for accelerated tests. Both of these approaches are infeasible for operational utility machinery, but are straight-forward in a test environment. Our subcontractor has provided such test sequences. Thus, we have revised Tasks 2.1-2.4 to analyze archival test data from such tests. The second phase of our work involves validation of the nonlinear prognostication over the second and third years of the proposed work. Recognizing the inherent limitations outlined in the previous

  2. 2003 annual report. Information and health, defense, energy; Rapport annuel 2003. Information et sante, defense, energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document is the 2003 annual report of the French atomic energy commission (CEA). It presents, first, the main highlights of the research activity of the CEA in three domains: the national defense (the Simulation program and the share of the technical means with the scientific community, the nuclear warheads, the nuclear propulsion, the cleansing of the Rhone valley facilities, the monitoring of treaties respect and the fight against proliferation and terrorism; the energy: the researches on nuclear wastes, the optimization of industrial nuclear systems, the innovations devoted to future nuclear systems, the new energy-related technologies, the basic energy research; the technologies devoted to information and health: micro- and nano-technologies, the software technologies, the basic research. It presents also the main research facilities opened to the community of scientific and industrial users, the training activities, partnerships, agreements and the improvements made in the general organization of the CEA: scientific evaluation, planning, optimization, manpower, international relations, communication, risk management, certification, radiation protection and environmental monitoring. The financial data are added at the end of the document. (J.S.)

  3. Israel Atomic Energy Commission 1996 Annual Report

    International Nuclear Information System (INIS)

    1996-01-01

    Selecting the research efforts to be highlighted in the Israel Atomic Energy Commission's Annual Report from the large body and broad spectrum of ongoing work is not an easy task. The extensive bibliography of published results attached to the report attests to the scope of this difficulty. Of the many worthwhile projects, four were chosen to represent best the current trends in the continuing R and D program at the research centers of the Israel Atomic Energy Commission. One of these trends is the growing cooperation with private industry, in an attempt to gear our R and D programs to respond to market demands. Another feature, noted already several years ago, is the extensive collaboration of our scientists and engineers with colleagues at other institutions, in Israel and abroad. some of the work reported is part of evolving international industrial cooperation projects, illustrating both these trends. Following a trend common to many nuclear research centers around the world, a substantial part of our research effort is non-nuclear in nature. This is illustrated in the first article, which deals with advances in the application of non-linear optics in diverse fields of science and technology. These include state-of-the-art solid-state lasers, rapid modulation of light signals, development and generation of tunable sources of coherent light, optical data storage and the microscopic probing of biological and inorganic samples. The present work reports on a range of R and D, from the fundamentals of non-linear optical materials to proof-of-principle demonstrations of non-linear subwavelength resolution microscopy, to fabrication of prototype commercial tunable laser systems The second report considers the microstrain characteristics in some alloys using X-ray diffraction (XRD). The research utilizes XRD line broadening effects to study the characteristics of alloys from especially prepared surfaces. These characteristics include the homogeneity of alloying

  4. Israel Atomic Energy Commission 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Selecting the research efforts to be highlighted in the Israel Atomic Energy Commission`s Annual Report from the large body and broad spectrum of ongoing work is not an easy task. The extensive bibliography of published results attached to the report attests to the scope of this difficulty. Of the many worthwhile projects, four were chosen to represent best the current trends in the continuing R and D program at the research centers of the Israel Atomic Energy Commission. One of these trends is the growing cooperation with private industry, in an attempt to gear our R and D programs to respond to market demands. Another feature, noted already several years ago, is the extensive collaboration of our scientists and engineers with colleagues at other institutions, in Israel and abroad. some of the work reported is part of evolving international industrial cooperation projects, illustrating both these trends. Following a trend common to many nuclear research centers around the world, a substantial part of our research effort is non-nuclear in nature. This is illustrated in the first article, which deals with advances in the application of non-linear optics in diverse fields of science and technology. These include state-of-the-art solid-state lasers, rapid modulation of light signals, development and generation of tunable sources of coherent light, optical data storage and the microscopic probing of biological and inorganic samples. The present work reports on a range of R and D, from the fundamentals of non-linear optical materials to proof-of-principle demonstrations of non-linear subwavelength resolution microscopy, to fabrication of prototype commercial tunable laser systems The second report considers the microstrain characteristics in some alloys using X-ray diffraction (XRD). The research utilizes XRD line broadening effects to study the characteristics of alloys from especially prepared surfaces. These characteristics include the homogeneity of alloying

  5. Annual report

    International Nuclear Information System (INIS)

    1986-01-01

    This is the thirty-ninth annual report of the Atomic Energy Control Board. The period covered by this report is the year ending March 31, 1986. The Atomic Energy Control Board (AECB) was established in 1946, by the Atomic Energy Control Act (AEC Act), (Revised Statues of Canada (R.S.C.) 1970 cA19). It is a departmental corporation (Schedule B) within the meaning and purpose of the Financial Administration Act. The AECB controls the development, application and use of atomic energy in Canada, and participates on behalf of Canada in international measures of control. The AECB is also repsonsible for the administration of the Nuclear Liability Act, (R.S.C. 1970 c29 1st Supp) as amended, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. The AECB reports to Parliament through a designated Minister, currently the Minister of Energy, Mines and Resources

  6. Annual report 2005 General Direction of the Energy and raw materials; Rapport annuel 2005 Direction Generale de L'Energie et des Matieres Premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  7. Annual activity report of Atomic Energy Organization of Iran 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Annual research activities of atomic energy organization of Iran AEOI is described for 1981. 1.Nuclear research centre acompolishment is devoted to nuclear physics radiochemistry, reactor operation, electronic and health physics. 2.The nuclear power plants activities are centered on the maintenance of the installed equipments of power plants sites and making use of these installation in the line of countrys needs. 3.Isfahan nuclear technology has reported it's goal and according to it planned a research program for reactor control systems, preparation of pure uranium oxide from yellow cake, installation and operation of equipments for fuel pellet production. 4.The exploration centre exploited a geologic survey for the potential uranium ores and despite of difficulties and deficiences rich deposits are identifed. 5.The radiation protection centre research is allocated to a)Measuring the environmental radioactivity, b)dosimetry, c)inspection and controlling the radioactivity, of the medical and industrial centers 6.The renewable energy sources described their studies on solar energy and biogas application in Iran and finally attributes of International affiars, staff services, budget and adminis trative departments are outlined

  8. SFEN Annual Convention 2012 - The nuclear energy one year after Fukushima. Proceedings

    International Nuclear Information System (INIS)

    2012-03-01

    This document brings together the available presentations given at the 2012 edition of the Annual Convention of the French society of nuclear energy (SFEN) on the topic of nuclear energy one year after Fukushima. Twenty four presentations (slides) are compiled in this document: 1 - Presentation and introduction of the Annual Convention (Luc Oursel - SFEN President); 2 - Status of onsite/offsite remedial actions, key lessons learned (Akira Omoto, Tokyo univ., Japan Atomic Energy Commission); 3 - Complementary Safety Assessments (CSA) of the French NPP fleet (Dominique Miniere, EDF); 4 - Speech of M. Francois Fillon - Prime Minister; 5 - CSA of the fuel cycle facilities (Philippe Knoche, Areva); 6 - CSA of the EPR (Bertrand de l'Epinois, Areva; Jean-Luc Foret, EDF CNEN); 7 - The collective responsibility of the operators: the action of WANO (Laurent Stricker, WANO); 8 - Conclusions of French Nuclear Safety Authority (ASN) - Safety measures to be strengthened; 9 - Opinion no. 2012-AV-013 from January 3, 2012 of the French Nuclear Safety Authority - ASN (Sophie Mourlon, ASN; Caroline Lavarenne, IRSN); 10 - Nuclear energy: an energy for the future (Bernard Bigot, CEA); 11 - The nuclear phaseout in Germany from the view of German industry (Eberhard von Rottenburg, BDI); 12 - Prospects in China (Wei Lu, CGNP Europe); 13 - Industry Current Status and its Prospects in the United States (J. Spina, CENG); 14 - Nuclear energy prospects in France: recommendations of the Commission 'Energy 2050' (Jacques Percebois, Creden); 15 - Electrical generation system efficiency and economy (Yves Giraud, EDF); 16 - Electrical generation systems and distribution networks (Herve Mignon, Rte); 17 - Prospects in the UK (Tim Stone, DECC/OND, Senior Adviser to the Secretary of State); 18 - Climatic changes and energy policy (Laura Cozzi, IEA); 19 - The young nuclear professionals network (Boris Supiot, SFEN Young Generation Group); 20 - Socio-economic impacts of the nuclear power industry in

  9. Energy Program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Borg, I.Y. (ed.)

    1988-02-01

    The national economy is particularly dependent on efficient electrical generation and transportation. Electrical demand continues to grow and will increasingly rely on coal and nuclear fuels. The nuclear power industry still has not found a solution to the problem of disposing of the waste produced by nuclear reactors. Although coal is in ample supply and the infrastructure is in place for its utilization, environmental problems and improved conversion processes remain technical challenges. In the case of transportation, the nation depends almost exclusively on liquid fuels with attendant reliance on imported oil. Economic alternates---synfuels from coal, natural gas, and oil shale, or fuel cells and batteries---have yet to be developed or perfected so as to impact the marketplace. Inefficiencies in energy conversion in almost all phases of resource utilization remain. These collective problems are the focus of the Energy Program.

  10. AECL annual report 1996-1997

    International Nuclear Information System (INIS)

    1997-01-01

    The 1996/1997 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of parliament, Minister of Natural Resources. Included in this report are messages from marketing, commercial operations, product development, CANDU research, waste management, environmental management, financial review and copies of financial statements

  11. AECL annual report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The 1996/1997 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of parliament, Minister of Natural Resources. Included in this report are messages from marketing, commercial operations, product development, CANDU research, waste management, environmental management, financial review and copies of financial statements.

  12. Meteorology and Wind Energy Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1997-07-01

    In 1996 the Meteorology and Wind Energy Department has performed research within the programme areas: (1) wind energy and (2) atmospheric processes. The objectives are through research in boundary layer meteorology, fluid dynamics, aerodynamics and structural mechanics to contribute with new knowledge within (1) wind energy in relation to development, manufacturing, operation and export as well as testing and certification of wind turbines, and (2) aspects of boundary-layer meteorology related to environmental and energy problems of society. The work is supported by the research programs of the Ministry of Environment and Energy, the Nordic Council of Ministers, EU as well as by industry. Through our research and development work we develop and provide methodologies including computer models for use by industry, institutions, and governmental authorities. In the long view we are developing facilities and programs enabling us to serve as a national and European centre for wind-energy and boundary-layer meteorological research. A summary of our activities in 1996 is presented. (au) 4 tabs., 5 ills.

  13. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  14. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  15. US Department of Energy National Solid Waste Information Management System (NSWIMS): Annual report for calendar year 1987

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.L.

    1988-07-01

    The Solid Waste Information Management System (SWIMS) is the database used to gather information for the US Department of Energy (DOE) on DOE and Department of Defense solid low-level radioactive waste (LLW). The National SWIMS Annual Report (NSWIMS) provides officials of the DOE with management information on the entire DOE/defense solid LLW cycle. The acronym for the annual report, NSWIMS, signifies that an improved format has been developed to make this document a more useful tool for assessing solid LLW management performance. Part I provides a composite summary of the DOE/defense solid LLW management. It includes data related to waste generation, forecasting, treatment, and disposal. Part II contains SWIMS computer-supplied information with discussions of the data presented, standardized and simplified data tables, and revised figures. All data are presented without interpretation and are potentially useful to users for evaluating trends, identifying possible problem areas, and defining future implications. 33 figs., 29 tabs.

  16. International Atomic Energy Agency Annual Report 2011 (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  17. International Atomic Energy Agency Annual Report 2011 (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  18. International Atomic Energy Agency Annual Report 2011 (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  19. International Atomic Energy Agency Annual Report 2011 (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  20. International Atomic Energy Agency Annual Report 2011 (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA Annual Report 2011 aims to summarize only the significant activities of the Agency during the year in question. This report covers the period 1 January to 31 December 2011. The main part of the report, starting on page 21, generally follows the programme structure as given in The Agency's Programme and Budget 2010-2011 (GC(53)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2011 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available in electronic form only on iaea.org, along with the Annual Report.

  1. Annual report for 1979/80

    International Nuclear Information System (INIS)

    1981-02-01

    This annual report contains extended abstracts of the work done in the named Institute. These concern nuclear physics, solid state physics, molecule physics, high- and intermediate-energy physics, plasma physics, applied optics, data processing, and instrumental and methodical developments. In addition a list of publications, meetings, and theses is given. (HSI) [de

  2. Annual Energy Review 1998

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    1999-07-01

    Fifty Years of History. That’s what you will find in this report—energy data from 1949 through 1998. Remarkable change occurred in half a century. The U.S. population grew by 82 percent while consumption of energy increased by 194 percent. At the end of the period, the average amount of energy used per person in one year was 62 percent greater than at the beginning. At mid-century, America was nearly self-sufficient in petroleum; we were a net exporter of natural gas; most of our coal came from underground mines and was produced at the rate of seven-tenths of a short ton per miner hour; nuclear electric power had not been developed; and almost twice as much electricity was used at industrial sites as in homes. Near the end of the century, half of the petroleum we use comes from other countries; 15 percent of our natural gas consumption is imported; more of our coal comes from surface mines than underground mines and U.S. miners produce coal at a rate of over 6 short tons per miner hour; about a fifth of U.S. electricity is supplied by nuclear electric power; and residences use more electricity than industrial sites.

  3. The Economic and Workforce Development Program (ED>Net) Annual Report, 2001-02 [and] Addendum to FY 01-02 Annual Report.

    Science.gov (United States)

    California Community Colleges, Sacramento. Economic Development Coordination Network (EDNet).

    This document contains an annual report and its addendum from the Economic and Workforce Development Program of California Community Colleges. The annual report provides an overview of the Program's evaluation processes, regional centers, short-term projects, legislation, strategic plan, etc. It also provides vital facts about the program such as…

  4. CEA Annual report 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The CEA, a prominent player in research development and innovation, is active in three main domains: energy, health care and information technology, defense and security. This annual report presents the CEA activities for the year 2007 in these three main areas: science and technology working for nuclear deterrence and global security, the energies without greenhouse effect gases emission against the climatic change, researches in the information sciences and technologies for a better communication and health. The CEA safety, organization, communication and international relations are also presented. (A.L.B.)

  5. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  6. Energy Storage Annual Progress Report for FY15

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ban, Chunmei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cao, Lei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Graf, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Gi-Heon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Santhanagopalan, Shriram [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saxon, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shi, Ying [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tenent, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, Chuanbo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.

  7. The Atomic Energy Commission's Annual Report to Congress for 1962. Major Activities in the Atomic Energy Programs, January - December 1962

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1963-01-31

    The document represents the 1962 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report opens with a section of Highlights of the Atomic Energy Programs of 1962, followed by five parts: Part One, Commission Activities; Part Two, Nuclear Reactor Programs; Part Three, Production and Weapons Programs; Part Four, Other Major Programs; and Part Five, The Regulatory Program. Sixteen appendices are also included.

  8. JAEA Takasaki annual report 2007

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    2008-11-01

    JAEA Takasaki annual report 2007 describes research and development activities performed from April 1, 2007 to March 31, 2008 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) space, nuclear and energy engineering, 2) environment conservation and resource security, 3) biotechnology and medical application, and 4) advanced materials, analysis and novel technology. This annual report contains 174 reports consisting of 166 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, related press-releases, TV programs, patents, and the type of research collaborations as Appendices. (author)

  9. JAEA Takasaki annual report 2014

    International Nuclear Information System (INIS)

    Yokota, Wataru

    2016-02-01

    JAEA Takasaki annual report 2014 describes research and development activities performed from April 1, 2014 to March 31, 2015 mainly with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology. This annual report contains 162 reports consisting of 154 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as appendices. (author)

  10. JAEA Takasaki annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shigeru [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Inst., Takasaki, Gunma (Japan)

    2011-01-15

    JAEA Takasaki annual report 2009 describes research and development activities performed from April 1, 2009 to March 31, 2010 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three {sup 60}Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) space, nuclear and energy engineering, 2) environmental conservation and resource security, 3) biotechnology and medical application, and 4) advanced materials, analysis and novel technology. This annual report contains 165 reports consisting of 157 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, patents, related press-releases, TV programs, and the type of research collaborations as Appendices. (author)

  11. JAEA Takasaki annual report 2009

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    2011-01-01

    JAEA Takasaki annual report 2009 describes research and development activities performed from April 1, 2009 to March 31, 2010 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) space, nuclear and energy engineering, 2) environmental conservation and resource security, 3) biotechnology and medical application, and 4) advanced materials, analysis and novel technology. This annual report contains 165 reports consisting of 157 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, patents, related press-releases, TV programs, and the type of research collaborations as Appendices. (author)

  12. JAEA Takasaki annual report 2011

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2013-01-01

    JAEA Takasaki annual report 2011 describes research and development activities performed from April 1, 2011 to March 31, 2012 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology for Facilities. This annual report contains 158 reports consisting of 150 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as appendices. (author)

  13. JAEA Takasaki annual report 2005

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro

    2007-02-01

    JAEA Takasaki annual report 2005 describes research and development activities performed from April 1, 2005 to March 31, 2006 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and those in a recent few years with electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) nuclear and energy engineering, 2) environmental conservation and resource security, 3) biotechnology and medical application, 4) advanced materials, analysis and novel technology. This annual report contains 182 reports consisting of 174 research papers and 8 status reports on operation/maintenance of above irradiation facilities, and a list of publications, related press-releases, IV programs, patents, and the type of research collaborations as Appendices. (author)

  14. JAEA Takasaki annual report 2012

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2014-03-01

    JAEA Takasaki annual report 2012 describes research and development activities performed from April 1, 2012 to March 31, 2013 mainly with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology. This annual report contains 164 reports consisting of 156 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as appendices. (author)

  15. JAEA Takasaki annual report 2006

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    2008-03-01

    JAEA Takasaki annual report 2006 describes research and development activities performed from April 1, 2006 to March 31, 2007 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) space, nuclear and energy engineering, 2) environmental conservation and resource security, 3) biotechnology and medical application, and 4) advanced materials, analysis and novel technology. This annual report contains 186 reports consisting of 178 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, related press-releases, TV programs, patents, and the type of research collaborations as Appendices. (author)

  16. JAEA Takasaki annual report 2010

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2012-01-01

    JAEA Takasaki annual report 2010 describes research and development activities performed from April 1, 2010 to March 31, 2011 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology. This annual report contains 159 reports consisting of 151 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as Appendices. (author)

  17. JAEA Takasaki annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Takasaki, Gunma (Japan)

    2013-01-15

    JAEA Takasaki annual report 2011 describes research and development activities performed from April 1, 2011 to March 31, 2012 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three {sup 60}Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology for Facilities. This annual report contains 158 reports consisting of 150 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as appendices. (author)

  18. JAEA Takasaki annual report 2008

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    2009-12-01

    JAEA Takasaki annual report 2008 describes research and development activities performed from April 1, 2008 to March 31, 2009 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) space, nuclear and energy engineering, 2) environmental conservation and resource security, 3) biotechnology and medical application, and 4) advanced materials, analysis and novel technology. This annual report contains 161 reports consisting of 153 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, related press-releases, TV programs, patents, and the type of research collaborations as Appendices. (author)

  19. JAEA Takasaki annual report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Takasaki, Gunma (Japan)

    2014-03-15

    JAEA Takasaki annual report 2012 describes research and development activities performed from April 1, 2012 to March 31, 2013 mainly with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three {sup 60}Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology. This annual report contains 164 reports consisting of 156 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as appendices. (author)

  20. JAEA Takasaki annual report 2013

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2015-03-01

    JAEA Takasaki annual report 2013 describes research and development activities performed from April 1, 2013 to March 31, 2014 mainly with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three 60 Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology. This annual report contains 169 reports consisting of 160 research papers and 9 status reports on operation/maintenance of the irradiation facilities described above, a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as appendices. (author)

  1. JAEA Takasaki annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Inst., Takasaki, Gunma (Japan)

    2012-01-15

    JAEA Takasaki annual report 2010 describes research and development activities performed from April 1, 2010 to March 31, 2011 with Takasaki Ion Accelerators for Advanced Radiation Application (TIARA, four ion accelerators), and electron/gamma-ray irradiation facilities (an electron accelerator and three {sup 60}Co gamma-ray irradiation facilities) at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA Takasaki). These activities are classified into four research fields: 1) Space, Nuclear and Energy Engineering, 2) Environmental Conservation and Resource Exploitation, 3) Medical and Biotechnological Application, and 4) Advanced Materials, Analysis and Novel Technology. This annual report contains 159 reports consisting of 151 research papers and 8 status reports on operation/maintenance of the irradiation facilities described above, and a list of publications, patents, related press-releases, television broadcasting, and the type of research collaborations as Appendices. (author)

  2. Annual cycle energy system (ACES). Performance report, November 1977-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Holman, A.S.; Abbatiello, L.A.

    1980-05-01

    A single-family residence near Knoxville, Tennessee, is being used to demonstrate the energy-conserving features of the annual cycle energy system (ACES), an integrated heating and cooling system that utilizes a unidirectional heat pump and low-temperature thermal storage. A second house, the control house, is being used to compare the performance of the ACES with that of an electric-resistance heating and hot-water system combined with a central air conditioning system. The results of one year's operation, from November 1977 through mid-September 1978, showed that the ACES consumed 9012 kWhr of electricity and delivered 40.8 x 10/sup 6/ Btu (43.03 x 10/sup 9/J) of heating, 19.8 x 10/sup 6/ Btu (20.89 x 10/sup 9/J) of hot water, and 24.8 x 10/sup 6/ Btu (26.17 x 10/sup 9/J) of cooling; the annual coefficient of performance (COP) was 2.78. The control house consumed 20,523 kWhr of electricity and delivered 41.3 x 10/sup 6/ Btu (43.57 x 10/sup 9/J) of heating, 14.8 x 10/sup 6/ Btu (15.61 x 10/sup 9/J) of hot water, and 23.2 x 10/sup 6/ Btu (24.41 x 10/sup 9/J) of cooling; the annual COP was 1.13. These loads were delivered in a test year in which the heating season was one of the most severe in the past 20 years and the cooling season was normal. In addition, the ACES reduced peak utility system demands significantly: a reduction from 11.7 to 3.1 kW was achieved in the winter and from 4.1 to 0.7 kW in the summer. The only problems encountered were a heat leak into the storage bin that was twice the calculated value and control logic errors that produced excessive hot water in the winter, requiring extensive use of the night heat-rejection mode in the summer. These problems are currently being corrected.

  3. Stuart Energy annual report 2004

    International Nuclear Information System (INIS)

    2005-01-01

    Stuart Energy is a leading global provider of integrated solutions for distributed hydrogen infrastructure requirements based on water electrolysis. Their product line includes integrated, turn-key solutions for onsite hydrogen production, compression, storage, fuel dispensing and distributed power generation. The company integrates its proprietary hydrogen generation systems with other leading hydrogen products from its partners. For the fiscal year ended March 31, 2004, Stuart Energy delivered significant growth in its hydrogen markets, industrial power and transportation. Strong results were delivered in core areas such as accelerated sales growth, gross margin improvements, significant cost reductions, disciplined product development and improved financial strength. This report summarized the company's energy resource activities and presented an operations review as well as consolidated financial statements and common share information. This included the utility's assets, liabilities, revenues, expenses and cash flows. Revenue and expenditure statements were summarized by source. tabs., figs

  4. Energy from biomass: Results of two-years trials on annual and perennial Herba ceous species

    International Nuclear Information System (INIS)

    Angelini, L.; Ceccarini, L.; Oggiano, N.; Bonari, E.

    1994-01-01

    In the framework of the PRisCa Project (Alternative Crops Research Project) a number of germ plasm collections were set up at the Department of Agronomy of the University of Pisa in order to identify annual and perennial herbaceous species utilizable for electric energy production. The first results deriving from trials carried out in 1992-93 are reported. The following species were used: 1) Annual: Sorghum bicolor, Hibiscus cannabinus, Pennisetum americanum, Kochia scoparia. 2) Perennial: Cynara cardunculus, Helianthus tuberosus, Miscantus sinensis, Arundo donax. Almost all species tested were represented by several genotypes. The total amount of species and genotype tested was 16. On all species, main phenological, biometric and productive determinations were performed. The hypothesized final use was intended to be electric power production by direct combustion and/or gasification. In addition, specific calorific value was also determined by adiabatic calorimeter as well as chemical composition of dry matter and ash composition. Species showing high yield potential, both from the quantitative and qualitative point of view, were Sorghum bicolor and Kochia scoparia (among annuals), as well as Miscanthus sinensis and Arundo donax (among perennials). Total dry matter yield ranged from about 23 tha -1 in the annual species to about 56 tha -1 in the perennials. The highest total calorific power obtainable from dry epigeic biomass was measured in Sorghum bicolor and Arundo donax - 4023 Kcal Kg -1 and 4166 Kcal Kg -1 respectively. The preliminary results suggest that vegetable biomass is environmentally-friendly and could contribute significantly to the world energy needs. (author)

  5. A National Plan for Energy Research, Development and Demonstration: Creating Energy Choices for the Future (1976)

    Energy Technology Data Exchange (ETDEWEB)

    Seamans, Jr., Robert C. [Energy Research and Development Administration (ERDA), Washington, DC (United States)

    1976-04-15

    This is the first annual update of the initial report submitted to you in June 1975 (ERDA-48), and complies with the requirements of Section 15 of the Federal Nonnuclear Energy Research and Development Act of 1974. This report represents an evolution in approach over the previous document. ERDA's proposed National Plan has been expanded in scope and depth of coverage and the basic goals and strategy are refined, but remain essentially intact. The Plan summarizes ERDA's current views on the energy technologies the Nation will need to achieve longer-term energy independence, specifically: The paramount role of the private sector in the development and commercialization of new energy technologies is addressed; Conservation (energy efficiency) technologies are singled out for increased attention and are now ranked with several supply technologies as being of the highest priority for national action; The President's 1977 budget requests a large increase - 30% over 1976 - in funding for energy RD&D with particular emphasis on accelerating energy RD&D programs directed at achieving greater long-term energy independence, encouraging cost-sharing with private industry and avoiding the undertaking of RD&D more appropriately the responsibility of the private sector, and supporting the commercial demonstration of synthetic fuel production by providing loan guarantees beginning in FY 76; Federal programs to assist industry in accelerating the market penetration of energy technologies with near-term potential are a key element of the Plan.

  6. Philippine Atomic Energy Commission: Annual report 1982

    International Nuclear Information System (INIS)

    1983-02-01

    This publication enumerates the research and development activities of the Philippine Atomic Energy Commission with priorities geared towards achieving the economic and social upliftment of the Filipinos in the field of agriculture, energy, industry, health and environment. Highlights are summaries of investigations and studies of great importance in crop improvement, animal production, nuclear fuels, nutrition research, not to mention its supportive technology, technical services, nuclear information and public acceptance, and nuclear manpower development. (RTD)

  7. Development of Pathways to Achieve the SE4ALL Energy Efficiency Objective: Global and Regional Potential for Energy Efficiency Improvements

    DEFF Research Database (Denmark)

    Gregg, Jay Sterling; Balyk, Olexandr; Pérez, Cristian Hernán Cabrera

    This study examines the three objectives of the UN Sustainable Energy for All (SE4ALL) initiative: 1. Ensure universal access to modern energy services by 2030. 2. Double the global rate of improvement in energy efficiency (from 1.3% to 2.6% annual reduction in energy intensity of GDP) by 2030. 3....... Double the share of renewable energy in global final energy from 18% to 36% by 2030. The integrated assessment model, ETSAP-TIAM, was used in this study to compare, from an economic optimization point of view, different scenarios for the development of the energy system between 2010 and 2030....... This analysis is conducted on a global and regional scale. The scenarios were constructed to analyze the effect of achieving the SE4ALL energy efficiency objective, the SE4ALL renewable energy objective, both together, and all three SE4ALL objectives. Synergies exist between renewable energy and energy...

  8. Annual report 2008-09

    International Nuclear Information System (INIS)

    2009-01-01

    The Pakistan Atomic Energy Commission (PAEC) annual report for the year 2008-09 has been compiled. The salient features of the activities of various Centers, Power Plants and different project have been explained. The activities are described under the topics as: highlights of various projects, nuclear power, engineering, physical sciences, biological sciences, nuclear materials, safety, human resource development, PAEC health services projects and publications. (A.B).

  9. OPEC annual report 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This annual report is concerned with the following items: the general economic situation of OPEC member countries, other developing countries and the industrial countries; energy market developments (environment, crude oil, crude oil prices, oil stock movements); upstream and downstream activities (exploration, production and reserves, refining, petrochemicals, hydrocarbon transportation, legislation, contracts and agreements in Member Countries); activities of the Secretariat. The annexes contain statistical data, press releases and resolutions and a schedule of member Country representatives and officials of the Secretariat.

  10. Annual report, 1987-88

    International Nuclear Information System (INIS)

    1988-01-01

    This is the forty-first annual report of the Atomic Energy Control Board (AECB). The period covered by this report is the year ending March 31, 1988. The AECB controls the development, application and use of nuclear energy in Canada, and participates on behalf of Canada in international measures of control of nuclear energy. The AECB was established in 1946, by the Atomic Energy Control Act. It is a departmental corporation within the meaning and purpose of the Financial Administration Act. The AECB also is responsible for the administration of the Nuclear Liability Act, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. The AECB reports to Parliament through designated Minister, currently the Minister of Energy, Mines and Resources

  11. Energy Analysis Program. 1992 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  12. US Department of Energy Three Mile Island research and development program. 1985 annual report

    International Nuclear Information System (INIS)

    Brown, G.R.

    1986-04-01

    In 1985, the US Department of Energy's Three Mile Island Research and Development Program at Three Mile Island Unit 2 (TMI-2), the Idaho National Engineering Laboratory, and other supporting laboratories, concentrated on three major areas: fuel and waste handling and disposition, accident evaluation, and reactor evaluation. While the general technology being developed is of direct benefit to the recovery operations at TMI-2, this technology will be of generic benefit to the entire nuclear power industry. Others engaged in research and development, design, construction, operation, maintenance, and regulation of nuclear plants will have access to this technology to enhance plant safety and reliability

  13. To struggle against poverty and climate changes. The role of renewable energies and of energy efficiency in Africa. Recommendations of the Climate and Development Network, November 2014

    International Nuclear Information System (INIS)

    Akambi, Is Deen; Diouf, Aissatou; Kogbe, Joseph Yaovi L.; Mazounie, Alix; Ndour, Abdou; Thomas, Jean-Philippe; Zakara, Mamane

    2014-11-01

    After a presentation of the Climate and Development Network and of its annual workshop, this report addresses the challenges of a development of a sustainable access to energy for all in Africa. While outlining the current situation which is characterized by a difficult access to energy, evoking the current reserves in fossil energies, and outlining the high and unexploited potential of renewable energies in Africa (in terms of energy production, energy efficiency and social and economic development), the report proposes an overview of local projects in various African countries which are based on renewable energies and on energy savings. They are notably based on a sustainable use of biomass, on cooking practices, on the use of hybrid (solar and diesel) systems, and on the use of methanization. Key principles and recommendations are formulated to achieve access to renewable energies and energy efficiency for all in Africa

  14. PTAC 2002 annual report : creating value through innovation : facilitating innovation, technology transfer, and collaborative research and development in the upstream oil and gas industry

    International Nuclear Information System (INIS)

    2003-01-01

    Petroleum Technology Alliance Canada (PTAC) is Canada's leading organization that helps in the development and transfer of petroleum technology. This annual report listed the key accomplishments of PTAC in 2002. These include a record participation in PTAC workshops and conferences, the co-hosting of the world's largest unconventional gas and coalbed methane conference with the Canadian Society for Unconventional Gas, and the co-hosting of a conference on climate change and greenhouse gas technology with Climate Change Central. In 2002 PTAC launched an Industrial Energy Audit Incentive with Natural Resources Canada. It also proposed an extension to its mandate to help energy efficiency and greenhouse gas technologies for the hydrocarbon energy industry. In addition, PTAC helped launch 32 research and development projects in 2002. PTAC expects that 2003 will see a shift in focus to sustainable, eco-efficiency and greenhouse gas-reducing technologies for the hydrocarbon energy industry. This annual report includes an auditor's report of PTAC's financial statements. The report includes summarized balance sheet of assets, liabilities/surplus and net assets. It also includes summarized statements of revenues, expenses and surplus for the year ended December 31, 2002 with comparative figures for 2001. 1 tab., 2 figs

  15. New York State Energy Research and Development Authority annual report, 1991--1992

    International Nuclear Information System (INIS)

    1992-01-01

    To meet its energy and environmental goals, the Energy Authority faces a number of challenges affecting New York State's citizens. These include: Managing a nationally recognized energy research program of more than 250 ongoing projects located throughout the State that, through cutting-edge, energy-efficient technologies, identifies alternative energy sources; Participating in the joint Federal/State cleanup of a former nuclear fuel reprocessing plant at West Valley, an effort that will cost more than a billion dollars; Cleanup of the Malta Rocket Fuel Area Superfund site and maintenance of the shut-down State Low Level Radioactive Waste Disposal Area at West Valley; Issuing innovative tax-exempt bonds to finance utility projects, with $4.3 billion currently issued saving New York State citizens more than $4 billion; and Designing, building and operating a new low-level radioactive waste disposal facility for the State. In addition to these broad-based programs, the Energy Authority cosponsors the Student Energy Research Competition, a yearly science competition for high school students. Now in its eleventh year, the Competition continues to challenge students to explore solutions to meet our energy needs. This year, some 600 project proposals were submitted by 1217 students representing 85 schools throughout New York State. The Competition is cosponsored by the State Energy Office. Energy Authority programs help to ensure that, as we protect environmental values and promote economic growth, New York State has secure and economical future supplies of energy

  16. The VAEC - Annual Report for 2006

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Le Van Hong; Nguyen Hoang Anh; Nguyen Trong Trang; Dang Thi Hong

    2007-12-01

    The VAEC Annual Report for 2006 has been prepared as an account of works carried out at the Vietnam Atomic Energy Commission (VAEC) for the year 2006. The Report contains mains results from the VAEC's activities of research and development in following fields: nuclear physics, reactor physics and nuclear energy, nuclear methods, radiation protection and radioactive waste management, ecology and environment, biotechnology and agriculture, radiation technology, radiochemistry and materials sciences, computation and other topics. (NHA)

  17. The VAEC - Annual Report for 2006

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu; Hong, Le Van; Anh, Nguyen Hoang; Trang, Nguyen Trong; Hong, Dang Thi [eds.

    2007-12-15

    The VAEC Annual Report for 2006 has been prepared as an account of works carried out at the Vietnam Atomic Energy Commission (VAEC) for the year 2006. The Report contains mains results from the VAEC's activities of research and development in following fields: nuclear physics, reactor physics and nuclear energy, nuclear methods, radiation protection and radioactive waste management, ecology and environment, biotechnology and agriculture, radiation technology, radiochemistry and materials sciences, computation and other topics. (NHA)

  18. Economic and Workforce Development Program Annual Report, 2016

    Science.gov (United States)

    California Community Colleges, Chancellor's Office, 2016

    2016-01-01

    The California Community Colleges, through the Economic and Workforce Development Program (EWD), continue to propel the California economy forward by providing students with skills to earn well-paying jobs. At the same time, EWD helps provide California companies with the talent they need to compete on a global scale. This annual report for…

  19. Secretary's annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    This second annual report of the DOE covers activities of all elements of the department except the independent FERC, which issues its own annual report. Individual chapters concern a posture statement, conservation, solar and other renewable energy, fossil energy, electric energy, nuclear energy, the environment, defense programs, international programs, general science programs, energy information, economic regulation, energy production, and support operations. The following appendixes are also included: foreign direct investments in US energy sources and supplies, exports of energy resources by foreign companies, major recipients of DOE funding, actions taken regarding disclosure of energy assets by DOE employees, financial assistance programs for alternative fuel demonstration facilities, and 1978 budget summary. 16 figures, 56 tables. (RWR)

  20. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    1998-12-01

    The Ministry of Economic Affairs continues its task of observing and informing about the Croatian energy system. The review consists of the most recent and classified data on 1997 and the previous four years. Compared to previous year, in 1997 the total primary energy supply decreased by 1,3 percent. At the same time the gross domestic product increased by 6,5 percent, thus the energy intensity dropped, which is a positive trend. The energy intensity, the value showing the total energy consumed per unit of gross domestic product, exceeds the level realised by the Western European countries, but it is at the same time more favourable related to the transition economy countries. On the other hand, 1997 saw a decrease in the primary energy production by 8,9 percent, resulting from the decline in the production of natural gas, oil and coal, and naturally, unfavourable hydrological conditions. Thus, own supply dropped to 57 percent, the lowest recorded in the past five years. In 1997 the losses and operational consumption of energy decreased more than the non-energy consumption increased, but despite the decrease of the total primary energy supply there occurred an increase of final energy demand by total of 4,4 percent, 2,1 of which in general consumption, 5,5 in transport and 7,8 percent in industry. Apart from these data, the review considers all other relevant indicators showing a positive shift but leaving space for further improvements with the aim of achieving higher energy system efficiency

  1. DOE [Department of Energy]-Nuclear Energy Standards Program annual assessment, FY 1990

    International Nuclear Information System (INIS)

    Williams, D.L. Jr.

    1990-11-01

    To meet the objectives of the programs funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a nuclear standards program and related activities and fosters the development and application of standards. This standards program is carried out in accordance with the principles in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980. The purposes of this effort, as set forth in three subtasks, are to (1) manage the NE Standards Program, (2) manage the development and maintenance of NE standards, and (3) operate an NE Standards Information Program. This report assesses the Performance Assurance Project Office (PAPO) activities in terms of the objectives of the Department of Energy-Nuclear Energy (DOE-NE) funded programs. To meet these objectives, PAPO administers a nuclear standards program and related activities and fosters the development and application of standards. This task is carried out in accordance with the principles set forth in DOE Order 1300.2, Department of Energy Standards Program, December 18, 1980, and DOE memorandum, Implementation of DOE Orders on Quality Assurance, Standards, and Unusual Occurrence Reporting for Nuclear Energy Programs, March 3, 1982, and with guidance from the DOE-NE Technology Support Programs. 1 tab. (JF)

  2. International Atomic Energy Agency Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2013. The IAEA Annual Report 2013 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 15, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). The introductory chapter, 'The Year in Review', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2013 and Background to the Safeguards Statement. Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. Except where indicated, all sums of money are expressed in United States dollars. The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non-Nuclear- Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used in

  3. International Atomic Energy Agency Annual Report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Article VI.J of the Agency's Statute requires the Board of Governors to submit 'an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency'. This report covers the period 1 January to 31 December 2012. - The IAEA Annual Report 2012 aims to summarize only the significant activities of the Agency during the year in question. The main part of the report, starting on page 17, generally follows the programme structure as given in The Agency's Programme and Budget 2012-2013 (GC(55)/5). - The introductory chapter, 'Overview', seeks to provide a thematic analysis of the Agency's activities within the context of notable developments during the year. More detailed information can be found in the latest editions of the Agency's Nuclear Safety Review, Nuclear Technology Review, Technical Cooperation Report and the Safeguards Statement for 2012 and Background to the Safeguards Statement. - Additional information covering various aspects of the Agency's programme is available, in electronic form only, on iaea.org, along with the Annual Report. - Except where indicated, all sums of money are expressed in United States dollars. - The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the Agency. - The term 'non-nuclear-weapon State' is used as in the Final Document of the 1968 Conference of Non- Nuclear-Weapon States (United Nations document A/7277) and in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The term 'nuclear-weapon State' is as used

  4. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  5. Annual cycle solar energy utilization with seasonal storage. Part 8. Study on periodic steady state of the annual cycle energy system at a practical operation; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 8

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1997-11-25

    A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.

  6. Annual report of Nuclear Human Resource Development Center. April 1, 2015 - March 31, 2016

    International Nuclear Information System (INIS)

    2017-07-01

    This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year (FY) 2015. In FY 2015, we were actively engaged in organizing special training courses in response to external training needs, cooperating with universities, and offering international training courses for Asian countries in addition to the regular training programs at NuHRDeC. In accordance to the annual plan for national training, we conducted training courses for radioisotopes and radiation engineers, nuclear energy engineers, and national qualification examinations, as well as for officials in Nuclear Regulatory Authority and prefectural and municipal officials in Fukushima as outreach activities in order to meet the training needs from the external organizations. We continued to enhance cooperative activities with universities, such as the acceptance of postdoctoral researchers, the cooperation according to the cooperative graduate school system, including the acceptance of students from Nuclear Professional School of University of Tokyo. Furthermore, through utilizing the remote education system, the joint course was successfully held with seven universities, and the intensive summer course and the practical exercise at Nuclear Fuel Cycle Engineering Laboratories were also conducted as part of the collaboration network with universities. The Instructor Training Program (ITP) was continually offered to the ITP participating countries (Bangladesh, China, Indonesia, Kazakhstan, Malaysia, Mongolia, Philippines, Saudi Arabia, Sri Lanka, Thailand, Turkey and Viet Nam) in FY2015 under contact with Ministry of Education, Culture, Sports, Science and Technology. As part of the ITP, the Instructor Training Course and the Nuclear Technology Seminar were organized at NuHRDeC such as “Reactor Engineering Course” and “Basic Radiation Knowledge for School Education Seminar”. Eight and eleven countries

  7. 1996 Talisman Energy Inc. annual report

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A review of operations, revenues and expenditures during 1996 by Talisman Energy Inc., was made available for the benefit of shareholders. Talisman Energy is an independent, Canadian-based international upstream oil and gas company. The company's main business activities include exploration, development, production and marketing of crude oil, natural gas and natural gas liquids. Production comes from Canada, the North Sea and Indonesia. This report presented an operations review, consolidated financial statements, common share information, discussed outlook on prices, expectations of future production, business plans for drilling and exploration and expectations of capital expenditures, debt levels and royalty rates. Financially, 1996 was a good year for Talisman Energy, with share values increasing by 65 per cent over year-end 1995. On February 12, 1997, Talisman announced plans to offer to purchase all of the outstanding common shares of Wascana Energy Inc. tabs., figs

  8. IHEP 2001 annual report

    International Nuclear Information System (INIS)

    2002-01-01

    IHEP's focal points of research encompass high energy physics experiment and theory, cosmic ray and high energy astrophysics, theory of nuclear physics, nuclear detector and nuclear electronics, accelerator physics and technology, synchrotron radiation technology and application, nuclear analytical technique and application, free electron laser, computer and network application, radiation projection, etc. In 2001, IHEP further compacted its scientific goal by defining three key fields of high energy physics, research and development of advanced accelerator technologies, and advanced synchrotron radiation technologies and applications, as well as 10 relevant major research orientations. The plentiful results on scientific research, operation and upgrading of BEPC/BES/BSRF and other branches of work in 2001 are given in this annual report

  9. Annual energy review, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    This Review presents long-term historical energy data. US energy consumption, production, trade, and prices are included. Also covered are consumption indicators, energy resources, petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy. 5 figs., 129 tabs

  10. EnviroAtlas - Annual average potential wind energy resource by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the annual average potential wind energy resource in kilowatt hours per square kilometer per day for each 12-digit Hydrologic Unit...

  11. Energy in Croatia, Annual Energy Report

    International Nuclear Information System (INIS)

    2001-12-01

    The review consists of the most recent and settled data for the year 2000 as well as data for the five-years period. In 2000 total energy consumption decreased by 2.8 percent compared to the previous year. As at the same time the gross domestic product increased by 3.7 percent, energy intensity grew, thus presenting a positive change of trend . The energy intensity, the measurement showing the total energy consumption per unit of gross domestic product, exceeded the level realised by the Western European countries, but was still more favourable than in most transition countries. At the same time 2000 saw an decrease of primary energy generation by 1.7 percent but, as a consequence of extremely favourable hydrological conditions, with a decreased production of natural gas and oil. The supply from own sources remained 51 percent but the trend is expected to be negative in the following few years bearing in mind the condition of the gas and oil reserves, i.e. cessation of coal production in Istria. Only partly will the process be slowed down by the production of natural gas from the Northern Adriatic. Natural gas production grew by 6.8 percent compared to the previous year, causing the share of natural gas in energy production to exceed 32 percent. In 2000 the transformation losses fell by 11 percent, transportation and distribution losses fell by 6.7 percent and non-energy consumption by 2.4 percent, while energy sector own use rose by 1.4 percent.. The result of this was that, despite the increase of total energy production by 2.8 percent, final energy demand fell by only 0.2 percent, i.e. 1.5 percent in other sectors and transport, and 2.9 percent increase in industry. Apart from these data, the publication includes all other relevant indicators about our energy system, i.e. system capacities, energy source prices, environmental influence, etc

  12. INCOME AND ENERGY SOURCES AMONG AGRARIAN HOUSEHOLDS IN NIGERIA: IMPLICATIONS FOR LOW CARBON ENERGY DEVELOPMENT IN LESS DEVELOPED COUNTRIES

    Directory of Open Access Journals (Sweden)

    M. Mkpado

    2012-07-01

    Full Text Available Low-carbon power comes from sources that produce fewer greenhouse gases than do traditional means of power generation. It includes zero carbon power generation sources, such as wind power, solar power, geothermal power and (except for fuel preparation nuclear power, as well as sources with lower-level emissions such as natural and petroleum gas, and also technologies that prevent carbon dioxide from being emitted into the atmosphere, such as carbon capture and storage. This article correlated value of income from different sources to energy sources used by agrarian households in Nigeria and drew implications for low carbon development in Africa. It analysis included use of wind power for irrigation purposes, harnessing solar energy for lightening and possible cost implications. Secondary data were collected from Community Based Monitoring System Nigeria Project. Descriptive statistics, correlation and qualitative analysis were employed. The average annual income of agrarian households from different sources such as crop farming, livestock farming, petty trading, forest exploitation, remittance and labour per day was below the poverty line of $1 per day. The source of energy that had the highest number of significant correlation was electrical energy (low carbon electrical energy. It showed the possibility of pooling resources as farmers group to attract grants or equity financing to build wind mills for irrigation. The study recommended use of energy efficient bulbs to reduce CO2 emissions. This requires creating awareness among rural dwellers of the need to make such change.

  13. Annual report of Nuclear Human Resource Development Center. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    2015-07-01

    This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the FY2013. In FY2013, we flexibly designed special training courses corresponding with the outside training needs, while organizing the annually scheduled regular training programs. We also actively addressed the challenging issues on human resource development, such as to enhance the collaboration with academia and to organize international training for Asian countries. The number of trainees who participated in the domestic regular training courses in 2013 was more than 300 persons. Besides these regular courses, we also organized the special training courses based on the outside needs, e.g. the training courses on radiation survey and decontamination work in Fukushima prefecture for the subcontracting companies of the Tokyo Electric Power Company (TEPCO) working to respond to the TEPCO's Fukushima Daiichi nuclear power station accident. JAEA continued its cooperative activities with universities. In respect of the cooperation with graduate school of University of Tokyo, we accepted nuclear major students and cooperatively conducted lectures and practical exercises for one year. In terms of the collaboration network with universities, the joint course was successfully held with six universities through utilizing the remote education system. Furthermore, the intensive course at Okayama University, University of Fukui, and practical exercise at Nuclear Fuel Cycle Engineering Laboratories of JAEA were also conducted. In respect of International training, we continuously implemented the Instructor Training Program (ITP) by receiving the annual sponsorship from Ministry of Education, Culture, Sports, Science and Technology. In fiscal year 2013, eight countries (i.e. Bangladesh, Indonesia, Kazakhstan, Malaysia, Mongolia, Philippines, Thailand, Vietnam) joined this Instructor training courses. Furthermore, we organized nuclear

  14. Annual report of Nuclear Human Resource Development Center. April 1, 2010 - March 31, 2011

    International Nuclear Information System (INIS)

    2012-03-01

    This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year 2010. In this fiscal year, NuHRDeC flexibly designed and conducted as need training courses upon requests while conducting the annually scheduled training programs, and actively addressed the challenge of human resource development, such as to enhance the collaboration with academia and to expand the number of participating countries for international training. The number of trainees who completed the domestic training courses in 2010 was slightly increased to 340, which is 6 percent more than the previous year. The number of those who completed the staff technical training courses was 879 in 2010, which is 12 percent more than the previous year. As a result, the total number of trainees during this period is about 10 percent more than the previous year. In order to correspond with the needs from outside of JAEA, four temporary courses were held upon the request from Nuclear and Industrial Safety Agency (NISA), Ministry of Economy, Trade and Industry (METI). JAEA continued its cooperative activities with universities; cooperation with graduate school of University of Tokyo, and the cooperative graduate school program was enlarged to cooperate with totally 19 graduate schools, one faculty of undergraduate school, and one technical college, including the newly joined 1 graduate school in 2010. JAEA also continued cooperative activities with Nuclear HRD Program initiated by MEXT and METI in 2007. The joint course has continued networking with six universities through utilizing the remote education system, Japan Nuclear Education Network (JNEN), and special lectures, summer and winter practice were also conducted. In respect of International training, NuHRDeC continuously implemented the Instructor Training Program (ITP) by receiving the annual sponsorship from MEXT. In fiscal year 2010, four countries (Bangladesh

  15. Convergence of gas and electricity. Annual conference of the association of energy economists, october 26., 2000

    International Nuclear Information System (INIS)

    Chauvet, N.

    2000-01-01

    The annual conference of the Association of Energy Economists held on October 26. in Paris, has focused on the convergence of gas and electricity. The main themes, as well as the debates which followed are introduced in this article. (authors)

  16. Energy development in the Great Basin

    Science.gov (United States)

    Nora Devoe

    2008-01-01

    The United States, with less than 5 percent of the world’s population, consumes 40 percent of the oil and 23 percent of natural gas annual global production. Fluctuating and rising energy prices can be expected to continue with political instability in producing countries and intensifying supply competition from expanding Asian economies. The United States seeks to...

  17. 2006 annual nuclear technology conference on energy policy

    International Nuclear Information System (INIS)

    Westerwelle, G.

    2006-01-01

    Liberals have clear ideas about the relations between the economy and the environment. Good ecology is also long-term economy, and there is no contradiction between the economy and the environment. New technologies, more investments into research, cooperation with industry and the public are required to bring about a new environmental policy in Germany. Energy policy needs a new beginning free from ideology. This is elaborated in 7 theses: - The key to successful economic development, more growth and employment is to be found in sustainable energy supply. - The 3 guiding principles of sustainable energy supply are (1) economic soundness, (2) continuity of supply, (3) environmental compatibility. - The supply situation is the more secure, the richer the energy mix, and the more sources from all over the world are used. - Taxes, levies, and costs due to shifting are a burden on energy prices and endanger the economic viability of energy supply. - We need a sensible energy mix composed of fossil energy resources, nuclear power, and renewable energies. - A rich energy mix combined with a powerful expansion of renewables, more measures to improve efficiency and save energy make Germany less dependent on international raw material purchases. - Climate change is a reality. Enhancing research and development efforts is our response. (orig.)

  18. Annual report 2009-10

    International Nuclear Information System (INIS)

    2009-01-01

    The annual progress for the year 2009-10 for Pakistan Atomic Energy Commission (PAEC) is presented. The progress of various Center and their contribution for the uplift of nuclear programme have been described. The progress report fully explained under various topics as under: Highlights, Nuclear Power, Engineering, Physical Sciences, Biological Sciences, Nuclear Materials, Safety, Quality, Human Resource Development, PAEC General Health Services, Projects / International Collaboratioin and publications. (A.B.)

  19. Atomic Energy of Canada Limited annual report 2000-2001

    International Nuclear Information System (INIS)

    2001-01-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor

  20. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  1. Verein der Kohlenimporteure. Annual report 2015. Facts and trends 2014/2015

    International Nuclear Information System (INIS)

    2015-07-01

    This annual report of the Association of Coal Importers (Verein der Kohlenimporteure) contains statistical data of the year 2014/2015. The main aspects discussed are the coal market and trade which depends on political decisions and concepts, but also on the availability of other primary energy sources. The annual report is structured as follows: 1. Prospects for the World Coal Market (e.g. World energy consumption, Outlook 2014-2040, Hard Coal Output, Coal/Coke Prices); 2. General Global Economic Conditions; 3. European Union; 4. Germany (e.g. Primary Energy Consumption; Power Generation; Hard Coal market; Development of Energy Prices, CO 2 prices and CO 2 emissions; Acceptance of coal in terms of the energy turnaround); and 5. Country coal reports (mainly outside of Europe).

  2. Environmental review, 1995. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    Annual report on the environment, outlining environmental initiatives and programs and plans for the future, together with assessments and performance guidelines. Highlights of the year are included, along with details on major compensation programs, and activities in fish and water, land and wildlife, air quality, waste management, recreation, socio-economic issues, electric and magnetic fields, energy management, and research and development.

  3. Annual report to Congress, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-31

    Created by Congress in 1977 as an independent entity within the Department of Energy, the Energy Information Administration (EIA) is the principal and authoritative source of comprehensive energy data for the Congress, the Federal Government, the States, and the public. With the mandate to ``collect, assemble, evaluate, analyze, and disseminate data and information,`` EIA`s mission has been defined to: maintain a comprehensive data and information program relevant to energy resources and reserves, energy production, energy demand, energy technologies, and related financial and statistical information relevant to the adequacy of energy resources to meet the Nation`s demands in the near and longer term future. Develop and maintain analytical tool and collection and processing systems; provide analyses that are accurate, timely, and objective; and provide information dissemination services. This annual report summarizes EIA`s activities and accomplishments in 1993.

  4. Annual report to Congress

    International Nuclear Information System (INIS)

    1987-01-01

    This is the ninth Annual Report to Congress of the United States Department of Energy. It covers the activities of all elements of the Department except the independent Federal Regulatory Commission, which issues its own annual report. 88 refs., 43 tabs

  5. Energy and economic development [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Machado, G.; Schaeffer, R.

    2006-01-01

    When energy specialists discuss the relationships between energy use and economic development, the focus is usually on how energy supports economic growth, alleviates poverty and increases people's well-being. On rare occasions, though, the effect that a country's choices for promoting economic development have on energy production and use is a matter of concern. The purpose of this chapter is to evaluate the way Brazil's choices for promoting economic development over time have impacted primary and final energy use in the country. Economic growth has different levels of quality, which lead to different economic development paths. Some paths are more effective than others in creating wealth and in protecting and preserving natural resources and the environment for future generations. Quality actually matters as much for economic development as for energy. This chapter is divided into four sections covering energy and economic development relationships, the evolution of final energy use in Brazil, strategies to enhance sustainable energy development in the country and a summary of main issues. In Section 5.1, energy and economic development relationships are discussed, setting the background for the analysis of the impacts on final energy use of some of Brazil's choices for promoting economic development. The section begins by focusing on the basics of energy and economic development relationships. It should be noted that most energy specialists usually discuss only the basics of energy and economic development (the 'energy in support of economic development' theme), but this approach alone is not enough to explain differences in countries' final energy use patterns, or to identify strategies to enhance sustainable energy development. In this sense, the main contribution of this section is to further illuminate the role of social and economic choices in determining the effectiveness of a given country's economic development and that country's primary and final

  6. Energy in Croatia 2009, Annual Energy Report

    International Nuclear Information System (INIS)

    2010-01-01

    With the eighteenth edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiancy index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2008 and 2009, made following the EUROSTAT and IEA methodologies. In 2009 total energy demand in Croatia was 1.6 percent lower than the year before. At the same time, gross domestic product fell by 5.8 percent, which as a result gave a 4.4 percent higher level of energy intensity in total energy consumption. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was 6.8 percent higher. The primary energy production in 2009 was 7.1 percent higher form the previous year. Also, due to favorable hydrological situation the hydropower utilization grew by 31 percent. The energy from renewable sources increased by 29.8 percent and the energy from fuel wood increased by 5.6 percent. The production of crude oil in 2009 decreased by 6

  7. Energy in Croatia 2011, Annual Energy Report

    International Nuclear Information System (INIS)

    2012-01-01

    With the twentieth edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2010 and 2011, made following the EUROSTAT and IEA methodologies. In 2011 total primary energy supply in Croatia was 6.8 percent lower than the year before. At the same time, gross domestic product slightly decreased by 0.01 percent, which resulted in lowering energy intensity of total energy consumption by a 6.8 percent. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was only 1.2 percent higher. The primary energy production in 2011 decreased by 18 percent from the previous year. Also, due to unfavorable hydrological situation the hydropower utilization was as much as 46.6 percent lower than in 2010. The energy from renewable sources increased by 13.3 percent and the energy from fuel wood, ondustrial waste wood, energy

  8. Performance profiles of major energy producers, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Performance Profiles of Major Energy Producers 1991 is the fifteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies) required to report annually on Form EIA-28. It also traces key developments affecting the financial performance of major energy companies in 1991, as well as reviews important trends. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report

  9. Energy in Croatia 2012, Annual Energy Report

    International Nuclear Information System (INIS)

    2013-01-01

    With the twenty-first edition of the Review Energy in Croatia, Ministry of Economy, Labour and Entrepreneurship continues the practice of informing domestic and foreign public on relations and trends within the Croatian energy sector. This Review gives, in a recognizable and comprehensible way, data and characteristic values relevant to the Croatian energy sector, providing an overview on energy production and consumption at all levels. There is a detailed analysis of the trends present in the energy sector as well as a number of information on capacities, reserves, prices and energy balances for crude oil, all petroleum products, natural gas, electricity, heat energy, coal and renewable energy sources. The Review also brings the main economic and financial indicators, data on air pollutant emissions and main energy efficiancy indicators. It also gives the ODEX energy efficiency index, which is determined according to the methodology used in the European Union. This indicator monitors the energy efficiancy trends over a period of time in the sectors of industry, transport, households and in total consumption. Finally, the Review brings the energy balances of the Republic of Croatia for the years 2011 and 2012, made following the EUROSTAT and IEA methodologies. In 2012 total energy demand in Croatia was 4.7 percent lower than the year before. At the same time, gross domestic product fell by 2 percent, which resulted in a decrease in a total primary energy supply intensity by 2.8 percent. When compared to the average energy intensity level in the EU (EU27), the energy intensity in Croatia was 6.9 percent higher. The primary energy production in 2012 decreased by 5.6 compared to the previous year. Also, due to hydrological situation the hydropower utilization grew by 6.7 percent. The energy from renewable sources increased by 29.8 percent and the energy from fuel wood increased by 5.6 percent. The production of crude oil in 2012 decreased by 9.7 percent and of natural

  10. Energy generated for you : Newfoundland and Labrador Hydro 2003 annual report

    International Nuclear Information System (INIS)

    2004-01-01

    This report provides a consolidated review of the operations of Newfoundland and Labrador Hydro (Hydro) with focus on energy production, energy sales, and environmental commitment. The utility, a Crown Corporation owned by the Province of Newfoundland and Labrador, generates, transmits and distributes electricity to utility, industrial and residential customers. It is the parent company of the Hydro Group of Companies which includes Newfoundland and Labrador Hydro, Churchill Falls Corp. Ltd., Lower Churchill Development Corp. Ltd., Gull Island Power Co. Ltd., and Twin Falls Power Co. Ltd.. The installed generating capacity of the Hydro Group of Companies is the fourth largest in Canada. The generating assets include 10 operating hydroelectric plants, 1 oil-fired plant, 4 gas turbines, 28 diesel plants, and the Churchill Falls Hydroelectric generating station. The utility also maintains 4,800 km of transmission lines and more than 3,600 km of lower voltage distribution lines. The utility is isolated from the North American grid. Energy sales in 2003 were one per cent above 2002. The Holyrood thermal generating station had a gross production of 2061 GWh in 2003, an 18 per cent reduction from 2002. The 40 MW Granite Canal Hydroelectric generating station was completed in 2003. The utility also purchased electricity from Corner Brook Pulp and Paper and the Exploits River Partnership in order to meet the demand for capacity and energy on the island. The Hydro Group's net income decreased by 24 per cent in 2003, while there was a 3 per cent increase in revenue. Earnings are expected to be higher in 2004 due to a projected increase in rates. This annual report presented the company's financial performance, executive changes, rural rate inquiry, and reorganization. Financial statements included a thorough review and analysis of financial transactions, the auditor's report, and the customary notes to the consolidated financial statement including balance sheets, assets

  11. NEA Annual Report 2016

    International Nuclear Information System (INIS)

    Magwood, William D. IV

    2017-01-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD), an intergovernmental organisation of industrialised countries, based in Paris, France. The OECD is a unique forum in which its 35 member countries work together to create better policies for better lives. The objective of the NEA is to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for a safe, environmentally sound and economical use of nuclear energy for peaceful purposes. It provides authoritative assessments and forges common understandings on key issues as input to government decisions on nuclear energy policy and to broader OECD analyses in areas such as energy and the sustainable development of low-carbon economies. The NEA co-operates with a range of multilateral organisations, including the European Commission and the International Atomic Energy Agency. This 2016 annual report presents: 1 - Message from the Director-General; 2 - The Economic Challenges of Nuclear Energy; 3 - Nuclear Technology in 2016; 4 - NEA Activities by Sector: Nuclear Development; Nuclear Safety and Regulation; Human Aspects of Nuclear Safety; Radioactive Waste Management; Radiological Protection; Nuclear Science; Data Bank; Legal Affairs; 5 - General Information: Information and Communications; Organisational Structure of the NEA; NEA Publications and Brochures Produced in 2016

  12. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    International Nuclear Information System (INIS)

    Weih, Martin; Hoeber, Stefanie; Beyer, Friderike; Fransson, Petra

    2014-01-01

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  13. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Weih, Martin, E-mail: martin.weih@slu.se; Hoeber, Stefanie; Beyer, Friderike [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Fransson, Petra [Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala (Sweden)

    2014-05-22

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  14. Performance profiles of major energy producers 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  15. Incorporation of Finite Element Analysis into Annual Energy Loss Estimation for Permanent Magnet Wind Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Matthew Lee; Jensen, Bogi Bech

    2013-01-01

    Several methods of estimating the annual energy losses for wind turbine generators are investigated in this paper. Utilizing a high amount of transient simulations with motion is first demonstrated. Usage of a space-time transformation for prediction of iron losses is also explored. The methods, ...

  16. Performance profiles of major energy producers 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  17. Performance profiles of major energy producers 1992

    International Nuclear Information System (INIS)

    1994-01-01

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations

  18. Annual energy review 1996

    International Nuclear Information System (INIS)

    1997-07-01

    This report presents historical energy statistics on all major energy activities. The statistics cover consumption, production, trade, stock, and prices, for all major energy commodities including fossil fuels, electricity, and renewable energy sources

  19. Annual energy review 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report presents historical energy statistics on all major energy activities. The statistics cover consumption, production, trade, stock, and prices, for all major energy commodities including fossil fuels, electricity, and renewable energy sources.

  20. Annual energy yield of different photovoltaic technologies at different climatic conditions; Jahresenergieertraege unterschiedlicher Photovoltaik-Technologien bei verschiedenen klimatischen Bedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Zinsser, Bastian

    2010-10-04

    It is very important for engineers as well as for investors to know which amount of energy E [kWh] a photovoltaic (PV) system produces under real operating conditions. In most cases the costs [Euroct/kWh] for the solar electricity are the main question. Most data sheets contain the efficiency of the PV modules only for standard test conditions (STC) in the laboratory. In reality higher module temperatures, lower irradiation G and a modified spectrum of the irradiation G change the standard test conditions efficiency. However, standard test conditions never appear at real live in Germany. In southern countries, which have more sun, the operation conditions differ much more from standard test conditions. Therefore, the effects on the annual energy yield are even bigger. To answer the question which PV technology gives the highest energy yield at specific climate conditions, this thesis set up thirteen PV systems using different technologies in Stuttgart, Nicosia, and Cairo. An extensive data acquisition is added to monitor weather and system data. Mono- and multicrystalline silicon (Si) as well as several thin film technologies like amorphous silicon, Cu(InGa)Se{sub 2} (CIGS), and CdTe are investigated. First the thesis extracts the temperature and low light behavior from the measured field data. At the end it models the PV systems to forecast the annual energy yield EJahr and compares with the measured values. The analysis of the field data reconfirms the better temperature behavior of the thin film technologies reported in literature. The HIT technology exhibits a better low light behavior, than the crystalline Si technologies, which all show a similar low light behavior. In the field the CIGS technology shows a contrary low light behavior compared to the laboratory. Field data show, that amorphous Si and CdTe technologies have a much better low light behavior than the crystalline Si technologies. The tolerances of the nominal power PSTC have the biggest influence

  1. Annual meeting of the nuclear forum Switzerland 2013. The 2050 energy strategy in the context of economic reality

    International Nuclear Information System (INIS)

    Rey, Matthias

    2013-01-01

    At this year's annual meeting of the Nuclear Forum Switzerland (Nuklearforums Schweiz) once again the 2050 Energy Strategy of the Swiss Federal Council (Schweizer Bundesrat) was the main topic. President Corina Eichenberger warned against political arbitrariness and reckless endangerment of the Swiss electricity supply. Instead she called for a more logical, a more rational and more a pragmatic discussion. Accordingly, Eichenberger dismissed clearly politically motivated operation restrictions for Swiss nuclear power plants. The guest speakers Prof. Peter Egger of the Economic Institute of the ETH Zurich and Christoph Mader, President of scienceindustries, discussed consequences of the 2050 energy strategy for economy and industry. About 130 guests from the nuclear industry, politicians and industry took part in the Annual Meeting of the Nuclear Forum to the Hotel Bellevue in Bern Switzerland. Again, the event 'The 2050 energy strategy in the context of economic reality' was of main interest due to the recent energy policy discussions. Corinna Eichenberger, President of the association, stated, that the audience received an deep view into the economic consequences of the 2050 energy strategy from the perspective of science and industry. (orig.)

  2. Energy statistics: A manual for developing countries

    International Nuclear Information System (INIS)

    1991-01-01

    Considerable advances have been made by developing countries during the last 20 years in the collection and compilation of energy statistics. the present Manual is a guide, which it is hoped will be used in countries whose system of statistics is less advanced to identify the main areas that should be developed and how this might be achieved. The generally accepted aim is for countries to be able to compile statistics annually on the main characteristics shown for each fuel, and for energy in total. These characteristics are mainly concerned with production, supply and consumption, but others relating to the size and capabilities of the different energy industries may also be of considerable importance. The initial task of collecting data from the energy industries (mines, oil producers, refineries and distributors, electrical power stations, etc.) may well fall to a number of organizations. ''Energy'' from a statistical point of view is the sum of the component fuels, and good energy statistics are therefore dependent on good fuel statistics. For this reason a considerable part of this Manual is devoted to the production of regular, comprehensive and reliable statistics relating to individual fuels. Chapters V to IX of this Manual are concerned with identifying the flows of energy, from production to final consumption, for each individual fuel, and how data on these flows might be expected to be obtained. The very different problems concerned with the collection of data on the flows for biomass fuels are covered in chapter X. The data needed to complete the picture of the national scene for each individual fuel, more concerned with describing the size, capabilities and efficiency of the industries related to that fuel, are discussed in chapter XI. Annex I sets out the relationships between the classifications of the various types of fuels. The compilation of energy balances from the data obtained for individual fuels is covered in chapter XIII. Finally, chapter

  3. The VAEC - Annual Report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu; Hong, Le Van; Tuan, Hoang Anh; Anh, Nguyen Hoang; Hieu, Trinh Dang; Trang, Nguyen Trong; Hong, Dang Thi [eds.

    2005-10-15

    The VAEC Annual Report for 2004 has been prepared as an account of works carried out at the Vietnam Atomic Energy Commission (VAEC) for the year 2004. The Report contains mains results from the VAEC's activities of research and development in following fields: nuclear physics, reactor physics and nuclear energy, nuclear methods, nuclear medicine and radioisotope production, radiation protection and radioactive waste management, ecology and environment, biotechnology and agriculture, radiation technology, radiochemistry and materials sciences, computation and other topics. (NHA)

  4. The VAEC - Annual report for 2003

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Le Van Hong; Nguyen Hoang Anh; Trinh Dang Hieu; Nguyen Trong Trang; Dang Thi Hong

    2004-08-01

    The VAEC Annual Report for 2003 has been prepared as an account of works carried out at the Vietnam Atomic Energy Commission (VAEC) for the year 2003. The Report contains mains results from the VAEC's activities of research and development in following fields: nuclear physics, reactor physics and nuclear energy, nuclear methods, nuclear medicine and radioisotope production, radiation protection and radioactive waste management, ecology and environment, biotechnology and agriculture, radiation technology, radiochemistry and materials sciences, computation and other topics. (NHA)

  5. CEA - Annual report 2006

    International Nuclear Information System (INIS)

    2006-01-01

    The CEA, a prominent player in research development and innovation, is active in 3 main areas: energy, health care and information technology and defense and security. This annual report presents the CEA activity for the year 2006 in these three main areas: Science and technology working for nuclear deterrence and global security (the simulation programs, the nuclear warheads, the nuclear propulsion, the decommissioning, the fighting against nuclear proliferation and monitoring international treaties, the global security); health and information technology (micro and nano technologies and systems); energy from nuclear fission and fusion and other technologies that do not emit greenhouse gases (progress for the nuclear industry, sustainable management of radioactive materials and waste, nuclear systems of the future, new energy technologies). (A.L.B.)

  6. Atomic Energy of Canada Limited annual report 1999-2000

    International Nuclear Information System (INIS)

    2000-01-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor

  7. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  8. Heat-pump-centered integrated community energy systems: system development summary

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  9. Sustainable energy development

    International Nuclear Information System (INIS)

    Afgan, N.; Al Gobaisi, D.; Carvalho, M.; Cumo, M.

    1998-01-01

    It is shown that present energy strategy requires adaptation of new criterions to be followed in the future energy system development. No doubt that there is a link between energy consumption and environment capacity reduction. This is an alarming sign, which recently has become the leading theme for our near and distant future. Modern engineering science has to be oriented to those areas which may directly assist in our future energy planning. In this respect, it is demanding need that our attention be oriented to the global aspect og the energy development. Modern technology will help to adopt essential principles of the sustainable energy development. With the appropriate renewable energy resources introduction in our energy future and with the increase of safety of nuclear energy, it will be possible to comply with the main principles to be adapted in the sustainable energy strategy. in order to promote the sustainable energy development the respective education system is required. It was recognized that the present energy education system can not meet future demand for the knowledge dissemination. It was shown that the potential option for the future education system is the distance learning with multimedia telematic system. (authors). 46 refs, 14 figs, 1 tab

  10. Kernforschungsanlage Juelich, Institut fuer Kernphysik: Annual report 1983

    International Nuclear Information System (INIS)

    Baur, G.; Mayer-Boericke, C.; Schult, O.; Seyfarth, H.; Speth, J.; Turek, P.

    1984-04-01

    This annual report contains extended abstracts of the work performed at the named institute together with a list of publications. The abstracts deal with nuclear reactions, nuclear spectroscopy, atomic collisions, solar energy, and technical developments. See hints under the relevant topics. (HSI) [de

  11. International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

    Energy Technology Data Exchange (ETDEWEB)

    Rondorf, Neil E.; Busch, Jason; Kimball, Richard

    2011-10-29

    This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us

  12. Annual Report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report from the Netherlands Centre for Energy Research, includes the progress made in the five main research areas: fission energy, nuclear fusion and superconductivity, combustion energy (including environmental research), current energy and non-energetic applications of nuclear fission. Studies performed by the Energy Study Centrum, a department within ECN, and the Bureau for Energy Research Projects are described. A financial report is presented and a list of publications included. (C.F.)

  13. Economic development in India and the effect on the energy market in Asia; Indo no keizai hatten to Asia no energy shijo eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    As for the real GDP growth rate in India, the real GDP per capita during 1980-1993 increased 2.9% on annual average, but that in China did 8.0%. India has largely been behind China in the economic growth, but since the liberalization of economy in 1991, the Indian economy has remarkably been developed. It is predicted that the real GDP during 1993-2010 will be 5-6% on annual average. The difference in GDP increase between India and China is caused by differences in energy conservation, speed of conversion from non-commercial energy to commercial energy, serviceability of the industrial structure, etc. It is predicted that the primary energy consumption will grow on the level of China. The oil demand will grow 4-6% in China and 5-6% in India in 1993-2010, showing more increase in India. For oil import to India to exceed 1 million B/D in 2000, it is necessary to clear the ceiling of the international balance. For India to become a big country corresponding to its population size, a lot of difficulties should be overcome. 49 refs., 104 figs., 62 tabs.

  14. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Renne, O.D. [National Renewable Energy Lab., Golden, CO (United States); Junfeng, Li [Energy Research Institute, Beijing (China)

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  15. Energy Materials Coordinating Committee (EMaCC): Annual technical report, Fiscal year 1987

    International Nuclear Information System (INIS)

    1988-09-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1987 and describes the materials research programs of various offices and divisions within the Department

  16. Annual report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies in medium and high energy physics, the theoretical studies of nuclear structure, and the research in cosmochemistry. Furthermore a list of publications is added. (orig./HSI) [de

  17. Annual report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies in medium and high energy physics, the theoretical studies of nuclear structure, and the research in cosmochemistry. Furthermore a list of publications is added. (orig./HSI) [de

  18. Annual report 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This annual report contains extended abstracts about the research done at the named institute. These abstracts concern the development of accelerators and ion sources, the construction of the magnetic spectrograph and radiation detectors, the investigation of solids and microstructures by nuclear methods, the development of electronic circuits, the advances in data processing, the study of heavy ion reactions, nuclear structure, and reaction mechanisms, the research on atomic physics and the interaction of charged particles with matter, the studies of in medium and high energy physics, the theoretical studies of nuclear structure and the research in cosmophysics. Furthermore a list of publications is added. (orig./HSI) [de

  19. U.S. Department of Energy Hydrogen and Fuel Cells Program: 2017 Annual Merit Review and Peer Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-18

    The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.

  20. EDF Group - Annual Report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    EDF Group is the world's leading electricity company and it is particularly well established in Europe, especially France, the United Kingdom, Italy and Belgium. Its business covers all electricity-related activities, from generation to distribution and including energy transmission and trading activities to continuously balance supply with demand. A marked increase in the use of renewables is bringing change to its power generation operations, which are underpinned by a diversified low-carbon energy mix founded on nuclear power capacity. With activities across the entire electricity value chain, EDF is reinventing the products and services it offers to help residential customers manage their electricity consumption, to support the energy and financial performance of business customers and to support local authorities in finding sustainable solutions for the cities of the future. This document is EDF Group's annual report for the year 2015. It contains information about Group profile, governance, business, development strategy, sales and marketing, positions in Europe and international activities. The document is made of several reports: the 2016 Book, the '2016 at a glance' report, the Profile and Performance 2015 report, the 2015 Reference Document - Annual Financial Report

  1. Scenario analysis of energy-based low-carbon development in China.

    Science.gov (United States)

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.

  2. Energy in Croatia 2005, Annual Energy Report

    International Nuclear Information System (INIS)

    2006-12-01

    Report presents the latest information on relations and trends in the Croatian energy sector. The reports gives a familiar overview of comprehensive data about and representative features of the Croatian energy sector, related to the supply and demand of energy at all levels. It produces a detailed analysis of energy trends and provides extensive data on capacity, reserves and prices as well as balances of individual energy sources - crude oil, petroleum products, natural gas, electricity, heat, coal and renewable source of energy. Basic economic and financial indicators, emissions of air pollutants and basic energy efficiency indicators for Croatia are also presented. In 2005, total primary energy supply in Croatia decreased slightly by 0.1 per cent with respect to the previous year. At the same time, GDP rose by 4.3 per cent, resulting in a drop in energy intensity of the total primary energy supply of 4.2 per cent. The energy intensity in Croatia was 20.1 per cent higher than the average energy intensity in the European Union, but a positive decreasing trend was noted during the past period. In 2005 the total primary energy production in Croatia fell by 3.5 per cent with respect to the previous year. The highest decrease was recorded in harnessing hydro power, and the production of crude oil and fuel wood also declined. Only the production of natural gas showed a growth of 3.5 per cent. Due to the decrease in the primary energy production, energy self-supply was also reduced to 47.9 per cent. A less value was achieved only in the year 2003. A continuing trend towards a gradual decline in energy self-supply was present throughout the past several years. Final energy demand increased by 3 per cent while demands in other sectors decreased. Energy transformation losses were reduced by 7 per cent, non-energy use declined by 5.6 per cent and energy transmission and distribution losses by 5.5 per cent, and there was a slight drop of 0.2 per cent in demand in energy

  3. NEA annual report 2000

    International Nuclear Information System (INIS)

    2000-01-01

    In this 2000 annual report, the Nuclear Energy Agency (NEA), notes that in the medium and long term, the evolution of the nuclear energy programs in OECD countries is likely to be influenced by the implementation of sustainable development policies integrating economic, environmental and socials goals. This report is divided in four chapters. The first one gives general information on nuclear industry. The chapter 2 deals with trends in nuclear power. The chapter 3 gathers technical programs in nuclear development and fuel cycle, nuclear safety and regulation, radiation protection, radioactive waste management, nuclear science and data bank, legal affairs, joint projects and other co-operative projects. The last chapter gathers general information on information program, NEA publications, main workshops and seminar and organisation charts of the NEA. (A.L.B.)

  4. Bringing developing countries into the energy equation

    International Nuclear Information System (INIS)

    Colombier, M.; Loup, J.; Laponche, Bernard; Martin-Amouroux, Jean-Marie; Chateau, Bertrand; Heller, Thomas C.; Kieken, Hubert; Kleiche, Mustapha; Mathy, Sandrine; Hourcade, Jean-Charles; Goldemberg, Jose; Pizer, William A.

    2006-01-01

    This compilation of articles on energy and climate change is a selection of contributions to the first edition of Regards sur la Terre, an annual reference in French on the international dimension of sustainable development, launched on the initiative of the French development agency, AFD (Agence francaise de developpement) and the institute for sustainable development and international relations, IDDRI (Institut du developpement durable et des relations internationales), and published by Presses de Sciences Po (Paris) in November 2006. Regards sur la terre includes an analysis of the most important international meetings and events of the last 12 months in the field of sustainable development, along with a thematic report, which focuses this year on energy and climate change. For almost two hundred years, the economic development of industrialized countries has gone hand in hand with growing consumption of fossil fuels, first coal, then oil and gas. The oil shocks of the 1970's had already revealed the fragility of this model, without however generating any major changes. The disconnection observed in the 1980's between a rapid return to economic growth and stagnating energy consumption was only provisional, and energy demand in the richest countries has again been rising since the 1990's; the development of alternative energy sources (nuclear power and renewables) has remained marginal and has failed to dethrone fossil fuels on which, paradoxically, the economies of industrialized countries are even more dependent today than they were 20 years ago. But with the turn of the century came major developments in the global energy landscape following the emergence of new and hitherto marginal actors: the rapid economic development of emerging countries is also dependent on an increasing supply of energy. Today this growing demand adds to tension on the oil and gas market, where the poorest countries are also the first victims. It could give new impetus to the

  5. Max Planck Institute for Human Development and Education: Annual Report 1990.

    Science.gov (United States)

    Max-Planck-Institut fuer Bildungsforschung, Berlin (West Germany).

    The Max Planck Institute for Human Development and Education in Germany consists of four research centers dealing with the following topics: sociology and the study of the life course; development and socialization; psychology and human development; and school systems and instruction. This English-language annual report of the Planck Institute,…

  6. Energy Statistics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources

  7. Annual report 1993-94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This is the forty-seventh annual report of the Atomic Energy Control Board (AECB). The mission of the AECB is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. This is accomplished by controlling the development, application and use of nuclear energy in Canada, and by participating on behalf of Canada in international measure of control. The AECB achieves regulatory control of nuclear facilities and nuclear materials through a comprehensive licensing system. This control also extends to the import and export of nuclear materials and it involves Canadian participation in the activities of the International Atomic Energy Agency as well as compliance with the requirements of Treaty on the Non-Proliferation of Nuclear Weapons. The control covers both domestic and international security of nuclear materials and technology.

  8. Annual report 1992-93

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This is the forty-sixth annual report of the Atomic Energy Control Board (AECB). The mission of the AECB is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. This is accomplished by controlling the development, application and use of nuclear energy in Canada, and by participating on behalf of Canada in international measure of control. The AECB achieves regulatory control of nuclear facilities and nuclear materials through a comprehensive licensing system. This control also extends to the import and export of nuclear materials and it involves Canadian participation in the activities of the International Atomic Energy Agency as well as compliance with the requirements of Treaty on the Non-Proliferation of Nuclear Weapons. The control covers both domestic and international security of nuclear materials and technology.

  9. Annual report 1992-93

    International Nuclear Information System (INIS)

    1993-01-01

    This is the forty-sixth annual report of the Atomic Energy Control Board (AECB). The mission of the AECB is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. This is accomplished by controlling the development, application and use of nuclear energy in Canada, and by participating on behalf of Canada in international measure of control. The AECB achieves regulatory control of nuclear facilities and nuclear materials through a comprehensive licensing system. This control also extends to the import and export of nuclear materials and it involves Canadian participation in the activities of the International Atomic Energy Agency as well as compliance with the requirements of Treaty on the Non-Proliferation of Nuclear Weapons. The control covers both domestic and international security of nuclear materials and technology

  10. Annual report 1993-94

    International Nuclear Information System (INIS)

    1994-01-01

    This is the forty-seventh annual report of the Atomic Energy Control Board (AECB). The mission of the AECB is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. This is accomplished by controlling the development, application and use of nuclear energy in Canada, and by participating on behalf of Canada in international measure of control. The AECB achieves regulatory control of nuclear facilities and nuclear materials through a comprehensive licensing system. This control also extends to the import and export of nuclear materials and it involves Canadian participation in the activities of the International Atomic Energy Agency as well as compliance with the requirements of Treaty on the Non-Proliferation of Nuclear Weapons. The control covers both domestic and international security of nuclear materials and technology

  11. Annual report, 1991-1992

    International Nuclear Information System (INIS)

    1992-01-01

    This is the forty-fifth annual report of the Atomic Energy Control Board (AECB). The mission of the AECB is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. This is accomplished by controlling the development, application and use of nuclear energy in Canada, and by participating on behalf of Canada in international measure of control. The AECB achieves regulatory control of nuclear facilities and nuclear materials through a comprehensive licensing system. This control also extends to the import and export of nuclear materials and it involves Canadian participation in the activities of the International Atomic Energy Agency as well as compliance with the requirements of Treaty on the Non-Proliferation of Nuclear Weapons. The control covers both domestic and international security of nuclear materials and technology

  12. Annual report, 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This is the forty-fifth annual report of the Atomic Energy Control Board (AECB). The mission of the AECB is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. This is accomplished by controlling the development, application and use of nuclear energy in Canada, and by participating on behalf of Canada in international measure of control. The AECB achieves regulatory control of nuclear facilities and nuclear materials through a comprehensive licensing system. This control also extends to the import and export of nuclear materials and it involves Canadian participation in the activities of the International Atomic Energy Agency as well as compliance with the requirements of Treaty on the Non-Proliferation of Nuclear Weapons. The control covers both domestic and international security of nuclear materials and technology.

  13. Annual Energy Review, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document presents statistics on energy useage for 1995. A reviving domestic economy, generally low energy prices, a heat wave in July and August, and unusually cold weather in November and December all contributed to the fourth consecutive year of growth in U.S. total energy consumption, which rose to an all-time high of almost 91 quadrillion Btu in 1995 (1.3). The increase came as a result of increases in the consumption of natural gas, coal, nuclear electric power, and renewable energy. Petroleum was the primary exception, and its use declined by only 0.3 percent. (Integrating the amount of renewable energy consumed outside the electric utility sector into U.S. total energy consumption boosted the total by about 3.4 quadrillion Btu, but even without that integration, U.S. total energy consumption would have reached a record level in 1995.)

  14. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N.; Mika, J.R.; Wieteska, K. [eds.

    1998-12-31

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  15. Annual Report 2001

    International Nuclear Information System (INIS)

    Swiboda, G.

    2002-01-01

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 2001. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  16. Annual Report 1997

    International Nuclear Information System (INIS)

    Golnik, N.; Mika, J.R.; Wieteska, K.

    1998-01-01

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  17. Annual Report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Golnik, N; Mika, J R; Wieteska, K [eds.

    1999-12-31

    This Annual Report of the Institute of Atomic Energy describes the results of the research works carried out at the Institute at 1997. As in the preceding years the authors of the individual scientific reports published in this Annual Report are fully responsible for their content and layout. The Report contains the information on other activities of the Institute as well. (author)

  18. Performance profiles of major energy producers 1989

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  19. Cuban energy development perspectives

    International Nuclear Information System (INIS)

    Berdellans Escobar, Ilse; Perez Martin, David; Lopez Lopez, Ileana; Ricardo Mora, Henry; Gomez De la Torre, Yoandys

    2005-01-01

    In this paper from energy demand scenario calculated for the country until 2025, energy supply options were assessed. Three energy development scenarios considering economic and social development projections and different energy options were evaluated: a reference scenario which includes the nowadays energy development projections; a second scenario basing the development on intensive use of domestic fossil fuels; and a third scenario, where the development is based on the maximum use of domestic renewable energy potential. The results are analyzed and recommendations are formulated

  20. KFA Institute of Nuclear Physics. Annual report 1990

    International Nuclear Information System (INIS)

    1991-03-01

    This annual report contains extended abstracts about the work performed in the named research center together with a list of talks and publications. The work concerns experimental studies on nuclear reactions and scattering processes, nuclear spectroscopy, and intermediate-energy physics, theoretical studies on nuclear structure, nuclear reactions, and intermediate- and high-energy physics, developments of the isochronous cyclotron, the ISIS ion source, the magnetic spectrometer BIG KARL, and the cooler synchrotron COSY, as well as technical developments on spectrometers and detectors, computer systems, and radiation protection. (orig.)