WorldWideScience

Sample records for energy deposition studies

  1. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  2. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  3. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  4. Study of Energy Deposition and Activation for the LINAC4 Dump

    CERN Document Server

    Cerutti, F; Mauro, E; Mereghetti, A; Silari, M; CERN. Geneva. AB Department

    2008-01-01

    This document provides estimates of energy deposition and activation for the dump of the future LINAC4 accelerator. Detailed maps of power density deposited in the dump are given, allowing to perform further thermo mechanical studies. Residual dose rates at a few cooling times for different irradiation scenarios have been calculated. Moreover, the air activation has been evaluated and doses to the reference population group and to a worker intervening in the cave at the shutdown have been predicted. Calculations were performed with the Monte Carlo particle transport and interaction code FLUKA.

  5. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  6. Transmission electron microscopy study of ion energy deposition in gold: evidence for a spike threshold

    International Nuclear Information System (INIS)

    Ruault, M.O.; Bernas, H.; Chaumont, J.

    1978-01-01

    Nine different atomic species, from K to Yb, were implanted into gold at energies ranging from 20 to 150 keV. The nature and depth-distribution of the resultant defect clusters were studied by transmission electron microscopy techniques as well as a modification of the '2 1/2-D' stereo technique developed by Mitchell and Bell. The effect of implanted ion dose and sample purity were determined. The cluster depth distributions are in overall agreement with the damage distributions deduced from the energy deposition calculations of Winterbon, Sigmund, and Sanders. The nature of the defect clusters is found to depend on the mass and energy of the incoming ion, in agreement with our previously reported work. These results are suggested to provide evidence for the decisive influence of the deposited energy density on the nature of visible damage. We conclude that it is possible to distinguish between cascade and 'spike' effects, the latter setting in when the average energy per atom in the cascade is approximately 2 eV/atom. All results (obtained -at low doses on pure samples- for a variety of ion species in Au, Al, Cu, W, Mo and Ni) may be related to each other in this way

  7. FCC-hh final-focus for flat-beams: parameters and energy deposition studies

    CERN Document Server

    AUTHOR|(CDS)2081283; Cruz Alaniz, Emilia; Seryi, Andrei; Van Riesen-Haupt, Leon; Besana, Maria Ilaria

    2017-01-01

    The international Future Circular Collider (FCC) study comprises the study of a new scientific structure in a tunnel of 100 km. This will allow the installation of two accelerators, a 45.6–175 GeV lepton collider and a 100-TeV hadron collider. An optimized design of a final-focus system for the hadron collider is presented here. The new design is more compact and enables unequal ${\\beta}$$^{∗}$ in both planes, whose choice is justified here. This is followed by energy deposition studies, where the total dose in the magnets as a consequence of the collision debris is evaluated.

  8. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  9. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  10. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  11. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  12. Energy Deposition Studies for the LHC Insertion Region Upgrade Phase-I

    CERN Document Server

    Cerutti, F; Ferrari, A; Mereghetti, A; Wildner, E

    2010-01-01

    While the Large Hadron Collider (LHC) at CERN is starting operation with beam, aiming to achieve nominal performance in the shortest term, the upgrade of the LHC interaction regions is actively pursued in order to enhance the physics reach of the machine. Its first phase, with the target of increasing the LHC luminosity to 2-3 1034cm-2s-1, relies on the mature Nb-Ti superconducting magnet technology and is intended to maximize the use of the existing infrastructure. The impact of the increased power of the collision debris has been investigated through detailed energy deposition studies, considering the new aperture requirements for the low-ß quadrupoles and a number of other elements in the insertions. Effective solutions in terms of shielding options and design/layout optimization have been envisaged and the crucial factors have been pointed out.

  13. Studies on the high electronic energy deposition in polyaniline thin films

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Gudage, Y.G.; Vyas, J.C.; Singh, F.; Sharma, Ramphal

    2008-01-01

    We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au 7+ ion of 100 MeV energy at different fluences, namely, 5 x 10 11 ions/cm 2 and 5 x 10 12 ions/cm 2 , respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique

  14. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  15. Most critical collimator-mask-magnet sequence in the SPS-to-LHC transfer lines: energy deposition study.

    CERN Document Server

    Marzo, Matteo; Lechner, Anton; Vlachoudis, Vasilis

    2017-01-01

    This technical note refers to a study on the relation between the impact conditions of the SPS 450GeV proton beam and the energy deposited downstream the Target Collimator Dump In- jection Long (TCDIL) collimators [1], in the SPS-to-LHC transfer lines TI2 and TI8. Such an analysis is relevant in order to simulate the worst scenario of failure, in case the beam impacts on the TCDIL collimator’s jaw, in the frame of the LHC Injectors Upgrade (LIU), in view of the High Luminosity LHC (HL-LHC) phase. Previous studies already showed the dependency of the energy deposited in the downstream masks on the collimators-masks distance [2]. In absence of a (realistic) impact parameter, we perform now a study to select the most pessimistic one, trying to understand the origin of the various components responsible for the energy deposition on the downstream mask and magnet. The set up of the Monte Carlo FLUKA [3] [4] simulations and the most relevant results will be presented in this document. A sensitivity analysis was a...

  16. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  17. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  18. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation

    International Nuclear Information System (INIS)

    Mas, P.; Sciers, P.; Droulers, Y.

    1962-01-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10 6 r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [fr

  19. Studies on mass deposition effect and energy effect of biomolecules implanted by N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1994-05-01

    By analyzing some spectrum of tyrosine sample implanted by N + ion beam, it is deduced that the implantation N + could react with the tyrosine molecule and substitute =C 5 H- group of benzene ring to produce a N-heterocyclic compound. This compound would notably affect the residual activity of the sample. Moreover, the percentage of the product molecules to the damaged tyrosine molecules is larger than the reciprocal of the proportion of their extinction coefficients. On the other hand, by comparing the release of inorganic phosphate, it is found that the radiation sensibility for four basic nucleotides is 5'-dTMP>5'-CMP>5'-GMP>5'-AMP. to implanted nucleotides, alkali treatment and heat treatment could increase the amount of inorganic phosphate. The amount of inorganic phosphate in the nucleotide samples directly implanted by ions beam is about 60% of the total amount of inorganic phosphate that could be released from the implanted samples heated at 90 degree C for 1.75 hours. Alkali treatment could damage and split the free bases released from the implanted nucleotides, but heat treatment might repair those damaged bases. Above results prove that ions implantation to biomolecules has the mass deposition effects and energy effects

  20. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  1. Energy deposition in NSRR test fuels

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Tanzawa, Sadamitsu; Tanzawa, Tomio; Kitano, Teruaki; Okazaki, Shuji

    1978-02-01

    Interpretation of fuel performance data collected during inpile testing in the NSRR requires a knowledge of the energy deposition or enthalpy increase in each sample tested. The report describes the results of absolute measurement of fission products and contents of uranium in irradiated test fuels which were performed to determine the energy deposition. (auth.)

  2. From the Orbital Implementation of the Kinetic Theory to the Polarization Propagator Method in the Study of Energy Deposition Problems

    Science.gov (United States)

    Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.

    The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.

  3. Flux and energy deposition distribution studies inside the irradiation room of the portuguese 60Co irradiation facility

    International Nuclear Information System (INIS)

    Portugal, Luis; Oliveira, Carlos

    2008-01-01

    Full text: In December 2003 the irradiator of the Portuguese 60 Co irradiation facility, UTR, was replenished. Eighteen new sources were loaded and the older ones (156) were rearranged. The result was an irradiator with about 10.2 P Bq of total activity. The active area of the irradiator has also increased. Now it uses twenty five of the thirty tubes of the source rack, nine more than in the previous geometry. This facility was designed mainly for sterilisation of medical devices. However it is also used for the irradiation of other products such as cork stoppers, plastics and a limited number of food and feed. The purpose of this work is to perform dosimetric studies inside the irradiation room of a 60 Co irradiation facility, particularly, the flux and energy deposition distributions. The MCNPX code was used for the simulation of the facility. The track average mesh tally capabilities of MCNPX were used to plot the photon flux and energy deposition distributions. This tool provides a fast way for flux and energy deposition mapping. The absorbed dose distribution near the walls of the irradiation room was also calculated. Instead of using meshtallys as before, the average absorbed dose inside boxes lined with the walls was determined and afterwards a plot of its distribution was made. The absorbed dose rates obtained ranged from 5 to 500 Gy.h -1 depending on material being irradiated in process and the location on the wall. These positions can be useful for fixed irradiation purposes. Both dosimetric studies were done considering two different materials being irradiated in the process: cork stoppers and water, materials with quite different densities (0.102 and 1 g.cm-3, respectively). These studies showed some important characteristics of the radiation fields inside the irradiation room, namely its spatial heterogeneity. Tunnelling and shadow effects were enhanced when the product boxes increases its density. Besides a deeper dosimetric understanding of the

  4. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5–18 eV) electron interactions with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel J.; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4 (Canada)

    2014-07-15

    Purpose: The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. Methods: Absorbed dose and stopping cross section for the Auger electrons of 5–18 eV emitted by{sup 125}I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure–response curves for induction of DNA strand breaks. Results: For a single decay of{sup 125}I within DNA, the Auger electrons of 5–18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm{sup 3} volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. Conclusions: Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should

  5. Laser Induced Damage in the Eye: Study of Energy Deposition in the Retina.

    Science.gov (United States)

    1976-06-01

    are given in appendices 1.5 and 1.6. 52. RE FE RENCES 1. Barer, R. (1957) " Refractometry and Interferometry of living cells". J. Opt. Soc. Am. 47, 545...John Wiley and Son-, N.Y. 11. Sidman, P. (1957) "The Structure and concentration of soliis in photoreceptor cells studied by refractometry and interf...34 Refractometry and Interferometry of living cells". J. Opt. Soc. Am. 47, 545. 6. Biernson, G. (1968) "Evaluation of physiological evidence for

  6. Interaction region design driven by energy deposition

    Science.gov (United States)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  7. Interaction region design driven by energy deposition

    Directory of Open Access Journals (Sweden)

    Roman Martin

    2017-08-01

    Full Text Available The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  8. Structure of fast ion energy depositions in water. Application to the Monte Carlo study of cellular inactivation

    International Nuclear Information System (INIS)

    Champion, Ch.

    1999-01-01

    In order to understand the physical processes involved in the heavy ion irradiation of biological samples, a Monte Carlo simulation code and a random inventory code for interaction clusters in volumes comparable to those of sensible biological sites like nucleosomes (few nm 3 ) have been developed. It is now well known that macroscopic parameters like the dose rate or the stopping power are not suitable to explain the cellular inactivation induced by heavy ions irradiation. The aim of this work is the development of a mechanistic model based on the identification of primary processes susceptible to be of major importance on the biological aspect. The code developed simulates the creation and transport in water of all secondary particles produced by the impact of heavy ions. Once all energy depositions generated, an algorithm of random inventory of interaction clusters has been built in order to evaluate the type of critical energy deposition which presents a correlation with the experimental data of cellular inactivation. For light ions, like particles, this cluster model has permitted to reproduce the variations of the experimental number of lethal lesions observed, in particular the decay of biological efficiency. However, for heavy ions, these parameters do not allow to reproduce the experimental data of cellular inactivation. Therefore, the concept of ionization clusters described in terms of critical deposition in critical volumes is not sufficient. (J.S.)

  9. Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Gorka, B; Nilsson, B; Fernandez-Varea, J M; Svensson, R; Brahme, A

    2006-01-01

    A new dosimeter, based on chemical vapour deposited (CVD) diamond as the active detector material, is being developed for dosimetry in radiotherapeutic beams. CVD-diamond is a very interesting material, since its atomic composition is close to that of human tissue and in principle it can be designed to introduce negligible perturbations to the radiation field and the dose distribution in the phantom due to its small size. However, non-tissue-equivalent structural components, such as electrodes, wires and encapsulation, need to be carefully selected as they may induce severe fluence perturbation and angular dependence, resulting in erroneous dose readings. By introducing metallic electrodes on the diamond crystals, interface phenomena between high- and low-atomic-number materials are created. Depending on the direction of the radiation field, an increased or decreased detector signal may be obtained. The small dimensions of the CVD-diamond layer and electrodes (around 100 μm and smaller) imply a higher sensitivity to the lack of charged-particle equilibrium and may cause severe interface phenomena. In the present study, we investigate the variation of energy deposition in the diamond detector for different photon-beam qualities, electrode materials and geometric configurations using the Monte Carlo code PENELOPE. The prototype detector was produced from a 50 μm thick CVD-diamond layer with 0.2 μm thick silver electrodes on both sides. The mean absorbed dose to the detector's active volume was modified in the presence of the electrodes by 1.7%, 2.1%, 1.5%, 0.6% and 0.9% for 1.25 MeV monoenergetic photons, a complete (i.e. shielded) 60 Co photon source spectrum and 6, 18 and 50 MV bremsstrahlung spectra, respectively. The shift in mean absorbed dose increases with increasing atomic number and thickness of the electrodes, and diminishes with increasing thickness of the diamond layer. From a dosimetric point of view, graphite would be an almost perfect electrode

  10. Energy deposition in STARFIRE reactor components

    International Nuclear Information System (INIS)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry

  11. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  12. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  13. Tailoring Si(100) substrate surfaces for GaP growth by Ga deposition: A low-energy electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Rienäcker, Michael; Borkenhagen, Benjamin, E-mail: b.borkenhagen@pe.tu-clausthal.de; Lilienkamp, Gerhard; Daum, Winfried [TU Clausthal, Institut für Energieforschung und Physikalische Technologien, Leibnizstraße 4, D-38678 Clausthal-Zellerfeld (Germany)

    2015-08-07

    For GaP-on-Si(100) heteroepitaxy, currently considered as a model system for monolithic integration of III–V semiconductors on Si(100), the surface steps of Si(100) have a major impact on the quality of the GaP film. Monoatomic steps cause antiphase domains in GaP with detrimental electronic properties. A viable route is to grow the III–V epilayer on single-domain Si(100) with biatomic steps, but preferably not at the expense of reduced terrace widths introduced by miscut substrates. We have performed in situ investigations of the influence of Ga deposition on the kinetics of surface steps and terraces of Si(100) at substrate temperatures above 600 °C by low-energy electron microscopy. Starting from nearly equally distributed T{sub A} and T{sub B} terraces of a two-domain Si(100) surface, submonolayer deposition of Ga results in a transformation into a surface dominated by T{sub A} terraces and biatomic D{sub A} steps. This transformation is reversible, and Si(100) with monoatomic steps is recovered upon termination of the Ga flux. Under conditions of higher coverages (but still below 0.25 monolayer), we observe restructuring into a surface with T{sub B} dominance, similar to the findings of Hara et al. [J. Appl. Phys. 98, 083515 (2005)]. The occurrence and mutual transformations of surface structures with different terrace and step structures in a narrow range of temperatures and Ga deposition rates is discussed.

  14. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  15. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  16. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  17. Calorimetric sensors for energy deposition measurements

    International Nuclear Information System (INIS)

    Langenbrunner, J.; Cooper, R.; Morgan, G.

    1998-01-01

    A calorimetric sensor with several novel design features has been developed. These sensors will provide an accurate sampling of thermal power density and energy deposition from proton beams incident on target components of accelerator-based systems, such as the Accelerator Production of Tritium Project (APT) and the Spallation Neutron Source (SNS). A small, solid slug (volume = 0.347 cc) of target material is suspended by kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. The slug is in thermal contact with a low-mass, calibrated, 100-kΩ thermistor. Power deposition caused by the passage of radiation through the slug is calculated from the rate of temperature rise of the slug. The authors have chosen slugs composed of Pb, Al, and LiAl

  18. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  19. TLD gamma-ray energy deposition measurements in the zero energy fast reactor ZEBRA

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1977-01-01

    A recent study of gamma-ray energy deposition was carried out in the Zebra reactor at AEE Winfrith during a collaborative programme between the UKAEA and PNC of Japan. The programme was given the title MOZART. This paper describes the TLD experiments in the MOZART MZB assembly and discusses the technique and various corrections necessary to relate the measured quantity to the calculated energy deposition

  20. Optimization design of energy deposition on single expansion ramp nozzle

    Science.gov (United States)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  1. Monosodium urate crystal deposition associated with the progress of radiographic grade at the sacroiliac joint in axial SpA: a dual-energy CT study.

    Science.gov (United States)

    Zhu, Junqing; Li, Aiwu; Jia, Ertao; Zhou, Yi; Xu, Juan; Chen, Shixian; Huang, Yinger; Xiao, Xiang; Li, Juan

    2017-05-02

    Previous studies have revealed that ankylosing spondylitis (AS), as the progenitor of axial spondyloarthritis (AxSpA), has been characterized by the insidiously progressive nature of sacroiliitis and spondylitis. Dual-energy computed tomography (DECT) has recently been used to analyse the deposition of monosodium urate (MSU) crystals with higher sensitivity and specificity. However, it remains unclear whether the existence of the MSU crystal deposition detected by DECT at the sacroiliac joint in patients with AxSpA also is associated with the existing structural damage. Here, we performed this study to show the DECT MSU crystal deposits in AxSpA patients without coexisting gout and to ascertain the relationship between the MSU crystal deposition and the structural joint damage of sacroiliac joints. One hundred and eighty-six AxSpA patients without coexisting gout were recruited. The plain radiographs of the sacroiliac joint were obtained, along with the DECT scans at the pelvis and the clinical variables. All statistics based on the left or right sacroiliac joint damage grading (0-4) were calculated independently. Bivariate analysis and ordinal logistic regression was performed between the clinical features and radiographic grades at the sacroiliac joint. At the pelvis, large quantities of MSU crystal deposition were found in patients with AxSpA. The average MSU crystal volume at the left sacroiliac joint, the right sacroiliac joint, and the pelvis were 0.902 ± 1.345, 1.074 ± 1.878, and 5.272 ± 9.044 cm 3 , values which were correlated with serum uric acid concentrations (r = 0.727, 0.740, 0.896; p sacroiliac joint damage. Further, the AxSpA duration, BASFI score, and the volume of MSU crystal at both sides of sacroiliac joint were associated with the progress of radiographic grade at the sacroiliac joints in the ordinal logistic models (left AOR = 1.180, 3.800, 1.920; right AOR = 1.190, 3.034, 1.418; p sacroiliac joint is associated

  2. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  3. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  4. Electron energy deposition in the middle atmosphere

    International Nuclear Information System (INIS)

    Vampola, A.L.; Gorney, D.J.

    1983-01-01

    Spectra of locally precipating 36- to 317-keV electrons obtained by instrumentation on the S3-2 satellite are used to calculate energy deposition profiles as a function of latitude, longitude, and altitude. In the 70- to 90-km altitude, mid-latitude ionization due to these precipitating energetic electrons can be comparable to that due to direct solar H Lyman α. At night, the electrons produce ionization more than an order of magnitude greater than that expected from scattered H Lyman α. Maximum precipitation rates in the region of the South Atlantic Anomaly are of the order of 10 -2 erg/cm 2 s with a spectrum of form j(E) = 1.34 x 10 5 E/sup -2.27/ (keV). Southern hemisphere precipitation dominates that in the north for 1.1< L<6 except for regions of low local surface field in the northern hemisphere. Above L = 6, local time effects dominate: i.e., longitudinal effects due to the asymmetric magnetic field which are strong features below L = 6 disappear and are replaced by high-latitude precipitation events which are local time features

  5. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  6. Energy-enhanced atomic layer deposition : offering more processing freedom

    NARCIS (Netherlands)

    Potts, S.E.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition (ALD) is a popular deposition technique comprising two or more sequential, self-limiting surface reactions, which make up an ALD cycle. Energy-enhanced ALD is an evolution of traditional thermal ALD methods, whereby energy is supplied to a gas in situ in order to convert a

  7. Enhanced energy deposition symmetry by hot electron transport

    International Nuclear Information System (INIS)

    Wilson, D.; Mack, J.; Stover, E.; VanHulsteyn, D.; McCall, G.; Hauer, A.

    1981-01-01

    High energy electrons produced by resonance absorption carry the CO 2 laser energy absorbed in a laser fusion pellet. The symmetrization that can be achieved by lateral transport of the hot electrons as they deposit their energy is discussed. A K/sub α/ experiment shows a surprising symmetrization of energy deposition achieved by adding a thin layer of plastic to a copper sphere. Efforts to numerically model this effect are described

  8. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  9. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter

    International Nuclear Information System (INIS)

    Pisani, F.

    2000-02-01

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  10. Evaluation of effective energy deposition in test fuel during power burst experiment in NSRR

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Inabe, Teruo

    1982-01-01

    In an inpile experiment to study the fuel behavior under reactivity-initiated accident conditions, it is of great importance to understand the time-dependent characteristics of the energy deposited in the test fuel by burst power. The evaluation of the time-dependent energy deposition requires the knowledge of the fission rates and energy deposition per fission in the test fuel, both as a function of time. In the present work, the authors attempted to evaluate the relative fission rate change in the test fuel subjected to the power burst testing in the NSRR through the measurements and analyses of the fission power changes in the NSRR. Utilizing a micro fission chamber and a conventional larger fission chamber, they successfully measured the reactor fission power change ranging over a dozen of decades in magnitude and a thousand seconds in time. The measured power transient agreed quite well with calculated results. In addition, the time-dependent energy deposition per fission in the test fuel including the energy contribution from the driver core was analytically evaluated. The analyses indicate that the energy of about 175 MeV/fission is promptly deposited in the test fuel and that the additional energy of about 11 MeV is deposited afterwards. Finally the fractions of energy deposited in the test fuel until various times after power burst were determined by coupling the time-dependent relative fissions and energy deposition per fission in the test fuel. The prompt energy deposition ranges from about 50 to 80% of the total energy deposition for the reactivity insertion between 1.5 and 4.7 $, and the remaining is the delayed energy deposition. (author)

  11. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  12. Science of mineral deposits and economics of energy

    International Nuclear Information System (INIS)

    Mackowsky, M.T.

    1978-01-01

    The availability of fossile energy carriers is investigated with regard to raw material reserves and their know deposits, by means of output and consumption. According to the author's opinion its discussion should have a priority over all discussions concerning energy crisis, energy supply and environmental protection. The author also touches the high measure of political problems beside the geoscientifical and technological problems of raw material supply. He briefly points to the general situation on the energy market with the help of data on stocks and consumption as given by the 10th International Energy Conference 1977 at Istambul and eventually deals with topics on mineral deposits science and uranium production. (HK) [de

  13. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    Science.gov (United States)

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  14. On the role of energy deposition in triggering SEGR in power MOSFETs

    International Nuclear Information System (INIS)

    Selva, L.E.; Swift, G.M.; Taylor, W.A.; Edmonds, L.D.

    1999-01-01

    Single event gate rupture (SEGR) was studied using three types of power MOSFET devices with ions having incident linear energy transfers (LETs) in silicon from 26 to 82 MeV·cm 2 /mg. Results are: (1) consistent with Wrobel's oxide breakdown for V DS = 0 volts (for both normal incidence and angle); and (2) when V GS = 0 volts, energy deposited near the Si/SiO 2 interface is more important than the energy deposited deeper in the epi

  15. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  16. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  17. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation

    OpenAIRE

    Schroeder, Jeremy; Thomson, W.; Howard, B.; Schell, N.; Näslund, Lars-Åke; Rogström, Lina; Johansson-Jöesaar, Mats P.; Ghafoor, Naureen; Odén, Magnus; Nothnagel, E.; Shepard, A.; Greer, J.; Birch, Jens

    2015-01-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (greater than50 keV), high photon flux (greater than10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (less than1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation...

  18. Scaling of energy deposition in fast ignition targets

    International Nuclear Information System (INIS)

    Welch, Dale R.; Slutz, Stephen A.; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2005-01-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm 3 , with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10 21 W/cm 2 , the hot electron energies expected to approach 100MeV. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem.

  19. Spatial correlation of energy deposition events in irradiated liquid water

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.; Ritchie, R.H.

    1978-01-01

    Monte Carlo electron transport computer code is used to study in detail the slowing down of electrons and all of their secondaries with initial energies up to 1.5 MeV in liquid water. The probability distributions for the number of ionizations and for the energy deposited in cubical volume elements from electron tracks in the water are analyzed. Both the electron energies and the sizes of the cubical cells are varied. Results are shown for electron energies between 100 eV and 10 keV and for cell sizes between 40 A and 1500 A. Good general agreement is found with results presented by Paretzke at the last symposium. The code can be used to obtain other basic distributions of importance in microdosimetry. As an example, microdosimetric single-event spectra for 500-eV electrons are computed in cubes with edges that range in size from 40 A to 200 A. The importance of correlations is shown explicitly in a comparison of secondary electrons produced by 60 Co and 50-keV photons

  20. The energy deposition of slowing down particles in heterogeneous media

    International Nuclear Information System (INIS)

    Prinja, A.K.; Williams, M.M.R.

    1980-01-01

    Energy deposition by atomic particles in adjacent semi-infinite, amorphous media is described using the forward form of the Boltzmann transport equation. A transport approximation to the scattering kernel, developed elsewhere, incorporating realistic energy transfer is employed to assess the validity of the commonly used isotropic-scattering and straight-ahead approximations. Results are presented for integral energy deposition rates due to a plane, isotropic and monoenergetic source in one half-space for a range of mass ratios between 0.1 and 5.0. Integral profiles for infinite and semi-infinite media are considered and the influence of reflection for different mass ratios is evaluated. The dissimilar scattering properties of the two media induce a discontinuity at the interface in the energy deposition rate the magnitude of which is sensitive to the source position relative to the interface. A comprehensive evaluation of the total energy deposited in the source free medium is presented for a range of mass ratios and source positions. An interesting minimum occurs for off-interface source locations as a function of the source-medium mass ratio, the position of which varies with the source position but is insensitive to the other mass ratio. As a special case, energy reflection and escape coefficients for semi-infinite media are obtained which demonstrates that the effect of a vacuum interface is insignificant for deep source locations except for large mass ratios when reflection becomes dominant. (author)

  1. On the Tengiz petroleum deposit previous study

    International Nuclear Information System (INIS)

    Nysangaliev, A.N.; Kuspangaliev, T.K.

    1997-01-01

    Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)

  2. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    Science.gov (United States)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  3. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  4. Acid deposition study in the Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Ting-Kueh [Tunku Abdul Rahman College, Kuala Lumpur (Malaysia); Lau, Wai-Yoo [Malaysian Scientific Association, Kuala Lumpur (Malaysia)

    1996-12-31

    The Association of South East Asian Nations or ASEAN is a regional association of seven countries, namely Indonesia, Malaysia, Philippines, Singapore, Thailand, Brunei and Vietnam, located at the south eastern part of the Asian continent. Together with the East Asian States of Japan, China, Korea and Taiwan, this part of the world is experiencing rapid economic growth, especially in the last decade. Rapid industrialization has resulted in an increased demand for energy in the manufacturing and transport sectors, and also for infrastructure development. This has led to a significant increase in gaseous emissions and a corresponding increase in atmospheric acidity. Acid deposition study in the ASEAN countries began in the mid-70s when Malaysia first started her acid rain monitoring network in 1976. This was followed closely by Singapore and the other ASEAN countries in the 80s. By now all ASEAN countries have their own acid rain monitoring networks with a number of these countries extending the monitoring to dry deposition as well.

  5. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-01-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillations and disruptions in tokamak is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during the current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (orig.)

  6. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-07-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillstions and disruptions in tokamaks is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (author)

  7. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  8. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  9. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  10. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  11. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  12. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  13. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  14. Characteristics of toroidal energy deposition asymmetries in ASDEX

    International Nuclear Information System (INIS)

    Evans, T.E.; Neuhauser, J.; Leuterer, F.; Mueller, E.R.

    1990-01-01

    Large toroidal and poloidal asymmetries with characteristics which are sensitively dependent on q a , the vertical position of the plasma, and the type of additional heating are observed in the energy flow to the ASDEX divertor target plates. The largest asymmetries and total energy depositions are observed during lower hybrid wave injection experiments with approximately 50% of the input energy going to the combined divertor targets and shields. A maximum localized energy density loading of 10 MJ/m 2 is typical under these conditions. Measurements of the asymmetries are consistent with a model in which magnetic islands and ergodicity due to intrinsic magnetic perturbations dominate the energy transpot across the primary magnetic separatrix. The results emphasize the essential role of resonant magnetic perturbations in determining the performance of tokamaks and demonstrate that non-axisymmetric effects caused by small perturbations become increasingly important in determining the transport properties as the injected power is increased. (orig.)

  15. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  16. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  17. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  18. Investigating energy deposition within cell populations using Monte Carlo simulations.

    Science.gov (United States)

    Oliver, Patricia A K; Thomson, Rowan M

    2018-06-27

    In this work, we develop multicellular models of healthy and cancerous human soft tissues, which are used to investigate energy deposition in subcellular targets, quantify the microdosimetric spread in a population of cells, and determine how these results depend on model details. Monte Carlo (MC) tissue models combining varying levels of detail on different length scales are developed: microscopically-detailed regions of interest (>1500 explicitly-modelled cells) are embedded in bulk tissue phantoms irradiated by photons (20 keV to 1.25 MeV). Specific energy (z; energy imparted per unit mass) is scored in nuclei and cytoplasm compartments using the EGSnrc user-code egs_chamber; specific energy mean, <z>, standard deviation, σz, and distribution, f(z,D), are calculated for a variety of macroscopic doses, D. MC-calculated f(z,D) are compared with normal distributions having the same mean and standard deviation. For mGy doses, there is considerable variation in energy deposition (microdosimetric spread) throughout a cell population: e.g., for 30 keV photons irradiating melanoma with 7.5 μm cell radius and 3 μm nuclear radius, σz/<z> for nuclear targets is 170%, and the fraction of nuclei receiving no energy deposition, fz=0, is 0.31 for a dose of 10 mGy. If cobalt-60 photons are considered instead, then σz/<z> decreases to 84%, and fz=0 decreases to 0.036. These results correspond to randomly arranged cells with cell/nucleus sizes randomly sampled from a normal distribution with a standard deviation of 1 μm. If cells are arranged in a hexagonal lattice and cell/nucleus sizes are uniform throughout the population, then σz/<z> decreases to 106% and 68% for 30 keV and cobalt-60,respectively; fz=0

  19. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  20. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  1. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  2. Evaluation of energy deposition by 153Sm in small samples

    International Nuclear Information System (INIS)

    Cury, M.I.C.; Siqueira, P.T.D.; Yoriyaz, H.; Coelho, P.R.P.; Da Silva, M.A.; Okazaki, K.

    2002-01-01

    Aim: This work presents evaluations of the absorbed dose by 'in vitro' blood cultures when mixed with 153 Sm solutions of different concentrations. Although 153 Sm is used as radiopharmaceutical mainly due to its beta emission, which is short-range radiation, it also emits gamma radiation which has a longer-range penetration. Therefore it turns to be a difficult task to determine the absorbed dose by small samples where the infinite approximation is no longer valid. Materials and Methods: MCNP-4C (Monte Carlo N - Particle transport code) has been used to perform the evaluations. It is not a deterministic code that calculates the value of a specific quantity solving the physical equations involved in the problem, but a virtual experiment where the events related to the problems are simulated and the concerned quantities are tallied. MCNP also stands out by its possibilities to specify geometrically any problem. However, these features, among others, turns MCNP in a time consuming code. The simulated problem consists of a cylindrical plastic tube with 1.5 cm internal diameter and 0.1cm thickness. It also has 2.0 cm height conic bottom end, so that the represented sample has 4.0 ml ( consisted by 1 ml of blood and 3 ml culture medium). To evaluate the energy deposition in the blood culture in each 153 Sm decay, the problem has been divided in 3 steps to account to the β- emissions (which has a continuum spectrum), gammas and conversion and Auger electrons emissions. Afterwards each emission contribution was weighted and summed to present the final value. Besides this radiation 'fragmentation', simulations were performed for many different amounts of 153 Sm solution added to the sample. These amounts cover a range from 1μl to 0.5 ml. Results: The average energy per disintegration of 153 Sm is 331 keV [1]. Gammas account for 63 keV and β-, conversion and Auger electrons account for 268 keV. The simulations performed showed an average energy deposition of 260 ke

  3. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  4. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  5. Simulation of the fluctuations of energy and charge deposited during e-beam exposure

    International Nuclear Information System (INIS)

    Borisov, S. S.; Zaitsev, S. I.; Grachev, E. A.

    2007-01-01

    The stochastic nature of an energy and charge deposition process is examined using a model based on discrete loss approximation (DLA). Deposited energy deviations computed using the continuous slowing down approximation (CSDA) and DLA are compared. It is shown that CSDA underestimates fluctuations in deposited energy

  6. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  7. Energy storage and deposition in a solar flare

    Science.gov (United States)

    Vorpahl, J. A.

    1976-01-01

    X-ray pictures of a solar flare taken with the S-056 X-ray telescope aboard Skylab are interpreted in terms of flare energy deposition and storage. The close similarity between calculated magnetic-field lines and the overall structure of the X-ray core is shown to suggest that the flare occurred in an entire arcade of loops. It is found that different X-ray features brightened sequentially as the flare evolved, indicating that some triggering disturbance moved from one side to the other in the flare core. A propagation velocity of 180 to 280 km/s is computed, and it is proposed that the geometry of the loop arcade strongly influenced the propagation of the triggering disturbance as well as the storage and site of the subsequent energy deposition. Some possible physical causes for the sequential X-ray brightening are examined, and a magnetosonic wave is suggested as the triggering disturbance. 'Correct' conditions for energy release are considered

  8. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  9. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  10. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  11. Stopping and energy deposition of hadrons in target nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    In an analysis of pion-xenon nucleus collisions at 2.34-9 GeV/c momentum events are identified in which incident pions were completely stopped and deposited their energy in target nucleus. Probability of appearance of such ''stopped'' events among any-type pion-xenon collision events depends on the incident pion momentum and is: approximately 0.15 at 2.34 GeV/c, approximately 0.02 at 3.5 GeV/c, and approximately 0 at higher momenta. Formula expressing probability of appearance of the ''stopped'' events is derived. Range-energy relation in nuclear matter for pions and protons is given

  12. Improving deposition tester to study adherent deposits in papermaking

    OpenAIRE

    Monte Lara, Concepción; Sánchez, Mónica; Blanco Suárez, Ángeles; Negro Álvarez, Carlos; Tijero Miquel, Julio

    2012-01-01

    Conventional methods used for the quantification of adherent material contained in a pulp suspension propose either filtration of the sample, which may lead to loss of sticky material in the filtrate, or dilution of the pulp, which may cause destabilization of the dissolved and colloidal material; thus, leading to unreliable results. In 1998, the Cellulose and Paper Group of University Complutense of Madrid developed a deposition tester which aimed to quantify the adherence of material (micro...

  13. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  14. Monte Carlo calculation of the energy deposited in the KASCADE GRANDE detectors

    International Nuclear Information System (INIS)

    Mihai, Constantin

    2004-01-01

    The energy deposited by protons, electrons and positrons in the KASCADE GRANDE detectors is calculated with a simple and fast Monte Carlo method. The KASCADE GRANDE experiment (Forschungszentrum Karlsruhe, Germany), based on an array of plastic scintillation detectors, has the aim to study the energy spectrum of the primary cosmic rays around and above the 'knee' region of the spectrum. The reconstruction of the primary spectrum is achieved by comparing the data collected by the detectors with simulations of the development of the extensive air shower initiated by the primary particle combined with detailed simulations of the detector response. The simulation of the air shower development is carried out with the CORSIKA Monte Carlo code. The output file produced by CORSIKA is further processed with a program that estimates the energy deposited in the detectors by the particles of the shower. The standard method to calculate the energy deposit in the detectors is based on the Geant package from the CERN library. A new method that calculates the energy deposit by fitting the Geant based distributions with simpler functions is proposed in this work. In comparison with the method based on the Geant package this method is substantially faster. The time saving is important because the number of particles involved is large. (author)

  15. Calorific energy deposited by gamma radiations in a test reactor. Calorimetric measurements and calculations

    International Nuclear Information System (INIS)

    Mecheri, K.-F.

    1977-01-01

    The purpose of this work was to determine the calorific energy deposited by gamma radiations in the experimental devices irradiated in the test reactors of the Grenoble Nuclear Study Centre. A theoretical study briefly recalls to mind the various sorts of nuclear reactions that occur in a reactor, from the special angle of their ability to deposit calorific energy in the materials. A special study with the help of a graphite calorimeter made it possible to show the possible effect of the various parameters intervening in this energy absorption: the nature of the materials, their geometry, the spectrum of the incident gamma rays and the fact that the variation of this spectrum is due to the position of the measuring point with respect to the reactor core or to the presence of structures around the measuring instrument. The results of the calculations made with the help of the Mercury IV and ANISN codes are compared with those of the determinations in order to ascertain that very are adapted to the forecasts of energy deposition in the various materials. The conclusion was reached that in order to calculate with accuracy the depositifs of gamma energy in the experimental devices, it is necessary either to introduce the build-up calculation for the low energy photons, in the Mercury IV calculation code or to associate the DOT code to the ANISN calculation code [fr

  16. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  17. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  18. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  19. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  20. The effect of energy and momentum transfer during magnetron sputter deposition of yttrium oxide thin films

    Science.gov (United States)

    Xia, Jinjiao; Liang, Wenping; Miao, Qiang; Depla, Diederik

    2018-05-01

    The influence of the ratio between the energy and the deposition flux, or the energy per arriving atom, on the growth of Y2O3 sputter deposited thin films has been studied. The energy per arriving atom has been varied by the adjustment of the discharge power, and/or the target-to-substrate distance. The relationship between the energy per arriving atom and the phase evolution, grain size, microstructure, packing density and residual stress was investigated in detail. At low energy per arriving atom, the films consist of the monoclinic B phase with a preferential (1 1 1) orientation. A minority cubic C phase appears at higher energy per arriving atom. A study of the thin film cross sections showed for all films straight columns throughout the thickness, typically for a zone II microstructure. The intrinsic stress is compressive, and increases with increasing energy per atom. The same trend is observed for the film density. Simulations show that the momentum transfer per arriving atom also scales with the energy per arriving atom. Hence, the interpretation of the observed trends as a function of the energy per arriving atom must be treated with care.

  1. Photon beam convolution using polyenergetic energy deposition kernels

    International Nuclear Information System (INIS)

    Hoban, P.W.; Murray, D.C.; Round, W.H.

    1994-01-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, μ, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio μ ab /μ as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author)

  2. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  3. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  4. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  5. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  6. Quality study of a fedspar deposit

    Directory of Open Access Journals (Sweden)

    Taboada, J.

    2000-12-01

    Full Text Available This work describes a pegmatite mineral deposit composed by some veins of a length between 50 and 800 meters and a width of almost 15 meters. With the purpose to evaluate the potential exploitation, we have characterized the quality of the selling product, through a sampling procedure, granulometric classification, magnetic separation, flotation process and mineralogical analysis. In order to establish the more able flotation process, we have tested different methods, that we also include here. Later on, and with the finality to establish the selling feldspar percentage in the deposit, we realized a geostatic study in order to identify, not only the different qualities but also its distribution in the deposit.

    Este trabajo describe un yacimiento de pegmatita compuesto por varios filones, que varían entre 50 y 800 metros de longitud y casi 15 metros de ancho. Con el fin de evaluar el potencial de explotación, se caracteriza la calidad del producto vendible. Esto se lleva a cabo mediante un procedimiento de muestreo, clasificación granulométrica, separación magnética, proceso de flotación y análisis mineralógico. Para establecer el proceso de flotación más eficaz, se ha experimentado con varios procedimientos, cuya breve descripción se incluye. Posteriormente, y con el fin de establecer el porcentaje de feldespato vendible en el yacimiento, se realizó un estudio geoestadístico para identificar tanto las categorías de calidad como su distribución en el yacimiento.

  7. Energy deposited in the high luminosity inner triplets of the LHC by collision debris

    International Nuclear Information System (INIS)

    Wildner, E.; Broggi, F.; Cerutti, F.; Ferrari, A.; Hoa, C.; Koutchouk, J.-P.; Mokhov, N.V.

    2008-01-01

    The 14 TeV center of mass proton-proton collisions in the LHC produce not only debris interesting for physics but also showers of particles ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of this contribution to the heat, that has to be transported by the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC base-line are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the consolidation of the calculations, a dedicated comparative study of these two codes was performed for a reduced setup

  8. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    International Nuclear Information System (INIS)

    Zylstra, A.B.; Barnard, J.J.; More, R.M.

    2009-01-01

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  9. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  10. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  11. The penetration, diffusion and energy deposition of high-energy photon in layered media

    International Nuclear Information System (INIS)

    Zhengming, Luo; Chengjun, Gou; Laub, Wolfram

    2002-01-01

    This paper presents a new theory for calculating the transport of high-energy photons and their secondary charged particles. We call this new algorithm characteristic line method, which is completely analytic. Using this new method we can not only accurately calculate the transport behavior of energetic photons, but also precisely describes the transport behavior and energy deposition of secondary electrons, photoelectrons, Compton recoil electrons and positron-electron pairs. Its calculation efficiency is much higher than the Monte Carlo method's. The theory can be directly applied to layered media situation and obtain a pencil-beam-modeled solution. Therefore, it may be applied to clinical applications for radiation therapy

  12. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  13. Influence of emitter temperature on the energy deposition in a low-pressure plasma

    International Nuclear Information System (INIS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-01-01

    The influence of emitter temperature on the energy deposition into low-pressure plasma is studied by the self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. Depending on the emitter temperature, different modes of discharge operation are obtained. The mode type depends on the plasma frequency and does not depend on the ratio between the densities of beam and plasma electrons. Namely, plasma is stable when the plasma frequency is small. For this plasma, the energy transfer from emitted electrons to plasma electrons is inefficient. The increase in the plasma frequency results first in the excitation of two-stream electron instability. However, since the thermal velocity of plasma electrons is smaller than the electrostatic wave velocity, the resonant wave-particle interaction is inefficient for the energy deposition into the plasma. Further increase in the plasma frequency leads to the distortion of beam of emitted electrons. Then, the electrostatic wave generated due to two-stream instability decays into multiple slower waves. Phase velocities of these waves are comparable with the thermal velocity of plasma electrons which makes possible the resonant wave-particle interaction. This results in the efficient energy deposition from emitted electrons into the plasma.

  14. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    Science.gov (United States)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  15. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  16. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  17. Geopressured aquifers - utilization of the energy potential of the Endorf thermal water deposit

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Hantelmann, G v

    1984-01-01

    The Endorf thermal water deposit (Rupel, 4229 to 4264 m) belongs to the type of ''geopressured aquifers''. The overall aim of the project is to exploit the energy stored in the deposit in the form of thermal brine (temperature: 115/sup 0/C) and natural gas (96% methane). In this first report on the project state, an overview on prehistory is followed by a description of the currently implemented test programme and its subsequent evaluation which aim at obtaining more exact knowledge concerning the present deposit conditions and, while doing so, indications of the energy content of the deposit in order to determine the energy potential theoretically exploitable at the well head.

  18. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  19. Energy deposition model for low-energy electrons (10-10 000 eV) in air

    International Nuclear Information System (INIS)

    Roldan, A.; Perez, J.M.; Williart, A.; Blanco, F.; Garcia, G.

    2004-01-01

    An energy deposition model for electrons in air that can be useful in microdosimetric applications is presented in this study. The model is based on a Monte Carlo simulation of the single electron scattering processes that can take place with the molecular constituents of the air in the energy range 10-10 000 eV. The input parameters for this procedure have been the electron scattering cross sections, both differential and integral. These parameters were calculated using a model potential method which describes the electron scattering with the molecular constituent of air. The reliability of the calculated integral cross section values has been evaluated by comparison with direct total electron scattering cross-section measurements performed by us in a transmission beam experiment. Experimental energy loss spectra for electrons in air have been used as probability distribution functions to define the electron energy loss in single collision events. The resulting model has been applied to simulate the electron transport through a gas cell containing air at different pressures and the results have been compared with those observed in the experiments. Finally, as an example of its applicability to dosimetric issues, the energy deposition of 10 000 eV by means of successive collisions in a free air chamber has been simulated

  20. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  1. Effects of Energy Deposition Characteristics on Localised Forced Ignition of Homogeneous Mixtures

    Directory of Open Access Journals (Sweden)

    Dipal Patel

    2015-06-01

    Full Text Available The effects of the characteristic width of the energy deposition profile and the duration of energy deposition by the ignitor on localised forced ignition of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simplified chemistry three-dimensional compressible Direct Numerical Simulation (DNS for different values of root-mean-square turbulent velocity fluctuation. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. It has been shown that the width of ignition energy deposition and the duration over which ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition (duration of energy deposition for a given amount of ignition energy has been found to have a detrimental effect on the ignition event, which may ultimately lead to misfire. Moreover, an increase in u′ gives rise to augmented heat transfer rate from the hot gas kernel, which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u′ on localised ignition are particularly prevalent for fuel-lean mixtures.

  2. Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles

    CERN Document Server

    Hoa, C; Cerutti, F; Ferrai, A

    2008-01-01

    Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and ...

  3. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole

  4. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  5. Cumulative percent energy deposition of photon beam incident on different targets, simulated by Monte Carlo

    International Nuclear Information System (INIS)

    Kandic, A.; Jevremovic, T.; Boreli, F.

    1989-01-01

    Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs

  6. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    2000-01-01

    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process....... The asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...... during the gas injection process in comparison with the standard asphaltenes in order to understand the mechanisms involved in asphaltene deposition....

  7. Deposition of intranasal glucocorticoids--preliminary study.

    Science.gov (United States)

    Rapiejko, Piotr; Sosnowski, Tomasz R; Sova, Jarosław; Jurkiewicz, Dariusz

    2015-01-01

    Intranasal glucocorticoids are the treatment of choice in the therapy of rhinitis. The differences in efficiency of particular medications proven by therapeutic index may result from differences in composition of particular formulations as well as from diverse deposition in nasal cavities. Intranasal formulations of glucocorticoids differ in volume of a single dose in addition to variety in density, viscosity and dispenser nozzle structure. The aim of this report was to analyze the deposition of most often used intranasal glucocorticoids in the nasal cavity and assessment of the usefulness of a nose model from a 3D printer reflecting anatomical features of a concrete patient. Three newest and most often used in Poland intranasal glucocorticoids were chosen to analysis; mometasone furoate (MF), fluticasone propionate (FP) and fluticasone furoate (FF). Droplet size distribution obtained from the tested formulations was determined by use of a laser aerosol spectrometer Spraytec (Malvern Instruments, UK). The model of the nasal cavity was obtained using a 3D printer. The printout was based upon a tridimensional reconstruction of nasal cavity created on the basis of digital processing of computed tomography of paranasal sinuses. The deposition of examined medications was established by a method of visualization combined with image analysis using commercial substance which colored itself intensively under the influence of water being the dominant ingredient of all tested preparations. On the basis of obtained results regions of dominating deposition of droplets of intranasal medication on the wall and septum of the nasal cavity were compared. Droplet size of aerosol of tested intranasal medications typically lies within the range of 25-150 µm. All tested medications deposited mainly on the anterior part of inferior turbinate. FP preparation deposited also on the anterior part of the middle nasal turbinate, marginally embracing a fragment of the central part of this

  8. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  9. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  10. PRISM -- A tool for modelling proton energy deposition in semiconductor materials

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.

    1996-01-01

    This paper presents a description of, and test results from, a new PC based software simulation tool PRISM (Protons in Semiconductor Materials). The model describes proton energy deposition in complex 3D sensitive volumes of semiconductor materials. PRISM is suitable for simulating energy deposition in surface-barrier detectors and semiconductor memory devices, the latter being susceptible to Single-Event Upset (SEU) and Multiple-Bit Upset (MBU). The design methodology on which PRISM is based, together with the techniques used to simulate ion transport and energy deposition, are described. Preliminary test results used to analyze the PRISM model are presented

  11. Study of obliquely deposited thin cobalt films

    International Nuclear Information System (INIS)

    Szmaja, W.; Kozlowski, W.; Balcerski, J.; Kowalczyk, P.J.; Grobelny, J.; Cichomski, M.

    2010-01-01

    Research highlights: → The paper reports simultaneously on the magnetic domain structure of obliquely deposited thin cobalt films (40 nm and 100 nm thick) and their morphological structure. Such studies are in fact rare (Refs. cited in the paper). → Moreover, to our knowledge, observations of the morphological structure of these films have not yet been carried out simultaneously by transmission electron microscopy (TEM) and atomic force microscopy (AFM). → The films of both thicknesses were found to have uniaxial in-plane magnetic anisotropy. → The magnetic microstructure of the films 40 nm thick was composed of domains running and magnetized predominantly in the direction perpendicular to the incidence plane of the vapor beam. → As the film thickness was changed from 40 nm to 100 nm, the magnetic anisotropy was observed to change from the direction perpendicular to parallel with respect to the incidence plane. → Thanks to the application of TEM and AFM, complementary information on the morphological structure of the films could be obtained. → In comparison with TEM images, AFM images revealed grains larger in size and slightly elongated in the direction perpendicular rather than parallel to the incidence plane. → These experimental findings clearly show that surface diffusion plays an important role in the process of film growth. → For the films 40 nm thick, the alignment of columnar grains in the direction perpendicular to the incidence plane was observed. → This correlates well with the magnetic domain structure of these films. → For the films 100 nm thick, the perpendicular alignment of columnar grains could also be found, although in fact with larger difficulty. → TEM studies showed that the films consisted mainly of the hexagonal close-packed (HCP) crystalline structure, but no preferred crystallographic orientation of the grains could be detected for the films of both thicknesses. → For the films 100 nm thick, the alignment of

  12. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  13. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  14. Radiological impact assessment in Bagjata uranium deposit: a case study

    International Nuclear Information System (INIS)

    Sarangi, A.K.; Bhowmik, S.C.; Jha, V.N.

    2007-01-01

    The uranium ore mining facility, in addition to the desirable product, produces wastes in the form of environmental releases or effluents to air, water and soil. The toxicological and other (non-radiological) effects are generally addressed in EIA/EMP studies as per MOEF guidelines. Since the uranium ore is radioactive, it is desirable to conduct a study on radiological effects considering the impacts of radiological releases to the environment. Before undertaking the commercial mining operations at Bagjata uranium deposit in the Singhbhum east district of Jharkhand, pre-operational radiological base line data were generated and a separate study on radiological impact on various environmental matrices was conducted in line with the International Atomic Energy Agency's laid out guidelines. The paper describes the philosophy of such studies and the findings that helped in formulating a separate environmental management plan. (author)

  15. Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2017-08-01

    The use of proton beams in several modern technologies to probe or modify the properties of materials, such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into account the main interactions that occur between these electrons and the condensed phase target. After analyzing the influence that several angular distributions of the electrons generated by the proton beam have on the resulting radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton energy we recommend lower proton energies than previously published for reducing proximity effects around a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based imaging and manufacturing techniques.

  16. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.; Agrawal, R.; Kim, T. K.; Li, X.; Chen, W.; Yu, Y.; Beidaghi, M.; Penmatsa, V.; Wang, C.

    2014-01-01

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A

  17. The role of Energy Deposition in the Epitaxial Layer in Triggering SEGR in Power MOSFETs

    Science.gov (United States)

    Selva, L.; Swift, G.; Taylor, W.; Edmonds, L.

    1999-01-01

    In these SEGR experiments, three identical-oxide MOSFET types were irradiated with six ions of significantly different ranges. Results show the prime importance of the total energy deposited in the epitaxial layer.

  18. Energy deposition patterns within limb models heated with a mini annular phased array (MAPA) applicator

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Charny, C.K.; Levin, R.L.

    1986-01-01

    A series of experiments has been carried out in order to characterize a MAPA applicator prior to possible clinical implementation. The energy deposition patterns were determined in several human limb models of different complexities. The maximum energy deposition observed in a homogeneous cylindrical phantom was found to be at the middle of the applicator. For more realistically shaped, homogeneous limb models, the point of maximum energy deposition was shifted towards a smaller cross-sectional region; this was also the case for isolated human legs. Furthermore, significant heating was observed in the bone of the isolated legs. Such phenomena illustrate the limitation of using classical 2-D numerical models for predicting the energy deposition patterns in heterogeneous bodies

  19. Energy deposition in the window of the TOTEM Roman pot for the nominal TOTEM run

    CERN Document Server

    Dimovasili, E

    2005-01-01

    The TOTEM Roman Pot needs to be protected from possible accidents. One of the most serious accident scenarios is the beam loss during an asynchronous abort dump. In this case of dump failure it is possible that a deflected bunch hits the Roman Pot, causing severe damage to its thin window. This technical note discusses the results of FLUKA Monte Carlo studies that have been performed in order to calculate the energy deposition and the temperature increase in the thin window due to the nominal LHC bunch.

  20. A study of aerosol deposition by thermophoresis in cylindrical ducts

    International Nuclear Information System (INIS)

    Montassier, N.

    1990-01-01

    The scope of the study was aerosol deposition in cylindrical ducts, and the deposition due to thermophoresis particularly. The theoretical knowledge on this force and the basis of fluid mechanics are first recalled. An experimental study of thermophoretic deposition of particles in laminar flow was carried out in the particular case of uniform particle concentration and gas temperature at the inlet of the cooled tube. When the gas temperature was equilibrated with the wall temperature and thermophoretic particle deposition along the walls had ceased, the deposition efficiency approached a limit. Our experimental results showed that this limiting efficiency was independent on flow. Finally, for the laminar flow regime, a set of simple equations was developed in order to forecast the thermophoretic deposition of particles of any size along a cylindrical tube [fr

  1. Modelling heavy-ion energy deposition in extended media

    International Nuclear Information System (INIS)

    Mishustin, I.; Pshenichnov, I.; Greiner, W.; Mishustin, I.; Pshenichnov, I.

    2010-01-01

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  2. Modelling heavy-ion energy deposition in extended media

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, I.; Pshenichnov, I.; Greiner, W. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, Frankfurt am Main (Germany); Mishustin, I. [Kurchatov Institute, Russian Research Center, Moscow (Russian Federation); Pshenichnov, I. [Institute for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)

    2010-10-15

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  3. Progress in the Study of Coastal Storm Deposits

    Science.gov (United States)

    Xiong, Haixian; Huang, Guangqing; Fu, Shuqing; Qian, Peng

    2018-05-01

    Numerous studies have been carried out to identify storm deposits and decipher storm-induced sedimentary processes in coastal and shallow-marine areas. This study aims to provide an in-depth review on the study of coastal storm deposits from the following five aspects. 1) The formation of storm deposits is a function of hydrodynamic and sedimentary processes under the constraints of local geological and ecological factors. Many questions remain to demonstrate the genetic links between storm-related processes and a variety of resulting deposits such as overwash deposits, underwater deposits and hummocky cross-stratification (HCS). Future research into the formation of storm deposits should combine flume experiments, field observations and numerical simulations, and make full use of sediment source tracing methods. 2) Recently there has been rapid growth in the number of studies utilizing sediment provenance analysis to investigate the source of storm deposits. The development of source tracing techniques, such as mineral composition, magnetic susceptibility, microfossil and geochemical property, has allowed for better understanding of the depositional processes and environmental changes associated with coastal storms. 3) The role of extreme storms in the sedimentation of low-lying coastal wetlands with diverse ecosystem services has also drawn a great deal of attention. Many investigations have attempted to quantify widespread land loss, vertical marsh sediment accumulation and wetland elevation change induced by major hurricanes. 4) Paleostorm reconstructions based on storm sedimentary proxies have shown many advantages over the instrumental records and historic documents as they allow for the reconstruction of storm activities on millennial or longer time scales. Storm deposits having been used to establish proxies mainly include beach ridges and shelly cheniers, coral reefs, estuary-deltaic storm sequences and overwash deposits. Particularly over the past few

  4. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Science.gov (United States)

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  5. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  6. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  7. Study of tokamaks carbon deposits after heat treatment

    International Nuclear Information System (INIS)

    Richou, M.; Martin, C.; Roubin, P.; Delhaes, P.; Couzi, M.; Brosset, C.; Pegourie, B.

    2006-01-01

    One of the most important problem of tokamak is the interaction plasma-wall. The wall component is the graphite. Meanwhile it is submitted to erosion phenomena, deposition and co-deposition with the hydrogen. This carbon deposits have been studied and show an oval shape. In order to obtain more information on the structure and the growth of these deposits, the authors heated them till 2500 C. Raman spectroscopy, transmission microscopy, magnetic and density measurements have been realized and compared for two types of samples: from Tore Supra and from Textor. (A.L.B.)

  8. Monte Carlo simulations used to calculate the energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy.

    Science.gov (United States)

    Hocine, Nora; Meignan, Michel; Masset, Hélène

    2018-04-01

    To better understand the risks of cumulative medical X-ray investigations and the possible causal role of contrast agent on the coronary artery wall, the correlation between iodinated contrast media and the increase of energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy is investigated. The calculations of energy deposition have been performed using Monte Carlo (MC) simulation codes, namely PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and Monte Carlo N-Particle eXtended (MCNPX). Exposure of a cylinder phantom, artery and a metal stent (AISI 316L) to several X-ray photon beams were simulated. For the energies used in cardiac imaging the energy deposited in the coronary artery lumen increases with the quantity of iodine. Monte Carlo calculations indicate a strong dependence of the energy enhancement factor (EEF) on photon energy and iodine concentration. The maximum value of EEF is equal to 25; this factor is showed for 83 keV and for 400 mg Iodine/mL. No significant impact of the stent is observed on the absorbed dose in the artery for incident X-ray beams with mean energies of 44, 48, 52 and 55 keV. A strong correlation was shown between the increase in the concentration of iodine and the energy deposited in the coronary artery lumen for the energies used in cardiac imaging and over the energy range between 44 and 55 keV. The data provided by this study could be useful for creating new medical imaging protocols to obtain better diagnostic information with a lower level of radiation exposure.

  9. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  10. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  11. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  12. Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    Science.gov (United States)

    Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2018-01-01

    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  13. Energy deposition and radiation quality of radon and radon daughters. Final report

    International Nuclear Information System (INIS)

    Karam, L.R.; Caswell, R.S.

    1996-01-01

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of 218 Po and 214 Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny

  14. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  15. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  16. On the energy deposition into the plasma for an inverted fireball geometry

    Science.gov (United States)

    Levko, Dmitry; Gruenwald, Johannes

    2017-10-01

    Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.

  17. Drag Reduction by Off-Body Energy Deposition

    Data.gov (United States)

    National Aeronautics and Space Administration — What are the key technical challenges? Implementation of non-equilibrium thermochemistry; Accurate energy balance; Dynamic impulse measurements at Mach 2 What is...

  18. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  19. High voltage electrophoretic deposition for electrochemical energy storage and other applications

    Science.gov (United States)

    Santhanagopalan, Sunand

    High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to

  20. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  1. Optimization of the LHC interaction region with respect to beam-induced energy deposition

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Strait, J.B.

    1996-06-01

    Energy deposition in the superconducting magnets by particles from p- p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studies the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7x7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture ≥70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets

  2. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  3. Effect of electron degeneracy on fast-particles energy deposition in dense plasma systems

    International Nuclear Information System (INIS)

    Johzaki, T.; Nakao, Y.; Nakashima, H.; Kudo, K.

    1997-01-01

    The effects of electron degeneracy on fast-particles energy deposition in dense plasmas are investigated by making transport calculations for the fast particles. It is found that the degeneracy substantially affects the profiles of energy deposition of 3.52-MeV α-particles. On the other hand, the effect on the energy deposition of 14.1-MeV neutrons is negligibly small because the recoil ions, which transfer the neutron energy to the plasma constituents, are produced in a whole plasma volume due to the long mean-free-path of neutrons. The coupled transport-hydrodynamic calculations show that these effects of degeneracy are negligible in the ignition and burn characteristics of central ignition D-T targets. (author)

  4. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  5. Study on the Deposition Rate Depending on Substrate Position by Using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ion beams have been used for over thirty years to modify materials in manufacturing of integrated circuits, and improving the corrosion properties of surfaces. Recently, the requirements for ion beam processes are becoming especially challenging in the following areas : ultra shallow junction formation for LSI fabrication, low damage high rate ion beam sputtering and smoothing, high quality functional surface treatment for electrical and optical properties. Ion beam sputtering is an attractive technology for the deposition of thin film coatings onto a broad variety of polymer, Si-wafer, lightweight substrates. Demand for the decoration metal is increasing. In addition, lightweight of parts is important, because of energy issues in the industries. Although a lot of researches have been done with conventional PVD methods for the deposition of metal or ceramic films on the surface of the polymer, there are still adhesion problems.

  6. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  7. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brun, J.; Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Jagielski, J. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland)

    2015-07-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  8. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    International Nuclear Information System (INIS)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.; Pytel, K.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Jagielski, J.

    2015-01-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  9. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  10. Deposition of luminescent thin films for solar energy applications

    NARCIS (Netherlands)

    De Jong, M.

    2015-01-01

    Photovoltaic devices are a widely available, long lasting means of generating sustainable energy. Unfortunately, the integration of such devices into society is to date still limited. This is in part due to the much less than optimal efficiency of conversion of sunlight to electricity, but also by

  11. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  12. Mineralogical and geological study of quaternary deposits and weathering profiles

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gi Young; Lee, Bong Ho [Andong National Univ., Andong (Korea, Republic of)

    2004-01-15

    Movement history of a quaternary reverse fault cutting marine terrace deposit and tertiary bentonite in the Yangnammyon, Gyoungju city was studied by the mineralogical and microtextural analysis of the fault clays and weathered terrace deposits. Two types of fault clays were identified as greenish gray before the deposition of the marine terrace deposits and reddish brown after deposition. Greenish gray fault clay is composed mostly of smectite probably powdered from bentonite showing at least two events of movement from microtextures. After the bentonite was covered by quaternary marine gravel deposits, the reverse fault was reactivated cutting marine gravel deposits to form open spaces along the fault plane which allowed the hydrological infiltration of soil particles and deposition of clays in deep subsurface. The reddish brown 'fault' clays enclosed the fragments of dark brown ultrafine varved clay, proving two events of faulting, and slicken sides bisecting reddish brown clays suggest another faulting event in the final stage. Mineralogical and microtextural analysis of the fault clay show total five events of faulting, which had not been recognized even by thorough conventional paleoseismological investigation using trench, highlighting the importance of microtextural and mineralogical analysis in paleoseismology.

  13. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  14. Nopal I uranium deposit: A study of radionuclide migration

    International Nuclear Information System (INIS)

    Wong, V.; Anthony, E.; Goodell, P.

    1996-01-01

    This summary reports on activities of naturally-occurring radionuclides for the Nopal I uranium deposit located in the Pena Blanca Uranium District, Chihuahua, Mexico. Activities were determined using gamma-ray spectroscopy. In addition, data reduction procedures and sample preparation (for Rn retention) will be discussed here. Nopal I uranium deposit has been identified as one of the most promising sites for analogue studies to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The objective of this research is to study the potential for radionuclide migration by testing whether any portion of the deposit is in secular equilibrium

  15. Nopal I uranium deposit: A study of radionuclide migration

    Energy Technology Data Exchange (ETDEWEB)

    Wong, V.; Anthony, E.; Goodell, P. [Univ. of Texas, El Paso, TX (United States)

    1996-12-01

    This summary reports on activities of naturally-occurring radionuclides for the Nopal I uranium deposit located in the Pena Blanca Uranium District, Chihuahua, Mexico. Activities were determined using gamma-ray spectroscopy. In addition, data reduction procedures and sample preparation (for Rn retention) will be discussed here. Nopal I uranium deposit has been identified as one of the most promising sites for analogue studies to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The objective of this research is to study the potential for radionuclide migration by testing whether any portion of the deposit is in secular equilibrium.

  16. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  17. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  18. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  19. Ultrasound scans and dual energy CT identify tendons as preferred anatomical location of MSU crystal depositions in gouty joints.

    Science.gov (United States)

    Yuan, Yuan; Liu, Chang; Xiang, Xi; Yuan, Tong-Ling; Qiu, Li; Liu, Yi; Luo, Yu-Bin; Zhao, Y; Herrmann, Martin

    2018-05-01

    The present study was performed to localize the articular deposition of monosodium urate (MSU) crystal in joints. We compare the detection efficiencies of dual-energy CT (DECT) and ultrasound scans. Analyses by DECT and ultrasound were performed with 184 bilateral joints of the lower limbs of 54 consecutive gout patients. All joints were categorized into (1) knee, (2) ankle, (3) MTP1, and (4) MTP2, and sorted into those with and those without detectable MSU deposition. The comparison of the positive rate between DECT and ultrasound and the agreement was performed using the McNemar test and the Cohen's κ coefficient, respectively. Next, we listed the MSU crystal deposition as assessed by ultrasound between the DECT-positive and -negative joints according to their interior structure. We included tendons, synovia, cartilage, subcutaneous tissue, etc. RESULTS: Among all joints, the percentages with MSU crystal deposition detected by DECT (99/184, 53.8%) and ultrasound (106/184, 57.6%) were comparable (P = 0.530 > 0.05). For MTP1 (21/34, 61.8%; 12/34, 35.3%; P efficient, respectively. The data concordance in 46 of 50 joints (92.00%; κ = 0.769, P location of MSU crystal deposition. The tendons are the most frequent anatomical location of MSU crystal depositions. The concordance rate of knee joints and MTP2-5 joints shows good agreement between DECT and ultrasound depending on the location.

  20. A study of VMS ore deposits by the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Large, R.R.; Bottril, R.S.; Sie, S.H.; Ryan, C.G.

    1991-01-01

    As part of studies into the mineralogical distribution of gold in volcanogenic massive sulfide (VMS) ore deposits PIXE analysis by the proton microprobe has been used to determine the gold content of pyrite and arsenopyrite from the Rosebery, Mt. Chalmers and Mt. Lyell deposits. In addition, the concentrations of Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Sb, Te, Au, Tl, Pb and Bi were also determined. 4 refs., 1 tab

  1. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  2. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  3. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  4. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  5. Energy deposition profile for modification proposal of ISOLDE’s HRS Beam Dump, from FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    The current ISOLDE HRS beam dump has been found to be unsuitable on previous simulations, due to thermomechanical stresses. In this paper a proposal for modifying HRS dump is studied using FLUKA. The energy deposited in this modified beam dump and the amount of neutrons streaming to the tunnel area are scored and compared with the simulation of current dump. Two versions of the modification have been assessed, determining which of them is more desirable in terms of influence of radiation on ISOLDE’s tunnel. Finally, a rough estimate of temperature raise in the modified dump is shown. Further conclusions on the adequacy of these modifications need to include the thermomechanical calculations’ results, based on those presented here.

  6. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  7. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter; Etude experimentale de la propagation et du depot d'energie d'electrons rapides dans une cible solide ou comprimee par choc laser: application a l'allumeur rapide

    Energy Technology Data Exchange (ETDEWEB)

    Pisani, F

    2000-02-15

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  8. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    Science.gov (United States)

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  9. Mobile geophysical study of peat deposits in Fuhrberger Field, Germany

    Science.gov (United States)

    Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.

    2012-04-01

    In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  10. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  11. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  12. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  13. A novel method of calculating the energy deposition curve of nanosecond pulsed surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    He, Kun; Wang, Xinying; Lu, Jiayu; Cui, Quansheng; Pang, Lei; Di, Dongxu; Zhang, Qiaogen

    2015-01-01

    To obtain the energy deposition curve is very important in the fields to which nanosecond pulse dielectric barrier discharges (NPDBDs) are applied. It helps the understanding of the discharge physics and fast gas heating. In this paper, an equivalent circuit model, composed of three capacitances, is introduced and a method of calculating the energy deposition curve is proposed for a nanosecond pulse surface dielectric barrier discharge (NPSDBD) plasma actuator. The capacitance C d and the energy deposition curve E R are determined by mathematically proving that the mapping from C d to E R is bijective and numerically searching one C d that satisfies the requirement for E R to be a monotonically non-decreasing function. It is found that the value of capacitance C d varies with the amplitude of applied pulse voltage due to the change of discharge area and is dependent on the polarity of applied voltage. The bijectiveness of the mapping from C d to E R in nanosecond pulse volumetric dielectric barrier discharge (NPVDBD) is demonstrated and the feasibility of the application of the new method to NPVDBD is validated. This preliminarily shows a high possibility of developing a unified approach to calculate the energy deposition curve in NPDBD. (paper)

  14. Energy accumulating substances for increase of replacement factor of petroleum from layer on Kumkol deposit

    International Nuclear Information System (INIS)

    Yunusov, U.I.; Ospanov, E.S.; Nurabaev, B.K.; Ajshuakov, K.A.; Tursunkulov, Eh.T.

    1997-01-01

    Laboratory researches with using of alloys of energy accumulating substances are carried out with the purpose of petroleum output increase on Kumkol deposit. Factor of petroleum replacement within range from 79.5 to 82.0 % is received by use silico-barium, silico-calcium and ferro-silicium with alkali and aluminium. (author)

  15. The Energy Deposition Pattern as the Unconventional Strangelet Signature and its Relevance to the Castor Calorimeter

    International Nuclear Information System (INIS)

    Angelis, A.L.S.; Bartke, J.; Gladysz-Dziadus, E.; Wlodarczyk, Z.

    1998-07-01

    It has been shown, by GEANT simulations, that the energy deposition pattern in deep calorimeters could be the spectacular and unconventional signature of different kinds of stable and unstable strangelets. The CASTOR calorimeter is shown to be the appropriate tool for detection of strongly penetrating objects, such as strangelets possibly produced in the baryon-rich region in central Pb-Pb collisions at LHC energies. (author)

  16. Calculation of neutron radiation energy deposition distribution in subcellular parts of tissue using recombination chamber microdosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    Recombination chamber microdosimetry was used as an instrument for determination of local neutron radiation energy deposition distribution. The method allows to simulate of subcellular regions of tissue of the order of 70 nm in size. The results obtained qualitatively correspond to relationship between biological efficiency and neutron energy, and show regular differences of distributions achieved by the recombination method and distributions measured using tissue equivalent proportional counters (TEPC), which simulates greater tissue regions of 1 μm in size

  17. Maui energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  18. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  19. Non-local energy deposition: A problem in regional RF hyperthermia

    International Nuclear Information System (INIS)

    Hagmann, M.J.; Levin, R.L.

    1984-01-01

    As the frequency is decreased below 1 GHz, RF applicators can cause deep heating of tissues. However, there is a concomitant problem in that significant energy deposition may occur well beyond the dimensions of the applicator. The BSD Medical Corporation has described to the authors tests with a phantom manequin in which SAR in the neck was significantly greater than that in the abdomen when an Annular Phased Array System (APAS) was positioned for abdominal heating. The authors have obtained numerical solutions for the SAR distribution in a 180-cell inhomogeneous block model of man subjected to r-f irradiation approximating that emanating from various applicators. The solutions agree with the reports of BSD that significant heating in the neck, inner thighs, and back will occur with an abdominally-placed APAS. They suggest that a similar problem will occur with a helical-coil or other applicator for which the electric field is predominantly parallel to the axis of the body. Typically, 70% or more of the total energy will be deposited outside the bounds of an axial applicator when it is placed around the chest or abdomen. The problem is most severe at frequencies for which body parts such as the arm or head may resonate. In such cases, over 90% of the energy may be deposited outside the bounds of applicator. The problem of non-local energy deposition appears to be substantially reduced for non-axial applicators. If the arm extends outward from the side of the body, an axial applicator around it will cause negligible energy deposition in the rest of the body

  20. The thermodynamic approach to boron chemical vapour deposition based on a computer minimization of the total Gibbs free energy

    International Nuclear Information System (INIS)

    Naslain, R.; Thebault, J.; Hagenmuller, P.; Bernard, C.

    1979-01-01

    A thermodynamic approach based on the minimization of the total Gibbs free energy of the system is used to study the chemical vapour deposition (CVD) of boron from BCl 3 -H 2 or BBr 3 -H 2 mixtures on various types of substrates (at 1000 < T< 1900 K and 1 atm). In this approach it is assumed that states close to equilibrium are reached in the boron CVD apparatus. (Auth.)

  1. Reconstruction of Axial Energy Deposition in Magnetic Liner Inertial Fusion Based on PECOS Shadowgraph Unfolds Using the AMR Code FLASH

    Science.gov (United States)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration

    2017-10-01

    Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.

  2. Study on the electrical properties of ITO films deposited by facing target sputter deposition

    International Nuclear Information System (INIS)

    Kim, Youn J; Jin, Su B; Kim, Sung I; Choi, Yoon S; Choi, In S; Han, Jeon G

    2009-01-01

    This study examined the mechanism for the change in the electrical properties (carrier concentration (n) and mobility (μ)) of tin-doped indium oxide (ITO) films deposited by magnetron sputtering in a confined facing magnetic field. The relationship between the carrier concentration and the mobility was significantly different from the results reported for ITO films deposited by other magnetron sputtering processes. The lowest resistivity obtained for ITO films deposited in a confined facing magnetic field at low substrate temperatures (approximately 120 0 C) was 4.26 x 10 -4 Ω cm at a power density of 3 W cm -2 . Crystalline ITO films were obtained at a low power density range from 3 to 5 W cm -2 due to the increase in the substrate temperature from 120 to 162 0 C. This contributed to the increased carrier concentration and decreased electrical resistivity. X-ray photoelectron spectroscopy revealed an increase in the concentration of the Sn 4+ states. This was attributed to the formation of a crystalline ITO film, which effectively enhanced the carrier concentration and reduced the carrier mobility.

  3. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  4. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  5. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  6. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    Science.gov (United States)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  7. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  8. Laboratory Deposition Apparatus to Study the Effects of Wax Deposition on Pipe Magnetic Field Leakage Signals

    Directory of Open Access Journals (Sweden)

    Karim Mohd Fauzi Abd

    2014-07-01

    Full Text Available Accurate technique for wax deposition detection and severity measurement on cold pipe wall is important for pipeline cleaning program. Usually these techniques are validated by conventional techniques on laboratory scale wax deposition flow loop. However conventional techniques inherent limitations and it is difficult to reproduce a predetermine wax deposit profile and hardness at designated location in flow loop. An alternative wax deposition system which integrates modified pour casting method and cold finger method is presented. This system is suitable to reproduce high volume of medium hard wax deposit in pipe with better control of wax deposit profile and hardness.

  9. Numerical Simulation of Radial and Angular Distribution of γ-Ray's Energy Deposition in Scintillation Optical Fibre

    International Nuclear Information System (INIS)

    Tang Shibiao; Yin Zejie; Tang Yu; Huang Huan

    2006-01-01

    Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy deposition and the radius of the fibres. The deposition is roughly inversely proportional to sinθ with θ the incident angle relative to the fibre axis. The results could provide corrections to the measurements of the scintillation fibres used in monitoring the γ-ray radiation

  10. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  11. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  12. Proton microprobe study of tin-polymetallic deposits

    International Nuclear Information System (INIS)

    Murao, S.; Sie, S.H.; Suter, G.F.

    1996-01-01

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs

  13. Geobotanical studies on uranium deposits of Udaipur, Rajasthan, India

    International Nuclear Information System (INIS)

    Aery, N.C.; Jain, G.S.

    1995-01-01

    Geobotanical studies were carried out on known uranium deposits of Udaisagar region in the district of Udaipur, Rajasthan. Releve method of Braun Blanquet was employed for community analysis. Though no species with an exclusive occurrence on uranium deposits was found, certain plant species registered higher constancy and fidelity on uranium rich soils in comparison to background soils. Obviously, these characteristic plant species have evolved tolerance to high uranium contents of the soils and might be neo-endemics. (author). 23 refs., 1 fig., 4 tabs

  14. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation; Etude theorique et experimentale d'une technique calorimetrique de mesure des depots d'energie dans les materiaux dus au rayonnement complexe de pile

    Energy Technology Data Exchange (ETDEWEB)

    Mas, P; Sciers, P; Droulers, Y [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires, 38 - Grenoble (France)

    1962-07-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10{sup 6} r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [French] Une premiere partie traite de la theorie des calorimetres isothermes mis en oeuvre au C.K.N. Grenoble. La puissance deposee dans le calorimetre par les flux de rayonnement echauffe celui-ci. L'echauffement est mesure a l'aide d'un thermocouple. On montre que l'on a ainsi une mesure absolue de cette puissance. Une deuxieme partie traite de l'etude experimentale de: deux types d'appareils utilises: leur construction, les resultats experimentaux, leurs utilisations. Trois de celles-ci sont particulierement interessantes: - la mesure des hauts flux gamma, - la mesure du depot d'energie dans les materiaux, - l'integration pendant une longue duree des depots d'energie (un modele de calorimetre a fonctionne a ce jour 2 500 heures et a integre 9 x 10 puissance 10 rads gamma et 6 x 10 puissance 18 neutrons rapides). La troisieme partie est consacree a l'etude des qualites de l'appareil: robustesse, fidelite, precision, sensibilite, gamme de mesure. Enfin dans la derniere partie sont decrites deux applications de la methode calorimetrique a la mesure du depot d'energie dans un acier special et dans l'eau. (auteurs)

  15. Relationship between the Ca/P ratio of hydroxyapatite thin films and the spatial energy distribution of the ablation laser in pulsed laser deposition

    NARCIS (Netherlands)

    Nishikawa, H.; Hasegawa, T; Miyake, A.; Tashiro, Y.; Hashimoto, Y.; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Variation of the Ca/P ratio in hydroxyapatite (Ca10(PO4)6(OH)2) thin films was studied in relation to the spot size of the ablation laser for two different spatial energy distributions in pulsed laser deposition. One energy distribution is the defocus method with a raw distribution and the other is

  16. Effect of water side deposits on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Bhatt, M. Siddhartha

    2006-01-01

    This paper presents the effects of water side deposits in the 210 MW coal fired thermal power plant components (viz., boiler, turbine, feed water heaters, condensers and lube oil coolers) on the energy efficiency of these components and that of the overall system at 100% maximum continuous rating (MCR). The origin, composition and rate of build up of deposits on the water side are presented. A linear growth rate of deposits is assumed for simplicity. The effects of the reduction in heat transfer, increased pressure drop and increased pumping power/reduced power output in the components are quantified in the form of curve fits as functions of the deposit thickness (μm). The reduction in heat transfer in the boiler components is in the range of 0.2-2.0% under normal scaling. The increased pumping power is of the order of 0.6-7.6% in the boiler components, 29% in the BFP circuit, 26% in the LPH circuit, 21% in the HPH circuit and 18% in the lube oil cooler circuits. The effects on the overall coal fired plant is quantified through functional relations between the efficiencies and the notional deposit thickness. The sensitivity indices to the notional deposit thickness are: boiler efficiency: -0.0021% points/μm, turbine circuit efficiency: -0.0037% points/μm, auxiliary power efficiency: -0.00129% points/μm, gross overall efficiency: -0.0039% points/μm and net overall efficiency: -0.0040% points/μm. The overall effect of scale build up is either increased power input of ∼68 kW/μm (at a constant power output) or decreased power output ∼25 kW/μm (at a constant power input). Successful contaminant control techniques are highlighted. Capacity reduction effects due to water side deposits are negligible

  17. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  18. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  19. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    Science.gov (United States)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  20. Simulating the energy deposits of particles in the KASCADE-grande detector stations as a preliminary step for EAS event reconstruction

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.; Haungs, A.

    2005-01-01

    The study of primary cosmic rays with energies higher than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at developing a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been simulated using the GEANT code and then the energy deposits have been parametrized for different incident energies and angles of EAS particles. Thus the results obtained for simulated events have the same level of consistency as the experimental data. This technique will allow an increased speed of lateral particle density reconstruction when studying real events detected by the KASCADE-Grande array. The particle densities in detectors have been reconstructed from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events creates the basis for the next stage of the study, the study of real events detected by the KASCADE-Grande array. (authors)

  1. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  2. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Science.gov (United States)

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  3. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    Directory of Open Access Journals (Sweden)

    Gaëtan Gruel

    Full Text Available Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This

  4. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  5. Characterization of space radiation environment in terms of the energy deposition in functionally important volumes

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Wilson, W.E.; Ratcliffe, C.A.

    1988-01-01

    Since the damage which initiates detrimental effects occurs in a small site (semiconductor junctions, or biological cell nuclei), these differences in spatial distribution of ionization maybe the relevant factor controlling the effectiveness of different radiations. Again, when the appropriate cross section data are available Monte Carlo methods can be used to simulate the positions of all ionizations and excitations produced by a typical charged particle. This calculated track structure must interact with the biological or electronic entity in which it occurs to produce the effect. However, we do not know the mechanisms of this interaction and thus cannot specify which characteristics of the charged particle track are responsible for the relevant damage. From track structure we can obtain the spectrum of energy deposition in small volumes which may be relevant to the processes of concern. This has lead to a new approach to dosimetry, one which emphasizes the stochastic nature of energy deposition in small sites, known as microdosimetry. 6 refs., 4 figs

  6. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  7. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Trenholm, D [Massachusetts General Hospital, Boston, MA (United States); Verburg, J; Paganetti, H; Schuemann, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiple positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their

  8. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  9. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  10. New approaches in geological studies of tsunami deposits

    Science.gov (United States)

    Szczucinski, Witold

    2017-04-01

    During the last dozen of years tsunamis have appeared to be the most disastrous natural process worldwide. The dramatic, large tsunamis on Boxing Day, 2004 in the Indian Ocean and on March 11, 2011 offshore Japan caused catastrophes listed as the worst in terms of the number of victims and the economic losses, respectively. In the aftermath, they have become a topic of high public and scientific interest. The record of past tsunamis, mainly in form of tsunami deposits, is often the only way to identify tsunami risk at a particular coast due to relatively low frequency of their occurrence. The identification of paleotsunami deposits is often difficult mainly because the tsunami deposits are represented by various sediment types, may be similar to storm deposits or altered by post-depositional processes. There is no simple universal diagnostic set of criteria that can be applied to interpret tsunami deposits with certainty. Thus, there is a need to develop new methods, which would enhance 'classical', mainly sedimentological and stratigraphic approach. The objective of the present contribution is to show recent progress and application of new approaches including geochemistry (Chagué-Goff et al. 2017) and paleogenetics (Szczuciński et al. 2016) in studies of geological impacts of recent tsunamis from various geographical regions, namely in monsoonal-tropical, temperate and polar zones. It is mainly based on own studies of coastal zones affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami and older paleotsunamis in Japan, catastrophic saltwater inundations at the coasts of Baltic Sea and 2000 landslide-generated tsunami in Vaigat Strait (west Greenland). The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. Chagué-Goff C., Szczuciński W., Shinozaki T., 2017. Applications of geochemistry in tsunami research: A review. Earth-Science Reviews 165: 203-244. Szczuciński W., Pawłowska J., Lejzerowicz F

  11. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    Science.gov (United States)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  12. Ion implantation range and energy deposition codes COREL, RASE4, and DAMG2

    International Nuclear Information System (INIS)

    Brice, D.K.

    1977-07-01

    The FORTRAN codes COREL, RASE4 and DAMG2 can be used to calculate quantities associated with ion implantation range and energy deposition distributions within an amorphous target, or for ions incident far from low index directions and planes in crystalline targets. RASE4 calculates the projected range, R/sub p/, the root mean square spread in the projected range, ΔR/sub p/, and the root mean square spread of the distribution perpendicular to the projected range ΔR/sub perpendicular to/. These parameters are calculated as a function of incident ion energy, E, and the instantaneous energy of the ion, E'. They are sufficient to determine the three dimensional spatial distribution of the ions in the target in the Gaussian approximation when the depth distribution is independent of the lateral distribution. RASE4 can perform these calculations for targets having up to four different component atomic species. The code COREL is a short, economical version of RASE4 which calculates the range and straggling variables for E' = 0. Its primary use in the present package is to provide the average range and straggling variables for recoiling target atoms which are created by the incident ion. This information is used by RASE4 in calculating the redistribution of deposited energy by the target atom recoils. The code DAMG2 uses the output from RASE4 to calculate the depth distribution of energy deposition into either atomic processes or electronic processes. With other input DAMG2 can be used to calculate the depth distribution of any energy dependent interaction between the incident ions and target atoms. This report documents the basic theory behind COREL, RASE4 and DAMG2, including a description of codes, listings, and complete instructions for using the codes, and their limitations

  13. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.; Snead, C.L.; Hanson, A.L.; Murray, M.M.

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 10 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in front of the target further reduced the energy deposition. The measured temperature rises of the energy-deposition target were empirically correlated with the distance from the source, the number of protons incident on the proton-radiography target, the thickness of the lead shielding, and the angle of the energy-deposition target off-axis of the beam line from the proton-radiography target. The correlation of the experimental data that was developed provides a starting point for the evaluation of the shielding requirements for devices downstream of proton-radiography targets such as superconducting magnets

  14. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  15. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  16. 2002 Industry Studies: Energy

    Science.gov (United States)

    2002-01-01

    Information technologies have facilitated the rapid growth of electronic market places across the energy industry for trading energy commodities, such as...and information technology industry has further increased the importance of abundant, low-cost, and reliable electric power. Recently, public...California, the country has recently slowed its efforts to make electricity markets more competitive. Recommendations. Unless some technological “silver bullet

  17. Conditions and development case studies for mountainous deposits in Siberia

    Science.gov (United States)

    Talgamer, B. L.; Franchuk, A. V.

    2017-10-01

    The article contains the materials on deposits development intensification under challenging climatic and mining conditions, including mountainous areas of Siberia. The exploitation case studies for mountainous deposits all over the world and in Russia have been described. The authors have been set out the factors impeding the development of such deposits, and the extent of mining and transportation equipment performance degradation is also indicated. There have been stated the characteristics and the description of one of the newly mountainous gold ore deposits in Siberia which is being developed at an altitude of 2684m. A number of specific factors concerning its development have also been introduced as well as the description of mining technologies engineered by Irkutsk National Research Technical University (IRNRTU) specialists. The depth and principal dimensions of the open pit together with the mining and transportation equipment and facilities have been justified. The prime cost analysis of mineral extraction has been made, which results showed the substantial growth in expenditures for the transportation of the overburden rocks and ores. In view of the above mentioned research, there appeared the necessity for the search of new and the enhancement of current transport vehicles and communications.

  18. Application of natural analog studies to exploration for ore deposits

    International Nuclear Information System (INIS)

    Gustafson, D.L.

    1995-01-01

    Natural analogs are viewed as similarities in nature and are routinely utilized by exploration geologists in their search for economic mineral deposits. Ore deposit modeling is undertaken by geologists to direct their exploration activities toward favorable geologic environments and, therefore, successful programs. Two types of modeling are presented: (i) empirical model development based on the study of known ore deposit characteristics, and (ii) concept model development based on theoretical considerations and field observations that suggest a new deposit type, not known to exist in nature, may exist and justifies an exploration program. Key elements that are important in empirical model development are described, and examples of successful applications of these natural analogs to exploration are presented. A classical example of successful concept model development, the discovery of the McLaughlin gold mine in California, is presented. The utilization of natural analogs is an important facet of mineral exploration. Natural analogs guide explorationists in their search for new discoveries, increase the probability of success, and may decrease overall exploration expenditure

  19. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  20. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  1. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1980-01-01

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work

  2. Mechanical energy release and fuel fragmentation in high energy deposition into fuel under a reactivity initiated accident condition

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Saito, Shinzo; Ochiai, Masaaki

    1985-01-01

    The fuel fragmentation is one of important subjects to be studied, since it is one of basic processes of molten fuel-coolant interaction (MFCI) and it has not yet been made clear enough. Accordingly, UO 2 fuel fragmentation was studied in the NSRR experiments simulating a reactivity initiated accident (RIA). As results of the experiments, the distribution of the size of fuel fragments was obtained and the mechanism of fuel fragmentation was discussed as described below. It was revealed that the distribution was well displayed in the form of logarithmic Rosin-Rammler's distribution law. It was shown that the conversion ratio from thermal energy to mechanical in the experiment was in inverse propotion to the volume-surface mean diameter defined as a ratio of the total volume of fragments to the total surface. Consequently, it was confirmed that the mean diameter was proper as an index for the degree of the fuel fragmentation. It was also pointed out that the Weber-type hydraulic instability model for fragmentation was consistent with the experimental results. The mechanism of the fuel fragmentation is understood as follows. Cladding tube is ruptured due to the increase in rod pressure when fuel is molten, and then molten fuel spouts through the openings in the form of jet. As a result of molten fuel spouting, fuel is fragmented by the Weber-type of hydraulic instability. The model well explains the effects of experimental parameters as heat deposition, subcooling of cooling water and capsule diameter, on the fuel fragmentation. According to the model, fuel fragments have to be spherical. There were many spherical particles which had hollow and burst crack. This may be due to internal burst during solidification process. The items which should be studied further are also described in the end of this report. (author)

  3. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  4. Effect of the ions energy in the physical properties of thin films of CNx deposited by laser ablation

    International Nuclear Information System (INIS)

    Arrieta C, A.; Escobar A, L.; Camps C, E.; Romero H, S.; Mejia H, J.A.; Gonzalez, P.R.; Camacho L, M.A.

    2004-01-01

    Thin films of carbon nitride were deposited using the laser ablation technique starting from a carbon target in atmosphere of N 2 , varying the fluence of the laser and maintaining fixed the distance target-substrate. It was diagnosed the formed plasma, being determined the average kinetic energy of the ions present in the plasma, as well as their density. The characterization of the deposited films includes composition, optical gap, chemical structure and microstructure. They were related the properties of the layers with the plasma parameters with the purpose of clarifying that paper plays in the growth of the layer. Additionally it was studied their thermoluminescent response to being excited with UV radiation. (Author)

  5. Natural analogue study of uranium deposits in Japan with special reference to the Tono uranium deposit

    International Nuclear Information System (INIS)

    Komuro, Kosei; Sasao, Eiji

    2004-05-01

    In order to verify the safety assessment for geological disposal system of high-level radioactive waste, it is necessary to evaluate properly the stability of the disposal system under natural hydrogeological environment over long period of time (ten to hundred thousands years). For the safety assessment for that in the Japanese Islands, many geological processes inherent in the tectonically active Island-Arc system should be also taken into consideration in addition to those in stable continental environment. However, it is difficult because some processes such as earthquake seem to be accidental and some are periodic or gradual over our life scale. The uranium deposits in Japan are subjected to many geological processes inherent in the tectonically active Island-Arc system. The studies on long-term preservation of uranium deposits in Japan from a natural analogue viewpoint would be expected to provide useful information for the assessment in the Japanese Islands over long period of time. In order to understand the behavior of radionuclides under natural hydrogeological environment in Japanese Islands over long period of time, the uranium deposits in Japan, especially of the Tono uranium deposit was investigated from a natural analogue viewpoint under the course of joint research program by University of Tsukuba and Japan Nuclear Cycle Development Institute. Important conclusions obtained in the present study are summarized as follows: The migration behavior of the radionuclides in the granite area is mainly controlled by the stability of original minerals in oxic condition, being due to poor reducing agents such as organic matter and sulfide minerals. In the case of hydrothermal alteration, yttrialite and fergusonite were decomposed and thorogummite was formed at the altered part, whereas zircon and allanite have not been significantly altered. In the case of weathering, autunite and torbernite were formed, probably due to the high phosphorus weathering

  6. Energy deposition and the formation of biologically significant lesions by accelerated ions

    International Nuclear Information System (INIS)

    Kiefer, J.

    1985-01-01

    The assumption that the number of biologically significant lesions depends only on the amount of of energy absorbed in a critical cellular site is not able to explain the increase of RBE with LET and leads to large discrepancies between predicted and measured inactivation cross sections in the LET range between 20 and 200 keV.μm -1 . It has, therefore, to be concluded that not only the amount of energy absorbed but also the spatial pattern of this deposition plays a decisive role. In the model presented it is postulated that two or more energy deposition events in nanometre sites are required for the formation of biologically significant lesions. This cooperative action has to take place in very short times so that only interactions within a single particle track contribute. The mathematical treatment will be outlined and qualitatively shown that the model is able to predict RBE-LET relationships. The calculations use a track structure model based on classical collision mechanics. It is compared with existing experimental results showing good agreement at least for higher particle energies. (author)

  7. Structure of ELMs in MAST and the implications for energy deposition

    International Nuclear Information System (INIS)

    Kirk, A; Wilson, H R; Akers, R; Conway, N J; Counsell, G F; Cowley, S C; Dowling, J; Dudson, B; Field, A; Lott, F; Lloyd, B; Martin, R; Meyer, H; Price, M; Taylor, D; Walsh, M

    2005-01-01

    This paper presents a description of the spatial and temporal structure of edge-localized modes (ELMs) observed in the MAST tokamak. Filamentary enhancements of visible light are observed on photographic images of the plasma obtained during ELMs. Comparisons with simulations show that these filaments are consistent with following field lines at the outboard edge of the plasma. The toroidal mode number of these filaments has been extracted from a study of the discrete peaks observed in the ion saturation current recorded by a mid-plane reciprocating probe. A study of the time delay of these peaks with respect to the onset of the ELM has been used to calculate an effective radial velocity for the expansion of the filaments. A comparison of this derived radial velocity as a function of distance from the last closed flux surface with simulations indicates that the filament is accelerating away from the plasma. Evidence for the temporal evolution of the ELM comes from studies of outboard mid-plane Thomson scattering density profiles. In addition, a study of the toroidal velocity as a function of radius shows that during an ELM the strong velocity shear near the edge of the plasma, normally present in H-modes, is strongly reduced. The picture that emerges is that the ELM can be viewed as being composed of filamentary structures that are generated on a 100 μs timescale, accelerate away from the plasma edge, are extended along a field line and have a typical toroidal mode number ∼10. The implications of these filaments for the energy deposition on plasma facing components are discussed

  8. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  9. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  10. Method of research and study of uranium deposits

    International Nuclear Information System (INIS)

    Lenoble, A.

    1955-01-01

    In a first part, the author gives a fast retrospective of the evaluations of the uranium deposits in the French Union. The author established a method of prospecting and studying, modifiable at all times following the experiences and the results, permitting to make the general inventory of uranium resources on the territory. The method is based on: 1 - the determination of geological guides in order to mark the most promising deposits, 2 - the definition of a methodology adapted to every steps of the research, 3 - the choice of the material adapted for each of the steps. This method, originally established for the prospecting in crystalline massifs, is adaptable to the prospecting of the sedimentary formations. (M.B.) [fr

  11. Experimental study on the particles deposition in the sampling duct

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Charuau, J. [Institut de Protection et de Surete Nucleaire, Yvette (France)

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  12. International study on energy policies

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    A study, presented in September 2004 at the world energy council congress of Sydney (Australia) by the French agency of environment and energy mastery (Ademe) evaluates the energy efficiency policies and their impact in 63 countries, and in particular in the developing countries. It has permitted to identify the five most efficient measures about which case studies have been given to subject specialists for thorough analysis. Completed in July 2004, this triennial report has been carried out by the Ademe and the World energy council with the joint collaboration of the Latin American energy organization (Olade) and the Asia Pacific energy research centre (Aperc) under the coordination of Enerdata agency. This short article makes a brief summary of this presentation: energy efficiency at the global scale, transport sector, world power consumption and CO 2 emissions, evaluation of energy efficiency policies and measures (institutions and programmes, efficiency labels and standards for household appliances, innovative financing means, local information centers). (J.S.)

  13. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  14. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2016-07-07

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.

  15. Mineralogical Study of Zard Koh and Kulli Koh Iron Ore Deposits of Pakistan

    Directory of Open Access Journals (Sweden)

    SULTAN AHMED KHOSO

    2017-10-01

    Full Text Available Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction, XRF (X-Ray Fluorescence, SEM (Scanning Electron Microscope attached with EDS (Energy Dispersive Spectroscope and SM (Stereomicroscope techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques.

  16. Mineralogical study of zard koh and kulli koh iron ore deposits of pakistan

    International Nuclear Information System (INIS)

    Khoso, S.A.; Abro, M.I.

    2017-01-01

    Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited) is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM (Scanning Electron Microscope) attached with EDS (Energy Dispersive Spectroscope) and SM (Stereomicroscope) techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques. (author)

  17. Energy deposition by a {sup 106}Ru/{sup 106}Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2011-09-15

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  18. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  19. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

    Science.gov (United States)

    Baek, Gyeong Yun; Lee, Ki Yong; Park, Sang Hu; Shim, Do Sik

    2017-11-01

    This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.

  20. Fusion energy studies

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Current experimental efforts are aimed toward developing cryosorption vacuum pumps for removing unburned fuel and impurities from the plasma, studying deep-bed sorption pumps for roughing and transfer operations, investigating methods for recovery of tritium bred in blankets of lithium or lithium alloys, and studying containment of tritium that permeates metal walls

  1. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    International Nuclear Information System (INIS)

    Sadekar, H.K.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Chavhan, S.D.; Gosavi, S.R.; Sharma, Ramphal

    2008-01-01

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has ∼120 ± 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient (∼75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV

  2. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    Energy Technology Data Exchange (ETDEWEB)

    Sadekar, H K [Arts, Commerce and Science college, Sonai 414105 (M.S.) (India); Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Deshpande, N G; Gudage, Y G; Ghosh, A; Chavhan, S D; Gosavi, S R [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Sharma, Ramphal [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India)

    2008-04-03

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has {approx}120 {+-} 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient ({approx}75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV.

  3. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  4. Model of enhanced energy deposition in a Z-pinch plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Davis, J.; Thornhill, J. W.; Giuliani, J. L. Jr.; Rudakov, L. I.; Deeney, C.

    2000-01-01

    In numerous experiments, magnetic energy coupled to strongly radiating Z-pinch plasmas exceeds the thermalized kinetic energy, sometimes by a factor of 2-3. An analytical model describing this additional energy deposition based on the concept of macroscopic magnetohydrodynamic (MHD) turbulent pinch heating proposed by Rudakov and Sudan [Phys. Reports 283, 253 (1997)] is presented. The pinch plasma is modeled as a foam-like medium saturated with toroidal ''magnetic bubbles'' produced by the development of surface m=0 Rayleigh-Taylor and MHD instabilities. As the bubbles converge to the pinch axis, their magnetic energy is converted to thermal energy of the plasma through pdV work. Explicit formulas for the average dissipation rate of this process and the corresponding contribution to the resistance of the load, which compare favorably to the experimental data and simulation results, are presented. The possibility of using this enhanced (relative to Ohmic heating) dissipation mechanism to power novel plasma radiation sources and produce high K-shell yields using long current rise time machines is discussed. (c) 2000 American Institute of Physics

  5. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Bollani, M; Fedorov, A; Chrastina, D; Sordan, R; Picco, A; Bonera, E

    2010-01-01

    Si 1-x Ge x islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si 1-x Ge x islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s -1 ) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  6. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  7. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  8. NRPB volunteer study: deposition and clearance of inhaled particles

    International Nuclear Information System (INIS)

    Etherington, G.; Smith, J.

    1996-01-01

    At the Board Meeting of the National Radiological Protection Board held on 15 February 1996, approval was given for an experimental study of the deposition and clearance of inhaled particles in the human nasal passage. This is the latest in a series of volunteer biokinetic studies that have been conducted at NRPB since its formation. This article explains the purpose of the study, how ethical approval was obtained, how the study will be performed, what volunteers will be asked to do, and what doses they will receive. Doses will of course be carefully controlled, and will be well below the annual limits set for such experiments. The success of the study is of course crucially dependent on recruitment of a sufficient number of volunteers. The aim of this article is to provide information to anyone who might be interested in volunteering. (UK)

  9. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    International Nuclear Information System (INIS)

    Lancastre, Joana J.H.; Falcão, António N.; Margaça, Fernanda M.A.; Ferreira, Luís M.; Miranda Salvado, Isabel M.; Almásy, László; Casimiro, Maria H.; Meiszterics, Anikó

    2015-01-01

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  10. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    Energy Technology Data Exchange (ETDEWEB)

    Lancastre, Joana J.H., E-mail: jlancastre@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Falcão, António N. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Margaça, Fernanda M.A., E-mail: fmargaca@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Ferreira, Luís M. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Miranda Salvado, Isabel M. [CICECO & Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Almásy, László [Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, PO Box 49, 1525 Budapest (Hungary); Casimiro, Maria H. [REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Meiszterics, Anikó [Gedeon Richter Ltd., PO Box 27, H-1475 Budapest (Hungary)

    2015-10-15

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  11. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    Science.gov (United States)

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  12. Fusion energy studies

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The following topics are considered: (1) cryosorption vacuum pumping for fusion reactors, (2) TNS support studies, (3) tritium recovery from irradiated Li-Al and SAP, (4) actinide oxides, nitrides, and carbides, and (5) transition metal-actinide-C phase equilibria

  13. Romania biomass energy. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, M; Easterly, J L; Mark, P E; Keller, A [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  14. Romania biomass energy. Country study

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.; Mark, P.E.; Keller, A.

    1995-01-01

    The present report was prepared under contract to UNIDO to conduct a case study of biomass energy use and potential in Romania. The purpose of the case study is to provide a specific example of biomass energy issues and potential in the context of the economic transition under way in eastern Europe. The transition of Romania to a market economy is proceeding at a somewhat slower pace than in other countries of eastern Europe. Unfortunately, the former regime forced the use of biomass energy with inadequate technology and infrastructure, particularly in rural areas. The resulting poor performance thus severely damaged the reputation of biomass energy in Romania as a viable, reliable resource. Today, efforts to rejuvenate biomass energy and tap into its multiple benefits are proving challenging. Several sound biomass energy development strategies were identified through the case study, on the basis of estimates of availability and current use of biomass resources; suggestions for enhancing potential biomass energy resources; an overview of appropriate conversion technologies and markets for biomass in Romania; and estimates of the economic and environmental impacts of the utilization of biomass energy. Finally, optimal strategies for near-, medium- and long-term biomass energy development, as well as observations and recommendations concerning policy, legislative and institutional issues affecting the development of biomass energy in Romania are presented. The most promising near-term biomass energy options include the use of biomass in district heating systems; cofiring of biomass in existing coal-fired power plants or combined heat and power plants; and using co-generation systems in thriving industries to optimize the efficient use of biomass resources. Mid-term and long-term opportunities include improving the efficiency of wood stoves used for cooking and heating in rural areas; repairing the reputation of biogasification to take advantage of livestock wastes

  15. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  16. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  17. Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences

    International Nuclear Information System (INIS)

    Luhmann, J.G.; Kozyra, J.U.

    1991-01-01

    The fluxes and energy spectra of picked-up planetary O + ions incident on the dayside atmospheres of Venus and Mars are calculated using the neutral exposure models of Nagy and Cravens (1988) and the Spreiter and Stahara (1980) gasdynamic model of the magnetosheath electric and magnetic field. Cold (∼10 eV) O + ions are launched from hemispherical grids of starting points covering the daysides of the planets and their trajectories are followed until they either impact the dayside obstacle or cross the terminator plane. The impacting, or precipitating, ion fluxes are weighted according to the altitude of the hemispherical starting point grid in a manner consistent with the exosphere density models and the local photoion production rate. Maps of precipitating ion number flux and energy flux show the asymmetrical distribution of dayside energy deposition expected from this source which is unique to the weakly magnetized planets. Although the associated heating of the atmosphere and ionsphere is found to be negligible compared to that from the usual sources, backscattered or sputtered neutral oxygen atoms are produced at energies exceeding that needed for escape from the gravitational fields of both planets. These neutral winds, driven by pickup ion precipitation, represent a possibly significant loss of atmospheric constituents over the age of the solar system

  18. Study on stability of a-SiCOF films deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Ding Shijin; Zhang Qingquan; Wang Pengfei; Zhang Wei; Wang Jitao

    2001-01-01

    Low-dielectric-constant a-SiCOF films have been prepared from TEOS, C 4 F 8 and Ar by using plasma enhanced chemical vapor deposition method. With the aid of X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), the chemical bonding configuration, thermal stability and resistance to water of the films are explored

  19. Measurements of poloidal and toroidal energy deposition asymmetries in the ASDEX divertors

    International Nuclear Information System (INIS)

    Evans, T.E.

    1991-03-01

    Energy deposition characteristics in the ASDEX divertors have been analyzed over a wide range of discharges and wall conditions during ohmically heated, additionally heated, or lower hybrid current drive experiments. Changes in discharge operating parameters with high power additional heating produce a diversity of effects on the magnitudes and distributions of the energy absorbed in the divertors. Poloidally and toroidally resolved energy deposition patterns are particularly sensitive to changes in the edge safety factor, the type and power level of additional heating used, and the vertical position of the plasma. In most additionally heated discharges, a large fraction of the incremental divertor loading is found on only one or two target rings. Poloidal in-out asymmetries, which typically favor the low-field side by a factor of 2.5 in ohmic discharges, commonly range between a factor of 2.5 and 4.5 in additionally heated experiments and in extreme cases can be as large as a factor of 5.6. At the same time, toroidal asymmetries on individual target rings are found to range between a factor of 1.4 and 3.8 in typical ICRH and NBI cases with extreme LHCD cases of 4.3. A model, proposed to explain the cause of discharge asymmetries, is compared with the experimental observations. Under some conditions, for example during LHCD experiments, the model is in good agreement with the data. A method is proposed for supressing discharge asymmetries which may generally improve the divertor performance as well. (orig./AH)

  20. Heavy metal atmospheric deposition study in the South Ural Mountains

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Smirnov, L.I.; Lyapunov, S.M.

    2004-01-01

    Samples of the mosses Hylocomium splendens and Pleurozium schreberi, collected in the summer of 1998, were used to study the atmospheric deposition of heavy metals and other toxic elements in the Chelyabinsk Region situated in the South Urals, one of the most heavily polluted industrial areas of the Russian Federation. Samples of natural soils were collected simultaneously with moss at the same 30 sites in order to investigate surface accumulation of heavy metals and to examine the correlation of elements in moss and soil samples in order to separate contributions from atmospheric deposition and from soil minerals. A total of 38 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Au, Th, U) in soil and 33 elements Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th, U) were determined by epithermal neutron activation analysis. The elements Cu, Cd and Pb (in moss samples only) were obtained by atomic absorption spectrometry. VARIMAX rotated principal component analysis was used to identify and characterize different pollution sources and to point out the most polluted areas. (author)

  1. Molecular dynamics and experimental studies on deposition mechanisms of ion beam sputtering

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, C.-M.; Lien, W.-C.

    2008-01-01

    Molecular dynamics (MD) simulation and experimental methods are used to study the deposition mechanism of ionic beam sputtering (IBS), including the effects of incident energy, incident angle and deposition temperature on the growth process of nickel nanofilms. According to the simulation, the results showed that increasing the temperature of substrate decreases the surface roughness, average grain size and density. Increasing the incident angle increases the surface roughness and the average grain size of thin film, while decreasing its density. In addition, increasing the incident energy decreases the surface roughness and the average grain size of thin film, while increasing its density. For the cases of simulation, with the substrate temperature of 500 K, normal incident angle and 14.6 x 10 -17 J are appropriate, in order to obtain a smoother surface, a small grain size and a higher density of thin film. From the experimental results, the surface roughness of thin film deposited on the substrates of Si(1 0 0) and indium tin oxide (ITO) decreases with the increasing sputtering power, while the thickness of thin film shows an approximately linear increase with the increase of sputtering power

  2. The model of atmospheric diffusion and deposition adopted for the German reactor risk study (phase A)

    International Nuclear Information System (INIS)

    Huebschmann, W.G.; Vogt, S.

    1980-01-01

    The consequence model of the German reactor risk study comprises the release of radioactivity and thermal energy from the containment, the atmospheric diffusion, and the deposition of activity on the ground, the calculation of dose equivalents induced via the main exposure pathways, and the calculation of early and late health effects to the population, taking into account emergency actions for the protection of the public. The following exposure pathways are included in the model: external irradiation from the passing cloud and from the activity deposited on the ground, inhalation of the cloud activity and of resuspended material, and ingestion of contaminated food. Account is taken of the following effects: building wake, plume rise to thermal energy release, dynamic change of diffusion parameters, and plume depletion due to radioactive decay, dry and wet deposition. The calculations are performed for 115 weather sequences with starting times evenly distributed over one year. It is shown that such a choice of weather sequences reflects the total variety of meteorological situations, including precipitation, in a statistically adequate way. The area of the Federal Republic of Germany is divided into four meteorological site-regions, each with typical meteorological characteristics. Each power reactor site is assigned to one of the meteorological site-regions

  3. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    International Nuclear Information System (INIS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO x N y ) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized

  4. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  5. First Investigations on the Energy Deposited in a D0 early separation scheme Dipole for the LHC upgrade

    CERN Document Server

    Hoa, C

    2007-01-01

    This note gives the first results of energy deposition calculation on a simplified model for an early scheme separation dipole D0, located at 3.5 m from the IP. The Monte Carlo code FLUKA version 2006.3 has been used for modelling the multi-particle interactions and energy transport. After a short introduction to particle interaction with matter and power deposition processes, the FLUKA modelling is described with bench marked power deposition calculation on the TAS, the absorber located in front of the triplet quadrupoles. The power deposition results for the D0 early scheme are then discussed in details, with the averaged and peak power density, and the variations of the total heat load in the dipole with the longitudinal position and with the aperture diameter.

  6. Local energy deposited for alpha particles emitted from inhaled radon daughters

    International Nuclear Information System (INIS)

    Al-affan, I.A.M.; Haque, A.K.M.M.

    1989-01-01

    An analytical method has been developed to calculate the local energy deposited by alpha particles emitted from radon daughters deposited on the mucus surface in the lung airways. For the particular case of 218 Po (Ra A) and 214 Bi (Ra C'), microdose spectra have been evaluated in test spheres of 1 μm diameter which were taken to lie within airways of diameters 18 000, 3500 and 600 μm. In each case, the contributions of the near and far wall were computed separately. The average microdosimetric parameters y-bar F and y-bar D have also been calculated. For the two smaller airways, y-bar F and y-bar D values were found to be about 110 and 135 keV μm -1 for 218 Po and about 87 and 107 keV μm -1 for 214 Bi respectively. The corresponding values were about 10% higher for the largest airway. (author)

  7. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  8. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  9. Defect studies of thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Vlček, M; Čížek, J; Procházka, I; Novotný, M; Bulíř, J; Lančok, J; Anwand, W; Brauer, G; Mosnier, J-P

    2014-01-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  10. Radiation effects on oxide glasses: Importance of energy deposition and relaxation processes

    International Nuclear Information System (INIS)

    Mir, Anamul-Haq

    2015-01-01

    Nuclear waste glass matrices during their disposal will be subjected to self-irradiation by beta and alpha decays. Beta emitting radionuclides due to their short half life time will be the dominant radiation source only during first few hundred years of the disposal, whereas the alpha decays constitute a long term radiation source. Due to intense beta decay and associated gamma rays, the glass matrices can attain temperatures up to 300 C during state 1. The temperature during stage 2 will mainly be defined by the repository conditions. The present work focused on studying the response of various glasses (borosilicate glasses of nuclear waste interest and amorphous silica) to electron irradiation (to understand the response of the pristine glasses to beta decays), single ion beam irradiations with light and heavy ions over a wide stopping power and fluence range (to study the response of the pristine glasses as a function of the electronic and nuclear energy loss so as to establish the necessary conditions for simulating the alpha and recoil nuclei damage), sequential electron-ion irradiations (to understand the impact of the intense beta decay damage during stage 1 on subsequent alpha decay during stage 2, and double ion beam sequential and simultaneous irradiations (to understand the interaction of the alpha particles with recoil nuclei pre-damaged glass and vice versa). The pristine and irradiated samples were characterized using Raman spectroscopy, NMR spectroscopy, micro and nano indentation, AFM, interferometry and ToF-SIMS. Apart from the experimental work, Inelastic Thermal Spike Model (iTSM) for ion track formation was extended to borosilicate glasses to study the possibility of ion track formation in nuclear waste glass matrices. The model was used to study the impact of matrix temperature and stored energy on the ion track threshold, which is otherwise difficult to study experimentally. During electron irradiation, the response of the glasses was found to

  11. Photoluminescence study of aligned ZnO nanorods grown using chemical bath deposition

    International Nuclear Information System (INIS)

    Urgessa, Z.N.; Oluwafemi, O.S.; Dangbegnon, J.K.; Botha, J.R.

    2012-01-01

    The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 °C is hereby reported. By annealing in O 2 environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.

  12. Photoluminescence study of aligned ZnO nanorods grown using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Oluwafemi, O.S. [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI, 5117 (South Africa); Dangbegnon, J.K. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Botha, J.R., E-mail: Reinhardt.Botha@nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 Degree-Sign C is hereby reported. By annealing in O{sub 2} environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.

  13. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  14. Methods for shifting the pattern of energy deposition with a MAPA

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Levin, R.L.

    1987-01-01

    In earlier work the authors observed local heating in bone when an amputated human leg was treated with a MAPA. For this reason we have experimentally compared several methods for controlling the pattern of energy deposition. These methods include radial displacement of the phantom relative to the MAPA, adjusting phase and magnitude of the currents in the dipole elements, and the use of dielectric spacers between the bolus and parts of the phantom. Cylindrical homogeneous muscle-phantoms have been used in these tests. Both theory and experiments show that greater displacement of the pattern can be obtained using phase-shifting than is possible with radial displacement of the phantom. Dielectric spacers act as a shield by decoupling the phantom from the MAPA. The dielectric spacers are simple to use and give results that are stable and easy to predict

  15. Study of liquid deposition during laser printing of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M.; Patrascioiu, A. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Dinca, V. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); National Institute for Lasers, Plasma and Radiation Physics, Atomistilor No. 409, PO Box MG 16, 077125 Bucharest (Romania); Fernandez-Pradas, J.M.; Morenza, J.L. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  16. Study of liquid deposition during laser printing of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Patrascioiu, A.; Dinca, V.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  17. Studies on deposition of radon daughters on glass surface

    International Nuclear Information System (INIS)

    Loerinc, M.; Feher, I.; Palfalvi, J.

    1998-01-01

    In a certain village in Northern Hungary, in some houses the radon concentration was found to be in the order of kBq.m -3 . In an attempt to decide whether an earthquake or the near-by mining activity is to blame, past radon concentration was studied making use of radon daughters embedded in the surface layer of glass sheets. In the investigation several conclusions were reached: drastic changes in Rn concentration could be excluded, ie., the high Rn concentration existed over the last 50 years; the continuing deposition of dirt on the glass surface and the occasional cleaning had no significant effect; the effect of corrosion processes at the glass surface should be further investigated. (A.K.)

  18. Study of heat flux deposition in the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Carpentier, S.

    2009-02-01

    Accurate measurements of heat loads on internal tokamak components is essential for protection of the device during steady state operation. The optimisation of experimental scenarios also requires an in depth understanding of the physical mechanisms governing the heat flux deposition on the walls. The objective of this study is a detailed characterisation of the heat flux to plasma facing components (PFC) of the Tore Supra tokamak. The power deposited onto Tore Supra PFCs is calculated using an inverse method, which is applied to both the temperature maps measured by infrared thermography and to the enthalpy signals from calorimetry. The derived experimental heat flux maps calculated on the toroidal pumped limiter (TPL) are then compared with theoretical heat flux density distributions from a standard SOL-model. They are two experimental observations that are not consistent with the model: significant heat flux outside the theoretical wetted area, and heat load peaking close to the tangency point between the TPL and the last closed field surface (LCFS). An experimental analysis for several discharges with variable security factors q is made. In the area consistent with the theoretical predictions, this parametric study shows a clear dependence between the heat flux length λ q (estimated in the SOL (scrape-off layer) from the IR measurements) and the magnetic configuration. We observe that the spreading of heat fluxes on the component is compensated by a reduction of the power decay length λ q in the SOL when q decreases. On the other hand, in the area where the derived experimental heat loads are not consistent with the theoretical predictions, we observe that the spreading of heat fluxes outside the theoretical boundary increases when q decreases, and is thus not counterbalanced. (author)

  19. Organic geochemical study of domanik deposits, Tatarstan Republic.

    Science.gov (United States)

    Nosova, F. F.; Pronin, N. V.

    2010-05-01

    High-bituminous argillo-siliceous carbonate deposits of domanik formation (DF) occurring within pale depressions and down warps in the east of the Russian platform are treated by many investigators as a main source of oil and gas in the Volga-Ural province. In this study a special attention was turned to organic-rich rocks DF witch outcrop in the central part (Uratminskaya area 792, 806 boreholes) and in the west part (Sviyagskaya, 423) of the Tatarstan Republic. The aim of the present paper is to characterize the organic matter: origin, depositional environments, thermal maturity and biodegradation-weathering effects. Nowadays the most informative geochemical parameters are some biomarkers which qualitatively and are quantitatively defined from distributions of n-alkanes and branched alkanes. Biomarkers - it's original fingerprints of biomass of organic matter, that reflect molecular hydrocarbonic structure. The bulk, molecular composition of oil is initially a function of the type and maturity of the source rock from which it has been expelled, while the source rock type reflects both the nature of precursor organisms and the conditions of its deposition. Methodology used in this study included sampling, bitumen extraction, liquid-column chromatography and gas chromatography/mass spectrometry analyses. The bitumen was fractionated by column chromatography on silica gel. Non-aromatic or alifatics, aromatics and polar compounds were obtained. Alifatic were analysed by gas chromatography/mass spectrometry Percin Elmer. The hydrocarbons present in the sediments of DF and have a carbon numbers ranging from 12 through 38. The samples contain variably inputs from both terrigenous and non-terrigenous (probably marine algal) organic matter as evident in bimodal GC fingerprints of some samples. Pristane and phytane, also, occur in very high concentration in sample extracts. The relatively low Pr/Ph ratios, CPI and OEP<1 imply that the domanik organic matter was deposited

  20. Depositional history and fault-related studies, Bolinas Lagoon, California

    Science.gov (United States)

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  1. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  2. Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuget, S. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)]. E-mail: sylvain.peuget@cea.fr; Noel, P.-Y. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Loubet, J.-L. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Pavan, S. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Nivet, P. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Chenet, A. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2006-05-15

    The effects of elastic and inelastic interactions induced by cumulative alpha decay on the hardness of R7T7-type nuclear containment glass were investigated on actinide-doped glass specimens and by external irradiation of inactive glass by light and heavy ions. Vickers microindentation and nanoindentation hardness measurements showed that in the deposited energy range investigated (below 3 x 10{sup 22} keV/cm{sup 3}) inelastic effects have no influence on the plastic response of the glass. Conversely, identical hardness variations versus the nuclear energy deposited in the material were observed on curium-doped glass and on glass irradiated by ion bombardment. The observed hardness variation stabilized after the deposited energy reached about 3 x 10{sup 2} keV{sub nucl}/cm{sup 3}. These findings indicate that the change in the plastic response of the glass is a consequence of ballistic effects.

  3. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  4. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  5. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  6. Comparison of feed energy costs of maintenance, lean deposition, and fat deposition in three lines of mice selected for heat loss.

    Science.gov (United States)

    Eggert, D L; Nielsen, M K

    2006-02-01

    Three replications of mouse selection populations for high heat loss (MH), low heat loss (ML), and a nonselected control (MC) were used to estimate the feed energy costs of maintenance and gain and to test whether selection had changed these costs. At 21 and 49 d of age, mice were weighed and subjected to dual x-ray densitometry measurement for prediction of body composition. At 21 d, mice were randomly assigned to an ad libitum, an 80% of ad libitum, or a 60% of ad libitum feeding group for 28-d collection of individual feed intake. Data were analyzed using 3 approaches. The first approach was an attempt to partition energy intake between costs for maintenance, fat deposition, and lean deposition for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight (kg(0.75)), fat gain, and lean gain. Approach II was a less restrictive attempt to partition energy intake between costs for maintenance and total gain for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight and total gain. Approach III used multiple regression on the entire data set with pooled regressions on fat and lean gains, and subclass regressions for maintenance. Contrasts were conducted to test the effect of selection (MH - ML) and asymmetry of selection [(MH + ML)/2 - MC] for the various energy costs. In approach I, there were no differences between lines for costs of maintenance, fat deposition, or protein deposition, but we question our ability to estimate these accurately. In approach II, selection changed both cost of maintenance (P = 0.03) and gain (P = 0.05); MH mice had greater per unit costs than ML mice for both. Asymmetry of the selection response was found in approach II for the cost of maintenance (P = 0.06). In approach III, the effect of selection (P maintenance cost, but asymmetry of selection (P > 0.17) was not evident. Sex effects were found for the cost of fat deposition (P = 0.02) in

  7. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.

    2005-04-01

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  8. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  9. Simulation and growing study of Cu–Al–S thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duclaux, L., E-mail: loraine-externe.duclaux@edf.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Donsanti, F.; Vidal, J. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Bouttemy, M. [Lavoisier Institute of Versailles, UMR 8180, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Schneider, N.; Naghavi, N. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France)

    2015-11-02

    In this paper, we have explored the potential of Cu–Al–S compounds as p-type transparent conducting material by means of atomistic simulation using CuAlS{sub 2} as a reference ternary compound and atomic layer deposition (ALD) growth. We have identified key intrinsic point defects acting either as shallow acceptor or deep donor which define the conductivity of CuAlS{sub 2}. Higher p-type conductivity was found to be achievable under metal-poor and chalcogen-rich growth conditions. According to this precept, ALD growth of Cu{sub x}Al{sub y}S{sub z} was attempted using Cu(acac){sub 2} and Al(CH{sub 3}){sub 3} as precursors for Cu and Al respectively and under H{sub 2}S atmosphere. While as grown thin films present low content of Al, it influences the band gap values as well as the obtained structures. - Highlights: • Ab-initio investigation of CuAlS{sub 2} • Indentification of two opposite main-contributive intrinsic defects on the conductivity: V{sub Cu} and Al{sub Cu} • Synthesis of Cu-Al-S ternary compound using atomic layer deposition • Impact of aluminum insertion on the optical and structural properties of the films.

  10. A simulation study of interface mixing during ion-assisted deposition

    International Nuclear Information System (INIS)

    Wenzhi Li; Fuzhai Cui; Yi Liao; Hengde Li

    1990-01-01

    Ion-beam assisted deposition (IAD) can produce strong film to substrate adhesion. The adhesion depends heavily on atom mixing near the interface. In order to study the dependence of the width of the mixed interface on the experimental parameters, a Monte Carlo study has been made using the dynamic simulation code TCIS-6. The simulation mode and calculational procedure are described. Simulation calculations indicate that the mixing increases with the bombarding energies and a saturation width appears at high energies. There is a strong relationship between the amount of mixing and the ion-to-atom arrival ratio. Some comparisons of the calculations with experimental data in the literature are also presented. (author)

  11. Mineralogical and geochemical study of contaminated soils on abandoned Sb deposits Dubrava and Poproc

    International Nuclear Information System (INIS)

    Klimko, T.; Jurkovic, L.

    2010-01-01

    In this paper we present initial results of mineralogical and geochemical study of secondary mineral phases, often with a high content of Sb and As, resulting from oxidation of sulphide minerals in the soil environment on two, now abandoned Sb deposits. Dubrava deposit is situated on the northern slopes of the Dumbier Low Tatras and Poproc deposit is located in the eastern part of Spis-Gemer Rudohorie. Both studied sites were in the past (second half of 20 th century) significant producers of antimony ore and Dubrava deposit belonged to medium-sized Sb deposits in the world.

  12. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  13. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: pkuhjf@bit.edu.cn [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Fu, Gan-hua; Krishnakumar, V.; Schimper, Hermann-Josef [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Besland, M.P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2015-05-01

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface.

  14. Studies in Swedish Energy Opinion

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren; Hedberg, Per

    2012-07-01

    the 1970s, energy production was politicized big time in the industrialized world. The birth of the environmental movement, the oil crises in 1973 - 74 and the beginning conflict surrounding civilian nuclear power, put energy issues center stage on the political agenda. Energy policies - especially related to the development of nuclear power - came to dominate election campaigns, like in Sweden in 1976 or be the subject of referendums, like in Austria in 1978 or in Sweden in 1980. Critical voices toward the peaceful use of nuclear power - having started in America before being exported to Europe - gained real strength and public support all over the Western world by the nuclear accident at the Three Mile Island plant in Harrisburg, Pennsylvania in 1979. The energy genie was out of the bottle and out to stay. Fueled by the nuclear meltdowns in Chernobyl in 1986 and in Fukushima in 2011 and supplemented by conflicts over how to reduce the use of oil and coal, how to sensibly exploit the waste gas reserves, and how to develop renewable energy sources based on sun, wind and waves – have made all kinds of energy issues the focal point of political contentions ever since the early 1970s. In Sweden, as in many other countries, energy policies - often with nuclear power in the center - have been one of the most fought-over policy areas during the last thirty-forty years. And the contentious character of energy policies is not limited to the elite level of politics - to politicians, to media pundits or to lobbyists. It is also manifest among ordinary citizens. Energy issues - nuclear power and wind power in particular - are highly polarizing among voters as well. Given this historic background, starting in the 1970s, it was rather natural that energy questions - featuring most prominently questions related to nuclear power - would be important parts of the voter surveys performed by the Swedish National Elections Studies (SNES) at the Univ. of Gothenburg. The first book

  15. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  16. A thermoluminescence study of vempalle dolomites and its depositional environments

    International Nuclear Information System (INIS)

    Bhattacharya, A.K.; Rao, C.N.; Kaul, I.K.

    1976-01-01

    An attempt has been made to interpret the depositional environment of Vempalle dolomites (India) by thermoluminescence method. It has been demonstrated that glow curve patterns reflect the environmental condition of deposition for carbonate sediments. The glow curves were obtained for natural samples as well as samples irradiated by Co 60 and compared. A majority of the samples were concluded to be diagenetic. (A.K.)

  17. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  18. Peat Deposits at Bijoynagar Upazila, Brahmanbaria District, Bangladesh : A Potential Local Source of Energy

    Directory of Open Access Journals (Sweden)

    Md. Nazwanul Haque

    2013-12-01

    Full Text Available Bangladesh with about 160 million people in land of 147,570 square km which is one of the most densely populated countries in the world. With the increase of population and diversifying of economic activities, Bangladesh has become an energy hunger country. Presently, 80% peoples depend on non commercial energy sources living in the rural area. Peat exploration at Bijoynagar Upazila, Brahmanbaria district. Bangladesh has been carried out for reserve estimation and its economic aspect evaluation. Total peat exploration area is about 4000 hectare. In explored area, nine peat bearing locations are identified in which peat deposits are observed from 0.152 to 3.0 meters below the surface. Total reserves are about 32.61 million tons in wet condition and 13.044 million tons in dry conditions. The peat is grayish brown to grayish black, fibrous, less to medium compacted and water content is about 60-80 % in wet condition. Chemical analyses of the peat shows that fixed carbon content is 15-25 %, Sulfur is 0.1 to 0.8 % and calorific value of the peat is 3000-7000 BTU. The peat of the area is medium to good quality. The peat may be extracted by open peat mining because of its surface to near surface position. This peat can be conveniently used for small industrial and domestic purpose as briquette and compressed tablet form to meet the growing energy demand of the area. But most of the people of Bijoynagar area live on agriculture. So, peat extraction and related geo-environmental degradation may change living style of the people. Proper land use planning, environmental management and policy should be taken before peat extraction.

  19. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  20. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  1. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  2. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    Science.gov (United States)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    Liquefaction has been a source of major damages during severe earthquakes. To evaluate this phenomenon there are several stress, strain and energy based approaches. Use of the energy method has been more focused by researchers due to its advantages with respect to other approaches. The use of the energy concept to define the liquefaction potential is validated through laboratory element and centrifuge tests as well as field studies. This approach is based on the hypothesis that pore pressure buildup is directly related to the dissipated energy in sands which is the accumulated areas between the stress-strain loops. Numerous investigations were performed to find a relationship which correlates the dissipated energy to the soil parameters, but there are not sufficient studies to relate this dissipated energy, known as demand energy, concurrently, to the seismological and the soil parameters. The aim of this paper is to investigate the dependency of the demand energy in sands to seismological and the soil parameters. To perform this task, an effective stress analysis has been executed using FLAC finite difference program. Finn model, which is a built-in constitutive model implemented in FLAC program, was utilized. Since an important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point, a simple numerical framework is presented to assess its generation during a cyclic loading in a given centrifuge test. According to the results, predicted excess pore water pressures did not closely match to the measured excess pore water pressure values in the centrifuge test but they can be used in the numerical assessment of excess pore water pressure with an acceptable degree of preciseness. Subsequently, the centrifuge model was reanalyzed using several real earthquake acceleration records with different seismological parameters such as earthquake magnitude and Hypocentral distance. The accumulated energies (demand energy) dissipated in

  3. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    Science.gov (United States)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  4. Defects study of hydrogenated amorphous silicon samples and their relation with the substrate and deposition conditions

    International Nuclear Information System (INIS)

    Darwich, R.

    2009-07-01

    The goal of this work is to study the properties of the defects aiming to explore the types of defects and the effect of various deposition parameters such as substrate temperature, the kind of the substrate, gas pressure and deposition rate. Two kinds of samples have been used; The first one was a series of Schottky diodes, and the second one a series of solar cells (p-i-n junction) deposited on crystalline silicon or on corning glass substrates with different deposition parameters. The deposition parameters were chosen to obtain materials whose their structures varying from amorphous to microcrystalline silicon including polymorphous silicon. Our results show that the polymorphous silicon samples deposited at high deposition rates present the best photovoltaic properties in comparison with those deposited at low rates. Also we found that the defects concentration in high deposition rate samples is less at least by two orders than that obtained in low deposition rate polymorphous, microcrystalline and amorphous samples. This study shows also that there is no effect of the substrate, or the thin films of highly doped amorphous silicon deposited on the substrate, on the creation and properties of these defects. Finally, different experimental methods have been used; a comparison between their results has been presented. (author)

  5. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  6. LH power deposition and CD efficiency studies by application of modulated power at JET

    International Nuclear Information System (INIS)

    Kirov, K.K.; Baranov, Yu.; Mailloux, J.; Mayoral, M.-L.; Nave, M.F.F.; Ongena, J.

    2010-01-01

    The lower hybrid (LH) power deposition and the current drive (CD) efficiency were assessed by the application of modulated LH power. Density and magnetic field scans were performed and the response of the electron temperature provided by the available electron cyclotron emission diagnostic was investigated by means of fast Fourier transform analysis. An innovative technique based on a comparison between modelled and experimental data was developed and used in the study. The LH waves are absorbed by fast electrons with energies of a few times the thermal one, causing a modification in the electron distribution function (EDF) by creating a plateau in the parallel direction. The phase of the temperature perturbations, φ, as well as the ratio between the amplitudes of the third and the main harmonics, δT e3 /δT e1 , are found to be strongly affected by the plateau of the EDF as the broader the plateau the larger |φ|, (φ e3 /δT e1 are. Transport and Fokker-Planck modelling was used to support this conclusion as well as to interpret the experimental data and hence to assess the LHCD efficiency and deposition profile. The results from the analysis are consistent with broad off-axis LH power deposition profile. For densities between 1 x 10 19 and 4 x 10 19 m -3 , which is the accessibility limit at the highest magnetic field discharges, a gradual shift of the maximum of the power deposition to the periphery and a degradation of the CD efficiency was observed.

  7. Study on Municipal Energy Companies

    International Nuclear Information System (INIS)

    2009-07-01

    This is a summarizing overview of the local, renewable energy initiatives that are grouped under the heading of 'municipal energy company'. A municipal energy company (or sustainable energy company) is a local energy company that initiates, coordinates and/or manages sustainable energy projects with the primary objective of realizing the climate objectives. [nl

  8. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  9. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  10. Study on the deposition patterns of aerosol inhalation scintigraphy, 2

    International Nuclear Information System (INIS)

    Watanabe, Hiroyuki

    1989-01-01

    The superimposed images obtained by the SPECT of aeresol inhalation scintigraphy and chest CT were applied in 7 cases of diffuse panbronchiolitis. Aerosol deposition patterns were examined, and hot spots were compared with bronchial morphological abnormalities. The results were as follows: 1. Nevertheless, aerosol deposition patterns were characterized by defects of the depositions in the outer zone and hot spots in the inner zone, hot spots distributed from the inner zone to the outer zone. 2. Hot spots and bronchial morphological abnormalities were markedly matched in the inner zone; however, they were mismatched in the outer zone. I concluded that the mechanisms of hot spot formation in the inner zone were different from those in the outer zone. (author)

  11. ELLIPSOMETRIC STUDY OF SEMITRANSPARENT SILVER LAYERS DEPOSITED ON GLASS

    Directory of Open Access Journals (Sweden)

    Víctor Toranzos

    2014-12-01

    Full Text Available Using ellipsometry, the film structure is characterized by optical indices n, k (visible region, 450 nm <  < 580 nm and the thickness (15 < d < 35 nm. The optical indices change with the quantity of silver deposited, obtaining effective indices of 1.0 < n < 1.8 and 1.6 < k < 2.6 to the smaller deposits that belong to a volumetric fraction between 0.35 and 0.5 of silver in the air. An effective optical thickness film decrease is observed when the silver volumetric fraction increases, and a thickness increase with close indices to solid silver when the deposited silver increases. Optical and effective medium theory indices are compared.

  12. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    Science.gov (United States)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-06-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  13. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    Science.gov (United States)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-03-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  14. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    International Nuclear Information System (INIS)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota

  15. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling

    International Nuclear Information System (INIS)

    Carroll, Beth E.; Otis, Richard A.; Borgonia, John Paul; Suh, Jong-ook; Dillon, R. Peter; Shapiro, Andrew A.; Hofmann, Douglas C.; Liu, Zi-Kui; Beese, Allison M.

    2016-01-01

    Many engineering applications, particularly in extreme environments, require components with properties that vary with location in the part. Functionally graded materials (FGMs), which possess gradients in properties such as hardness or density, are a potential solution to address these requirements. The laser-based additive manufacturing process of directed energy deposition (DED) can be used to fabricate metallic parts with a gradient in composition by adjusting the volume fraction of metallic powders delivered to the melt pool as a function of position. As this is a fusion process, secondary phases may develop in the gradient zone during solidification that can result in undesirable properties in the part. This work describes experimental and thermodynamic studies of a component built from 304L stainless steel incrementally graded to Inconel 625. The microstructure, chemistry, phase composition, and microhardness as a function of position were characterized by microscopy, energy dispersive spectroscopy, X-ray diffraction, and microindentation. Particles of secondary phases were found in small amounts within cracks in the gradient zone. These were ascertained to consist of transition metal carbides by experimental results and thermodynamic calculations. The study provides a combined experimental and thermodynamic computational modeling approach toward the fabrication and evaluation of a functionally graded material made by DED additive manufacturing.

  16. Direct formation of thin films and epitaxial overlayers at low temperatures using a low-energy (10-500 eV) ion beam deposition system

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Alton, G.D.; Appleton, B.R.; Herbots, N.; Noggle, T.S.; Pennycook, S.J.

    1987-01-01

    A low-energy ion beam deposition system has been developed at Oak Ridge National Laboratory and has been applied successfully to the growth of epitaxial films at low temperatures for a number of different elements. The deposition system utilizes the ion source and optics of a commercial ion implantation accelerator. The 35 keV mass- and energy-analyzed ion beam from the accelerator is decelerated in a four-element electrostatic lens assembly to energies between 10 and 500 eV for direct deposition onto a target under UHV conditions. Current densities on the order of 10 μA/cm 2 are achieved with good uniformity over a 1.4 cm diameter spot. The completed films are characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning have been studied. Epitaxial overlayers which show good minimum yields by ion channeling (3 to 4%) have been produced at temperatures as low as 375 0 C for Si on Si(100) and 250 0 C for Ge on Ge(100) at growth rates that exceed the solid-phase epitaxy rates at these temperatures by more than an order of magnitude

  17. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  18. Methodology and significance of studies of atmospheric deposition in highway runoff

    Science.gov (United States)

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available.Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and

  19. Electron microscopy studies of octa-calcium phosphate thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Monica; Nelea, V.; Werckmann, J.; Mihailescu, I.N.; Socol, G.; Bigi, Adriana; Bracci, Barbara

    2004-04-01

    Octa-calcium phosphate (OCP), Ca{sub 8}(HPO{sub 4}){sub 2}(PO{sub 4}){sub 4}{center_dot}5H{sub 2}O, is present as transient compound in the precipitation of hydroxyapatite (HA) and biological apatites. Because of these characteristics, OCP plays a crucial role in the in-vivo mineralization of human bones and teeth. The use of OCP in developing new generations of bone prosthesis stands therefore for an innovative challenge. This paper reports studies of OCP structures grown in the form of thin films by pulsed laser deposition (PLD) with emphasis on electron microscopy investigations. OCP films were grown on etched Ti substrates, using an UV KrF* excimer laser source ({lambda}=248 nm, {tau}{>=}20 ns). Films were deposited in low-pressure (50 Pa) water vapors environment on substrates heated at 20-180 deg. C. We performed annealing treatments in water vapors and ambient pressure at substrate temperatures identical to those used during deposition. Comprehensive structural and morphological investigations were carried out with different based-electron microscopy procedures. Grazing incidence X-ray diffraction (GIXRD) and white light confocal microscopy were also applied to characterize the films. Ca/P atomic ratio of films was determined by energy dispersive X-ray spectrometry, electron energy loss spectroscopy and X-ray photoelectron spectroscopy. The obtained films generally exhibit an amorphous structure, as evidenced by GIXRD. Nevertheless, cross-section transmission electron microscopy investigations provide supplementary information about the film characteristics and material crystallization in small domains. OCP nanoparticles coalesce and grow perpendicular to the substrate in a tree-like structure, comparable to a coral reef.

  20. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  1. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  2. Institutional total energy case studies

    Energy Technology Data Exchange (ETDEWEB)

    Wulfinghoff, D.

    1979-07-01

    Profiles of three total energy systems in institutional settings are provided in this report. The plants are those of Franciscan Hospital, a 384-bed facility in Rock Island, Illinois; Franklin Foundation Hospital, a 100-bed hospital in Franklin, Louisiana; and the North American Air Defense Command Cheyenne Mountain Complex, a military installation near Colorado Springs, Colorado. The case studies include descriptions of plant components and configurations, operation and maintenance procedures, reliability, relationships to public utilities, staffing, economic efficiency, and factors contributing to success.

  3. Analysis of Precious Stones Deposited in Various Rock Samples of Mogok Region by energy dispersive X-ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    Kyi Kyi San; Soe Lwin; Win Win Thar; Sein Htoon

    2004-06-01

    The analysis of precious stones deposited in various rock samples of Mogok region were investigated by the energy dispersive x-ray fluorescence technique. The x-ray machine with Rh target was used to excite the characteristic x-ray from the sample. X-rays emitted from the sample were measured by a high resolution, cooled Si (Li) detector. The calibration was made by the measurement of minerals which composed in each kind of precious stones. The kind of precious stone deposited in the rocks sample was determined by the measurement of minerals from the rock samples compared with those obtained from each kind of precious stones

  4. Isotope studies of UK tufa deposits and associated source waters

    International Nuclear Information System (INIS)

    Thorpe, P.M.

    1981-12-01

    Tufa is a secondary deposit of calcium carbonate precipitated from springs and streams. Previous attempts to date tufa deposits directly with 14 C have had limited success. The major problem is to quantify the amount of carbon incorporated in tufa, derived from the dissolution of carbonate bedrock, essentially free of 14 C. The isotopic composition of tufa-depositing streamwaters is similar to that of water recharging aquifers. The 14 C levels of recent tufa layers, at three sites, were similar to those of the source waters. 14 C dates from tufa at these sites suggested a Postglacial origin when corrected for bedrock carbon dilution of 16 to 24%. This dilution was overestimated by consideration of carbon mass balance using characteristic stable carbon isotope compositions (delta 13 C) for the biogenic and bedrock components. This method of correction is often applied to 14 C dates from groundwaters. The carbon isotope composition of spring waters supplying the tufa-depositing streams was realistically explained by a two stage process of carbonate dissolution under open and then closed conditions with respect to gaseous carbon dioxide. Seasonal variations in the 14 C and delta 13 C composition of stream and spring waters, downstream increases in 14 C and delta 13 C and seasonal variations in the oxygen and hydrogen isotopic composition of rainfall are explained. (author)

  5. Localization of gastrointestinal deposition of mercuric chloride studied in vivo

    International Nuclear Information System (INIS)

    Nielsen, J.B.; Andersen, H.L.; Soerensen, J.A.; Andersen, O.

    1992-01-01

    During the last 5 years, the site of gastrointestinal absorption of inorganic mercury has been attempted identified mainly by experiments using perfused intestinal segments in vitro or in situ. The present investigation will discuss the localization of the absorption site for mercuric chloride based on a completely undisturbed in vivo experimental model in mice. As the mice were allowed to eat their normal diet during the experimental period, the present results would independently add to existing knowledge on intestinal absorption sites for inorganic mercury. The mice were given 203 Hg labelled mercuric chloride orally, either through stomach tube or in the drinking water, and were killed after various time intervals. Mercury was localized and quantified in various segments of the gastrointestinal tract by gamma-counting. Time course analysis of the segmental deposition of mercury demonstrated that the deposition mainly takes place in the proximal jejunum and suggested that a larger part of the jejunum than previously reported is involved in absorption of mercury. Using this in vivo model, tetraethylthiuram disulfide was demonstrated to increase the intestinal deposition and absorption without changing the site of deposition. (au)

  6. Comparative studies of spray pyrolysis deposited copper sulfide ...

    Indian Academy of Sciences (India)

    X-ray diffraction analysis showed that while the layer/glass sample has an individual CuS (covellite) ... that all these materials have a relatively high absorption coefficient (∼5 × .... and S2 that were deposited on glass substrates, had the co-.

  7. Geochemistry of the Cigar Lake uranium deposit: XPS studies

    International Nuclear Information System (INIS)

    Sunder, S.; Cramer, J.J.; Miller, N.H.

    1996-01-01

    Samples of uranium ore from the Cigar Lake deposit in northern Saskatchewan, Canada, were analyzed using XPS. High-resolution spectra were recorded for the strongest bands of the major elements (U 4f, C 1 s, O 1 s, Pb 4 f, S 2 p, Cu 2 p, Fe 2 p, and the valence region (0-20 eV)) to obtain chemical state information for these samples. In general, the U VI /U IV ratio was very low, i.e., much less than 0.5, the threshold for the oxidative dissolution of UO 2 . The low values of the U VI /U IV ratio observed for samples from the Cigar Lake deposit indicate thermodynamic stability of the uranium ore in the reduced aqueous environment. Similarities between the disposal vault envisaged in the Canadian Nuclear Fuel Waste Management Program and the Cigar Lake deposit suggest that, if geochemical conditions in the vault were to be similar to those in the deposit, the long-term dissolution of UO 2 fuel would be very minimal. (orig.)

  8. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, M., E-mail: mondherghrib@yahoo.fr [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Gaidi, M.; Ghrib, T.; Khedher, N. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia); Ben Salam, M. [L3M, Department of Physics, Faculty of Sciences of Bizerte, 7021 Zarzouna (Tunisia); Ezzaouia, H. [Laboratoire de Photovoltaique (L.P.V.), Centre de Recherche et des Technologies de l' Energie, BP 95, Hammam-Lif 2050 (Tunisia)

    2011-08-15

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  9. Morphological and optical properties changes in nanocrystalline Si (nc-Si) deposited on porous aluminum nanostructures by plasma enhanced chemical vapor deposition for Solar energy applications

    International Nuclear Information System (INIS)

    Ghrib, M.; Gaidi, M.; Ghrib, T.; Khedher, N.; Ben Salam, M.; Ezzaouia, H.

    2011-01-01

    Photoluminescence (PL) spectroscopy was used to determine the electrical band gap of nanocrystalline silicon (nc-Si) deposited by plasma enhancement chemical vapor deposition (PECVD) on porous alumina structure by fitting the experimental spectra using a model based on the quantum confinement of electrons in Si nanocrystallites having spherical and cylindrical forms. This model permits to correlate the PL spectra to the microstructure of the porous aluminum silicon layer (PASL) structure. The microstructure of aluminum surface layer and nc-Si films was systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). It was found that the structure of the nanocrystalline silicon layer (NSL) is dependent of the porosity (void) of the porous alumina layer (PAL) substrate. This structure was performed in two steps, namely the PAL substrate was prepared using sulfuric acid solution attack on an Al foil and then the silicon was deposited by plasma enhanced chemical vapor deposition (PECVD) on it. The optical constants (n and k as a function of wavelength) of the deposited films were obtained using variable angle spectroscopic ellipsometry (SE) in the UV-vis-NIR regions. The SE spectrum of the porous aluminum silicon layer (PASL) was modeled as a mixture of void, crystalline silicon and aluminum using the Cauchy model approximation. The specific surface area (SSA) was estimated and was found to decrease linearly when porosity increases. Based on this full characterization, it is demonstrated that the optical characteristics of the films are directly correlated to their micro-structural properties.

  10. Deposition Rate and Energy Enhancements of TiN Thin-Film in a Magnetized Sheet Plasma Source

    OpenAIRE

    Hamdi Muhyuddin D. Barra; Henry J. Ramos

    2011-01-01

    Titanium nitride (TiN) has been synthesized using the sheet plasma negative ion source (SPNIS). The parameters used for its effective synthesis has been determined from previous experiments and studies. In this study, further enhancement of the deposition rate of TiN synthesis and advancement of the SPNIS operation is presented. This is primarily achieved by the addition of Sm-Co permanent magnets and a modification of the configuration in the TiN deposition process. The ...

  11. Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region

    International Nuclear Information System (INIS)

    Paulides, Margarethus M.; Vossen, Stefan H.J.A.; Zwamborn, Adrianus P.M.; Rhoon, Gerard C. van

    2005-01-01

    Purpose: To investigate the ability to deposit radiofrequency energy centrally in the neck as a function of antenna positions, number of antennas, and operating frequency. Methods and Materials: Power absorption (PA) distributions in a realistic model of the head-and-neck anatomy are calculated in which the head model is irradiated by an array of dipole antennas. The relative PA distributions corresponding to different setups are visualized and analyzed using the ratio of the average PA (aPA) in the target and neck region. Results: Both the PA distributions and aPA ratios indicate an optimal focusing ability of the setups (i.e., the ability to direct energy efficiently into the target region), between 400 and 600 MHz. In this frequency band, the focusing ability depends only moderately on the size of the neck. Finally, it is found that the focusing ability at 433 MHz is increased significantly by increasing the number of antenna elements. Conclusions: The optimal frequency is found to be highly dependent on the size of the target volume; thus, a single optimum is hard to define. However, future clinical research will focus on 433 MHz based on the optimal range of frequencies, as found in this study

  12. Early diagenesis of recently deposited organic matter: A 9-yr time-series study of a flood deposit

    Science.gov (United States)

    Tesi, T.; Langone, L.; Goñi, M. A.; Wheatcroft, R. A.; Miserocchi, S.; Bertotti, L.

    2012-04-01

    In Fall 2000, the Po River (Italy) experienced a 100-yr return period flood that resulted in a 1-25 cm-thick deposit in the adjacent prodelta (10-25 m water depth). In the following years, numerous post-depositional perturbations occurred including bioturbation, reworking by waves with heights exceeding 5 m, as well as periods of extremely high and low sediment supply. Cores collected in the central prodelta after the Fall 2000 flood and over the following 9 yr, allowed characterization of the event-strata in their initial state and documentation of their subsequent evolution. Sedimentological characteristics were investigated using X-radiographs and sediment texture analyses, whereas the composition of sedimentary organic matter (OM) was studied via bulk and biomarker analyses, including organic carbon (OC), total nitrogen (TN), carbon stable isotope composition (δ13C), lignin phenols, cutin-products, p-hydroxy benzenes, benzoic acids, dicarboxylic acids, and fatty acids. The 9-yr time-series analysis indicated that roughly the lower half of the original event bed was preserved in the sediment record. Conversely, the upper half of the deposit experienced significant alterations including bioturbation, addition of new material, as well as coarsening. Comparison of the recently deposited material with 9-yr old preserved strata represented a unique natural laboratory to investigate the diagenesis of sedimentary OM in a non-steady system. Bulk data indicated that OC and TN were degraded at similar rates (loss ∼17%) whereas biomarkers exhibited a broad spectrum of reactivities (loss from ∼6% to ∼60%) indicating selective preservation during early diagenesis. Given the relevance of episodic sedimentation in several margins, this study has demonstrated the utility of event-response and time-series sampling of the seabed for understanding the early diagenesis in non-steady conditions.

  13. Southern company energy storage study :

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  14. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  15. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy

    2000-11-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  16. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Komoshvili, K.; Cuperman, S.

    2000-01-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  17. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baharin, R; Hobson, P R; Smith, D R, E-mail: ruzalina.baharin@brunel.ac.u [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  18. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    International Nuclear Information System (INIS)

    Baharin, R; Hobson, P R; Smith, D R

    2010-01-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  19. Sputter deposition of indium tin oxide onto zinc pthalocyanine: Chemical and electronic properties of the interface studied by photoelectron spectroscopy

    Science.gov (United States)

    Gassmann, Jürgen; Brötz, Joachim; Klein, Andreas

    2012-02-01

    The interface chemistry and the energy band alignment at the interface formed during sputter deposition of transparent conducting indium tin oxide (ITO) onto the organic semiconductor zinc phtalocyanine (ZnPc), which is important for inverted, transparent, and stacked organic light emitting diodes, is studied by in situ photoelectron spectroscopy (XPS and UPS). ITO was sputtered at room temperature and a low power density with a face to face arrangement of the target and substrate. With these deposition conditions, no chemical reaction and a low barrier height for charge injection at this interface are observed. The barrier height is comparable to those observed for the reverse deposition sequence, which also confirms the absence of sputter damage.

  20. Modified energy-deposition model, for the computation of the stopping-power ratio for small cavity sizes

    International Nuclear Information System (INIS)

    Janssens, A.C.A.

    1981-01-01

    This paper presents a modification to the Spencer-Attix theory, which allows application of the theory to larger cavity sizes. The modified theory is in better agreement with the actual process of energy deposition by delta rays. In the first part of the paper it is recalled how the Spencer-Attix theory can be derived from basic principles, which allows a physical interpretation of the theory in terms of a function describing the space and direction average of the deposited energy. A realistic model for the computation of this function is described and the resulting expression for the stopping-power ratio is calculated. For the comparison between the Spencer-Attix theory and this modified expression a correction factor to the ''Bragg-Gray inhomogeneous term'' has been defined. This factor has been computed as a function of cavity size for different source energies and mean excitation energies; thus, general properties of this factor have been elucidated. The computations have been extended to include the density effect. It has been shown that the computation of the inhomogeneous term can be performed for any expression describing the energy loss per unit distance of the electrons as a function of their energy. Thus an expression has been calculated which is in agreement with a quadratic range-energy relationship. In conclusion, the concrete procedure for computing the stopping-power ratio is reviewed

  1. Studies of internal stress in diamond films prepared by DC plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Wang Wanlu; Gao Jinying; Liao Kejun; Liu Anmin

    1992-01-01

    The internal stress in diamond thin films deposited by DC plasma CVD was studied as a function of methane concentration and deposited temperature. Experimental results have shown that total stress in diamond thin films is sensitive to the deposition conditions. The results also indicate that the compressive stress can be explained in terms of amorphous state carbon and hydrogen, and tensile stress is ascribed to the grain boundary relaxation model due to high internal surface area and microstructure with voids

  2. Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study

    OpenAIRE

    Aguilera, Felipe; Layana, Susana; Rodríguez-Díaz, Augusto; González, Cristóbal; Cortés, Julio; Inostroza, Manuel

    2016-01-01

    A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and characteristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the pres...

  3. Modeling study of deposition locations in the 291-Z plenum

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Glissmeyer, J.A.

    1994-06-01

    The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling of particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration

  4. Multi-model study of HTAP II on sulfur and nitrogen deposition

    Science.gov (United States)

    Tan, Jiani; Fu, Joshua S.; Dentener, Frank; Sun, Jian; Emmons, Louisa; Tilmes, Simone; Sudo, Kengo; Flemming, Johannes; Eiof Jonson, Jan; Gravel, Sylvie; Bian, Huisheng; Davila, Yanko; Henze, Daven K.; Lund, Marianne T.; Kucsera, Tom; Takemura, Toshihiko; Keating, Terry

    2018-05-01

    This study uses multi-model ensemble results of 11 models from the second phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modeled wet deposition is evaluated with observation networks in North America, Europe and East Asia. The modeled results agree well with observations, with 76-83 % of stations being predicted within ±50 % of observations. The models underestimate SO42-, NO3- and NH4+ wet depositions in some European and East Asian stations but overestimate NO3- wet deposition in the eastern United States. Intercomparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows that HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modeled dry deposition is generally higher than the inferential data calculated by observed concentration and modeled velocity in North America, but the inferential data have high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % in continental regions and 51 % in the ocean (19 % of which coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. About 65 % of N is deposited in continental regions, and 35 % in the ocean (15 % of which coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Comparing our results to the results in 2001 from HTAP I, we find that the global distributions of S and N deposition have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44 %). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia

  5. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    Science.gov (United States)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its

  6. Experimental study and modelling of deuterium thermal release from Be-D co-deposited layers

    Science.gov (United States)

    Baldwin, M. J.; Schwarz-Selinger, T.; Doerner, R. P.

    2014-07-01

    A study of the thermal desorption of deuterium from 1 µm thick co-deposited Be-(0.1)D layers formed at 330 K by a magnetron sputtering technique is reported. A range of thermal desorption rates 0 ⩽ β ⩽ 1.0 K s-1 are explored with a view to studying the effectiveness of the proposed ITER wall and divertor bake procedure (β = 0 K s-1) to be carried out at 513 and 623 K. Fixed temperature bake durations up to 24 h are examined. The experimental thermal release data are used to validate a model input into the Tritium Migration and Analysis Program (TMAP-7). Good agreement with experiment is observed for a TMAP-7 model incorporating trap populations of activation energies for D release of 0.80 and 0.98 eV, and a dynamically computed surface D atomic to molecular recombination rate.

  7. The study on microb and organic metallogenetic process of the interlayer oxidized zone uranium deposit. A case study of the Shihongtan uranium deposit in Turpan-Hami basin

    International Nuclear Information System (INIS)

    Qiao Haiming; Shang Gaofeng

    2010-01-01

    Microbial and organic process internationally leads the field in the study of metallogenetic process presently. Focusing on Shi Hongtan uranium deposit, a typical interlayer oxidized zone sandstone-type deposit, this paper analyzes the geochemical characteristics of microb and organic matter in the deposit, and explores the interaction of microb and organic matter. It considers that the anaerobic bacterium actively takes part in the formation of the interlayer oxidized zone, as well as the mobilization and migration of uranium. In the redox (oxidation-reduction) transition zone, sulphate-reducing bacteria reduced sulphate to stink damp, lowing Eh and acidifying pH in the groundwater, which leads to reducing and absorbing of uranium, by using light hydrocarbon which is the product of the biochemical process of organism and the soluble organic matter as the source of carbon. The interaction of microb and organic matter controls the metallogenetic process of uranium in the deposit. (authors)

  8. A field study of pollutant deposition in radiation fog

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, J.M.; Jacob, D.J.; Munger, J.W.; Hoffman, M.R.

    1986-04-01

    Deposition during fog episodes can make a significant contribution to the overall flux of pollutants in certain ecosystems. Furthermore, when atmospheric stagnation prevents normal ventilation in a region, fog deposition may become the main route of pollutant removal. Fogs can consequently exert dominant control over pollutant levels in certain atmospheres. The southern San Joaquin Valley (SJV) of California is a region prone to wintertime episodes of atmospheric stagnation. These lead to elevated pollutant concentrations and/or dense, widespread fogs. Major oil-recovery operations plus widespread agricultural and livestock feeding activities are important sources of SO/sub 2/, NO/sub X/ and NH/sub 3/ in the valley. A multifaceted program of field monitoring was conducted in the SJV during the winter 1984-1985, focusing on aspects of pollutant scavenging and removal in the fog-laden atmosphere. Concentrations of major species were measured in gas, dry aerosol and fogwater phases. In addition, depositional fluxes were monitored by surrogate-surface methods. These measurements were employed to directly assess the magnitude of removal enhancement by fog.

  9. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    Science.gov (United States)

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  10. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar....... According to the model, the predominant tantalum growth species is TaCl3. The temperature is shown to have a pronounced effect onthe morphology and rate of deposition of the tantalum and an apparent change in deposition mechanism occurs between 850–900 °C, resulting in the deposition rate at 900 °C being...

  11. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    Science.gov (United States)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  12. COREL, Ion Implantation in Solids, Range, Straggling Using Thomas-Fermi Cross-Sections. RASE4, Ion Implantation in Solids, Range, Straggling, Energy Deposition, Recoils. DAMG2, Ion Implantation in Solids, Energy Deposition Distribution with Recoils

    International Nuclear Information System (INIS)

    Brice, D. K.

    1979-01-01

    1 - Description of problem or function: COREL calculates the final average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 calculates the instantaneous average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 also calculates the instantaneous rate at which the projectile is depositing energy into atomic processes (damage) and into electronic processes (electronic excitation), the average range of target atom recoils projected onto the direction of motion of the projectiles, and the standard deviation in the recoil projected range. DAMG2 calculates the distribution in depth of the energy deposited into atomic processes (damage), electronic processes (electronic excitation), or other energy-dependent quality produced by energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. 2 - Method of solution: COREL: The truncated differential equation which governs the several variables being sought is solved through second-order by trapezoidal integration. The energy-dependent coefficients in the equation are obtained by rectangular integration over the Thomas-Fermi elastic scattering cross section. RASE4: The truncated differential equation which governs the range and straggling variables is solved through second-order by trapezoidal integration. The energy

  13. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  14. Studies in medium energy physics

    International Nuclear Information System (INIS)

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  15. Pulp and Paper Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The study provides energy estimates for the following four cases: current average mill energy consumption, state-of-the-art art mill energy consumption, mill energy consumption if advanced technologies requiring further R&D were employed, and theoretical minimum mill energy consumption.

  16. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Science.gov (United States)

    Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka

    2013-11-01

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  17. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hao, E-mail: haolei@imr.ac.cn [State Key Laboratory for Corrosion and Protection, Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Meihan [College of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka [Center for Hyper Media Research, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa 243-0297 (Japan)

    2013-11-15

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  18. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com [Damascus University Faculty of Science, Department of physics, Homs (Syrian Arab Republic); Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com [Al –Mustansiriyah University, College of Education, Department of physics, Baghdad (Iraq)

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  19. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  20. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  1. Morphological Characteristics of Au Films Deposited on Ti: A Combined SEM-AFM Study

    Directory of Open Access Journals (Sweden)

    Francesco Ruffino

    2018-03-01

    Full Text Available Deposited Au films and coatings are, nowadays, routinely used as active or passive elements in several innovative electronic, optoelectronic, sensing, and energy devices. In these devices, the physical properties of the Au films are strongly determined by the films nanoscale structure. In addition, in these devices, often, a layer of Ti is employed to promote adhesion and, so, influencing the nanoscale structure of the deposited Au film. In this work, we present experimental analysis on the nanoscale cross-section and surface morphology of Au films deposited on Ti. In particular, we sputter-deposited thick (>100 nm thickness Au films on Ti foils and we used Scanning Electron Microscopy to analyze the films cross-sectional and surface morphology as a function of the Au film thickness and deposition angle. In addition, we analyzed the Au films surface morphology by Atomic Force Microscopy which allowed quantifying the films surface roughness versus the film thickness and deposition angle. The results establish a relation between the Au films cross-sectional and surface morphologies and surface roughness to the film thickness and deposition angle. These results allow setting a general working framework to obtain Au films on Ti with specific morphological and topographic properties for desired applications in which the Ti adhesion layer is needed for Au.

  2. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  3. Impinging jet study of the deposition of colloidal particles on synthetic polymer (Zeonor)

    DEFF Research Database (Denmark)

    Vlček, Jakub; Lapčík, Lubomír; Cech, Jiri

    2014-01-01

    In this study, an impinging jet deposition experiments were performed on synthetic polymer (Zeonor) original and by micro-embossing modified substrates with exactly defined topology as confirmed by AFM and SEM. Deposition experiments were performed at ambient temperature and at selected flow regi...

  4. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  5. Measurements of the Energy Deposition Profile for 238U Ions with Energy 500 and 950 MEV/U in Stainless Steel and Copper Targets

    CERN Document Server

    Mustafin, Edil; Gnutov, A; Golubev, Alexander; Hofmann, Ingo; Kantsyrev, Alexei; Kunin, Andrey; Latysheva, Ludmila N; Luckjashin, Victor; Panova, Yulia; Schardt, Dieter; Sobolevskiy, Nikolai; Vatulin, Vladimir; Weyrich, Karin

    2005-01-01

    Sub-millimeter wall thickness is foreseen for the vacuum tubes in the magnets of the superconducting dipoles of the SIS100 and SIS300 of the FAIR Project. The Bragg peak of the energy deposition by the U ions in these walls may lie dangerously close to the superconducting cables. Thus the precise knowledge of the dE/dx profile is essential for estimating the heat load by the lost ions in the vicinity of the superconducting wires. Here we present the results of the measurement of the U ion beam energy deposition profile in Cu and stainless steel targets and compare the measured data with the Monte-Carlo simulation using the SHIELD code.

  6. Analysis of the energy transport and deposition within the reaction chamber of the Prometheus inertial fusion energy reactor

    International Nuclear Information System (INIS)

    Eggleston, J.E.; Abdou, M.A.; Tillack, M.S.

    1995-01-01

    The thermodynamic response of the Prometheus reactor chamber was analyzed and, from this analysis, a simplified thermodynamic response model was developed for parametric studies on this conceptual reactor design. This paper discusses the thermodynamic response of the cavity gas and models the condensation/evaporation of vapor to and from the first wall. Models of X-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. It was found that the gas absorbs enough energy to become partially ionized. To treat this problem, methods developed by Zel'dovich and Raizer are used in modeling the internal energy and the radiative heat flux of the vapor.From this analysis, RECON was developed, which runs with a relatively short computational time, yet retains enough accuracy for conceptual reactor design calculations. The code was used to determine whether the reactor designs could meet the stringent mass density limits that are placed on them by the physics of beam propagation through matter. RECON was also used to study the effect that the formation of a local dry spot would have on the first wall of the reactor. It was found that, for a typical reactor lifetime of 30 years, the first wall could not have a dry spot over any one section for more than 15.5 min for the laser driver design and 4.5 min for the heavy ion driver design. These times are relatively short, which implies that there is a need to keep the liquid film attached at all times. (orig.)

  7. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    Science.gov (United States)

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, pPAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  9. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  10. An oxygen isotope study on hydrothermal sources of granite-type uranium deposits in South China

    International Nuclear Information System (INIS)

    Yongfei, Z.

    1987-01-01

    The usefulness of oxygen isotope measurements in solving problems of hydrothermal sources has been demonstrated in a number of detailed studies of the granite type uranium deposits in this paper. Remarkly the granite-type uranium deposits in Southr China have been shown to have formed from magmatic water, meteoric water, of mixtures of both the above, and origin of waters in the ore-forming fluid may be different for differing uranium deposits ore differing stages of the mineralization. Consequences obtained in this study for typical uranium deposits of different age and geologic sitting agree well with that obtained by other geologic-geochemical investigation. Furthermore, not only meteoric water is of importance to origin and evolution of the ore-forming fluid, but also mixing of waters from different sources is considered to be one of the most characteristic features of many hydrothermal uranium deposits related to granitoids or volcanics. (C.D.G.) [pt

  11. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  12. Influence of plasma-induced energy deposition effects, the equation of state, thermal ionization, pulse shaping, and radiation on ion-beam-driven expansions of plane metal targets

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1986-01-01

    In a previous paper by Long and Tahir [Phys. Fluids 29, 275 (1986)], the motion of plane targets irradiated by ion beams whose energy deposition was assumed to be independent of the ion energy, and the temperature and density of the plasma, was analyzed. In this paper, the analytic solution is extended in order to include the effects of a temperature-and density-dependent energy deposition as a result of electron excitation, an improved equation of state, thermal ionization, a pulse shape, and radiation losses. The change in the energy deposition with temperature and density leads to range shortening and an increased power deposition in the target. It is shown how the analytic theory can be used to analyze experiments to measure the enhanced energy deposition. In order to further analyze experiments, numerical simulations are presented which include the plasma-induced effects on the energy deposition. It is shown that since the change in the range is due to both decrease in density and the increase in temperature, it is not possible to separate these two effects in present experiments. Therefore, the experiments which measure the time-dependent energy of the ions emerging from the back side of a plane target do not as yet measure the energy loss as a function of the density and temperature of the plasma or of the energy of the ion, but only an averaged loss over certain ranges of these physical quantities

  13. The development of the Ptolemais lignite deposit, present situation and future perspective of the electrical energy market (Greece)

    International Nuclear Information System (INIS)

    Kavourides, Kostas

    1997-01-01

    PPC is by far the major producer of solid fuels in Greece. Currently the known exploitable reserves of solid fuels, are 4,0 billions tones of lignite and 4 billion cubic meters of peat. Mining of Lignite in Greece started in 1951 at the Aliveri underground mine and was continued at the open cast mines at Ptolemais (1955) and Megalopolis (1919). For more than 45 years. PPC has successfully exploited the Greece Lignite deposit for the production of electricity in order to satisfy the demand in Greece. Today PPC produces 60 million tons of lignite and handles approximately 275 million cubic meters of masses (overburden, lignite and interculated) per year. Lignite is the main energy resource in Greece and its combustion provides 75-80% of the electrical energy consumed in Greece.The Lignite Center of Ptolemais - Amyndeon (LCP-A) operated by the Greece PPC is located in northern Greece, about 110 km west of the city of Thessaloniki. The lignite deposits under exploitation cover an area. of 120 km 2 including 4000 Mt of proven geological reserves and 2700 Mt of exploitable lignite under current economic and technological criteria. Today LCP-A manages six active mines which in 1997 have a rate of handling 245 mil cubic meter of material and producing approx. 48 mil for of lignite. The continuous mining method which employs BWES, conveyors and strackers is the principal mining method used in all the lignite mines at the Ptolemais-Amyndeon Lignite Center. The implementation of selective mining procedures as well as discontinuous and /or combined mining methods differentiates the mining technology at the LCP-A from the respective technology applied in Germany lignite mines. The quality properties suggest that the lignite deposits in Greece are among the world's worst quality deposits exploited for energy production, where approximately 2 kg of lignite are consumed per I kWh of generated power. The main advantages of PPC'S coal orientated development program are the following

  14. Fast Waves Mode Conversion and Energy Deposition in Simulated, Pre-Heated, Neoclassical, Tight Aspect Ratio Tokamak Plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1999-01-01

    Some basic aspects of wave-plasma interaction of interest for tight aspect ratio spherical tokamaks are investigated theoretically. The following scenario is considered: A. Fast magnetosonic waves are launched by an external antenna into a simulated spherical Tokamak plasma; these waves are converted to Alfven waves at points (layer) satisfying the Alfven resonance condition. B. The simulated spherical tokamaks-plasma has a circular cross-section and toroidicity effects are simulated by Grad-Shafranov type, radially dependent axial magnetic field and its shear. (J. Actual equilibrium profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. D. The study is based on the numerical solution of the full e.m. wave equation which includes a quite general resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. Two kinds of results will be presented: I. Proofs validating the computational algorithm used and including convergence and energy conservation. II. Exact quantitative results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited p over . The dependence of the results on the launched wave characteristics (wave numbers, frequency and intensity) as well as on those of the equilibrium plasma (equilibrium current, neoclassical resistivity and electron inertia) will be discussed

  15. The distribution of urate deposition within the extremities in gout: a review of 148 dual-energy CT cases

    International Nuclear Information System (INIS)

    Mallinson, Paul I.; Reagan, Adrian C.; Munk, Peter L.; Ouellette, Hugue; Nicolaou, Savvas; Coupal, Tyler

    2014-01-01

    Clinical detection of gout can be difficult due to co-existent and mimicking arthropathies and asymptomatic disease. Understanding of the distribution of urate within the body can aid clinical diagnosis and further understanding of the resulting pathology. Our aim was to determine this distribution of urate within the extremities in patients with gout. All patients who underwent a four-limb dual-energy computed tomography (DECT) scan for suspected gout over a 2-year period were identified (n = 148, 121 male, 27 female, age range, 16-92 years, mean = 61.3 years, median = 63 years). The reports of the positive cases were retrospectively analyzed and the locations of all urate deposition recorded and classified by anatomical location. A total of 241 cases met the inclusion criteria, of which 148 cases were positive. Of these, 101 (68.2 %) patients had gout in the foot, 81 (56.1 %) in the knee, 79 (53.4 %) in the ankle, 41 (27.7 %) in the elbow, 25 (16.9 %) in the hand, and 25 (16.9 %) in the wrist. The distribution was further subcategorized for each body part into specific bone and soft tissue structures. In this observational study, we provide for the first time a detailed analysis of extremity urate distribution in gout, which both supports and augments to the current understanding based on clinical and microscopic findings. (orig.)

  16. The distribution of urate deposition within the extremities in gout: a review of 148 dual-energy CT cases

    Energy Technology Data Exchange (ETDEWEB)

    Mallinson, Paul I. [Vancouver General Hospital, Radiology Department, Vancouver (Canada); Vancouver General Hospital, Clinical Fellow in Musculoskeletal Radiology, Vancouver, BC (Canada); Reagan, Adrian C.; Munk, Peter L.; Ouellette, Hugue; Nicolaou, Savvas [Vancouver General Hospital, Radiology Department, Vancouver (Canada); Coupal, Tyler [McMaster University, De Groote School of Medicine, Hamilton, Ontario (Canada)

    2014-03-15

    Clinical detection of gout can be difficult due to co-existent and mimicking arthropathies and asymptomatic disease. Understanding of the distribution of urate within the body can aid clinical diagnosis and further understanding of the resulting pathology. Our aim was to determine this distribution of urate within the extremities in patients with gout. All patients who underwent a four-limb dual-energy computed tomography (DECT) scan for suspected gout over a 2-year period were identified (n = 148, 121 male, 27 female, age range, 16-92 years, mean = 61.3 years, median = 63 years). The reports of the positive cases were retrospectively analyzed and the locations of all urate deposition recorded and classified by anatomical location. A total of 241 cases met the inclusion criteria, of which 148 cases were positive. Of these, 101 (68.2 %) patients had gout in the foot, 81 (56.1 %) in the knee, 79 (53.4 %) in the ankle, 41 (27.7 %) in the elbow, 25 (16.9 %) in the hand, and 25 (16.9 %) in the wrist. The distribution was further subcategorized for each body part into specific bone and soft tissue structures. In this observational study, we provide for the first time a detailed analysis of extremity urate distribution in gout, which both supports and augments to the current understanding based on clinical and microscopic findings. (orig.)

  17. Studies of tritiated co-deposited Layers in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Ascione, G.; Carpe, A.; Causey, R.A.; Hayashi, T.; Hogan, J.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Wampler, W.R.; Young, K.M.

    2000-01-01

    Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons, a stainless steel shutter and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.56 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling

  18. Studies of tritiated co-deposited layers in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Ascione, G.; Carpe, A.; Causey, R.A.; Hayashi, T.; Hogan, J.; Langish, S.; Nishi, M.; Shu, W.M.; Wampler, W.R.; Young, K.M.

    2000-01-01

    Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons, a stainless steel shutter and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.56 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling

  19. Studies of tritiated co-deposited layers in TFTR

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Ascione, G.; Causey, R.A.; Hayaski, T.; Hogan, J.; Nishi, M.; Shu, W.M.; Wampler, William R.; Young, K.M.

    2000-01-01

    Plasma facing components in TFTR contain an important record of plasma wall interactions in reactor grade DT plasmas. Tiles, flakes, wall coupons and dust samples have been retrieved from the TFTR vessel for analysis. Selected samples have been baked to release tritium and assay the tritium content. The in-vessel tritium inventory is estimated to be 0.5 g and is consistent with the in-vessel tritium inventory derived from the difference between tritium fueling and tritium exhaust. Relatively high concentrations of tritium were found at the top and bottom of the bumper limiter, as predicted by earlier BBQ modeling. The distribution of tritium on the limiter and vessel wall showed complex patterns of co-deposition

  20. Radioactive waste disposal and study of mineral deposit of uranium

    International Nuclear Information System (INIS)

    Doi, Kazumi

    2003-01-01

    To realize high level radioactive waste disposal, it is need to guarantee with high reliability safety of isolation of radioactive waste during some ten thousand years. There are two important factors related to geophysics such as ground water and diastrophism. The problems to be solved in the present point are followings; 1) increasing data of characteristics of radionuclide within high level radioactive waste, 2) development of undisruptive exploration technologies of lithosphere, especially formal fabric of pore and 3) improvement of protection technologies of diastrophism. Our country has to make efforts to realize the safety of isolation of radioactive waste on the basis of researches, by means of keeping them in the strong facilities without disposal. The formation of concentrated uranium in the mineral deposit was explained in relation with high level radioactive waste disposal. (S.Y.)

  1. A Study of CRUD Deposition Processing and Composition Materials

    International Nuclear Information System (INIS)

    Jung, Yanghong; Kim, H. M.; Yoo, B. O.; Baik, S. J.; Ahn, S. B.

    2013-07-01

    After cutting and drilling the spent fuel, we made a scrapping crud from the surface on the cladding. To scrap crud on the cladding surface, we made a special apparatus which has a 1/1,000 mm accuracy, but we could not taken crud. Thus, we effort the most possible use equipment to take crud samples, but unfortunately failed to get crud. We assume the crud would be dissolved. Because of the two fuel cladding, 17ACE7 and Plus 7, which were storage in PIEF pool for few years, it would be chemical reaction between pool water and crud deposited on the cladding. But we could not know the reason clearly. Therefore, it was impossible to analysis the crud, after that this project had to be stopped

  2. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  3. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  4. The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona

    Science.gov (United States)

    Reep, Jeffrey W.; Polito, Vanessa; Warren, Harry P.; Crump, Nicholas A.

    2018-04-01

    Solar flares form and release energy across a large number of magnetic loops. The global parameters of flares, such as the total energy released, duration, physical size, etc., are routinely measured, and the hydrodynamics of a coronal loop subjected to intense heating have been extensively studied. It is not clear, however, how many loops comprise a flare, nor how the total energy is partitioned between them. In this work, we employ a hydrodynamic model to better understand the energy partition by synthesizing Si IV and Fe XXI line emission and comparing to observations of these lines with the Interface Region Imaging Spectrograph (IRIS). We find that the observed temporal evolution of the Doppler shifts holds important information on the heating duration. To demonstrate this, we first examine a single loop model, and find that the properties of chromospheric evaporation seen in Fe XXI can be reproduced by loops heated for long durations, while persistent redshifts seen in Si IV cannot be reproduced by any single loop model. We then examine a multithreaded model, assuming both a fixed heating duration on all loops and a distribution of heating durations. For a fixed heating duration, we find that durations of 100–200 s do a fair job of reproducing both the red- and blueshifts, while a distribution of durations, with a median of about 50–100 s, does a better job. Finally, we compare our simulations directly to observations of an M-class flare seen by IRIS, and find good agreement between the modeled and observed values given these constraints.

  5. Surface free energy of CrN x films deposited using closed field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Sun, C.-C.; Lee, S.-C.; Dai, S.-B.; Fu, Y.-S.; Wang, Y.-C.; Lee, Y.-H.

    2006-01-01

    CrN x thin films have attracted much attention for semiconductor IC packaging molding dies and forming tools due to their excellent hardness, thermal stability and non-sticking properties (low surface free energy). However, few data has been published on the surface free energy (SFE) of CrN x films at temperatures in the range 20-170 deg. C. In this study CrN x thin films with CrN, Cr(N), Cr 2 N (and mixture of these phases) were prepared using closed field unbalanced magnetron sputtering at a wide range of Cr +2 emission intensity. The contact angles of water, di-iodomethane and ethylene glycol on the coated surfaces were measured at temperatures in the range 20-170 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the CrN x films and their components (e.g., dispersion, polar) were calculated using the Owens-Wendt geometric mean approach. The influences of CrN x film surface roughness and microstructure on the surface free energy were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The experimental results showed that the lowest total SFE was obtained corresponding to CrN at temperature in 20 deg. C. This is lower than that of Cr(N), Cr 2 N (and mixture of these phases). The total SFE, dispersive SFE and polar SFE of CrN x films decreased with increasing surface temperature. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness

  6. Deposition of zinc on deposits on tubes in combustion systems - a thermodynamic study; Deponering av zink i belaeggningar paa panntuber - en termodynamisk studie

    Energy Technology Data Exchange (ETDEWEB)

    Nolaeng, Bengt; Sjoeblom, Rolf

    2011-02-15

    The use of recovered wood based fuels sometimes leads to a substantial increase in the rate of corrosion with outages and increase in maintenance costs as a consequence. Therefore, Vaermeforsk has financed two framework programmes on recovered wood based fuels. All results, except those from thermodynamical calculations, support the conclusion that enhanced levels of zinc and chlorine is one of the most important reasons for the development of harmful deposits. The system zinc chloride - potassium chloride contains several intermediate phases, out of which K{sub 2}ZnCl{sub 4} has a considerably higher melting point compared to pure zinc chloride. This provides ground for the suspicion that there may be synergetic effects between potassium and zinc and that condensation from the gas phase therefore might take place at a temperature which is higher than that which has been reported earlier. The purpose of the present study is to investigate the correctness of this hypothesis by means of thermodynamical calculations. As a first step, the energy of the intermediate phase K{sub 2}ZnCl{sub 4} was modelled utilizing results from electrochemical measurements in salt melt. The thermodynamical calculations were conducted using software which had been developed by BeN Systems including a dedicated database. Thus, all calculations have been carried out independently of those performed previously. In order to ensure full comparability, some calculations were carried out using the same input parameters as used previously and the results were essentially identical. After this, thermodynamical calculations were carried out using a database which included the intermediate phase K{sub 2}ZnCl{sub 4}. The results show that the influence of this phase corresponds to an increase in condensation temperature for zinc chloride with more than 200 deg C. A prerequisite for the formation of this phase is that the amount of available chlorine exceeds that of potassium. Similar effects can be

  7. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  8. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    Science.gov (United States)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  9. isotopic chronological study on gold-stibium deposits in Bayinbuluke area of Tianshan mountains

    International Nuclear Information System (INIS)

    Chen Fuwen; Li Huaqin

    2003-01-01

    Several gold-stibium deposits have recently been found in Bayinbuluke area of Tianshan Mountains, such as the Dashankou gold deposit and Chahansala stibium deposit. isotopic chronological study of mineralization show that the fluid inclusion Rb-Sr isochron age for gold-bearing pyrite-quartz veins and pyrite-limonite-quartz veins from the Dashankou gold mine are 354 ± 8.1 Ma (2 σ) and 344 ± 21 Ma (2 σ), respectively. The two ages are consistent in test errors, indicating the gold deposit was formed in early Carboniferous and related to regional shearing; the fluid inclusion Rb-Sr isochron age for quartz-stibnite veins and quartz-tetrahedrite-bismuthinite-stibnite veins from the Chahansala stibium mine is 257 ± 23 Ma (2 σ), indicating the deposit was formed during the late Hercynian-Early Indosinian Period and related to intracontinental deformation. (authors)

  10. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  11. A fundamental study of fission product deposition on the wall surface

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sakashita, H.; Sugiyama, K.

    1987-01-01

    Deposition of soluble matters on wall surfaces is studied in the present report for the purpose to understand a mechanism of fission product deposition on the wall surface in a molten salt reactor. Calcium carbonate solution is used to observe the fundamental mechanism of deposition. The experiments are performed under conditions of turbulent flow of the solution over a heated wall. According to the experimental results a model is proposed to estimate deposition rate. The model consists of two parts, one is the initial nucleus formation on a clean wall surface and the other is the constant increase of deposition succeeding to the first stage. The model is assessed by comparing it with the experimental results. Both results coincide well in some parameters, but not so well in others. (author)

  12. Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminium oxides for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lucia eIglesias

    2015-03-01

    Full Text Available Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminium doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 µF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.

  13. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  14. Simple Mathematical Models of High Energy Ion Beam Assisted Deposition Concentration Profiles in Binary Thin Films

    Czech Academy of Sciences Publication Activity Database

    Černý, F.; Konvičková, S.; Jech, V.; Hnatowicz, Vladimír

    2011-01-01

    Roč. 11, č. 10 (2011), s. 8936-8942 ISSN 1533-4880 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : SILICON-NITRIDE FILMS * ENHANCED DEPOSITION * IBAD-PROCESS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.563, year: 2011

  15. Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films

    International Nuclear Information System (INIS)

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-01-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi 3 Fe 5 O 12 (BIG) thin films on (100) and (111) Gd 3 Ga 5 O 12 substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films

  16. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  17. A study on electric bicycle energy efficiency

    Directory of Open Access Journals (Sweden)

    Ivan EVTIMOV

    2015-09-01

    Full Text Available The paper presents a construction of an experimental electric bicycle for evaluation of the energy efficiency. The bicycle is equipped with onboard computer which can store the information about motion and energy consumption. The result concerning power, energy consumption, recharging during brake process, etc. are given. Energy consumption for 3 typical city routes is studied.

  18. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  19. A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-03-01

    Full Text Available Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m−2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM in conjunction with Energy Dispersive X-Ray Analysis (EDX, and Electrochemical Impedance Spectroscopy (EIS. At cathodic current densities of 50–100 mA·m−2 where corrosion was still occurring, a clear correlation existed between the iron containing corrosion product and the overlying magnesium hydroxide layer. This revealed that the mapping of magnesium rich areas on a steel surface can be used in the identification of local corrosion sites. At current densities of 150–200 mA·m−2, a layered deposit was shown to occur consisting of an inner magnesium-containing layer and an outer calcium-containing layer. At current densities of 300–400 mA·m−2, intense hydrogen bubbling through macroscopic pores in the deposits gave rise to cracking of the deposited film. Under such conditions deposits do not have a well-defined double layer structure. There is also preferential formation of magnesium-rich compounds near the steel surface at the early stages of polarisation and within the developing pores and cracks of calcareous deposits later on. Based on SEM/EDX investigation of calcareous depositions the impedance model was proposed and used to monitor in situ variations in steel corrosion resistance, and to calculate the thickness of formed deposits using the length of oxygen diffusion paths.

  20. Benefaction studies on the Hasan Celebi magnetite deposit, Turkey

    Science.gov (United States)

    Pressler, Jean W.; Akar, Ali

    1972-01-01

    Bench-scale and semicontinuous tests were performed on surface, trench, and diamond drill core samples from the Hasan Celebi low-grade magnetite deposit to determine the optimum benefication procedures utilizing wet magnetic separation techniques. Composite core samples typically contain about 27 percent recoverable magnetite and require crushing and grinding through 1 mm in size to insure satisfactory separation of the gangue from the magnetite. Regrinding and cleaning the magnetite concentrate to 80 percent minus 150-mesh is necessary to obtain an optimum of 66 percent iron. Semicontinuous pilot-plant testing with the wet magnetic drum using the recycled middling technique indicates that as much as 83 percent of the acid-soluble iron can be recovered into a concentrate containing 66 percent iron, with minimum deleterious elements. This represents 27 weight percent of the original ore. Further tests will continue when the Maden Tetkik ve Arama Enstitusu (MTA) receives 24 tons of bulk sample from an exploratory drift and cross-cut now being driven through a section of the major reserve area.

  1. Response of Sphagnum fuscum to Nitrogen Deposition: A Case Study of Ombrogenous Peatlands in Alberta, Canada

    Science.gov (United States)

    Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.

    2003-01-01

    Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.

  2. Atmospheric organic nitrogen deposition: Analysis of nationwide data and a case study in Northeast China

    International Nuclear Information System (INIS)

    Jiang, C.M.; Yu, W.T.; Ma, Q.; Xu, Y.G.; Zou, H.; Zhang, S.C.; Sheng, W.P.

    2013-01-01

    The origin of atmospheric dissolved organic nitrogen (DON) deposition is not very clear at present. Across China, the DON deposition was substantially larger than that of world and Europe, and we found significant positive correlation between contribution of DON and the deposition flux with pristine site data lying in outlier, possibly reflecting the acute air quality problems in China. For a case study in Northeast China, we revealed the deposited DON was mainly derived from intensive agricultural activities rather than the natural sources by analyzing the compiled dataset across China and correlating DON flux with NH 4 + –N and NO 3 − –N. Crop pollens and combustion of fossil fuels for heating probably contributed to summer and autumn DON flux respectively. Overall, in Northeast China, DON deposition could exert important roles in agro-ecosystem nutrient management and carbon sequestration of natural ecosystems; nationally, it was suggested to found rational network for monitoring DON deposition. -- Highlights: •Contribution and deposition flux of DON across China was positively correlated. •Deposited DON was more influenced by human in China than across the world and Europe. •DON of a farmland in Northeast China was mainly derived from agricultural activities. •Crop pollen and combustion of fossil fuels contributed to summer and autumn DON. •Deposited DON should not be neglected when evaluating its ecological impacts. -- Synthesis of DON deposition across China implied regional importance of anthropogenic sources, and an observation in Northeast China suggested the ecological significances of the DON flux should be considered

  3. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine

  4. Quantum chemical study of the elementary reactions in zirconium oxide atomic layer deposition

    International Nuclear Information System (INIS)

    Widjaja, Yuniarto; Musgrave, Charles B.

    2002-01-01

    Elementary reactions in atomic layer deposition of zirconia using zirconium tetrachloride and water are investigated using the density functional theory. The atomistic mechanisms of the two deposition half cycles on the Zr-OH and Zr-Cl surface sites are investigated. Both half reactions proceed through the formation of stable intermediates, resulting in high barriers for HCl formation. We find that the intermediate stability is lowered as the surface temperature is raised. However, increasing temperature also increases the dissociation free-energy barrier, which in turn results in increased desorption of adsorbed precursors

  5. Directed Energy for Interstellar Study

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to expand our investigations started in our NIAC Phase I of using directed energy to allow the achievement of relativistic flight to pave the way to the...

  6. XRD studies on solid state amorphisation in electroless Ni/P and Ni/B deposits

    International Nuclear Information System (INIS)

    Sampath Kumar, P.; Kesavan Nair, P.

    1996-01-01

    The decomposition of electroless Ni-P and Ni-B deposits on annealing at various temperature is studied using x-ray diffraction techniques employing profile deconvolution and line profile analysis. It appears that solid state amorphisation takes place in the Ni-B deposits in a narrow temperature range just prior to the onset of crystallization of amorphous phase. In the case of Ni-P deposits no evidence for solid state amorphisation could be obtained. Thermodynamic and kinetic considerations also support such a conclusion

  7. Studies on geneses of Lianshanguan granites and Lianshanguan uranium ore deposit

    International Nuclear Information System (INIS)

    Zhang Jiafu; Xu Guoqing; Wang Wenguang

    1994-02-01

    Based on the field work, and through the studies of thin-sections, minerals fluid inclusions, isotope geology, rare-earth elements and U-content in rocks and minerals, it is suggested that Lianshanguan granites are of magmatization genesis with multistage. The genetic model of mineralization of Lianshanguan uranium ore deposit is the magmatization-hydrothermal-filled uranium type. The role of mineralization of uranium ore deposit in that area is discussed. Furthermore, the direction of prospecting and following prospecting criteria for similar deposits in this area are also given

  8. Recent energy studies and energy policies in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Gullu, D.; Caglar, A.; Akdeniz, F. [Karadeniz Technical University, Trabzon (Turkey). Faculty of Education

    2001-07-01

    Currently, considerable attention has been focused on the energy sources and energy studies in Turkey. Indigenous energy consumption accounts for 37% of total energy consumption. The Turkish government's investment needs in the energy sector for the period 2000-2010 will be around 55 billion US dollars. Of this, about 81% is total planning investments. Conventional financing of major infrastructure projects would only increase the amount of foreign credit, thus the Ministry of Energy and Natural Resources (MENR) has conceived other options for financing projects. One option is the so-called Build, Operate, and Transfer (BOT) model, where private investors build and operate private sector generation for certain number of years, at which point they transfer ownership to the state. In June 1996, MENR introduced the Build, Own, and Operate (BOO) financing model. A major dilemma now faced by Turkey is how to invest in new electric power capacity while at the same time adhering to foreign debt ceilings to under lending rules set by the International Monetary Fund. Turkey has to adopt new long-term energy strategies to reduce the share of fossil fuels in the primary energy consumption. Recently, the development of alternative energy sources has been a major focus of the research effort in Turkey.

  9. Simulation of backgrounds in detectors and energy deposition in superconducting magnets at μ+μ- colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Striganov, S.I.

    1996-01-01

    A calculational approach is described to study beam induced radiation effects in detector and storage ring components at high-energy high-luminosity μ + μ - colliders. The details of the corresponding physics process simulations used in the MARS code are given. Contributions of electromagnetic showers, synchrotron radiation, hadrons and daughter muons to the background rates in a generic detector for a 2 x 2 TeV μ + μ - collider are investigated. Four configurations of the inner triplet and a detector are examined for two sources: muon decays and beam halo interactions in the lattice elements. The beam induced power density in superconducting magnets is calculated and ways to reduce it are proposed

  10. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  11. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  12. Numerical study on morphology and solidification characteristics of successive droplet depositions on a substrate

    Science.gov (United States)

    Adaikalanathan, Vimalan

    Successive droplet impingement finds extensive applications in additive manufacturing technologies such as 3D printing, Liquid Metal Jetting and Net Form Manufacturing. Deposition, deformation and solidification of droplets are the constitutive stages in the process which determine the final outcome. Detailed knowledge about the flow behaviour, phase transformation and free surface deformation is required to have a complete understanding and optimization of the process parameters. Experimental research in this field is only limited to imaging techniques and post solidification analysis which only provide superficial information while overlooking most of the governing phenomenon. Knowledge of the physics governing the fluid and thermal behaviours can be applied to study the process with real time data pertaining to flow field, temperature profiles and solidification. However, free surface tracking, surface tension modelling, non-isothermal solidification and convection dominant heat transfer pose mathematical challenges in the solution of the governing equations. Moreover, deposition of droplets on pre-solidified splats or non-flat surfaces requires accurate special attention. The objective of the present work is to model the successive droplet impacts and simultaneous solidification and deformation. The highly non-linear flow field governed by the Navier Stokes equation is solved using a Two Step Projection method. The surface tension effects are accounted for through a Continuum Surface Force technique. One of the crucial elements in the study is the interface tracking algorithm. A Coupled Level Set Volume of Fluid (CLSVOF) method is formulated to give an accurate orientation of the drastically deforming interface and also facilitates generation of multiple droplets in a fixed domain at a user defined frequency, thereby conserving computational resources. The phase change is modelled using an enthalpy formulation of the energy equation with an implicit source term

  13. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    Science.gov (United States)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  14. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    Energy Technology Data Exchange (ETDEWEB)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2016-01-28

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  15. Development of a Zealand White Rabbit Deposition Model to Study Inhalation Anthrax

    Science.gov (United States)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, A.P.; Corley, Richard A.

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits. PMID:26895308

  16. Dosimetry for synchrotron stereotactic radiotherapy: from a macroscopic approach to microscopic energy deposits consideration

    International Nuclear Information System (INIS)

    Edouard, M.

    2010-01-01

    Numerous therapeutic strategies are currently being evaluated to find a curative treatment for high grade glioma. Among them, radiation therapy is partially effective but limited by the insufficient differential effect that can be reached between the dose delivered to the tumor compared to the one received by the healthy tissues. Synchrotron stereotactic radiotherapy aims at increasing this differential effect with a localized dose boost obtained by low energy x-rays stereotactic irradiations (≤ 100 keV) in presence of heavy elements restricted to the target area. This PhD work takes place in the general context of the future clinical trials foreseen at the European Synchrotron Radiation Facility. The first objective was to optimize the dose delivery to the target, at a macroscopic scale. We have demonstrated in particular that an even number of weighted beams was required to homogenize the tumor dose distribution. Microdosimetry studies were then performed to evaluate the dose delivered at the cellular level, taking into account the fine high-Z element distribution. These theoretical results have been compared to in vitro studies. Cell survival studies were performed using either a 3D glioma model (spheroids) or cells irradiated in suspension in an iodinated medium. (author) [fr

  17. Measurement of energy deposition distributions produced in cylindrical geometry by irradiation with 15 MeV neutrons

    International Nuclear Information System (INIS)

    Brandan, M.E.

    1979-01-01

    Cellular survival experiments have shown that the biological damage induced by radiation depends on the density of energy deposition along the trajectory of the ionizing particle. The quantity L is defined to measure the density of energy transfer along a charged particle's trajectory. It is equal to sigma/l, where sigma is the energy transferred to a medium and l is the path length along which the transfer takes place. L is the stochastic quantity whose mean value is the unrestricted linear energy transfer, L/sub infinity/. Measurements of the distribution of L in a thin medium by secondary charged particles from fast neutron irradiation were undertaken. A counter operating under time coincidence between two coaxial cylindrical detectors was designed and built for this purpose. Secondary charged particles enter a gas proportional counter and deposit some energy sigma. Those particles traversing the chamber along a radial trajectory strike a CsI scintillator. A coincidence between both detectors' signals selects a known path length for these events, namely the radius of the cavity. Measurements of L distributions for l = 1 μm in tissue were obtained for 3 and 15 MeV neutron irradiation of a tissue-equivalent target wall and for 15 MeV neutron irradiation of a graphite wall. Photon events were corrected for by measurements with a Pb target wall and 15 MeV neutron irradiation as well as exposure to a pure photon field. The measured TE wall distributions with 15 MeV neutron bombardment show contributions from protons, α-particles, 9 Be and 12 C recoils. The last three comprise the L distribution for irradiation of the graphite wall. The proton component of the measured L distributions at 3 and 15 MeV was compared to calculated LET distributions

  18. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  19. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  20. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  1. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Andrew J; Li Lin [Laser Processing Research Centre, Department of Mechanical, Aerospace and Manufacturing Engineering, University of Manchester Institute of Science and Technology, PO Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2004-07-21

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  2. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bimber, Beth A. [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Hamilton, Reginald F., E-mail: rfh13@psu.edu [Department of Engineering Science and Mechanics, The Pennsylvania State University, 212 Earth-Engineering Sciences Building, University Park, PA 16802 (United States); Keist, Jayme; Palmer, Todd A. [Applied Research Laboratory, The Pennsylvania State University, State College, PA 16804 (United States)

    2016-09-30

    The microstructure and superelasticity in additive manufactured NiTi shape memory alloys (SMAs) were investigated. Using elementally blended Ni and Ti powder feedstock, Ni-rich build coupons were fabricated via the laser-based directed energy deposition (LDED) technique. The build volumes were large enough to extract tensile and compressive test specimens from selected locations for spatially resolving microconstituents and the underlying stress-induced martensitic phase transformation (SIMT) morphology. In the as-deposited condition, X-ray diffraction identified the B2 atomic crystal structure of the austenitic parent phase in NiTi SMAs, and Ni{sub 4}Ti{sub 3} precipitates were the predominant microconstituent identified through scanning electron microscopy. The microstructure exhibited anisotropy, which was characterized by the Ni{sub 4}Ti{sub 3} precipitate morphology being coarsest nearest the substrate, while a finer morphology was observed farthest from the substrate. In-situ full-field deformation measurements calculated using digital image correlation confirmed that the SIMT predominately occurred in the finer precipitate morphology. Heat treatment reduced the degree of anisotropy, and DIC analysis revealed localized SIMT strains increased compared to the as-deposited condition.

  3. Dietary energy source affecting fat deposition mechanism, muscle fiber metabolic and overall meat quality

    Directory of Open Access Journals (Sweden)

    M. Al-Hijazeen

    2017-03-01

    Full Text Available A study was conducted to investigate the effect of two dietary energy sources, soy bean oil, and sucrose on regulatory mechanisms of meat preservation. Twenty one day-old Hubbard commercial broilers were randomly allocated into two dietary treatment groups with six replicates per treatment, and four broilers per replicate. All birds were coded for the influence of energy source: fat based diet (FD, and sugar based diet (SD. Formulated grower diets were isonitrogenous and isocaloric. The chickens were slaughtered and then boneless, skinless ground chicken tight meat was prepared. Both raw and cooked meats were analyzed for lipid and protein oxidation, and sensory panel evaluation. In addition, meat from the small muscles of the raw thigh was used to evaluate other meat quality characteristics. Proximate analyses showed no significant differences between both dietary treatments on protein, ash and moisture percentage values. Meat samples of the group that was fed FD showed higher significant values of both TBARS and total carbonyl at day 7 of storage time. However, samples of the second group (Fed SD showed lower values of both ultimate pH and water separation % using raw thigh meat. The effect of FD treatment on the meat composition appeared clearly especially on fat percentage content. In addition, meat samples obtained from chickens fed SD showed better significant values of the overall acceptability attribute. According to the current findings, sucrose could be an excellent alternative to oil in dietary broilers which improved the meat preservation bio-system, and post-mortem storage stability.

  4. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  5. Fitting by a pearson II function of the spatial deposited energy distribution in superconducting YBaCuO samples calculated by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cruz Inclan, Carlos M.; Leyva Fabelo, Antonio; Alfonso Vazquez, Onexis

    2001-01-01

    The spatial deposited energy distribution inside YBa 2 Cu 3 O 7 superconducting ceramics irradiated with gamma rays were simulated using the codes system EGS4, based on the Monte Carlo method. The obtained distributions evidence a notable inhomogeneity, which may be one of the possible sources of inconsistent results of irradiation studies. The profiles of these distributions show asymmetrical behaviors, which may be fitted satisfactorily through a Pearson II Gamma type function. These fittings are presented in the paper and the behavior of the fitting parameters with the energy of incident photons, its number, and the experimental geometry were studied. The physical signification of each fitting parameters is discussed in the text. The exponent is related to certain mass absorption coefficient when the thick of the sample is sufficiently large

  6. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  7. Rubidium-strontium isotoppe study of Muruntan deposit. 1.Ore vien dating by isochrone technique

    International Nuclear Information System (INIS)

    Kostitsyn, Yu.A.

    1993-01-01

    Hydrothermal viens of Muruntau gold-ore deposit (Central Kyzylkum) have been studies by the isochrone technique. The ages obtained for the quartz-tourmaline (257+13 Ma), quartz-arsenopyrite (230.3+-3.5 Ma) and quartz-adularia (219.4+-4.2 Ma) hydrothermal viens reflect the different stages of the deposit evolution: gold-ore and gold-silver one. Strontium isotope analysis reveals that the matter of hydrothermal viens is originated from the surrounding black schists

  8. Battery energy storage market feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  9. Study of lixiviant damage of a sandstone deposit during in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Liao Wensheng; Wang Limin; Jiang Yan; Jiang Guoping; Tan Yahui

    2014-01-01

    The permeability of sandstone deposit is a key factor for economical uranium recovery during in-situ leaching uranium. Low permeability sandstone uranium deposits behave low push-pull capacity, and show formation damage in leaching operations. It is important to study formation damage of permeability, therefore, and to stabilize even improve the push-pull power of drillholes during in-situ leaching. In this paper, formation damage caused by lixiviants was investigated based on a low permeability sandstone uranium deposit. The resulted showed that, under the conditions of in-situ leaching, the salinity of leaching fluid has no harm to formation permeability, on the contrary, the increment of salinity of lixiviant during in-situ leaching improve the permeability of the deposit. The alkalinity, hydrogen peroxide and productivity of the lixiviant cause no significant formation damage. But the fine particles in the lixiviant shows formation damage significantly, and the quantity of the particles should be controlled during production. (authors)

  10. Energy deposition in liquid metals for D-T, D-D and T-T fusion sources

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Zahakaylo, D.

    1983-01-01

    The nuclear performance of candidate liquid metals: lithium, lead, sodium, potassiu, Na(22%) K(78%), Na(56%) K(44%), is estimated with respect to their neutron and gamma-ray heat deposition rates. Three different neutron sources are considered: DT, DD and TT fusion neutrons. This is intended for the cooling of inertial confinement cavities using fusion pellets with internal tritrium breeding that will possibly eliminate the need to breed tritium in a lithium blanket. Compared to lithium with respect to neutron and gamma energy generation, blanket multiplication and pumping power, it appears that the considered metals can be used only if the environmental and safety advantages from the reduction of the tritium inventory and the avoidance of lithium, outweight the lithium advantages in higher energy production and lower pumping requirement by one to two orders of magnitude. (orig.) [de

  11. Plans for checking hadronic energy depositions in the ATLAS calorimeters with early LHC data using charged particles

    CERN Document Server

    Davidson, N; The ATLAS collaboration

    2009-01-01

    The first data from the ATLAS detector at the Large Hadron Collider (LHC) is due to be collected later this year. This first phase will play a vital role in understanding the detector and its response, in-situ. Jet reconstruction is important for identifying new physics as well as making precision measurements of standard model physics. The fine granularity of the ATLAS calorimeters can be used to gain information about a jet's shape and the classification of energy deposits, which allows a better estimate of the jet energy to be made and in particular correction for the non-compensating nature of the calorimeter using so-called calibration weights. The classification algorithm and weights are presently calculated using simulation. In this presentation we describe an important step in the validation of ATLAS's jet calibration using charged tracks reconstructed in the inner detector and their inter-calibration with the clusters reconstructed in the calorimeters.

  12. Operational Energy Base Camp Studies

    Science.gov (United States)

    2011-08-01

    project for the rehabilitation of an Afghan Ministry of Energy and Water (MEW) biogas plant, which broke ground on 13 December 10. Plant...for public release; distribution is unlimited. Prepared for Headquarters, US Army Corps of Engineers Washington, DC 20314-1000 Under Project ...recommendation or category of recommendations. In this initial stage of work, the Project Delivery Team (PDT) performed a literature review to identify the

  13. Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Halbleib, J.A.

    1983-01-01

    Over the past several years the TIGER series of coupled electron/photon Monte Carlo transport codes has been applied to a variety of problems involving nuclear and space radiations, electron accelerators, and radioactive sources. In particular, they have been used at Sandia to simulate the interaction of electron beams, generated by pulsed-power accelerators, with various target materials for weapons effect simulation, and electron beam fusion. These codes are based on the ETRAN system which was developed for an energy range from about 10 keV up to a few tens of MeV. In this paper we will discuss the modifications that were made to the TIGER series of codes in order to extend their applicability to energies of interest to the high energy physics community (up to 1 GeV). We report the results of a series of benchmark calculations of the energy deposition by high energy electron beams in various materials using the modified codes. These results are then compared with the published results of various experimental measurements and other computational models

  14. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  15. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    International Nuclear Information System (INIS)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli

    2016-01-01

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  17. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shanxi 710049 (China)

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  18. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  19. Study of lead isotopes for investigating the origin of endogenic deposits with special reference to some ore deposits from India

    International Nuclear Information System (INIS)

    Chernyshev, I.V.; Safonov, Yu. G.; Radhakrishna, B.P.; Vasudev, V.N.; Krishna Rao, B.; Deb, M.

    1980-01-01

    The isotope composition of leads from ore deposits in general reflects the age of ore mineralisation and its genetical features. Calculations of the model age from lead isotope data form the basis for genetic reconstructions of Precambrain deposits. Radical improvement in the accuracy of mass spectrometric isotope lead analysis has made possible the employment of two-stage and in some cases more complicated models for genetic reconstructions. Fifteen galena samples from five sulphide and gold-sulphide deposits of the Indian Shield have been selected and determination of lead isotope composition has been carried out in the USSR using recently developed M.I.1320 Mass Spectrometer. The isotopic ratios of galena from Ingaldhal copper deposit are the most primitive among the analysed ores of the Indian Shield. The results of lead isotopic determination have been interpreted in terms of the general theory of 'plumbotectonics'. (auth.)

  20. Energy and momentum deposition to plasmas due to the lower hybrid wave by a finite source

    International Nuclear Information System (INIS)

    Nakajima, Noriyoshi; Abe, Hirotada; Itatani, Ryohei.

    1981-10-01

    Heating and current generation due to the lower hybrid wave are studied using the particle simulation. In contrast with previous work, where only the single mode is treated, main interests of this work are focused on the physical problems on a propagation cone consisting of many Fourier-expanded modes. It is found that the trajectory of the propagation cone is well described up to the lower hybrid resonance layer using both cold plasma approximation and the WKB method. An ion cross-field drift due to the ponderomotive force is observed. It is a main discovery that the modes in the higher side of the spectrum of the antenna play a key role for creation of the ion high energy tail. This process cannot be explained by the linear theory and is called the cascade process judging from the time variation of the damping of each mode. The particle model is significantly improved using the elongated grid and the quadric spatial interpolation. Many applications of this model to the simulations on other problems are expected to be very fruitful in the research of the plasma physics and nuclear fusion. (author)

  1. Evaluation of Beam Loss and Energy Depositions for a Possible Phase II Design for LHC Collimation

    International Nuclear Information System (INIS)

    Lari, L.; Assmann, R.; Bracco, C.; Brugger, M.; Cerutti, F.; Doyle, E.; Ferrari, A.; Keller, L.; Lundgren, S.; Markiewicz, Thomas W.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Smith, J.; Vlachoudis, V.; Weiler, T.

    2011-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  2. Evaluation of Beam Losses And Energy Deposition for a Possible Phase II Design for LHC Collimation

    International Nuclear Information System (INIS)

    Lari, L.; Bracco, C.; Assmann, R.W.; Brugger, M.; Cerutti, F.; Ferrari, A.; Mauri, M.; Redaelli, S.; Sarchiapone, L.; Vlachoudis, V.; Weiler, T.; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, T.W.; Smith, J.C.

    2011-01-01

    The Large Hadron Collider (LHC) beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can survive the expected conditions during LHC stable physics runs, in order to avoid quenches of the SC magnets and to protect other LHC equipments.

  3. Study on the concentration of energy security

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2002-01-01

    'Energy Security' concept has played the central role in Japan's energy policy. However, the definition of the concept is not clear. If energy security will remain a principal policy target, its concept should be clearly defined as a precondition. This dissertation analyzes historical changes in energy security concept and considers their relationship with the development of national security concept in international relations studies. Following an introduction in the first chapter, the second chapter reveals that energy security concept has changed in accord with energy situation and policymakers' concern of the times. As a result, several different definitions of the concept now coexist. The third chapter deals with the relationship between energy security concept and national security concepts in international relations. Three major definitions of energy security concepts correspond to definitions of security concepts by three schools in security theory - realism, liberalism, and globalism. In the fourth chapter, energy security is conceptualized and its policy measures are systematized by addressing the issues appeared in its historical changes and referring to security theory in international relations studies. The fifth chapter discusses the contribution by nuclear energy to Japan's energy security, applying a theoretical framework presented in previous chapters. Characteristics of nuclear energy which enhance energy security are identified, and policy measures for improving those characteristics are proposed. (author)

  4. Study on the deposition patterns of aerosol inhalation scintigraphy, 1; Comparison of the deposition patterns of aerosol inhalation scintigraphy with lung function tests in pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroyuki [Nara Medical Univ., Kashihara (Japan)

    1989-06-01

    The deposition patterns of aerosol inhalation scintigraphies and lung function tests were studied in 102 cases; 64 cases of obstructive pulmonary diseases (19 pulmonary emphysema, 27 diffuse panbronchiolitis, 18 chronic bronchitis) and 38 restrictive pulmonary disease (15 idiopathic interstitial pneumonia, 16 pulmonary asbestosis, 7 interstitial pneumonia due to collagen vascular disease). The deposition patterns were classified into 5 patterns (Type A:normal homogenous distribution; Type B: mildly unhomogenous distribution; Type C: severely unhomogenous distribution mingled with hot spots; Type D: non-hilar hot spots; and Type E: hilar hot spots). The deposition patterns of restrictive pulmonary diseases were markedly abnormal as well as obstructive pulmonary diseases. The deposition patterns showed mainly Types C, D and E in obstructive pulmonary diseases, Type B in restrictive pulmonary diseases. The deposition patterns showed mainly Type E in pulmonary emphysema, Types C and D in diffuse panbronchiolitis, Types A, B and C in chronic bronchitis, Type B in idiopathic interstitial pneumonia interstitial pneumonia due to collagen vascular disease, Types B and C in pulmonary asbestosis. The deposition patterns correlated well with %FEV{sub 1.0} which was a good indicator of the severity of obstructive pulmonary diseases and restrictive pulmonary diseases. Furthermore, the mean %FEV{sub 1.0} in obstructive pulmonary diseases was nearly equal to the mean %FEV{sub 1.0} in restrictive pulmonary diseases in each type of the deposition patterns. (J.P.N.).

  5. Modeling of the topology of energy deposits created by ionizing radiation on a nano-metric scale in cell nuclei in relation to radiation-induced early events

    International Nuclear Information System (INIS)

    Dos Santos, Morgane

    2013-01-01

    Ionizing radiations are known to induce critical damages on biological matter and especially on DNA. Among these damages, DNA double strand breaks (DSB) are considered as key precursor of lethal effects of ionizing radiations. Understand and predict how DNA double and simple strand breaks are created by ionizing radiation and repaired in cell nucleus is nowadays a major challenge in radiobiology research. This work presents the results on the simulation of the DNA double strand breaks produced from the energy deposited by the irradiation at the intracellular level. At the nano-metric scale, the only method to accurately simulate the topological details of energy deposited on the biological matter is the use of Monte Carlo codes. In this work, we used the Geant4 Monte Carlo code and, in particular, the low energy electromagnetic package extensions, referred as Geant4-DNA processes.In order to evaluate DNA radio-induced damages, the first objective of this work consisted in implementing a detailed geometry of the DNA on the Monte Carlo simulations. Two types of cell nuclei, representing a fibroblast and an endothelium, were described in order to evaluate the influence of the DNA density on the topology of the energy deposits contributing to strand breaks. Indeed, the implemented geometry allows the selection of energy transfer points that can lead to strand breaks because they are located on the backbone. Then, these energy transfer points were analysed with a clustering algorithm in order to reveal groups of aggregates and to study their location and complexity. In this work, only the physical interactions of ionizing radiations are simulated. Thus, it is not possible to achieve an absolute number of strand breaks as the creation and transportation of radical species which could lead to indirect DNA damages is not included. Nevertheless, the aim of this work was to evaluate the relative dependence of direct DNA damages with the DNA density, radiation quality, cell

  6. A study of the performance of a reclamation soil cover placed over an oilsands coke deposit

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, D.S.; Barbour, S.L. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil Engineering; Qualizza, C. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2006-07-01

    Coke is a solid, carbonaceous residue that forms during the cracking of high-boiling point distillates and is one of the by-products of petroleum extraction from oilsands. Coke is known as a possible future energy source and therefore, must be stored within the reclaimed landscape in a form that allows it to be recovered. In addition, it also could be used as a low-density capping material over soft tailings. This paper presented the results of a study that examined the effects of coke in the environment. The study involved construction of two small instrumented watersheds at Syncrude Canada's Mildred Lake Settling Basin. Preliminary field data, highlighting the moisture dynamics within the covers and the underlying coke were discussed. Sand tailings underlie the hydraulically placed coke deposit. Overlying the coke were two different reclamation soil covers constructed of a peat/mineral mix over glacial or glacial lacustrine soils. Placing the finer textured soil cover over coarser grained coke produced a textural or capillary break which enhanced moisture storage for plant use while minimizing deep percolation of infiltrating water. The site has been instrumented with a meteorological station; automated soil stations to monitor suction, water content and temperature through the cover profile; lysimeters to collect net percolation; access tubes for water content monitoring; gas sampling points at depth in the coke; and standpipe piezometers to monitor water chemistry and total head in the coke at depth. 10 refs., 2 tabs., 16 figs.

  7. Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  8. Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  9. Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation

    Directory of Open Access Journals (Sweden)

    B. Shank

    2014-11-01

    Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  10. Battery energy storage market feasibility study

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  11. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  12. Characterization and dissolution studies of Bruce Unit 3 steam generator secondary side deposits

    International Nuclear Information System (INIS)

    Semmler, J.

    1998-01-01

    The physical and chemical properties of secondary side steam generator deposits in the form of powder and flake obtained from Bruce Nuclear Generating Station A (BNGS A) Unit 3 were studied. The chemical phases present in both types of deposits, collected prior to the 1994 chemical cleaning during the pre-clean water lancing campaign, were magnetite (Fe 3 O 4 ), metallic copper (Cu), hematite (Fe 2 O 3 ) and cuprous oxide (Cu 2 O). The major difference between the chemical composition of the powder and the flake was the presence of zinc silicate (Zn 2 SiO 4 ) and several unidentified silicate phases containing Ca, Al, Mn, and Mg in the flake. The flake deposit had high hardness values, high electrical resistivity, low porosity and a lower dissolution rate in the EPRI-SGOG (Electric Power Research Institute-Steam Generator Owner's Group) chemical cleaning solvents compared to the powder deposit. Differences in the deposit properties after chemical cleaning of the Unit 3 steam generators and after laboratory cleaning were noted. The presence of silicates in the deposit inhibit magnetite dissolution

  13. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  14. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    Science.gov (United States)

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Atmospheric organic nitrogen deposition: analysis of nationwide data and a case study in Northeast China.

    Science.gov (United States)

    Jiang, C M; Yu, W T; Ma, Q; Xu, Y G; Zou, H; Zhang, S C; Sheng, W P

    2013-11-01

    The origin of atmospheric dissolved organic nitrogen (DON) deposition is not very clear at present. Across China, the DON deposition was substantially larger than that of world and Europe, and we found significant positive correlation between contribution of DON and the deposition flux with pristine site data lying in outlier, possibly reflecting the acute air quality problems in China. For a case study in Northeast China, we revealed the deposited DON was mainly derived from intensive agricultural activities rather than the natural sources by analyzing the compiled dataset across China and correlating DON flux with NH4(+)-N and NO3(-)-N. Crop pollens and combustion of fossil fuels for heating probably contributed to summer and autumn DON flux respectively. Overall, in Northeast China, DON deposition could exert important roles in agro-ecosystem nutrient management and carbon sequestration of natural ecosystems; nationally, it was suggested to found rational network for monitoring DON deposition. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Energy and nutrient deposition and excretion in the reproducing sow: model development and evaluation

    DEFF Research Database (Denmark)

    Hansen, A V; Strathe, A B; Theil, Peter Kappel

    2014-01-01

    requirements for maintenance, and fetal and maternal growth were described. In the lactating module, a factorial approach was used to estimate requirements for maintenance, milk production, and maternal growth. The priority for nutrient partitioning was assumed to be in the order of maintenance, milk...... production, and maternal growth with body tissue losses constrained within biological limits. Global sensitivity analysis showed that nonlinearity in the parameters was small. The model outputs considered were the total protein and fat deposition, average urinary and fecal N excretion, average methane...... emission, manure carbon excretion, and manure production. The model was evaluated using independent data sets from the literature using root mean square prediction error (RMSPE) and concordance correlation coefficients. The gestation module predicted body fat gain better than body protein gain, which...

  17. Intercalibration of ECAL crystals in Phi Using Symmetry of Energy Deposition

    CERN Document Server

    Futyan, David

    2002-01-01

    This note describes the investigation of a possible first step in a strategy for rapidly obtaining ECAL crystal intercalibration at startup in the absence of test beam precalibration of the complete detector. The precision to which crystals can be intercalibrated in phi using 18 million fully simulated minimum-bias events, and assuming complete ignorance of the tracker material distribution, is determined as a function of eta and has been found to be close to 1.5% for |eta| < 1.0 and between 2% and 3.5% for the remainder of the barrel. Similar values are found for the endcap. The precision is limited by the inhomogeneity of tracker material. With increasing knowledge of the material deposition in the tracker, after the start of LHC running, the attainable precision of the method will increase, with the potential of providing rapid and repeated calibration of the ECAL.

  18. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  19. Study on the dissolution of uranium dibutyl phosphate deposits

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Velmurugan, S.; Narasimhan

    2008-01-01

    An insoluble sticky complex of uranium dibutyl phosphate (U-DBP) formed on the inner surfaces of a reprocessing facility can host radioactive nuclides resulting in radiation exposure hazard. Removal of this layer will greatly result in the reduction of radiation field. Hence, dissolution studies with synthetically prepared U-DBP were carried out. A two-step dissolution process consisting of an initial oxidation with acid permanganate followed by reduction with NAC (NTA, Ascorbic acid and Citric acid) was used. Oxidation kinetics of DBP by permanganate, dissolution of synthetic U-DBP complex as a powder and also as a film over SS surface was studied. XRF and SEM techniques were used to monitor the process of dissolution. Material compatibility of welded SS-304 specimens was also studied. It was found that the two-step process was more efficient when compared to either permanganate or NAC treatment alone. (author)

  20. Study on the dissolution of uranium dibutyl phosphate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Velmurugan, S.; Narasimhan [Bhabha Atomic Research Centre Facilities, Water and Steam Chemistry Div., Kalpakkam (India)], E-mail: svn@igcar.gov.in

    2008-07-01

    An insoluble sticky complex of uranium dibutyl phosphate (U-DBP) formed on the inner surfaces of a reprocessing facility can host radioactive nuclides resulting in radiation exposure hazard. Removal of this layer will greatly result in the reduction of radiation field. Hence, dissolution studies with synthetically prepared U-DBP were carried out. A two-step dissolution process consisting of an initial oxidation with acid permanganate followed by reduction with NAC (NTA, Ascorbic acid and Citric acid) was used. Oxidation kinetics of DBP by permanganate, dissolution of synthetic U-DBP complex as a powder and also as a film over SS surface was studied. XRF and SEM techniques were used to monitor the process of dissolution. Material compatibility of welded SS-304 specimens was also studied. It was found that the two-step process was more efficient when compared to either permanganate or NAC treatment alone. (author)

  1. Experimental study of Pulsed Laser Deposited Cu2ZnSnS 4 (CZTS) thin films for photovoltaic applications

    Science.gov (United States)

    Nandur, Abhishek S.

    Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.

  2. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  3. Application of mathematical statistics methods to study fluorite deposits

    International Nuclear Information System (INIS)

    Chermeninov, V.B.

    1980-01-01

    Considered are the applicability of mathematical-statistical methods for the increase of reliability of sampling and geological tasks (study of regularities of ore formation). Compared is the reliability of core sampling (regarding the selective abrasion of fluorite) and neutron activation logging for fluorine. The core sampling data are characterized by higher dispersion than neutron activation logging results (mean value of variation coefficients are 75% and 56% respectively). However the hypothesis of the equality of average two sampling is confirmed; this fact testifies to the absence of considerable variability of ore bodies

  4. Study of flow rate across alluvial deposits in rockfill dams

    International Nuclear Information System (INIS)

    Massiera, M.; Comeau, S.; Cyr, R.

    1996-01-01

    The hydraulic behaviour of the till core of the LG-4 main dam at the James Bay hydroelectric development in northern Quebec, was simulated in order to explain the abnormally high pore pressures that have been observed in the downstream portion of cores in a number of earth and rockfill dams. Procedures followed and the hydraulic conductivities adopted in this study were outlined. Results of a comparison of the equipotential lines at the calculated piezometric heads with in-situ measurements were also provided. 6 refs., 7 figs

  5. Mass and energy deposition effects of implanted ions on solid sodium formate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiangqin E-mail: clshao@mail.ipp.ac.cn; Shao Chunlin; Yao Jianming; Yu Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N{sup +}, H{sup +}, and Ar{sup +} ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new -CH{sub 2}-, -CH{sub 3}- groups and COO{sup -} radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new -NH{sub 2} functional group was formed upon N{sup +} ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  6. GEOLOGY AND DEPOSITIONAL ENVIRONMENT OF CAMPANO-MAASTRICHTIAN SEDIMENTS IN THE ANAMBRA BASIN, SOUTHEASTERN NIGERIA: EVIDENCE FROM FIELD RELATIONSHIP AND SEDIMENTOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    A. E Salufu

    2009-12-01

    Full Text Available The study area lies within the Anambra Basin and it is made up of Enugu Shale, Mamu Formation, Ajali Sandstone, and Nsukka Formation. This study aimed at determining the geology and depositional environmental of these formations through field relationship and grain size distribution morphologic studies.The field data shows Enugu Shale as fissile, light grey with extraformational clast which graded into Mamu Formation whichis made up of shale, coal and sandy shale. It passes upward into Ajali Sandstone which is characterized by cross beds, Herringbonestructures and Ophiomorpha burrows. The youngest formation within the basin is Nsukka Formation.The granulometric study of Mamu Formation shows fine to medium grains, coarse, medium to fine grain for Mamu and Ajali Formation respectively. The standard deviation indicates poorly sorted. The kurtosis shows leptokurtic, platykurtic to very leptokurtic for both while the skewness values indicate positive and symmetrical in all except for Ajali Sandstone that is negatively skewed.The bivariate and the multivariate results reveal shallow marine and fluvial deposits for both Mamu Formation and Ajali Sandstone respectively. The paleocurrent direction of Ajali Sandstone indicates southwest while the provenance is northeast.The fissility of Enugu Shale suggests that it was deposited in low energy environment, distal to proximal lagoon environment.The presence of extraformatonal clast within Enugu Shale indicates fluvial incursion. However, the textural analysis of Mamu Formation suggests a sediment deposited in a low energy environment which favoured deposition of fine to medium size sediments that is, estuary environment. Textural result of Ajali Sandstone in the study area coupled with the field data such as Herring-bone structures, and Ophiomorpha burrows, revealed that Ajali Sandstone was deposited in a tidal environment probably littoral environment. While the light grey colour observed in the

  7. Nuclear interaction contribution to SEUs in heavy ion energy deposition in the ESA monitor

    CERN Document Server

    Bahamonde, Cristina

    2013-01-01

    The effects of nuclear interactions inducing Single Event Upsets in ESA SEU monitor are explored for heavy ion beams of different energies. The experimental and simulated results are compared, the possible causes of disagreement are suggested as well as the future steps to take.

  8. A study of naturally occurring, radionuclide bearing deposits at Portland Creek, Newfoundland

    International Nuclear Information System (INIS)

    1985-01-01

    A small uraniferous peat deposit located near Portland Creek, Newfoundland was investigated as part of the National Uranium Tailings Program (NUTP). The purpose of the investigation was to provide data on naturally occurring uranium series radionuclides at a surface location that could be used to compare with the predictions of mathematical models. The investigation was carried out between August 18 and 30, 1984 by CBCL Limited with the assistance of Golder Associates, SENES Consultants Limited, Environmental Design Group and Monenco Analytical Laboratories. The investigation involved the determination of the geological and hydrogeological conditions of the deposit site and collection of soil, water and biological samples. The samples were analyzed for major element chemistry, uranium and its various decay series radionuclides including radium-226 and the ratio of uranium-234 to uranium-238. The uranium mineralization was found to be associated with a peat deposit that has accumulated in post-glacial time. The deposit is situated within a groundwater discharge zone at the toe of a granitic talus pile that extends downward from the Long Range Mountains. The concentration of uranium within the peat deposit was found to vary from 100 to 28000 ppm, however, the activities of the uranium decay series radionuclides were comparatively very low. Radium-226 activities were found to vary from 0.5 Bq/g to 15.0 Bq/g. Little influence from the deposit was noted in the surrounding water bodies, fish samples and vegetation. Based on the results of the study the uranium mineralization within the peat is considered to be the