WorldWideScience

Sample records for energy deposition pattern

  1. Energy deposition patterns within limb models heated with a mini annular phased array (MAPA) applicator

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Charny, C.K.; Levin, R.L.

    1986-01-01

    A series of experiments has been carried out in order to characterize a MAPA applicator prior to possible clinical implementation. The energy deposition patterns were determined in several human limb models of different complexities. The maximum energy deposition observed in a homogeneous cylindrical phantom was found to be at the middle of the applicator. For more realistically shaped, homogeneous limb models, the point of maximum energy deposition was shifted towards a smaller cross-sectional region; this was also the case for isolated human legs. Furthermore, significant heating was observed in the bone of the isolated legs. Such phenomena illustrate the limitation of using classical 2-D numerical models for predicting the energy deposition patterns in heterogeneous bodies

  2. Methods for shifting the pattern of energy deposition with a MAPA

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Levin, R.L.

    1987-01-01

    In earlier work the authors observed local heating in bone when an amputated human leg was treated with a MAPA. For this reason we have experimentally compared several methods for controlling the pattern of energy deposition. These methods include radial displacement of the phantom relative to the MAPA, adjusting phase and magnitude of the currents in the dipole elements, and the use of dielectric spacers between the bolus and parts of the phantom. Cylindrical homogeneous muscle-phantoms have been used in these tests. Both theory and experiments show that greater displacement of the pattern can be obtained using phase-shifting than is possible with radial displacement of the phantom. Dielectric spacers act as a shield by decoupling the phantom from the MAPA. The dielectric spacers are simple to use and give results that are stable and easy to predict

  3. The Energy Deposition Pattern as the Unconventional Strangelet Signature and its Relevance to the Castor Calorimeter

    International Nuclear Information System (INIS)

    Angelis, A.L.S.; Bartke, J.; Gladysz-Dziadus, E.; Wlodarczyk, Z.

    1998-07-01

    It has been shown, by GEANT simulations, that the energy deposition pattern in deep calorimeters could be the spectacular and unconventional signature of different kinds of stable and unstable strangelets. The CASTOR calorimeter is shown to be the appropriate tool for detection of strongly penetrating objects, such as strangelets possibly produced in the baryon-rich region in central Pb-Pb collisions at LHC energies. (author)

  4. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Bollani, M; Fedorov, A; Chrastina, D; Sordan, R; Picco, A; Bonera, E

    2010-01-01

    Si 1-x Ge x islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si 1-x Ge x islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s -1 ) and low temperature (650 deg. C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  5. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  6. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co.

    Science.gov (United States)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-21

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  7. Patterned deposition by atmospheric pressure plasma-enhanced spatial atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.; Kniknie, B.J.; Branca, A.; Winands, G.J.J.; Roozeboom, F.

    2011-01-01

    An atmospheric pressure plasma enhanced atomic layer deposition reactor has been developed, to deposit Al2O3 films from trimethyl aluminum and an He/O2 plasma. This technique can be used for 2D patterned deposition in a single in-line process by making use of switched localized plasma sources. It

  8. Scaling in patterns produces by cluster deposition

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Oddershede, Lene

    1997-01-01

    Cluster deposition on flat substrates can lead to surprising patterns. This pattern formation can be related either to phenomena taking place at the substrate surface or to dynamics in the cluster beam. We describe the observation of a pattern of particles each being an aggregate of Cu clusters. ...

  9. Study on the deposition patterns of aerosol inhalation scintigraphy, 1; Comparison of the deposition patterns of aerosol inhalation scintigraphy with lung function tests in pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroyuki [Nara Medical Univ., Kashihara (Japan)

    1989-06-01

    The deposition patterns of aerosol inhalation scintigraphies and lung function tests were studied in 102 cases; 64 cases of obstructive pulmonary diseases (19 pulmonary emphysema, 27 diffuse panbronchiolitis, 18 chronic bronchitis) and 38 restrictive pulmonary disease (15 idiopathic interstitial pneumonia, 16 pulmonary asbestosis, 7 interstitial pneumonia due to collagen vascular disease). The deposition patterns were classified into 5 patterns (Type A:normal homogenous distribution; Type B: mildly unhomogenous distribution; Type C: severely unhomogenous distribution mingled with hot spots; Type D: non-hilar hot spots; and Type E: hilar hot spots). The deposition patterns of restrictive pulmonary diseases were markedly abnormal as well as obstructive pulmonary diseases. The deposition patterns showed mainly Types C, D and E in obstructive pulmonary diseases, Type B in restrictive pulmonary diseases. The deposition patterns showed mainly Type E in pulmonary emphysema, Types C and D in diffuse panbronchiolitis, Types A, B and C in chronic bronchitis, Type B in idiopathic interstitial pneumonia interstitial pneumonia due to collagen vascular disease, Types B and C in pulmonary asbestosis. The deposition patterns correlated well with %FEV{sub 1.0} which was a good indicator of the severity of obstructive pulmonary diseases and restrictive pulmonary diseases. Furthermore, the mean %FEV{sub 1.0} in obstructive pulmonary diseases was nearly equal to the mean %FEV{sub 1.0} in restrictive pulmonary diseases in each type of the deposition patterns. (J.P.N.).

  10. 1987 wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  11. Selective deposition contact patterning using atomic layer deposition for the fabrication of crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Cho, Young Joon; Shin, Woong-Chul; Chang, Hyo Sik

    2014-01-01

    Selective deposition contact (SDC) patterning was applied to fabricate the rear side passivation of crystalline silicon (Si) solar cells. By this method, using screen printing for contact patterning and atomic layer deposition for the passivation of Si solar cells with Al 2 O 3 , we produced local contacts without photolithography or any laser-based processes. Passivated emitter and rear-contact solar cells passivated with ozone-based Al 2 O 3 showed, for the SDC process, an up-to-0.7% absolute conversion-efficiency improvement. The results of this experiment indicate that the proposed method is feasible for conversion-efficiency improvement of industrial crystalline Si solar cells. - Highlights: • We propose a local contact formation process. • Local contact forms a screen print and an atomic layer deposited-Al 2 O 3 film. • Ozone-based Al 2 O 3 thin film was selectively deposited onto patterned silicon. • Selective deposition contact patterning method can increase cell-efficiency by 0.7%

  12. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  13. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  14. Ground deposition pattern of an explosive radiological dispersal device (RDD)

    International Nuclear Information System (INIS)

    Sharon, A.; Halevy, I.; Sattinger, D.; Berenstein, Z.; Neuman, R.; Banaim, P.; Pinhas, M.; Yaar, I.

    2014-01-01

    Activity deposition pattern of outdoor explosive RDD experiments were discussed and analyzed. In cases of fine, respirable size, aerosols dispersion, most of the activity deposited inside a circle of up to 4 fireball radii around the detonation point. About an order of magnitude less was deposited in the rest of the wide open area, in the downwind direction. The effects of different RA particles size distribution on the ground deposition pattern is still being studying under the framework of GF project

  15. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  16. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  17. Patterned electrochemical deposition of copper using an electron beam

    Directory of Open Access Journals (Sweden)

    Mark den Heijer

    2014-02-01

    Full Text Available We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  18. Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.

    Science.gov (United States)

    Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa

    2018-06-06

    Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.

  19. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  20. Energy deposition in NSRR test fuels

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Tanzawa, Sadamitsu; Tanzawa, Tomio; Kitano, Teruaki; Okazaki, Shuji

    1978-02-01

    Interpretation of fuel performance data collected during inpile testing in the NSRR requires a knowledge of the energy deposition or enthalpy increase in each sample tested. The report describes the results of absolute measurement of fission products and contents of uranium in irradiated test fuels which were performed to determine the energy deposition. (auth.)

  1. Inkjet Printing With In Situ Fast Annealing For Patterned Multilayer Deposition

    KAUST Repository

    Boulfrad, Samir; Alarousu, Erkki; Da'as, Eman Husni; Jabbour, Ghassan

    2013-01-01

    Patterned multilayer films, such as those used in electronic devices, solar cells, solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs) may be deposited and annealed in a single tool. The tool includes an inkjet printer head, a heater, and a laser. The inkjet printer head deposits on a substrate either suspended particles of a functional material or solvated precursors of a functional material. The head is mounted on a support that allows the head to scan the substrate by moving along the support in a first direction and moving the support along a second direction. After the head deposits the material the heater evaporates solvent from substrate, and the depositing and heating may be repeated one or more times to form a patterned multilayer material. Then, a laser, microwave, and/or Joule effect heating device may be used to anneal the multilayer material to a desired pattern and crystalline state.

  2. Inkjet Printing With In Situ Fast Annealing For Patterned Multilayer Deposition

    KAUST Repository

    Boulfrad, Samir

    2013-12-05

    Patterned multilayer films, such as those used in electronic devices, solar cells, solid oxide fuel cells (SOFCs), and solid oxide electrolysis cells (SOECs) may be deposited and annealed in a single tool. The tool includes an inkjet printer head, a heater, and a laser. The inkjet printer head deposits on a substrate either suspended particles of a functional material or solvated precursors of a functional material. The head is mounted on a support that allows the head to scan the substrate by moving along the support in a first direction and moving the support along a second direction. After the head deposits the material the heater evaporates solvent from substrate, and the depositing and heating may be repeated one or more times to form a patterned multilayer material. Then, a laser, microwave, and/or Joule effect heating device may be used to anneal the multilayer material to a desired pattern and crystalline state.

  3. Study on the deposition patterns of aerosol inhalation scintigraphy, 2

    International Nuclear Information System (INIS)

    Watanabe, Hiroyuki

    1989-01-01

    The superimposed images obtained by the SPECT of aeresol inhalation scintigraphy and chest CT were applied in 7 cases of diffuse panbronchiolitis. Aerosol deposition patterns were examined, and hot spots were compared with bronchial morphological abnormalities. The results were as follows: 1. Nevertheless, aerosol deposition patterns were characterized by defects of the depositions in the outer zone and hot spots in the inner zone, hot spots distributed from the inner zone to the outer zone. 2. Hot spots and bronchial morphological abnormalities were markedly matched in the inner zone; however, they were mismatched in the outer zone. I concluded that the mechanisms of hot spot formation in the inner zone were different from those in the outer zone. (author)

  4. Energy deposition and the formation of biologically significant lesions by accelerated ions

    International Nuclear Information System (INIS)

    Kiefer, J.

    1985-01-01

    The assumption that the number of biologically significant lesions depends only on the amount of of energy absorbed in a critical cellular site is not able to explain the increase of RBE with LET and leads to large discrepancies between predicted and measured inactivation cross sections in the LET range between 20 and 200 keV.μm -1 . It has, therefore, to be concluded that not only the amount of energy absorbed but also the spatial pattern of this deposition plays a decisive role. In the model presented it is postulated that two or more energy deposition events in nanometre sites are required for the formation of biologically significant lesions. This cooperative action has to take place in very short times so that only interactions within a single particle track contribute. The mathematical treatment will be outlined and qualitatively shown that the model is able to predict RBE-LET relationships. The calculations use a track structure model based on classical collision mechanics. It is compared with existing experimental results showing good agreement at least for higher particle energies. (author)

  5. Microdosimetric implications of the nonuniformity of deposition patterns of inhaled radioactive nuclides

    International Nuclear Information System (INIS)

    Balashazy, I.; Palfalvi, J.; Hofmann, W.

    2000-01-01

    Aerosol deposition studies have demonstrated that deposition patterns of inhaled aerosols within airway bifurcations are distinctly inhomogeneous during inhalation as well as exhalation. Current lung deposition models, however, employ analytical equations for the calculation of deposition efficiencies, which, by definition, cannot describe local inhomogeneities of deposition within airway bifurcations. In the present study, local deposition patterns in airway bifurcations were computed by our recently developed numerical particle deposition model. To quantify the inhomogeneities of predicted deposition patterns, the whole surface of the bifurcation was scanned by a pre-specified surface element. Local deposition enhancement factors were then determined as the ratio of local to average deposition densities. In the present study, distributions of enhancement factors and their corresponding maximum values were computed for a physiologically realistic bifurcation geometry in upper human bronchial airways (airway generations 3-4 in Weibel's Model-A) assuming various surface element (patch) sizes (0.1 mm x 0.1 mm-3 mm x 3 mm). Simulations were performed for a wide range of particle sizes (1 mm-10 μm) and flow conditions (flow rates of 10 and 60 l/min, and parabolic and uniform inlet flow profiles). Computed air velocity fields and particle trajectories demonstrated the significant role of secondary flows for particle deposition. In the case of inspiration, areas of enhanced deposition were formed primarily at the carinal ridge or at the inner sides of the daughter branches. In the case of expiration, ''hot spots'' could be observed are at the top and bottom of the parent airway. The sizes of these deposition hot spots depend on particle size, flow rate and bifurcation geometry. For example, enhanced deposition areas for large particles were much more intense than those found for ultrafine particles. The computed local deposition enhancement factors exhibited strong

  6. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  7. Enhanced energy deposition symmetry by hot electron transport

    International Nuclear Information System (INIS)

    Wilson, D.; Mack, J.; Stover, E.; VanHulsteyn, D.; McCall, G.; Hauer, A.

    1981-01-01

    High energy electrons produced by resonance absorption carry the CO 2 laser energy absorbed in a laser fusion pellet. The symmetrization that can be achieved by lateral transport of the hot electrons as they deposit their energy is discussed. A K/sub α/ experiment shows a surprising symmetrization of energy deposition achieved by adding a thin layer of plastic to a copper sphere. Efforts to numerically model this effect are described

  8. Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning

    Science.gov (United States)

    Wang, Zhifeng; Chen, Xindu; Zeng, Jun; Liang, Feng; Wu, Peixuan; Wang, Han

    2017-03-01

    For large area micro/nano pattern printing, multi-nozzle electrohydrodynamic (EHD) printing setup is an efficient method to boost productivity in near-field electrospinning (NFES) process. And controlling EHD multi-jet accurate deposition under the interaction of nozzles and other parameters are crucial concerns during the process. The influence and sensitivity of various parameters such as the needle length, needle spacing, electrode-to-collector distance, voltage etc. on the direct-write patterning performance was investigated by orthogonal experiments with dual-nozzle NFES setup, and then the deposition distance estimated based on a novel model was compared with measurement results and proven. More controllable deposition distance and much denser of aligned naofiber can be achieved by rotating the dual-nozzle setup. This study can be greatly contributed to estimate the deposition distance and helpful to guide the multi-nozzle NFES process to accurate direct-write pattern in manufacturing process in future.

  9. Thermal energy storage in granular deposits

    Science.gov (United States)

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  10. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  11. A model to explain joint patterns found in ignimbrite deposits

    Science.gov (United States)

    Tibaldi, A.; Bonali, F. L.

    2018-03-01

    The study of fracture systems is of paramount importance for economic applications, such as CO2 storage in rock successions, geothermal and hydrocarbon exploration and exploitation, and also for a better knowledge of seismogenic fault formation. Understanding the origin of joints can be useful for tectonic studies and for a geotechnical characterisation of rock masses. Here, we illustrate a joint pattern discovered in ignimbrite deposits of South America, which can be confused with conjugate tectonic joint sets but which have another origin. The pattern is probably common, but recognisable only in plan view and before tectonic deformation obscures and overprints it. Key sites have been mostly studied by field surveys in Bolivia and Chile. The pattern is represented by hundreds-of-meters up to kilometre-long swarms of master joints, which show circular to semi-circular geometries and intersections that have "X" and "Y" patterns. Inside each swarm, joints are systematic, rectilinear or curvilinear in plan view, and as much as 900 m long. In section view, they are from sub-vertical to vertical and do not affect the underlying deposits. Joints with different orientation mostly interrupt each other, suggesting they have the same age. This joint architecture is here interpreted as resulting from differential contraction after emplacement of the ignimbrite deposit above a complex topography. The set of the joint pattern that has suitable orientation with respect to tectonic stresses may act to nucleate faults.

  12. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  13. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  14. SU-G-TeP3-13: The Role of Nanoscale Energy Deposition in the Development of Gold Nanoparticle-Enhanced Radiotherapy

    International Nuclear Information System (INIS)

    Kirkby, C; Koger, B; Suchowerska, N; McKenzie, D

    2016-01-01

    Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels in 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.

  15. SU-G-TeP3-13: The Role of Nanoscale Energy Deposition in the Development of Gold Nanoparticle-Enhanced Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, C [Jack Ady Cancer Centre, Lethbridge, AB (Canada); The University of Calgary, Calgary, AB (Canada); Koger, B [The University of Calgary, Calgary, AB (Canada); Suchowerska, N [Chris O’Brien Lifehouse Camperdown, NSW (Australia); McKenzie, D [University of Sydney, Sydney, NSW (Australia)

    2016-06-15

    Purpose: Gold nanoparticles (GNPs) can enhance radiotherapy effects. The high photoelectric cross section of gold relative to tissue, particularly at lower energies, leads to localized dose enhancement. However in a clinical context, photon energies must also be sufficient to reach a target volume at a given depth. These properties must be balanced to optimize such a therapy. Given that nanoscale energy deposition patterns around GNPs play a role in determining biological outcomes, in this work we seek to establish their role in this optimization process. Methods: The PENELOPE Monte Carlo code was used to generate spherical dose deposition kernels in 1000 nm diameter spheres around 50 nm diameter GNPs in response to monoenergetic photons incident on the GNP. Induced “lesions” were estimated by either a local effect model (LEM) or a mean dose model (MDM). The ratio of these estimates was examined for a range of photon energies (10 keV to 2 MeV), for three sets of linear-quadratic parameters. Results: The models produce distinct differences in expected lesion values, the lower the alpha-beta ratio, the greater the difference. The ratio of expected lesion values remained constant within 5% for energies of 40 keV and above across all parameter sets and rose to a difference of 35% for lower energies only for the lowest alpha-beta ratio. Conclusion: Consistent with other work, these calculations suggest nanoscale energy deposition patterns matter in predicting biological response to GNP-enhanced radiotherapy. However the ratio of expected lesions between the different models is largely independent of energy, indicating that GNP-enhanced radiotherapy scenarios can be optimized in photon energy without consideration of the nanoscale patterns. Special attention may be warranted for energies of 20 keV or below and low alpha-beta ratios.

  16. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition

    International Nuclear Information System (INIS)

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2014-01-01

    A key factor in engineering integrated devices such as electro-optic switches or waveguides is the patterning of high quality crystalline thin films into specific geometries. In this contribution high vacuum chemical vapor deposition (HV-CVD) was employed to grow titanium dioxide (TiO 2 ) patterns onto silicon. The directed nature of precursor transport – which originates from the high vacuum environment during the process – allows shading certain regions on the substrate by shadow masks and thus depositing patterned thin films. While the use of such masks is an emerging field in stencil or shadow mask lithography, their use for structuring thin films within HV-CVD has not been reported so far. The advantage of the employed technique is the precise control of lateral spacing and of the distance between shading mask and substrate surface which is achieved by manufacturing them directly on the substrate. As precursor transport takes place in the molecular flow regime, the precursor impinging rates (and therefore the film growth rates) on the surface can be simulated as function of the reactor and shading mask geometry using a comparatively simple mathematical model. In the current contribution such a mathematical model, which predicts impinging rates on plain or shadow mask structured substrates, is presented. Its validity is confirmed by TiO 2 -deposition on plain silicon substrates (450 °C) using titanium tetra isopropoxide as precursor. Limitations of the patterning process are investigated by the deposition of TiO 2 on structured substrates and subsequent shadow mask lift-off. The geometry of the deposits is according to the mathematical model. Shading effects due to the growing film enables to fabricate deposits with predetermined variations in topography and non-flat top deposits which are complicated to obtain by classical clean room processes. As a result of the enhanced residual pressure of decomposition products and titanium precursors and the

  17. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  18. Evaluation of energy deposition by 153Sm in small samples

    International Nuclear Information System (INIS)

    Cury, M.I.C.; Siqueira, P.T.D.; Yoriyaz, H.; Coelho, P.R.P.; Da Silva, M.A.; Okazaki, K.

    2002-01-01

    V/Bq.s that represents 79 % of available energy. The axial dose distribution mapping shows also a great difference between gamma radiation and charged radiation deposition patterns. While the gamma radiation energy deposition is clearly sensitive to the holder shape, charged radiation shows this dependence only in the vicinity of the sample itself. However, as the charged radiation accounts for almost all the energy deposited in the sample, the dose distribution over the sample can be regarded as homogeneous, although its value be dependent of the amount of 153 Sm solution added. Conclusion: This work shows that an infinite medium approach to estimate the amount of deposited energy is not valid to systems of the order of mm-cm. It supplies a way to provide a precise value for the absorbed dose and also its gradient distribution

  19. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  20. Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning

    International Nuclear Information System (INIS)

    Basu, Nandita; Cross, Graham L W

    2015-01-01

    We report control of droplet-deposit uniformity of long silver nanowires suspended in solutions by microscopic influence of the liquid contact line. Substrates with microfabricated line patterns with a pitch far smaller than mean wire length lead to deposit thickness uniformity compared to unpatterned substrates. For high boiling-point solvents, two significant effects were observed: The substrate patterns suppressed coffee ring staining, and the wire deposits exhibited a common orientation lying perpendicular over top the lines. The latter result is completely distinct from previously reported substrate groove channeling effects. This work shows that microscopic influence of the droplet contact line geometry including the contact angle by altered substrate wetting allows significant and advantageous influence of deposition patterns of wire-like solutes as the drop dries. (paper)

  1. Characterized the pattern of the material deposition in the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Laizhong, E-mail: cailz@swip.ac.cn [Southwestern Institute of Physics, P.O.Box 432, Chengdu, Sichuan 610041 (China); Wang, Jianbao; Wu, Ting; Zeng, Xiaoxiao [Southwestern Institute of Physics, P.O.Box 432, Chengdu, Sichuan 610041 (China); Hai, Ran; Ding, Hongbin [Dalian University of Technology, Dalian, Liaoning 116024 (China)

    2017-03-15

    Since the divertor geometry of a tokamak has a strong impact on the material erosion and deposition on the wall and HL-2A has a unique divertor configuration, it is necessary to investigate the material deposition pattern in HL-2A although a few results on other tokamaks have already been published. In this paper, tiles retrieved from the vessel are analyzed ex-situ by SIMS, SEM and laser-induced breakdown spectroscopy (LIBS). And deposition behind the lower divertor is in-situ measured by a quartz crystal microbalance (QMB). The deposition in HL-2A displays a complex pattern and clear localization characteristic. The thickness of the deposition layer varies in the range of 0-4μm. And in-situ diagnostic of QMB indicates that the average thickness of the deposition layer per pulse is over ten nanometers. In addition, the results imply that Si, Fe and D have different behaviors during the material deposition in HL-2A.

  2. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  3. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco

    2014-04-03

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  4. Electroless deposition of metal nanoparticle clusters: Effect of pattern distance

    KAUST Repository

    Gentile, Francesco; Laura Coluccio, Maria; Candeloro, Patrizio; Barberio, Marianna; Perozziello, Gerardo; Francardi, Marco; Di Fabrizio, Enzo M.

    2014-01-01

    Electroless plating is a deposition technique in which metal ions are reduced as atoms on specific patterned sites of a silicon surface to form metal nanoparticles (NPs) aggregates with the desired characteristics. Those NPs, in turn, can be used as constituents of surface enhanced Raman spectroscopy substrates, which are devices where the electromagnetic field and effects thereof are giantly amplified. Here, the electroless formation of nanostructures was studied as a function of the geometry of the substrate. High resolution, electron beam lithography techniques were used to obtain nonperiodic arrays of circular patterns, in which the spacing of patterns was varied over a significant range. In depositing silver atoms in those circuits, the authors found that the characteristics of the aggregates vary with the pattern distance. When the patterns are in close proximity, the interference of different groups of adjacent aggregates cannot be disregarded and the overall growth is reduced. Differently from this, when the patterns are sufficiently distant, the formation of metal clusters of NPs is independent on the spacing of the patterns. For the particular subset of parameters used here, this critical correlation distance is about three times the pattern diameter. These findings were explained within the framework of a diffusion limited aggregation model, which is a simulation method that can decipher the formation of nanoaggregates at an atomic level. In the discussion, the authors showed how this concept can be used to fabricate ordered arrays of silver nanospheres, where the size of those spheres may be regulated on varying the pattern distance, for applications in biosensing and single molecule detection.

  5. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  6. Science of mineral deposits and economics of energy

    International Nuclear Information System (INIS)

    Mackowsky, M.T.

    1978-01-01

    The availability of fossile energy carriers is investigated with regard to raw material reserves and their know deposits, by means of output and consumption. According to the author's opinion its discussion should have a priority over all discussions concerning energy crisis, energy supply and environmental protection. The author also touches the high measure of political problems beside the geoscientifical and technological problems of raw material supply. He briefly points to the general situation on the energy market with the help of data on stocks and consumption as given by the 10th International Energy Conference 1977 at Istambul and eventually deals with topics on mineral deposits science and uranium production. (HK) [de

  7. Energy-enhanced atomic layer deposition : offering more processing freedom

    NARCIS (Netherlands)

    Potts, S.E.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition (ALD) is a popular deposition technique comprising two or more sequential, self-limiting surface reactions, which make up an ALD cycle. Energy-enhanced ALD is an evolution of traditional thermal ALD methods, whereby energy is supplied to a gas in situ in order to convert a

  8. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    Directory of Open Access Journals (Sweden)

    Stefan J. Kelly

    2016-05-01

    Full Text Available Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles (Dh =16.6 ± 3.6 nm are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe. Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc. are demonstrated with feature sizes down to 5 μm.

  9. Influence of deposition and spray pattern of nasal powders on insulin bioavailability.

    Science.gov (United States)

    Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P

    2006-03-09

    The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.

  10. Energy deposition in STARFIRE reactor components

    International Nuclear Information System (INIS)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry

  11. Difference in inhaled aerosol deposition patterns in the lungs due to three different sized aerosols

    International Nuclear Information System (INIS)

    Miki, M.; Isawa, T.; Teshima, T.; Anazawa, Y.; Motomiya, M.

    1992-01-01

    Deposition patterns of inhaled aerosol in the lungs were studied in five normal subjects and 20 patients with lung disease by inhaling radioaerosols with three different particle size distributions. Particle size distributions were 0.84, 1.04 and 1.93 μm in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, 1.71 and 1.52, respectively. Deposition patterns of inhaled aerosols were compared qualitatively and quantitatively by studying six different parameters: alveolar deposition ratio (ALDR), X max , X mean , standard deviation (S.D.), skewness and kurtosis of the radioactive distribution in the lungs following inhalation. It has been found that aerosol deposition patterns varied with particle size. The unevenness of aerosol deposition, X max , X mean and the number of 'hot spots' became more prominent with increase in particle size, whereas values of ALDR and S.D. decreased as particle size increased. (author)

  12. TLD gamma-ray energy deposition measurements in the zero energy fast reactor ZEBRA

    International Nuclear Information System (INIS)

    Knipe, A.D.

    1977-01-01

    A recent study of gamma-ray energy deposition was carried out in the Zebra reactor at AEE Winfrith during a collaborative programme between the UKAEA and PNC of Japan. The programme was given the title MOZART. This paper describes the TLD experiments in the MOZART MZB assembly and discusses the technique and various corrections necessary to relate the measured quantity to the calculated energy deposition

  13. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method.

    Science.gov (United States)

    Kundoor, Vipra; Dalby, Richard N

    2010-01-01

    To develop a simple and inexpensive method to visualize and quantify droplet deposition patterns. Deposition pattern was determined by uniformly coating the nose model with Sar-Gel (a paste that changes from white to purple on contact with water) and subsequently discharging sprays into the nose model. The color change was captured using a digital camera and analyzed using Adobe Photoshop. Several tests were conducted to validate the method. Deposition patterns of different nasal sprays (Ayr, Afrin, and Zicam) and different nasal drug delivery devices (Afrin nasal spray and PARI Sinustar nasal nebulizer) were compared. We also used the method to evaluate the effect of inhaled flow rate on nasal spray deposition. There was a significant difference in the deposition area for Ayr, Afrin, and Zicam. The deposition areas of Afrin nasal spray and PARI Sinustar nasal nebulizer (2 min and 5 min) were significantly different. Inhaled flow rate did not have a significant effect on the deposition pattern. Lower viscosity formulations (Ayr, Afrin) provided greater coverage than the higher viscosity formulation (Zicam). The nebulizer covered a greater surface area than the spray pump we evaluated. Aerosol deposition in the nose model was not affected by air flow conditions.

  14. Effects of Energy Deposition Characteristics on Localised Forced Ignition of Homogeneous Mixtures

    Directory of Open Access Journals (Sweden)

    Dipal Patel

    2015-06-01

    Full Text Available The effects of the characteristic width of the energy deposition profile and the duration of energy deposition by the ignitor on localised forced ignition of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simplified chemistry three-dimensional compressible Direct Numerical Simulation (DNS for different values of root-mean-square turbulent velocity fluctuation. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. It has been shown that the width of ignition energy deposition and the duration over which ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition (duration of energy deposition for a given amount of ignition energy has been found to have a detrimental effect on the ignition event, which may ultimately lead to misfire. Moreover, an increase in u′ gives rise to augmented heat transfer rate from the hot gas kernel, which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u′ on localised ignition are particularly prevalent for fuel-lean mixtures.

  15. EFFECT OF BODY SIZE ON BREATHING PATTERN AND FINE PARTICLE DEPOSITION IN CHILDREN

    Science.gov (United States)

    Inter-child variability in breathing patterns may contribute to variability in fine particle, lung deposition and morbidity in children associated with those particles. Fractional deposition (DF) of fine particles (2um monodisperse, carnauba wax particles) was measured in healthy...

  16. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  17. Searching for patterns among special animal deposits in the Dutch river area during the Roman period

    NARCIS (Netherlands)

    Groot, M.

    2009-01-01

    This paper explores recurring patterns among special animal deposits in rural settlements in the Dutch river area from the Roman period and draws a comparison with finds of other material categories. Recognising patterns is a step towards interpreting special deposits as the material remains of

  18. Film growth kinetics and electric field patterning during electrospray deposition of block copolymer thin films

    Science.gov (United States)

    Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum

    The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.

  19. Evaluation of effective energy deposition in test fuel during power burst experiment in NSRR

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Inabe, Teruo

    1982-01-01

    In an inpile experiment to study the fuel behavior under reactivity-initiated accident conditions, it is of great importance to understand the time-dependent characteristics of the energy deposited in the test fuel by burst power. The evaluation of the time-dependent energy deposition requires the knowledge of the fission rates and energy deposition per fission in the test fuel, both as a function of time. In the present work, the authors attempted to evaluate the relative fission rate change in the test fuel subjected to the power burst testing in the NSRR through the measurements and analyses of the fission power changes in the NSRR. Utilizing a micro fission chamber and a conventional larger fission chamber, they successfully measured the reactor fission power change ranging over a dozen of decades in magnitude and a thousand seconds in time. The measured power transient agreed quite well with calculated results. In addition, the time-dependent energy deposition per fission in the test fuel including the energy contribution from the driver core was analytically evaluated. The analyses indicate that the energy of about 175 MeV/fission is promptly deposited in the test fuel and that the additional energy of about 11 MeV is deposited afterwards. Finally the fractions of energy deposited in the test fuel until various times after power burst were determined by coupling the time-dependent relative fissions and energy deposition per fission in the test fuel. The prompt energy deposition ranges from about 50 to 80% of the total energy deposition for the reactivity insertion between 1.5 and 4.7 $, and the remaining is the delayed energy deposition. (author)

  20. Household energy requirement and value patterns

    International Nuclear Information System (INIS)

    Vringer, Kees; Aalbers, Theo; Blok, Kornelis

    2007-01-01

    For an effective consumer energy policy, it is important to know why some households require more energy than others. The aim of the study described here was to examine whether there is a relationship between the total household energy requirement, on one hand, and value patterns, the motivation to save energy or the problem perception of climate change, on the other. To examine these relationships, we held a consumer survey among 2304 respondent households. We did not find significant differences in the energy requirement of groups of households with different value patterns, taking into account the differences in the socio-economic situation of households. Only for the 'motivation to save energy' we did find that the least motivated group requires 10 GJ more energy than the average and most motivated groups; this is about 4% of the total household energy requirement. This means that a self-regulating energy policy, solely based on the fact that a strategy of internalising environmental responsibility will not be effective in saving energy. There are indications that a social dilemma is one of the reasons why people's consumption patterns do not conform to their value patterns, problem perception or motivation to save energy

  1. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  2. Simulation of the fluctuations of energy and charge deposited during e-beam exposure

    International Nuclear Information System (INIS)

    Borisov, S. S.; Zaitsev, S. I.; Grachev, E. A.

    2007-01-01

    The stochastic nature of an energy and charge deposition process is examined using a model based on discrete loss approximation (DLA). Deposited energy deviations computed using the continuous slowing down approximation (CSDA) and DLA are compared. It is shown that CSDA underestimates fluctuations in deposited energy

  3. Comparison of heating deposition patterns for stacked linear phased array and fixed focus ultrasonic hyperthermia applicators

    International Nuclear Information System (INIS)

    Ocheltree, K.B.; Benkeser, P.J.; Frizzell, L.A.; Cain, C.A.

    1985-01-01

    An ultrasonic stacked linear phased array applicator for hyperthermia has been designed to heat tumors at depths from 5 to 10 cm. The power deposition pattern for this applicator is compared to that for a fixed focus applicator for several different scan paths. The power deposition pattern for the stacked linear phased array shows hot spots that are not observed for the mechanically scanned fixed focus applicator. These hot spots are related to the skewed power deposition pattern resulting from scanning the focus off the center of the linear arrays. The overall performance of the stacked linear phased array applicator is compared to that of a fixed focus applicator

  4. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2018-05-01

    This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the

  5. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  6. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    Science.gov (United States)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  7. Atomic layer deposition assisted pattern transfer technology for ultra-thin block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wenhui; Luo, Jun; Meng, Lingkuan; Li, Junjie; Xiang, Jinjuan; Li, Junfeng; Wang, Wenwu; Chen, Dapeng; Ye, Tianchun; Zhao, Chao

    2016-08-31

    As an emerging developing technique for next-generation lithography, directed self-assembly (DSA) of block copolymer (BCP) has attracted numerous attention and has been a potential alternative to supplement the intrinsic limitations of conventional photolithography. In this work, the self-assembling properties of a lamellar diblock copolymer poly(styrene-b-methylmethacrylate) (PS-b-PMMA, 22k-b-22k, L{sub 0} = 25 nm) on Si substrate and an atomic layer deposition (ALD)-assisted pattern transfer technology for the application of DSA beyond 16/14 nm complementary metal oxide semiconductor (CMOS) technology nodes, were investigated. Firstly, two key processing parameters of DSA, i.e. annealing temperatures and durations of BCP films, were optimized to achieve low defect density and high productivity. After phase separation of BCP films, self-assembling patterns of low defect density should be transferred to the substrate. However, due to the nano-scale thickness and the weak resistance of BCP films to dry etching, it is nearly impossible to transfer the BCP patterns directly to the substrate. Therefore, an ALD-based technology was explored in this work, in which deposited Al{sub 2}O{sub 3} selectively reacts with PMMA blocks thus hardening the PMMA patterns. After removing PS blocks by plasma etching, hardened PMMA patterns were left and transferred to underneath SiO{sub 2} hard mask layer. Using this patterned hard mask, nanowire array of 25 nm pitch were realized on Si substrate. From this work, a high-throughput DSA baseline flow and related ALD-assisted pattern transfer technique were developed and proved to have good capability with the mainstream CMOS technology. - Highlights: • Optimization on self-assembly process for high productivity and low defectivity • Enhancement of etching ratio and resistance by atomic layer deposition (ALD) • A hard mask was used for pattern quality improvement and contamination control.

  8. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  9. Deposition Pattern of Inhaled Thoron Progeny Size Distribution in Human Lung

    International Nuclear Information System (INIS)

    Mohamed, A.

    2005-01-01

    One of the important factors controlling the distribution of radiation dose to the different portions of the human respiratory tract is the deposition pattern of thoron progeny containing aerosol. Based on the activity size distribution parameters of thoron progeny, which were measured in El-Minia University, the deposition behavior of thoron progeny (attached and unattached) has been studied by using a stochastic deposition model. The measurements were performed with a wire screen diffusion battery and a low pressure cascade impactor (type Berner). The bronchial deposition efficiencies of particles in the size range of attached thoron progeny were found to be lower than those of unattached progeny. The effect of thoron progeny deposition by adult male has been also studied for various levels of physical exertion. An increase in the breathing rate was found to decrease the efficiencies with which inhaled progeny were deposited in the bronchi. As the ventilation rate increases from 0.54 to 1.5 m3 h-1, the average deposition efficiencies of airway generation 1 through 8 are expected to decrease by 22 % for 1.4 nm particles and by 38 % for 150 nm particles

  10. PRISM -- A tool for modelling proton energy deposition in semiconductor materials

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.

    1996-01-01

    This paper presents a description of, and test results from, a new PC based software simulation tool PRISM (Protons in Semiconductor Materials). The model describes proton energy deposition in complex 3D sensitive volumes of semiconductor materials. PRISM is suitable for simulating energy deposition in surface-barrier detectors and semiconductor memory devices, the latter being susceptible to Single-Event Upset (SEU) and Multiple-Bit Upset (MBU). The design methodology on which PRISM is based, together with the techniques used to simulate ion transport and energy deposition, are described. Preliminary test results used to analyze the PRISM model are presented

  11. Patterns of seabird and marine mammal carcass deposition along the central California coast, 1980-1986

    Science.gov (United States)

    Bodkin, James L.; Jameson, Ronald J.

    1991-01-01

    At monthly intervals from February 1980 through December 1986, a 14.5-km section of central California coastline was systematically surveyed for beach-cast carcasses of marine birds and mammals. Five hundred and fifty-four bird carcasses and 194 marine mammal carcasses were found. Common murres, western grebes, and Brandt's cormorants composed 45% of the bird total. California sea lions, sea otters, and harbor seals composed 90% of the mammal total. Several factors appeared to affect patterns of carcass deposition. The El Niño – Southern Oscillation (ENSO) of 1982–1983 was the dominant influence in terms of interannual variation in carcass deposition. During this ENSO, 56% of the seabirds and 48% of the marine mammals washed ashore. Patterns of intra-annual variation were species specific and were related to animal migration patterns, reproduction, and seasonal changes in weather. Nearshore currents and winds influenced the general area of carcass deposition, while beach substrate type and local patterns of sand deposition influenced the location of carcass deposition on a smaller spatial scale. Weekly surveys along a 1.1-km section of coastline indicated that 62% of bird carcasses and 41% of mammal carcasses remained on the beach less than 9 days. Cause of death was determined for only 8% of the carcasses. Oiling was the most common indication of cause of death in birds (6%). Neonates composed 8% of all mammal carcasses.

  12. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-07-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillstions and disruptions in tokamaks is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (author)

  13. Optimization design of energy deposition on single expansion ramp nozzle

    Science.gov (United States)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  14. Clearance patterns for 111In-oxide particles deposited in specific airways of beagle dogs

    International Nuclear Information System (INIS)

    Snipes, M.B.; Muggenburg, B.A.; Griffith, W.C.; Guilmette, R.A.

    1994-01-01

    The International Commission on Radiological Protection (ICRP) has incorporated long-term retention of radioactive particles in conducting airways into its newly approved respiratory tract dosimetry model. This model is purported to provide a better basis for assessing risk associated with human inhalation exposures to radioactive particles. However, applying the new model requires an understanding of particle retention patterns in conducting airways of the lung. Studies are being conducted at ITRI to quantify long-term retention patterns for particles deposited at specific sites in conducting airways of Beagle dogs. The dog was selected as a model because long-term retention and clearance patterns for particles deposited in the lungs of dogs and humans are similar

  15. Spatial patterns and temporal changes in atmospheric-mercury deposition for the midwestern USA, 2001–2016

    Science.gov (United States)

    Risch, Martin R.; Kenski, Donna M.

    2018-01-01

    Spatial patterns and temporal changes in atmospheric-mercury (Hg) deposition were examined in a five-state study area in the Midwestern USA where 32% of the stationary sources of anthropogenic Hg emissions in the continental USA were located. An extensive monitoring record for wet and dry Hg deposition was compiled for 2001–2016, including 4666 weekly precipitation samples at 13 sites and 27 annual litterfall-Hg samples at 7 sites. This study is the first to examine these Hg data for the Midwestern USA. The median annual precipitation-Hg deposition at the study sites was 10.4 micrograms per square meter per year (ug/m2/year) and ranged from 5.8 ug/m2/year to 15.0 ug/m2/year. The median annual Hg concentration was 9.4 ng/L. Annual litterfall-Hg deposition had a median of 16.1 ug/m2/year and ranged from 9.7 to 23.4 ug/m2/year. Isopleth maps of annual precipitation-Hg deposition indicated a recurring spatial pattern similar to one revealed by statistical analysis of weekly precipitation-Hg deposition. In that pattern, high Hg deposition in southeastern Indiana was present each year, frequently extending to southern Illinois. Most of central Indiana and central Illinois had similar Hg deposition. Areas with comparatively lower annual Hg deposition were observed in Michigan and Ohio for many years and frequently included part of northern Indiana. The area in southern Indiana where high Hg deposition predominated had the highest number of extreme episodes of weekly Hg deposition delivering up to 15% of the annual Hg load from precipitation in a single week. Modeled 48-h back trajectories indicated air masses for these episodes often arrived from the south and southwest, crossing numerous stationary sources of Hg emissions releasing from 23 to more than 300 kg Hg per year. This analysis suggests that local and regional, rather than exclusively continental or global Hg emissions were likely contributing to the extreme episodes and at least in part, to the spatial

  16. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  17. A Computational Study of Nasal Spray Deposition Pattern in Four Ethnic Groups.

    Science.gov (United States)

    Keeler, Jarrod A; Patki, Aniruddha; Woodard, Charles R; Frank-Ito, Dennis O

    2016-04-01

    Very little is known about the role of nasal morphology due to ethnic variation on particle deposition pattern in the sinonasal cavity. This preliminary study utilizes computational fluid dynamics (CFD) modeling to investigate sinonasal airway morphology and deposition patterns of intranasal sprayed particles in the nose and sinuses of individuals from four different ethnic groups: African American (Black); Asian; Caucasian; and Latin American. Sixteen subjects (four from each ethnic group) with "normal" sinus protocol computed tomography (CT) were selected for CFD analysis. Three-dimensional reconstruction of each subject's sinonasal cavity was created from their personal CT images. CFD simulations were carried out in ANSYS Fluent(™) in two phases: airflow phase was done by numerically solving the Navier-Stokes equations for steady state laminar inhalation; and particle dispersed phase was solved by tracking injected (sprayed) particles through the calculated airflow field. A total of 10,000 particle streams were released from each nostril, 1000 particles per diameter ranging from 5 μm to 50 μm, with size increments of 5 μm. As reported in the literature, Caucasians (5.31 ± 0.42 cm(-1)) and Latin Americans (5.16 ± 0.40cm(-1)) had the highest surface area to volume ratio, while African Americans had highest nasal index (95.91 ± 2.22). Nasal resistance (NR) was highest among Caucasians (0.046 ± 0.008 Pa.s/mL) and Asians (0.042 ± 0.016Pa.s/mL). Asians and African Americans had the most regions with particle deposition for small (5 μm-15 μm) and large (20 μm-50 μm) particle sizes, respectively. Asians and Latin Americans individuals had the most consistent regional particle deposition pattern in the main nasal cavities within their respective ethnic groups. Preliminary results from these ethnic groups investigated showed that Caucasians and Latin Americans had the least patent nasal cavity. Furthermore, Caucasians

  18. The energy deposition of slowing down particles in heterogeneous media

    International Nuclear Information System (INIS)

    Prinja, A.K.; Williams, M.M.R.

    1980-01-01

    Energy deposition by atomic particles in adjacent semi-infinite, amorphous media is described using the forward form of the Boltzmann transport equation. A transport approximation to the scattering kernel, developed elsewhere, incorporating realistic energy transfer is employed to assess the validity of the commonly used isotropic-scattering and straight-ahead approximations. Results are presented for integral energy deposition rates due to a plane, isotropic and monoenergetic source in one half-space for a range of mass ratios between 0.1 and 5.0. Integral profiles for infinite and semi-infinite media are considered and the influence of reflection for different mass ratios is evaluated. The dissimilar scattering properties of the two media induce a discontinuity at the interface in the energy deposition rate the magnitude of which is sensitive to the source position relative to the interface. A comprehensive evaluation of the total energy deposited in the source free medium is presented for a range of mass ratios and source positions. An interesting minimum occurs for off-interface source locations as a function of the source-medium mass ratio, the position of which varies with the source position but is insensitive to the other mass ratio. As a special case, energy reflection and escape coefficients for semi-infinite media are obtained which demonstrates that the effect of a vacuum interface is insignificant for deep source locations except for large mass ratios when reflection becomes dominant. (author)

  19. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    International Nuclear Information System (INIS)

    Sepulveda-Guzman, S.; Reeja-Jayan, B.; De la Rosa, E.; Ortiz-Mendez, U.; Reyes-Betanzo, C.; Cruz-Silva, R.; Jose-Yacaman, M.

    2010-01-01

    In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  20. Room-temperature deposition of crystalline patterned ZnO films by confined dewetting lithography

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S., E-mail: selene.sepulvedagz@uanl.edu.mx [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reeja-Jayan, B. [Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States); De la Rosa, E. [Centro de Investigacion en Optica, Loma del Bosque 115 Col. Lomas del Campestre C.P. 37150 Leon, Gto. Mexico (Mexico); Ortiz-Mendez, U. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia. UANL, PIIT Monterrey, CP 66629, Apodaca NL (Mexico); Reyes-Betanzo, C. [Instituto Nacional de Astrofisica Optica y Electronica, Calle Luis Enrique Erro No. 1, Santa Maria Tonanzintla, Puebla. Apdo. Postal 51 y 216, C.P. 72000 Puebla (Mexico); Cruz-Silva, R. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001, Col. Chamilpa, CP 62210 Cuernavaca, Mor. (Mexico); Jose-Yacaman, M. [Physics and Astronomy Department University of Texas at San Antonio 1604 campus San Antonio, TX 78249 (United States)

    2010-03-15

    In this work patterned ZnO films were prepared at room-temperature by deposition of {approx}5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation ({lambda} = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.

  1. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-01-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillations and disruptions in tokamak is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during the current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (orig.)

  2. Plant succession patterns on residual open-pit gravel mines deposits Bogota

    OpenAIRE

    Ricardo A. Mora Goyes

    1999-01-01

    Based on both: the study of composition and structure of plant communities and the analysis of the physico-chemical characteristics of mining wastes, the initial patterns of primary succession were determined. These patterns were present in three deposits of waste material abandoned during 18, 36 and 120 months respectively. Sue materials were originated in open-pit gravel mines located to the south of Bogota (Colombia). This study pretends to contribute to the knowledge of the meehanlsms of ...

  3. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  4. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  5. Non-local energy deposition: A problem in regional RF hyperthermia

    International Nuclear Information System (INIS)

    Hagmann, M.J.; Levin, R.L.

    1984-01-01

    As the frequency is decreased below 1 GHz, RF applicators can cause deep heating of tissues. However, there is a concomitant problem in that significant energy deposition may occur well beyond the dimensions of the applicator. The BSD Medical Corporation has described to the authors tests with a phantom manequin in which SAR in the neck was significantly greater than that in the abdomen when an Annular Phased Array System (APAS) was positioned for abdominal heating. The authors have obtained numerical solutions for the SAR distribution in a 180-cell inhomogeneous block model of man subjected to r-f irradiation approximating that emanating from various applicators. The solutions agree with the reports of BSD that significant heating in the neck, inner thighs, and back will occur with an abdominally-placed APAS. They suggest that a similar problem will occur with a helical-coil or other applicator for which the electric field is predominantly parallel to the axis of the body. Typically, 70% or more of the total energy will be deposited outside the bounds of an axial applicator when it is placed around the chest or abdomen. The problem is most severe at frequencies for which body parts such as the arm or head may resonate. In such cases, over 90% of the energy may be deposited outside the bounds of applicator. The problem of non-local energy deposition appears to be substantially reduced for non-axial applicators. If the arm extends outward from the side of the body, an axial applicator around it will cause negligible energy deposition in the rest of the body

  6. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction

    Science.gov (United States)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-01

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  7. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    Richmond, P.A.; Metraux, J.P.

    1984-01-01

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  8. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  9. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  10. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  11. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  12. Measurements of poloidal and toroidal energy deposition asymmetries in the ASDEX divertors

    International Nuclear Information System (INIS)

    Evans, T.E.

    1991-03-01

    Energy deposition characteristics in the ASDEX divertors have been analyzed over a wide range of discharges and wall conditions during ohmically heated, additionally heated, or lower hybrid current drive experiments. Changes in discharge operating parameters with high power additional heating produce a diversity of effects on the magnitudes and distributions of the energy absorbed in the divertors. Poloidally and toroidally resolved energy deposition patterns are particularly sensitive to changes in the edge safety factor, the type and power level of additional heating used, and the vertical position of the plasma. In most additionally heated discharges, a large fraction of the incremental divertor loading is found on only one or two target rings. Poloidal in-out asymmetries, which typically favor the low-field side by a factor of 2.5 in ohmic discharges, commonly range between a factor of 2.5 and 4.5 in additionally heated experiments and in extreme cases can be as large as a factor of 5.6. At the same time, toroidal asymmetries on individual target rings are found to range between a factor of 1.4 and 3.8 in typical ICRH and NBI cases with extreme LHCD cases of 4.3. A model, proposed to explain the cause of discharge asymmetries, is compared with the experimental observations. Under some conditions, for example during LHCD experiments, the model is in good agreement with the data. A method is proposed for supressing discharge asymmetries which may generally improve the divertor performance as well. (orig./AH)

  13. Energy storage and deposition in a solar flare

    Science.gov (United States)

    Vorpahl, J. A.

    1976-01-01

    X-ray pictures of a solar flare taken with the S-056 X-ray telescope aboard Skylab are interpreted in terms of flare energy deposition and storage. The close similarity between calculated magnetic-field lines and the overall structure of the X-ray core is shown to suggest that the flare occurred in an entire arcade of loops. It is found that different X-ray features brightened sequentially as the flare evolved, indicating that some triggering disturbance moved from one side to the other in the flare core. A propagation velocity of 180 to 280 km/s is computed, and it is proposed that the geometry of the loop arcade strongly influenced the propagation of the triggering disturbance as well as the storage and site of the subsequent energy deposition. Some possible physical causes for the sequential X-ray brightening are examined, and a magnetosonic wave is suggested as the triggering disturbance. 'Correct' conditions for energy release are considered

  14. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  15. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  16. Energy deposition model for I-125 photon radiation in water

    International Nuclear Information System (INIS)

    Fuss, M.C.; Garcia, G.; Munoz, A.; Oller, J.C.; Blanco, F.; Limao-Vieira, P.; Williart, A.; Garcia, G.; Huerga, C.; Tellez, M.

    2010-01-01

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  17. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  18. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  19. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  20. Plant succession patterns on residual open-pit gravel mines deposits Bogota

    Directory of Open Access Journals (Sweden)

    Ricardo A. Mora Goyes

    1999-07-01

    Full Text Available Based on both: the study of composition and structure of plant communities and the analysis of the physico-chemical characteristics of mining wastes, the initial patterns of primary succession were determined. These patterns were present in three deposits of waste material abandoned during 18, 36 and 120 months respectively. Sue materials were originated in open-pit gravel mines located to the south of Bogota (Colombia. This study pretends to contribute to the knowledge of the meehanlsms of natural restauration of tropical ecosystems subjected to man-borne degradation.

  1. Geopressured aquifers - utilization of the energy potential of the Endorf thermal water deposit

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Hantelmann, G v

    1984-01-01

    The Endorf thermal water deposit (Rupel, 4229 to 4264 m) belongs to the type of ''geopressured aquifers''. The overall aim of the project is to exploit the energy stored in the deposit in the form of thermal brine (temperature: 115/sup 0/C) and natural gas (96% methane). In this first report on the project state, an overview on prehistory is followed by a description of the currently implemented test programme and its subsequent evaluation which aim at obtaining more exact knowledge concerning the present deposit conditions and, while doing so, indications of the energy content of the deposit in order to determine the energy potential theoretically exploitable at the well head.

  2. Calorimetric sensors for energy deposition measurements

    International Nuclear Information System (INIS)

    Langenbrunner, J.; Cooper, R.; Morgan, G.

    1998-01-01

    A calorimetric sensor with several novel design features has been developed. These sensors will provide an accurate sampling of thermal power density and energy deposition from proton beams incident on target components of accelerator-based systems, such as the Accelerator Production of Tritium Project (APT) and the Spallation Neutron Source (SNS). A small, solid slug (volume = 0.347 cc) of target material is suspended by kevlar fibers and surrounded by an adiabatic enclosure in an insulating vacuum canister of stainless steel construction. The slug is in thermal contact with a low-mass, calibrated, 100-kΩ thermistor. Power deposition caused by the passage of radiation through the slug is calculated from the rate of temperature rise of the slug. The authors have chosen slugs composed of Pb, Al, and LiAl

  3. Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions

    International Nuclear Information System (INIS)

    Fang, J; Hong, Y J; Li, Q; Huang, H

    2011-01-01

    It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.

  4. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.; Snead, C.L.; Hanson, A.L.; Murray, M.M.

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 10 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in front of the target further reduced the energy deposition. The measured temperature rises of the energy-deposition target were empirically correlated with the distance from the source, the number of protons incident on the proton-radiography target, the thickness of the lead shielding, and the angle of the energy-deposition target off-axis of the beam line from the proton-radiography target. The correlation of the experimental data that was developed provides a starting point for the evaluation of the shielding requirements for devices downstream of proton-radiography targets such as superconducting magnets

  5. Plasmonic resonance-enhanced local photothermal energy deposition by aluminum nanoparticles

    International Nuclear Information System (INIS)

    Chong Xinyuan; Jiang Naibo; Zhang Zhili; Roy, Sukesh; Gord, James R.

    2013-01-01

    Local energy deposition of aluminum nanoparticles (Al NPs) by localized surface plasmon resonance-enhanced photothermal effects is demonstrated. Low-power light stimuli are efficiently and locally concentrated to trigger the oxidation reactions of Al NPs because of the large ohmic absorption and high reactivity of the Al. Numerical simulations show that both ultraviolet and visible light are more efficient than infrared light for photothermal energy coupling. The natural oxidation layer of alumina is found to have minimum impact on the energy deposition because of its negligible dielectric losses. The near-field distributions of the electric field indicate that slight aggregation induces much higher local enhancement, especially at the interface region of multiple contacting nanoparticles.

  6. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  7. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  8. Combining 137Cs and topographic surveys for measuring soil erosion/deposition patterns in a rapidly accreting area

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    2000-01-01

    Narrow, stiff grass hedges are biological barriers designed to slow runoff and capture soils carried in runoff water. This study was designed to measure quantitatively the deposition of soil up slope of a narrow, stiff grass hedge using topographic and 137 Cs surveys. Topographic surveys made in 1991, 1995, and 1998 measured 1 to 2 cm yr -1 of recent sediment deposited up slope of the grass hedge. 137 Cs analyses of soil samples were used to determine the medium-term (45 years) soil redistribution patterns. Erosion rates and patterns determined using 137 Cs measured medium-term erosion near the hedge do not reflect the recent deposition patterns near the grass hedge measured by topographic surveys. Using the combination of topographic and 137 Cs surveys allows a better understanding of the role of grass hedges as barriers for capturing eroding soils and suggest that the recent deposition is associated with the grass hedge but that there is still a net loss of soil near the hedge position over the past 45 years. (author)

  9. On the role of energy deposition in triggering SEGR in power MOSFETs

    International Nuclear Information System (INIS)

    Selva, L.E.; Swift, G.M.; Taylor, W.A.; Edmonds, L.D.

    1999-01-01

    Single event gate rupture (SEGR) was studied using three types of power MOSFET devices with ions having incident linear energy transfers (LETs) in silicon from 26 to 82 MeV·cm 2 /mg. Results are: (1) consistent with Wrobel's oxide breakdown for V DS = 0 volts (for both normal incidence and angle); and (2) when V GS = 0 volts, energy deposited near the Si/SiO 2 interface is more important than the energy deposited deeper in the epi

  10. Effect of electron degeneracy on fast-particles energy deposition in dense plasma systems

    International Nuclear Information System (INIS)

    Johzaki, T.; Nakao, Y.; Nakashima, H.; Kudo, K.

    1997-01-01

    The effects of electron degeneracy on fast-particles energy deposition in dense plasmas are investigated by making transport calculations for the fast particles. It is found that the degeneracy substantially affects the profiles of energy deposition of 3.52-MeV α-particles. On the other hand, the effect on the energy deposition of 14.1-MeV neutrons is negligibly small because the recoil ions, which transfer the neutron energy to the plasma constituents, are produced in a whole plasma volume due to the long mean-free-path of neutrons. The coupled transport-hydrodynamic calculations show that these effects of degeneracy are negligible in the ignition and burn characteristics of central ignition D-T targets. (author)

  11. Deposition, characterization, patterning and mechanistic study of inorganic resists for next-generation nanolithography

    Science.gov (United States)

    Luo, Feixiang

    The semiconductor industry has witnessed a continuous decrease in the size of logic, memory and other computer chip components since its birth over half a century ago. The shrinking (scaling) of components has to a large extent been enabled by the development of micro- and now nano-lithographic techniques. This thesis focuses on one central component of lithography, the resist, which is essentially a thin film that when appropriately exposed enables a pattern to be printed onto a surface. Smaller features require an ever more precisely focused photon, electron or ion beam with which to expose the resist. The likely next generation source of radiation that will enable sub-20nm features to be written will employ extreme ultraviolet radiation (EUV), 92eV (13.5nm). The work discussed here involves a novel class of inorganic resists (including a solution processed Hf-based resist called HafSOx), as the organic resists that have dominated the microlithography industry for the past few decades have approached fundamental scaling limits. In order to maintain the high throughput required by high volume semiconductor manufacturing, metal oxide resists have been proposed and developed to meet the resolution and sensitivity in EUV lithography. One can think of our resists as the nano-lithographic analog to the silver halide film that dominated the photographic print industry for a century. In this thesis, we mainly describe our work on HafSOx, a "first generation" metal oxide EUV resist system. HafSOx thin films can be deposited by spin-coating a mixed solution of HfOCl2, H2O 2, and H2SO4. Various materials characterization techniques have been employed to achieve a comprehensive understanding of film composition and structure at both surface and bulk level, as well as a mechanistic understanding of the film radiation chemistry. Taking advantage of the high energy x-rays used in the XPS experiment, we developed an experiment to dynamically monitor the photochemistry within the

  12. When the same hydraulics conditions lead to different depositional patterns: case of an idealised delta

    Science.gov (United States)

    Peltier, Yann; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin

    2016-04-01

    Deltas are complex hydrosystems and ecosystems resulting from the interactions of a river system with a water body almost at rest. Anthropogenic factors (hydropower, flood management, development in the floodplains) lead to dramatic changes in sediment transport in the rivers and in sediment management practice. From continuous, the sediment transport becomes increasingly intermittent, with long periods of deficit in the sediment supply and short periods characterized by large supplies. Understanding how these intermittencies in the sediment supply affect the delta morphodynamics is of paramount importance for predicting the possible evolution and functioning of deltas. Deltas can reasonably be idealised as a reservoir, with an inlet channel representing the river and the sudden enlargement of the reservoir representing the water body at rest. Using such an ideal configuration enables the assessment of the influence of individual geometric and hydraulic parameters on the depositional patterns responsible for the morphodynamic evolution of the delta. Recent literature has shown that for very similar hydraulic boundary conditions, two very different types of flow fields may develop ("straight jet" vs. "meandering jet"), leading to totally different depositional patterns. In turn, these distinct depositional patterns affect the flow itself through a two-way coupling between the hydrodynamics and the morphodynamics of the deposits. These complex processes will be discussed in the proposed presentation, based on the results of over 160 experimental tests and corresponding numerical simulations.

  13. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  14. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  15. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    Science.gov (United States)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  16. Monte Carlo calculation of the energy deposited in the KASCADE GRANDE detectors

    International Nuclear Information System (INIS)

    Mihai, Constantin

    2004-01-01

    The energy deposited by protons, electrons and positrons in the KASCADE GRANDE detectors is calculated with a simple and fast Monte Carlo method. The KASCADE GRANDE experiment (Forschungszentrum Karlsruhe, Germany), based on an array of plastic scintillation detectors, has the aim to study the energy spectrum of the primary cosmic rays around and above the 'knee' region of the spectrum. The reconstruction of the primary spectrum is achieved by comparing the data collected by the detectors with simulations of the development of the extensive air shower initiated by the primary particle combined with detailed simulations of the detector response. The simulation of the air shower development is carried out with the CORSIKA Monte Carlo code. The output file produced by CORSIKA is further processed with a program that estimates the energy deposited in the detectors by the particles of the shower. The standard method to calculate the energy deposit in the detectors is based on the Geant package from the CERN library. A new method that calculates the energy deposit by fitting the Geant based distributions with simpler functions is proposed in this work. In comparison with the method based on the Geant package this method is substantially faster. The time saving is important because the number of particles involved is large. (author)

  17. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  18. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  19. Numerical simulation of airway dimension effects on airflow patterns and odorant deposition patterns in the rat nasal cavity.

    Directory of Open Access Journals (Sweden)

    Zehong Wei

    Full Text Available The sense of smell is largely dependent on the airflow and odorant transport in the nasal cavity, which in turn depends on the anatomical structure of the nose. In order to evaluate the effect of airway dimension on rat nasal airflow patterns and odorant deposition patterns, we constructed two 3-dimensional, anatomically accurate models of the left nasal cavity of a Sprague-Dawley rat: one was based on high-resolution MRI images with relatively narrow airways and the other was based on artificially-widening airways of the MRI images by referencing the section images with relatively wide airways. Airflow and odorant transport, in the two models, were determined using the method of computational fluid dynamics with finite volume method. The results demonstrated that an increase of 34 µm in nasal airway dimension significantly decreased the average velocity in the whole nasal cavity by about 10% and in the olfactory region by about 12% and increased the volumetric flow into the olfactory region by about 3%. Odorant deposition was affected to a larger extent, especially in the olfactory region, where the maximum odorant deposition difference reached one order of magnitude. The results suggest that a more accurate nasal cavity model is necessary in order to more precisely study the olfactory function of the nose when using the rat.

  20. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  1. Investigating energy deposition within cell populations using Monte Carlo simulations.

    Science.gov (United States)

    Oliver, Patricia A K; Thomson, Rowan M

    2018-06-27

    In this work, we develop multicellular models of healthy and cancerous human soft tissues, which are used to investigate energy deposition in subcellular targets, quantify the microdosimetric spread in a population of cells, and determine how these results depend on model details. Monte Carlo (MC) tissue models combining varying levels of detail on different length scales are developed: microscopically-detailed regions of interest (>1500 explicitly-modelled cells) are embedded in bulk tissue phantoms irradiated by photons (20 keV to 1.25 MeV). Specific energy (z; energy imparted per unit mass) is scored in nuclei and cytoplasm compartments using the EGSnrc user-code egs_chamber; specific energy mean, <z>, standard deviation, σz, and distribution, f(z,D), are calculated for a variety of macroscopic doses, D. MC-calculated f(z,D) are compared with normal distributions having the same mean and standard deviation. For mGy doses, there is considerable variation in energy deposition (microdosimetric spread) throughout a cell population: e.g., for 30 keV photons irradiating melanoma with 7.5 μm cell radius and 3 μm nuclear radius, σz/<z> for nuclear targets is 170%, and the fraction of nuclei receiving no energy deposition, fz=0, is 0.31 for a dose of 10 mGy. If cobalt-60 photons are considered instead, then σz/<z> decreases to 84%, and fz=0 decreases to 0.036. These results correspond to randomly arranged cells with cell/nucleus sizes randomly sampled from a normal distribution with a standard deviation of 1 μm. If cells are arranged in a hexagonal lattice and cell/nucleus sizes are uniform throughout the population, then σz/<z> decreases to 106% and 68% for 30 keV and cobalt-60,respectively; fz=0

  2. Geochemical pattern of rare-earth elements from ore deposits of Sete Barras and Volta Grande-PR

    International Nuclear Information System (INIS)

    Ronchi, L.H.; Dardenne, M.A.

    1987-01-01

    The fluorite ore deposits of Volta Grande and Sete Barras in Parana show similar REE distribution patterns. Fluorite ores from other regions in Parana e Santa Catarina show marked differences in the REE pattern which suggest different modes of origin. (author) [pt

  3. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  4. The structure environment, rock-magma system, mineral-forming series and pattern of volcanic mineral-forming of uranium deposit in southeast of China

    International Nuclear Information System (INIS)

    Yu Dagan

    1992-01-01

    The Volcanic uranium deposit of rock-magma belt-the Mid-Cz Volcano in the Southeast of China mainly formed around 120 ∼ 130 Ma and 90 ∼ 100 Ma Which is in harmony with the two rock magma activities of k within the region. The rock-magma system of this period formed around the turning period from pressure to tension in the continent margin of southeast China, which is mainly characterized by the appearance of A-type granite and alkaline, sub-alkaline rocks (trachyte, trachyandensite, trachybasalt, basic rock alkaline basalt). The uranium deposit is controlled by the base rift of dissection to the mantle, the volcanic basin is of the double characteristics of transversal rift valley basin (early period) ad tension rift valley basin (laster period). The leading role of the deep source is stressed in terms of internal-forming series of volcanic uranium deposits is considered to exist; and also in terms of internal-forming series of volcanic uranium deposits is considered to exist; and also in terms of mineral-forming patterns, the multi-pattern led by the deep-source is stressed, including the mineral-forming pattern of uranium deposit of continental thermos, repeated periphery mineral-forming pattern of uranium deposit and the mineral-forming pattern of uranium deposit of rising pole-like thermos. Ten suggestions are put forward to the next mineral-search according to the above thoughts

  5. Studies on the high electronic energy deposition in polyaniline thin films

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Gudage, Y.G.; Vyas, J.C.; Singh, F.; Sharma, Ramphal

    2008-01-01

    We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au 7+ ion of 100 MeV energy at different fluences, namely, 5 x 10 11 ions/cm 2 and 5 x 10 12 ions/cm 2 , respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique

  6. Statistical analysis of dispersal and deposition patterns of volcanic emissions from Mt. Sakurajima, Japan

    Science.gov (United States)

    Poulidis, Alexandros P.; Takemi, Tetsuya; Shimizu, Atsushi; Iguchi, Masato; Jenkins, Susanna F.

    2018-04-01

    With the eruption of Eyjafjallajökull (Iceland) in 2010, interest in the transport of volcanic ash after moderate to major eruptions has increased with regards to both the physical and the emergency hazard management aspects. However, there remain significant gaps in the understanding of the long-term behaviour of emissions from volcanoes with long periods of activity. Mt. Sakurajima (Japan) provides us with a rare opportunity to study such activity, due to its eruptive behaviour and dense observation network. In the 6-year period from 2009 to 2015, the volcano was erupting at an almost constant rate introducing approximately 500 kt of ash per month to the atmosphere. The long-term characteristics of the transport and deposition of ash and SO2 in the area surrounding the volcano are studied here using daily surface observations of suspended particulate matter (SPM) and SO2 and monthly ashfall values. Results reveal different dispersal patterns for SO2 and volcanic ash, suggesting volcanic emissions' separation in the long-term. Peak SO2 concentrations at different locations on the volcano vary up to 2 orders of magnitude and decrease steeply with distance. Airborne volcanic ash increases SPM concentrations uniformly across the area surrounding the volcano, with distance from the vent having a secondary effect. During the period studied here, the influence of volcanic emissions was identifiable both in SO2 and SPM concentrations which were, at times, over the recommended exposure limits defined by the Japanese government, European Union and the World Health Organisation. Depositional patterns of volcanic ash exhibit elements of seasonality, consistent with previous studies. Climatological and topographic effects are suspected to impact the deposition of volcanic ash away from the vent: for sampling stations located close to complex topographical elements, sharp changes in the deposition patterns were observed, with ash deposits for neighbouring stations as close as

  7. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.

    Science.gov (United States)

    Kundoor, Vipra; Dalby, Richard N

    2011-08-01

    To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.

  8. Cumulative percent energy deposition of photon beam incident on different targets, simulated by Monte Carlo

    International Nuclear Information System (INIS)

    Kandic, A.; Jevremovic, T.; Boreli, F.

    1989-01-01

    Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs

  9. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  10. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  11. Energy deposition model for low-energy electrons (10-10 000 eV) in air

    International Nuclear Information System (INIS)

    Roldan, A.; Perez, J.M.; Williart, A.; Blanco, F.; Garcia, G.

    2004-01-01

    An energy deposition model for electrons in air that can be useful in microdosimetric applications is presented in this study. The model is based on a Monte Carlo simulation of the single electron scattering processes that can take place with the molecular constituents of the air in the energy range 10-10 000 eV. The input parameters for this procedure have been the electron scattering cross sections, both differential and integral. These parameters were calculated using a model potential method which describes the electron scattering with the molecular constituent of air. The reliability of the calculated integral cross section values has been evaluated by comparison with direct total electron scattering cross-section measurements performed by us in a transmission beam experiment. Experimental energy loss spectra for electrons in air have been used as probability distribution functions to define the electron energy loss in single collision events. The resulting model has been applied to simulate the electron transport through a gas cell containing air at different pressures and the results have been compared with those observed in the experiments. Finally, as an example of its applicability to dosimetric issues, the energy deposition of 10 000 eV by means of successive collisions in a free air chamber has been simulated

  12. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, M. A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  13. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution.

    Science.gov (United States)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha -1 yr -1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. Copyright © 2017. Published by Elsevier Ltd.

  14. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  15. Novel Pattern of Iron Deposition in the Fascicula Nigrale in Patients with Parkinson's Disease: A Pilot Study

    International Nuclear Information System (INIS)

    Peckham, Miriam E.; Dashtipour, Khashayar; Holshouser, Barbara A.; Kani, Camellia; Boscanin, Alex; Kani, Kayvan; Harder, Sheri L.

    2016-01-01

    Background and Purpose. To determine whether the pattern of iron deposition in the fascicula nigrale in patients with Parkinson's disease would be different from age-matched controls by utilizing quantitative susceptibility mapping to measure susceptibility change. Methods. MRIs of the brain were obtained from 34 subjects, 18 with Parkinson's disease and 16 age- and gender-matched controls. Regions of interest were drawn around the fascicula nigrale and substantia nigra using SWI mapping software by blinded investigators. Statistical analyses were performed to determine susceptibility patterns of both of these regions. Results. Measurements showed significantly increased susceptibility in the substantia nigra in Parkinson's patients and an increased rostral-caudal deposition of iron in the fascicula nigrale in all subjects. This trend was exaggerated with significant correlation noted with increasing age in the Parkinson group. Conclusion. The pattern of an exaggerated iron deposition gradient of the fascicula nigrale in the Parkinson group could represent underlying tract dysfunction. Significant correlation of increasing iron deposition with increasing age may be a cumulative effect, possibly related to disease duration

  16. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  17. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  18. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  19. Deposition and retention patterns for 3-, 9-, and 15-micron latex microspheres inhaled by rats and guinea pigs

    International Nuclear Information System (INIS)

    Snipes, M.B.; Olson, T.R.; Yeh, H.C.

    1988-01-01

    This study was designed to determine the deposition patterns and fate of large particles inhaled by two species of small laboratory animals during nose breathing. Rats and guinea pigs inhaled 3-, 9-, or 15 micron polystyrene latex microspheres labeled with 46 Sc. Approximately 1.4% and 0.55% of the initial internally deposited body burden of 3-micron microspheres was in the alveolar region of the respiratory tract of rats and guinea pigs, respectively. None of the 9- or 15-micron microspheres were detected in the alveolar regions of the rats or guinea pigs. Ninety-five to 99% of the deposited microspheres cleared from these animals with biological half-times of 0.5-1.0 day. Most of the cleared radioactivity was in the feces. Approximations for long-term biological half-times for alveolar retention of the 3-micron microspheres were 63 days for rats and 83 days for guinea pigs. About 1% of the initial lung burden of 3-micron microspheres was translocated from lung to lung-associated lymph nodes in both species; none of the 9- or 15-micron microspheres were detected in those lymph nodes. Small fractions of the microspheres initially deposited in the airways of the head were retained with biological clearance half-times ranging from 9 to 350 days. Results from this study do not allow projections for deposition and retention patterns for similar particles inhaled by humans. Such projections must come from studies with humans, or from studies with animal species having deposition patterns for inhaled materials more comparable to those of humans

  20. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  1. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat

    Science.gov (United States)

    Suh, Hyo Seon; Kim, Do Han; Moni, Priya; Xiong, Shisheng; Ocola, Leonidas E.; Zaluzec, Nestor J.; Gleason, Karen K.; Nealey, Paul F.

    2017-07-01

    Directed self-assembly (DSA) of the domain structure in block copolymer (BCP) thin films is a promising approach for sub-10-nm surface patterning. DSA requires the control of interfacial properties on both interfaces of a BCP film to induce the formation of domains that traverse the entire film with a perpendicular orientation. Here we show a methodology to control the interfacial properties of BCP films that uses a polymer topcoat deposited by initiated chemical vapour deposition (iCVD). The iCVD topcoat forms a crosslinked network that grafts to and immobilizes BCP chains to create an interface that is equally attractive to both blocks of the underlying copolymer. The topcoat, in conjunction with a chemically patterned substrate, directs the assembly of the grating structures in BCP films with a half-pitch dimension of 9.3 nm. As the iCVD topcoat can be as thin as 7 nm, it is amenable to pattern transfer without removal. The ease of vapour-phase deposition, applicability to high-resolution BCP systems and integration with pattern-transfer schemes are attractive properties of iCVD topcoats for industrial applications.

  2. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  3. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    Science.gov (United States)

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  4. Interaction region design driven by energy deposition

    Science.gov (United States)

    Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara

    2017-08-01

    The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  5. Energy demand patterns

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, L; Schipper, L; Meyers, S; Sathaye, J; Hara, Y

    1984-05-01

    This report brings together three papers on energy demand presented at the Energy Research Priorities Seminar held in Ottawa on 8-10 August 1983. The first paper suggests a framework in which energy demand studies may be organized if they are to be useful in policy-making. Disaggregation and the analysis of the chain of energy transformations are possible paths toward more stable and reliable parameters. The second paper points to another factor that leads to instability in sectoral parameters, namely a changeover from one technology to another; insofar as technologies producing a product (or service) vary in their energy intensity, a technological shift will also change the energy intensity of the product. Rapid technological change is characteristic of some sectors in developing countries, and may well account for the high aggregate GDP-elasticities of energy consumption observed. The third paper begins with estimates of these elasticities, which were greater than one for all the member countries of the Asian Development Bank in 1961-78. The high elasticities, together with extreme oil dependence, made them vulnerable to the drastic rise in the oil price after 1973. The author distinguishes three diverging patterns of national experience. The oil-surplus countries naturally gained from the rise in the oil price. Among oil-deficit countries, the newly industrialized countries expanded their exports so rapidly that the oil crisis no longer worried them. For the rest, balance of payments adjustments became a prime concern of policy. Whether they dealt with the oil bill by borrowing, by import substitution, or by demand restraint, the impact of energy on their growth was unmistakable. The paper also shows why energy-demand studies, and energy studies in general, deserve to be taken seriously. 16 refs., 4 figs., 18 tabs.

  6. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    Science.gov (United States)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  7. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  8. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  9. In Vitro Assessment of Spray Deposition Patterns in a Pediatric (12 Year-Old) Nasal Cavity Model.

    Science.gov (United States)

    Sawant, Namita; Donovan, Maureen D

    2018-03-26

    Nasal sprays available for the treatment of cold and allergy symptoms currently use identical formulations and devices for adults as well as for children. Due to the obvious differences between the nasal airway dimensions of a child and those of an adult, the performance of nasal sprays in children was evaluated. Deposition patterns of nasal sprays administered to children were tested using a nasal cast based on MRI images obtained from a 12 year old child's nasal cavity. Test formulations emitting a range of spray patterns were investigated by actuating the device into the pediatric nasal cast under controlled conditions. The results showed that the nasal sprays impacted in the anterior region of the 12 year old child's nasal cavity, and only limited spray entered the turbinate region - the effect site for most topical drugs and the primary absorptive region for systemically absorbed drugs. Differences in deposition patterns following the administration of nasal sprays to adults and children may lead to differences in efficacy between these populations. Greater anterior deposition in children may result in decreased effectiveness, greater anterior dosage form loss, and the increased potential for patient non-compliance.

  10. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  11. Suprathermal-electron generation, transport, and deposition in CO2-laser-irradiated targets

    International Nuclear Information System (INIS)

    Hauer, A.; Goldman, R.; Kristal, R.

    1982-01-01

    Experiments on both axial and lateral energy transport and deposition in spherical targets are described. A variety of diagnostics have been used to measure hot-electron transport and deposition including bremsstrahlung and inner-shell radiation and soft x-ray temperature measurements. Self-generated electric and magnetic fields play an important role in the transport and deposition of the hot electrons. In some cases distinct patterns of surface deposition consistent with magnetic-field configurations have been observed

  12. Discussion on numerical simulation techniques for patterns of water vapor rise and droplet deposition at NPP cooling tower

    International Nuclear Information System (INIS)

    Guo Dongpeng; Yao Rentai

    2010-01-01

    Based on the working principle of cooling tower, analysis and comparison are made of both advantages and disadvantages of the numerical simulation models, such as ORFAD, KUMULUS, ISCST:A, ANL/UI, CFD etc., which predict the rise and droplet deposition pattern of cooling tower water vapor. The results showed that, CFD model is currently a better model that is used of three-dimensional Renault fluid flow equations predicting the rise and droplet deposition pattern of cooling tower water vapor. The impact of the line trajectory deviation and the speed change inn plume rising is not considered in any other models, and they can not be used for prediction of particle rise and droplet deposition when a larger particle or large buildings in the direction of cooling tower. (authors)

  13. Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution

    International Nuclear Information System (INIS)

    Xu, Wen; Zhao, Yuanhong; Liu, Xuejun; Dore, Anthony J.; Zhang, Lin; Liu, Lei; Cheng, Miaomiao

    2018-01-01

    The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (N r ) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha −1 yr −1 on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of N r emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH 3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures. - Highlights: • Total DIN deposition fluxes showed a significant spatial variation in the

  14. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  15. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  16. Interaction region design driven by energy deposition

    Directory of Open Access Journals (Sweden)

    Roman Martin

    2017-08-01

    Full Text Available The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.

  17. Characteristics of toroidal energy deposition asymmetries in ASDEX

    International Nuclear Information System (INIS)

    Evans, T.E.; Neuhauser, J.; Leuterer, F.; Mueller, E.R.

    1990-01-01

    Large toroidal and poloidal asymmetries with characteristics which are sensitively dependent on q a , the vertical position of the plasma, and the type of additional heating are observed in the energy flow to the ASDEX divertor target plates. The largest asymmetries and total energy depositions are observed during lower hybrid wave injection experiments with approximately 50% of the input energy going to the combined divertor targets and shields. A maximum localized energy density loading of 10 MJ/m 2 is typical under these conditions. Measurements of the asymmetries are consistent with a model in which magnetic islands and ergodicity due to intrinsic magnetic perturbations dominate the energy transpot across the primary magnetic separatrix. The results emphasize the essential role of resonant magnetic perturbations in determining the performance of tokamaks and demonstrate that non-axisymmetric effects caused by small perturbations become increasingly important in determining the transport properties as the injected power is increased. (orig.)

  18. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  19. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  20. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    International Nuclear Information System (INIS)

    Famiano, M.A.

    1997-01-01

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time (∼1 micros to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, 137 Cs gamma rays, and electrons from a 90 Sr/ 90 Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired

  1. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  2. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Directory of Open Access Journals (Sweden)

    D. Milan

    2018-04-01

    Full Text Available Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  3. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2018-04-01

    Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  4. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  5. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells

  6. Inhalation deposition and retention patterns of a U-Pu chain aggregate aerosol

    International Nuclear Information System (INIS)

    Briant, J.K.; Sanders, C.L.

    1987-01-01

    Chain aggregate aerosol particles are normally formed during many high-temperature combustion and vaporization processes. The shape of chain aggregate aerosol particles could have an effect on the pattern of inhalation deposition and retention of the particles in the respiratory tract. A chain aggregate aerosol of nuclear reactor fuel could be present as an inhalation hazard if it were released to the atmosphere after a meltdown, core-disruptive accident. Rats were exposed to a chain aggregate U-Pu aerosol made by laser vaporization of mixed-oxide, breeder reactor fuel (20% plutonium dioxide and 80% uranium dioxide), then sacrificed to measure the clearance and retention of the fuel aerosol particles. Deposition of the 0.7-micron (activity median aerodynamic equivalent diameter) aerosol particles resulted in an average initial lung burden of 4140 Bq alpha activity. The chain aggregate particle shape was not a major factor in the total deposition; however, it may have influenced the regional distribution of the activity deposited. Retention of the particles in the upper airways of the tracheobronchial tree was on the order of 1% of the concurrent lung burden, which is consistent with recent data of other investigations. This study indicates that insoluble chain aggregate particles are retained in the tracheobronchial airways to a degree similar to simple spherically shaped particles of equivalent volume diameter

  7. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII and D

    International Nuclear Information System (INIS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-01-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII and D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys . 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  8. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    Science.gov (United States)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  9. Influence of emitter temperature on the energy deposition in a low-pressure plasma

    International Nuclear Information System (INIS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-01-01

    The influence of emitter temperature on the energy deposition into low-pressure plasma is studied by the self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. Depending on the emitter temperature, different modes of discharge operation are obtained. The mode type depends on the plasma frequency and does not depend on the ratio between the densities of beam and plasma electrons. Namely, plasma is stable when the plasma frequency is small. For this plasma, the energy transfer from emitted electrons to plasma electrons is inefficient. The increase in the plasma frequency results first in the excitation of two-stream electron instability. However, since the thermal velocity of plasma electrons is smaller than the electrostatic wave velocity, the resonant wave-particle interaction is inefficient for the energy deposition into the plasma. Further increase in the plasma frequency leads to the distortion of beam of emitted electrons. Then, the electrostatic wave generated due to two-stream instability decays into multiple slower waves. Phase velocities of these waves are comparable with the thermal velocity of plasma electrons which makes possible the resonant wave-particle interaction. This results in the efficient energy deposition from emitted electrons into the plasma.

  10. Numerical Simulation of Radial and Angular Distribution of γ-Ray's Energy Deposition in Scintillation Optical Fibre

    International Nuclear Information System (INIS)

    Tang Shibiao; Yin Zejie; Tang Yu; Huang Huan

    2006-01-01

    Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy deposition and the radius of the fibres. The deposition is roughly inversely proportional to sinθ with θ the incident angle relative to the fibre axis. The results could provide corrections to the measurements of the scintillation fibres used in monitoring the γ-ray radiation

  11. A metalogenic pattern for the uraniferous ore deposits at the Sierrita Nuevo Leon and Tamaulipas area

    International Nuclear Information System (INIS)

    Hernandez H, A.

    1977-01-01

    A metalogenic pattern is proposed as a geological criterion to help in prospecting radioactive minerals accumulated in the tertiary sedimentary deposits at the Burgos Basin. Through the analysis and interpretation of the geological concepts and the mentioned pattern we can reach more and more precise processes to control the localization of radioactive minerals and at the same time apply the criteria of this pattern in the selection of areas which present the greatest probabilities of the existence of a radioactive ore deposit. As soon as the geoligical is defined, prospection programs are realized with indirect methods through which we obtain the demarcation of anomalous superficial zones. Immediately after this step a geological and geophysical verification program is developed. This way we can know objectively the areas which will be included in the direct exploration programm that will permit us to determine finally the zones of interest and the uninteresting zones. In conclusion the objective of this work is to determine the relations between paleochannels and accumulations of radioactive minerals. (author)

  12. Weekly patterns, diet quality and energy balance.

    Science.gov (United States)

    McCarthy, Sinéad

    2014-07-01

    Human behaviour is made up of many repeated patterns and habitual behaviours. Our day to day lives are punctuated by work, education, domestic chores, sleep and food. Changes in daily patterns such as not working in paid employment or attending school on the weekend contribute significantly to changes in dietary patterns of food consumption, patterns of physical activity and ultimately energy balance. The aim of this paper is to adopt a life-course perspective and explore the changes in dietary quality and physical activity patterns across the week from young children to elderly adults with a focus on Western cultures. Research literature indicates that the dietary quality is somewhat poorer on the weekends, characterised by higher fat intakes, higher alcohol intakes and consequently higher energy intakes. This increase in energy intake is not necessarily offset by an increase in activity, rather an increase in sedentary behaviours. Some research has observed an increase of more than 100 cal per day over the weekend in American adults. Over the course of one year, this can result in a significant increase in body mass. Some of the interventions in tackling obesity and diet related behaviours must focus on the changes in the weekend behaviour of consumers in terms of both food and activity. These efforts should also focus on increasing consumer awareness of the long term consequences of the short lived weekend excess as well as putting in place practical measures and interventions that are evidence based and targeted to consumer needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  14. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    International Nuclear Information System (INIS)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  15. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    Science.gov (United States)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of

  16. Monte Carlo simulations used to calculate the energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy.

    Science.gov (United States)

    Hocine, Nora; Meignan, Michel; Masset, Hélène

    2018-04-01

    To better understand the risks of cumulative medical X-ray investigations and the possible causal role of contrast agent on the coronary artery wall, the correlation between iodinated contrast media and the increase of energy deposited in the coronary artery lumen as a function of iodine concentration and photon energy is investigated. The calculations of energy deposition have been performed using Monte Carlo (MC) simulation codes, namely PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and Monte Carlo N-Particle eXtended (MCNPX). Exposure of a cylinder phantom, artery and a metal stent (AISI 316L) to several X-ray photon beams were simulated. For the energies used in cardiac imaging the energy deposited in the coronary artery lumen increases with the quantity of iodine. Monte Carlo calculations indicate a strong dependence of the energy enhancement factor (EEF) on photon energy and iodine concentration. The maximum value of EEF is equal to 25; this factor is showed for 83 keV and for 400 mg Iodine/mL. No significant impact of the stent is observed on the absorbed dose in the artery for incident X-ray beams with mean energies of 44, 48, 52 and 55 keV. A strong correlation was shown between the increase in the concentration of iodine and the energy deposited in the coronary artery lumen for the energies used in cardiac imaging and over the energy range between 44 and 55 keV. The data provided by this study could be useful for creating new medical imaging protocols to obtain better diagnostic information with a lower level of radiation exposure.

  17. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  18. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    NARCIS (Netherlands)

    Mackus, A.J.M.; Mulders, J.J.L.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure,

  19. The penetration, diffusion and energy deposition of high-energy photon in layered media

    International Nuclear Information System (INIS)

    Zhengming, Luo; Chengjun, Gou; Laub, Wolfram

    2002-01-01

    This paper presents a new theory for calculating the transport of high-energy photons and their secondary charged particles. We call this new algorithm characteristic line method, which is completely analytic. Using this new method we can not only accurately calculate the transport behavior of energetic photons, but also precisely describes the transport behavior and energy deposition of secondary electrons, photoelectrons, Compton recoil electrons and positron-electron pairs. Its calculation efficiency is much higher than the Monte Carlo method's. The theory can be directly applied to layered media situation and obtain a pencil-beam-modeled solution. Therefore, it may be applied to clinical applications for radiation therapy

  20. Stopping and energy deposition of hadrons in target nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    In an analysis of pion-xenon nucleus collisions at 2.34-9 GeV/c momentum events are identified in which incident pions were completely stopped and deposited their energy in target nucleus. Probability of appearance of such ''stopped'' events among any-type pion-xenon collision events depends on the incident pion momentum and is: approximately 0.15 at 2.34 GeV/c, approximately 0.02 at 3.5 GeV/c, and approximately 0 at higher momenta. Formula expressing probability of appearance of the ''stopped'' events is derived. Range-energy relation in nuclear matter for pions and protons is given

  1. Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles

    CERN Document Server

    Hoa, C; Cerutti, F; Ferrai, A

    2008-01-01

    Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and ...

  2. Inter-comparison of MARS and FLUKA: Predictions on energy deposition in LHC IR quadrupoles

    International Nuclear Information System (INIS)

    Hoa, Christine; Cerutti, F.; Ferrari, A.; Mokhov, N.V.

    2008-01-01

    Detailed modelings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes--based on different independent physics models--for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole

  3. Reconstruction and analysis of cesium-137 fallout deposition patterns in the Marshall Islands

    Science.gov (United States)

    Whitcomb, Robert Cleckley, Jr.

    Estimates of 137Cs deposition due to fallout originating from nuclear weapons testing in the Marshall Islands have been made for several locations in the Marshall Islands. These retrospective estimates were based primarily on historical exposure rate and gummed film measurements. The methods used to reconstruct these deposition estimates are specific for six of the Pacific tests. These methods are also similar to those used in the National Cancer Institute study for reconstructing 131I deposition from the Nevada Test Site. Reconstructed cumulative deposition estimates are validated against contemporary measurements of 137Cs concentration in soil. This validation work also includes an accounting for estimated global fallout contributions. These validations show that the overall geometric bias in predicted-to-observed (P/O) ratios is 1.0 (indicating excellent agreement). The 5th and 95th percentile range of this distribution is 0.35--2.95. The P/O ratios for estimates using historical gummed film measurements tend to slightly over-predict more than estimates using exposure rate measurements. The methods produce reasonable estimates of deposition confirming that radioactive fallout occurred at atolls further south of the four northern atolls recognized by the Department of Energy as being affected by fallout. The deposition estimate methods, supported by the very good agreement between estimates and measurements, suggest that these methods can be used for other weapons testing fallout radionuclides with confidence.

  4. Nanosecond pulsed laser induced self-organized nano-dots patterns on GaSb surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yutaka, E-mail: yyoshida@cris.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan); Creative Research Institution Sousei, Hokkaido University, N21, W10, Kita-ku, Sapporo 001-0021, Hokkaido (Japan); Oosawa, Kazuya; Wajima, Jyunya; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan); Matsuo, Yasutaka [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Hokkaido (Japan); Kato, Takahiko [Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika, Hitachi-shi 319-1292, Ibaraki-ken (Japan); Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, N8, W13, Kita-ku, Sapporo 060-8628, Hokkaido (Japan)

    2014-07-01

    We report a technique for formation of two-dimensional (2D) nanodot (ND) patterns on gaillium antimoide (GaSb) using a nanosecond pulsed laser irradiation with 532 nm wavelength. The patterns have formed because of the interference and the self-organization under energy deposition of the laser irradiation, which induced the growth of NDs on the local area. The NDs are grown and shrunken in the pattern by energy depositions. In the laser irradiation with average laser energy density of 35 mJ cm⁻², large and small NDs are formed on GaSb surface. The large NDs have grown average diameter from 160 to 200 nm with increase of laser pulses, and the small NDs have shrunken average diameter from 75 to 30 nm. The critical dot size is required about 107 nm for growth of the NDs in the patterns. Nanosecond pulsed laser irradiation can control the self-organized ND size on GaSb in air as a function of the laser pulses.

  5. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  6. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  7. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  8. Calorific energy deposited by gamma radiations in a test reactor. Calorimetric measurements and calculations

    International Nuclear Information System (INIS)

    Mecheri, K.-F.

    1977-01-01

    The purpose of this work was to determine the calorific energy deposited by gamma radiations in the experimental devices irradiated in the test reactors of the Grenoble Nuclear Study Centre. A theoretical study briefly recalls to mind the various sorts of nuclear reactions that occur in a reactor, from the special angle of their ability to deposit calorific energy in the materials. A special study with the help of a graphite calorimeter made it possible to show the possible effect of the various parameters intervening in this energy absorption: the nature of the materials, their geometry, the spectrum of the incident gamma rays and the fact that the variation of this spectrum is due to the position of the measuring point with respect to the reactor core or to the presence of structures around the measuring instrument. The results of the calculations made with the help of the Mercury IV and ANISN codes are compared with those of the determinations in order to ascertain that very are adapted to the forecasts of energy deposition in the various materials. The conclusion was reached that in order to calculate with accuracy the depositifs of gamma energy in the experimental devices, it is necessary either to introduce the build-up calculation for the low energy photons, in the Mercury IV calculation code or to associate the DOT code to the ANISN calculation code [fr

  9. Study of Energy Deposition and Activation for the LINAC4 Dump

    CERN Document Server

    Cerutti, F; Mauro, E; Mereghetti, A; Silari, M; CERN. Geneva. AB Department

    2008-01-01

    This document provides estimates of energy deposition and activation for the dump of the future LINAC4 accelerator. Detailed maps of power density deposited in the dump are given, allowing to perform further thermo mechanical studies. Residual dose rates at a few cooling times for different irradiation scenarios have been calculated. Moreover, the air activation has been evaluated and doses to the reference population group and to a worker intervening in the cave at the shutdown have been predicted. Calculations were performed with the Monte Carlo particle transport and interaction code FLUKA.

  10. Architectural elements from Lower Proterozoic braid-delta and high-energy tidal flat deposits in the Magaliesberg Formation, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Eriksson, Patrick G.; Reczko, Boris F. F.; Jaco Boshoff, A.; Schreiber, Ute M.; Van der Neut, Markus; Snyman, Carel P.

    1995-06-01

    Three architectural elements are identified in the Lower Proterozoic Magaliesberg Formation (Pretoria Group, Transvaal Supergroup) of the Kaapvaal craton, South Africa: (1) medium- to coarse-grained sandstone sheets; (2) fine- to medium-grained sandstone sheets; and (3) mudrock elements. Both sandstone sheet elements are characterised by horizontal lamination and planar cross-bedding, with lesser trough cross-bedding, channel-fills and wave ripples, as well as minor desiccated mudrock partings, double-crested and flat-topped ripples. Due to the local unimodal palaeocurrent patterns in the medium- to coarse-grained sandstone sheets, they are interpreted as ephemeral braid-delta deposits, which were subjected to minor marine reworking. The predominantly bimodal to polymodal palaeocurrent trends in the fine- to medium-grained sandstone sheets are inferred to reflect high-energy macrotidal processes and more complete reworking of braid-delta sands. The suspension deposits of mudrocks point to either braid-delta channel abandonment, or uppermost tidal flat sedimentation. The depositional model comprises ephemeral braid-delta systems which debouched into a high-energy peritidal environment, around the margins of a shallow epeiric sea on the Kaapvaal craton. Braid-delta and tidal channel dynamics are inferred to have been similar. Fine material in the Magaliesberg Formation peritidal complexes indicates that extensive aeolian removal of clay does not seem applicable to this example of the early Proterozoic.

  11. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    Science.gov (United States)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  12. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  13. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  14. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  15. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow

    Science.gov (United States)

    The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...

  16. Energy prediction using spatiotemporal pattern networks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun; Henze, Gregor P.; Sarkar, Soumik

    2017-11-01

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated by the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.

  17. Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    Science.gov (United States)

    Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2018-01-01

    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  18. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  19. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  20. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  1. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1980-01-01

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work

  2. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  3. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  4. 77 FR 7601 - Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy...

    Science.gov (United States)

    2012-02-13

    ... LVRWB10B3980] Notice of Segregation of Public Lands for the Pattern Energy Group Ocotillo Express Wind Energy... Acts, for a period of 2 years for the purpose of processing a wind energy right-of-way (ROW... filed by Pattern Energy Group for the Ocotillo Express Wind Project on the above described lands while...

  5. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    Science.gov (United States)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  6. Depositional environments as a guide to uranium mineralization in the Chinle formation, San Rafael Swell, Utah

    International Nuclear Information System (INIS)

    Lupe, R.

    1977-01-01

    The sedimentary textures resulting from depositional processes operating in low-energy environments appear to have influenced uranium mineralization. The Chinle consists of three fining-upward, fluvial-lacustrine sequences. Uranium minerals are concentrated in the lower part of the lowest sequence in areas where sediments of low-energy environment are complexly interbedded with sediments of other environments. Areas favorable for uranium exploration exist in the subsurface to the north, west, and south of the Chinle outcrop in the Swell. This determination is based on the spatial distribution of depositional environments and the pattern of Chinle deposition through time. 8 refs

  7. A novel method of calculating the energy deposition curve of nanosecond pulsed surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    He, Kun; Wang, Xinying; Lu, Jiayu; Cui, Quansheng; Pang, Lei; Di, Dongxu; Zhang, Qiaogen

    2015-01-01

    To obtain the energy deposition curve is very important in the fields to which nanosecond pulse dielectric barrier discharges (NPDBDs) are applied. It helps the understanding of the discharge physics and fast gas heating. In this paper, an equivalent circuit model, composed of three capacitances, is introduced and a method of calculating the energy deposition curve is proposed for a nanosecond pulse surface dielectric barrier discharge (NPSDBD) plasma actuator. The capacitance C d and the energy deposition curve E R are determined by mathematically proving that the mapping from C d to E R is bijective and numerically searching one C d that satisfies the requirement for E R to be a monotonically non-decreasing function. It is found that the value of capacitance C d varies with the amplitude of applied pulse voltage due to the change of discharge area and is dependent on the polarity of applied voltage. The bijectiveness of the mapping from C d to E R in nanosecond pulse volumetric dielectric barrier discharge (NPVDBD) is demonstrated and the feasibility of the application of the new method to NPVDBD is validated. This preliminarily shows a high possibility of developing a unified approach to calculate the energy deposition curve in NPDBD. (paper)

  8. Optimal selection among different domestic energy consumption patterns based on energy and exergy analysis

    International Nuclear Information System (INIS)

    Lu, S.; Wu, J.Y.

    2010-01-01

    In China market, people have many choices for air conditioning of their apartments, including heat-pump systems or gas-fired boilers for heating and air conditioners for cooling. Domestic hot water is usually provided by domestic water heaters making use of electricity or natural gas, which are known for their great energy costs. These systems consume much energy and increase the total cost of required domestic energy. A novel system combining heat pump with water heater is proposed in this paper, and it is named domestic energy system. The system can realize the provision of space heating, cooling and domestic hot water throughout a year. Based on different types of air conditioners, space heating equipments and water heaters, domestic energy consumption patterns are concluded to be eight categories. This study describes and compares the eight domestic energy consumption patterns by economic analysis and prime energy analysis method. Results show that the domestic energy system can provide good economy and save energy significantly. Furthermore, exergy analysis method is employed to compare the exergy efficiencies of different energy consumption systems. The results show that the domestic energy system has the highest energy conversion efficiency and can make remarkable contribution to social energy saving.

  9. Ion implantation range and energy deposition codes COREL, RASE4, and DAMG2

    International Nuclear Information System (INIS)

    Brice, D.K.

    1977-07-01

    The FORTRAN codes COREL, RASE4 and DAMG2 can be used to calculate quantities associated with ion implantation range and energy deposition distributions within an amorphous target, or for ions incident far from low index directions and planes in crystalline targets. RASE4 calculates the projected range, R/sub p/, the root mean square spread in the projected range, ΔR/sub p/, and the root mean square spread of the distribution perpendicular to the projected range ΔR/sub perpendicular to/. These parameters are calculated as a function of incident ion energy, E, and the instantaneous energy of the ion, E'. They are sufficient to determine the three dimensional spatial distribution of the ions in the target in the Gaussian approximation when the depth distribution is independent of the lateral distribution. RASE4 can perform these calculations for targets having up to four different component atomic species. The code COREL is a short, economical version of RASE4 which calculates the range and straggling variables for E' = 0. Its primary use in the present package is to provide the average range and straggling variables for recoiling target atoms which are created by the incident ion. This information is used by RASE4 in calculating the redistribution of deposited energy by the target atom recoils. The code DAMG2 uses the output from RASE4 to calculate the depth distribution of energy deposition into either atomic processes or electronic processes. With other input DAMG2 can be used to calculate the depth distribution of any energy dependent interaction between the incident ions and target atoms. This report documents the basic theory behind COREL, RASE4 and DAMG2, including a description of codes, listings, and complete instructions for using the codes, and their limitations

  10. Eating patterns and energy and nutrient intakes of US women.

    Science.gov (United States)

    Haines, P S; Hungerford, D W; Popkin, B M; Guilkey, D K

    1992-06-01

    A longitudinal multivariate analysis was used to determine whether differences in energy and nutrient intakes were present for women classified into different eating patterns. Ten multidimensional eating patterns were created based on the proportion of energy consumed at home and at seven away-from-home locations. Data were from 1,120 women aged 19 through 50 years who were surveyed up to six times over a 1-year period as part of the 1985 Continuing Survey of Food Intake by Individuals, US Department of Agriculture. Data from 5,993 days were analyzed. To examine differences in energy and nutrient intakes, longitudinal multivariate analyses were used to control for eating pattern and factors such as demographics, season, and day of week. Younger women in the Fast Food eating pattern consumed the greatest intakes of energy, total fat, saturated fat, cholesterol, and sodium. Well-educated, higher-income women in the Restaurant pattern consumed diets with the highest overall fat density. Nutrient densities for dietary fiber, calcium, vitamin C, and folacin were particularly low in away-from-home eating patterns. In contrast, moderately educated, middle-aged and middle-income women in the Home Mixed eating pattern (70% at home, 30% away from home) consumed the most healthful diets. We conclude that knowledge of demographics such as income and education is not enough to target dietary interventions. Rather, educational efforts must consider both demographics and the location of away-from-home eating. This will allow development of behavioral change strategies that consider food choices dictated by the eating environment as well as personal knowledge and attitude factors related to adoption of healthful food choices.

  11. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  12. Films deposited from reactive sputtering of aluminum acetylacetonate under low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Battaglin, Felipe Augusto Darriba; Prado, Eduardo Silva; Cruz, Nilson Cristino da; Rangel, Elidiane Cipriano, E-mail: elidiane@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Caseli, Luciano [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas; Silva, Tiago Fiorini da; Tabacniks, Manfredo Harri [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Films were deposited from aluminum acetylacetonate (Al(acac)3 ) using a methodology involving reactive sputtering and low energy ion bombardment. The plasma was generated by the application of radiofrequency power to the powder containing electrode and simultaneously, negative pulses were supplied to the electrode where the substrates were attached. It was investigated the effect of the duty cycle of the pulses (Δ) on the properties of the coatings. Association of ion bombardment to the deposition process increased film thickness, structure reticulation and organic content. Ions from the deposition environment were implanted at the film-air interface or underneath it. Morphology and topography were altered depending on Δ. Considering the enhancement of Δ, it affected the flux of ions reaching the depositing interface and then the deposition rate, H content, crosslinking degree and surface microstructure. Alumina groups were detected in the infrared spectra, whereas the precipitation of amorphous alumina was confirmed by X-ray diffraction. (author)

  13. Quantitative evaluation of inhaled radioactive aerosol deposition patterns in the lungs in obstructive airways disease

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Takeo; Isawa, Toyoharu; Hirano, Tomio; Ebina, Akio; Shiraishi, Koichiro; Konno, Kiyoshi

    1985-12-01

    Uneven distribution of inhaled aerosol in the lungs is the characteristics of obstructive airways disease such as chronic bronchitis and pulmonary emphysema, and has been classified typically into peripheral and central deposition patterns, respectively by visual inspection, whereas in the normal the distribution is homogeneous throughout the lungs. The purpose of the present study was to analyse the distribution of inhaled radioactivity in the lungs by way of matrixes by a computer. The seemingly homogeneous distribution pattern in normal subjects has been found to indicate a gradual change in count profile between the neighboring matrixes. The peripheral pattern indicates the patchy presence of small number of matrixes with excessive radioactivity throughout the lungs, and the central pattern, the presence of matrixes of excessive radioactivity along the major central airways forming a comma-like configuration superimposed on the peripheral pattern. Our computer analysis has a potentiality to characterize obstructive airways disease for a better understanding of their pathophysiology, which is not feasible by a simple visual inspection of images on a polaroid picture.

  14. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  15. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  16. Measurement of energy deposition near heavy ion tracks

    International Nuclear Information System (INIS)

    Metting, N.F.; Brady, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Wong, M.; Schimmerling, W.; Rapkin, M.

    1985-01-01

    In November of 1982 work was begun in collaboration with Columbia University and Lawrence Berkeley Laboratory to use microdosimetric methods to measure energy deposition of heavy ions produced at LBL's Bevalac Biomedical Facility. Last year the authors reported preliminary results indicating that secondary charged particle equilibrium was probably obtained using this experimental setup, but that there seemed to be poor spatial resolution in the solid state position-sensitive detector. Further analysis of the measurements taken in August 1983 shows that because of this electronic noise in the position-sensitive detector, only the 56 Fe data yielded useful microdosimetric spectra

  17. Scaling of energy deposition in fast ignition targets

    International Nuclear Information System (INIS)

    Welch, Dale R.; Slutz, Stephen A.; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2005-01-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm 3 , with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10 21 W/cm 2 , the hot electron energies expected to approach 100MeV. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem.

  18. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    International Nuclear Information System (INIS)

    Zylstra, A.B.; Barnard, J.J.; More, R.M.

    2009-01-01

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  19. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    Science.gov (United States)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  20. Theoretical and experimental study of a calorimetric technique for measuring energy deposition in materials caused by complex pile irradiation

    International Nuclear Information System (INIS)

    Mas, P.; Sciers, P.; Droulers, Y.

    1962-01-01

    Calorimetric methods may be used to measure gamma fluxes greater than 10 6 r/h near the cores of swimming pool reactors. The theory, design, and properties of isothermal calorimeters are discussed, and experimental results obtained with two types are presented. Measurement of energy deposition in materials and the long term integration of energy depositions are other uses of these devices. Results of measurements on heat deposition in steel and water are given. Fluxes were also measured. (authors) [fr

  1. Integration of atomic layer deposition CeO2 thin films with functional complex oxides and 3D patterns

    International Nuclear Information System (INIS)

    Coll, M.; Palau, A.; Gonzalez-Rosillo, J.C.; Gazquez, J.; Obradors, X.; Puig, T.

    2014-01-01

    We present a low-temperature, < 300 °C, ex-situ integration of atomic layer deposition (ALD) ultrathin CeO 2 layers (3 to 5 unit cells) with chemical solution deposited La 0.7 Sr 0.3 MnO 3 (LSMO) functional complex oxides for multilayer growth without jeopardizing the morphology, microstructure and physical properties of the functional oxide layer. We have also extended this procedure to pulsed laser deposited YBa 2 Cu 3 O 7 (YBCO) thin films. Scanning force microscopy, X-ray diffraction, aberration corrected scanning transmission electron microscopy and macroscopic magnetic measurements were used to evaluate the quality of the perovskite films before and after the ALD process. By means of microcontact printing and ALD we have prepared CeO 2 patterns using an ozone-robust photoresist that will avoid the use of hazardous lithography processes directly on the device components. These bilayers, CeO 2 /LSMO and CeO 2 /YBCO, are foreseen to have special interest for resistive switching phenomena in resistive random-access memory. - Highlights: • Integration of atomic layer deposition (ALD) CeO 2 layers on functional complex oxides • Resistive switching is identified in CeO 2 /La 0.7 Sr 0.3 MnO 3 and CeO 2 /YBa 2 Cu 3 O 7 bilayers. • Study of the robustness of organic polymers for area-selective ALD • Combination of ALD and micro-contact printing to obtain 3D patterns of CeO 2

  2. Measurements of gamma-ray energy deposition in a heterogeneous reactor experimental configuration and their analysis

    International Nuclear Information System (INIS)

    Calamand, D.; Wouters, R. de; Knipe, A.D.; Menil, R.

    1984-10-01

    An important contribution to the power output of a fast reactor is provided by the energy deposition from gamma-rays, and is particularly significant in the inner fertile zones of heterogeneous breeder reactor designs. To establish the validity of calculational methods and data for such systems an extensive series of measurements was performed in the zero power reactor Masurca, as part of the RACINE programme. The experimental study involved four European laboratories and the measurement techniques covered a range of thermoluminescent dosemeters and an ionization chamber. The present paper describes and compares the gamma-ray energy deposition measurements and analysis

  3. Recognition of depositional sequences and stacking patterns, Late Devonian (Frasnian) carbonate platforms, Alberta basin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.H.; Reeckmann, S.A.; Sarg, J.F.; Greenlee, S.M.

    1987-05-01

    Six depositional sequences bounded by regional unconformities or their correlative equivalents (sequence boundaries) have been recognized in Late Devonian (Frasnian) carbonate platforms in the Alberta basin. These sequences consist of a predictable vertical succession of smaller scale shoaling-upward cycles (parasequences). Parasequences are arranged in retrogradational, aggradational, and progradational stacking patterns that can be modeled as a sediment response to relative changes in sea level. Sequence boundaries are recognized by onlap onto underlying shelf or shelf margin strata. This onlap includes shelf margin wedges and deep marine onlap. In outcrop sections shelf margin wedges exhibit an abrupt juxtaposition of shallow water facies over deeper water deposits with no gradational facies changes at the boundaries. High on the platform, subaerial exposure fabrics may be present. The shelf margin wedges are interpreted to have formed during lowstands in sea level and typically exhibit an aggradational stacking pattern. On the platform, two types of sequences are recognized. A type 1 cycle occurs where the sequence boundary is overlain by a flooding surface and subsequent parasequences exhibit retrogradational stacking. In a type 2 cycle the sequence boundary is overlain by an aggradational package of shallow water parasequences, followed by a retrogradational package. These two types of sequences can be modeled using a sinusoidal eustatic sea level curve superimposed on thermo-tectonic subsidence.

  4. Simulating the energy deposits of particles in the KASCADE-grande detector stations as a preliminary step for EAS event reconstruction

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.; Haungs, A.

    2005-01-01

    The study of primary cosmic rays with energies higher than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at developing a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been simulated using the GEANT code and then the energy deposits have been parametrized for different incident energies and angles of EAS particles. Thus the results obtained for simulated events have the same level of consistency as the experimental data. This technique will allow an increased speed of lateral particle density reconstruction when studying real events detected by the KASCADE-Grande array. The particle densities in detectors have been reconstructed from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events creates the basis for the next stage of the study, the study of real events detected by the KASCADE-Grande array. (authors)

  5. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  6. Daily pattern of energy distribution and weight loss.

    Science.gov (United States)

    Raynor, Hollie A; Li, Fan; Cardoso, Chelsi

    2018-08-01

    Timing of energy intake, a temporal dietary pattern, may enhance health. Eating a greater amount of energy earlier and a smaller amount of energy later in the day, a behavioral circadian rhythm, may assist with chronoenhancement. Chronoenhancement seeks to enhance entrainment (synchronization) of biological and behavioral circadian rhythms. In humans, research reports that eating a greater amount of energy early and a smaller amount of energy later in the day increases dietary induced thermogenesis, improves cardiometabolic outcomes, and enhances weight loss. However, little human research has examined if this eating pattern enhances regularity of biological circadian rhythm. In a randomized controlled 8-week pilot study, the influence of energy distribution timing on weight loss and regularity of sleep onset and wake times (marker for biological circadian rhythm) was examined. Within an hypocaloric, three-meal prescription, participants (n = 8) were assigned to either: 1) Morning: 50%, 30%, and 20% of kcal at breakfast, lunch, and dinner, respectively; or 2) Evening: 20%, 30%, and 50% of kcal at breakfast, lunch, and dinner, respectively. Percent weight loss and regularity of sleep onset and wake times were significantly (p energy distribution timing on health, longer studies conducted in free-living participants, with dietary intake assessed using time-stamped methods, that include measures of the circadian timing system are needed. This small review is based upon a symposium presentation at the Society of the Study of Ingestive Behavior in 2017. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    Science.gov (United States)

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  8. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  9. Estimating energy conservation patterns of Greek households

    International Nuclear Information System (INIS)

    Sardianou, Eleni

    2007-01-01

    This paper develops an empirical model to investigate the main determinants of household energy conservation patterns in Greece employing cross-section data. In the empirical analysis, household energy-conserving choices models are employed, using a discrete and a latent trait variable respectively as a dependent variable. The results show that socio-economic variables such as consumers' income and family size are suitable to explain differences towards energy conservation preferences. In addition, the results suggest that electricity expenditures and age of the respondent are negatively associated with the number of energy-conserving actions that a consumer is willing to adopt. Finally, other variables such as environmental information feedback and consciousness of energy problems are characteristics of the energy-saver consumer. By evaluating consumer's decision-making process with regards to energy conservation measures, we are able to formulate and propose an effective energy conservation framework for Greece. An energy policy framework is among the main prerequisites not only to achieve sustainable development but also to maintain consumers' quality of life

  10. Model of enhanced energy deposition in a Z-pinch plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Davis, J.; Thornhill, J. W.; Giuliani, J. L. Jr.; Rudakov, L. I.; Deeney, C.

    2000-01-01

    In numerous experiments, magnetic energy coupled to strongly radiating Z-pinch plasmas exceeds the thermalized kinetic energy, sometimes by a factor of 2-3. An analytical model describing this additional energy deposition based on the concept of macroscopic magnetohydrodynamic (MHD) turbulent pinch heating proposed by Rudakov and Sudan [Phys. Reports 283, 253 (1997)] is presented. The pinch plasma is modeled as a foam-like medium saturated with toroidal ''magnetic bubbles'' produced by the development of surface m=0 Rayleigh-Taylor and MHD instabilities. As the bubbles converge to the pinch axis, their magnetic energy is converted to thermal energy of the plasma through pdV work. Explicit formulas for the average dissipation rate of this process and the corresponding contribution to the resistance of the load, which compare favorably to the experimental data and simulation results, are presented. The possibility of using this enhanced (relative to Ohmic heating) dissipation mechanism to power novel plasma radiation sources and produce high K-shell yields using long current rise time machines is discussed. (c) 2000 American Institute of Physics

  11. Comparison of feed energy costs of maintenance, lean deposition, and fat deposition in three lines of mice selected for heat loss.

    Science.gov (United States)

    Eggert, D L; Nielsen, M K

    2006-02-01

    Three replications of mouse selection populations for high heat loss (MH), low heat loss (ML), and a nonselected control (MC) were used to estimate the feed energy costs of maintenance and gain and to test whether selection had changed these costs. At 21 and 49 d of age, mice were weighed and subjected to dual x-ray densitometry measurement for prediction of body composition. At 21 d, mice were randomly assigned to an ad libitum, an 80% of ad libitum, or a 60% of ad libitum feeding group for 28-d collection of individual feed intake. Data were analyzed using 3 approaches. The first approach was an attempt to partition energy intake between costs for maintenance, fat deposition, and lean deposition for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight (kg(0.75)), fat gain, and lean gain. Approach II was a less restrictive attempt to partition energy intake between costs for maintenance and total gain for each replicate, sex, and line by multiple regression of feed intake on the sum of daily metabolic weight and total gain. Approach III used multiple regression on the entire data set with pooled regressions on fat and lean gains, and subclass regressions for maintenance. Contrasts were conducted to test the effect of selection (MH - ML) and asymmetry of selection [(MH + ML)/2 - MC] for the various energy costs. In approach I, there were no differences between lines for costs of maintenance, fat deposition, or protein deposition, but we question our ability to estimate these accurately. In approach II, selection changed both cost of maintenance (P = 0.03) and gain (P = 0.05); MH mice had greater per unit costs than ML mice for both. Asymmetry of the selection response was found in approach II for the cost of maintenance (P = 0.06). In approach III, the effect of selection (P maintenance cost, but asymmetry of selection (P > 0.17) was not evident. Sex effects were found for the cost of fat deposition (P = 0.02) in

  12. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  13. Aluminum-containing dense deposits of the glomerular basement membrane: identification by energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    Smith, D.M. Jr.; Pitcock, J.A.; Murphy, W.M.

    1982-01-01

    Heavy metals, including gold, mercury, lead, bismuth, and cadmium, have the potential to cause renal disease. With the development of X-ray microanalysis, these heavy metals can now be identified in tissue deposits. This report describes a case of renal failure, probably related to dysproteinemia, in which granular, electron-opaque dense deposits were present in the glomerular basement membranes. Energy dispersive X-ray analysis demonstrated that these dense deposits contained aluminum. An analysis of this patient's history in relation to the current knowledge of aluminum metabolism suggests that the aluminum deposition occurred secondary to previous glomerular injury. This case emphasizes the need to utilize heavy metal identification technology whenever granular, electron-opaque dense deposits are identified and represents, to our knowledge, the first study to document aluminum deposits within the glomerular basement membrane of humans

  14. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  15. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  16. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  17. High voltage electrophoretic deposition for electrochemical energy storage and other applications

    Science.gov (United States)

    Santhanagopalan, Sunand

    High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to

  18. First Investigations on the Energy Deposited in a D0 early separation scheme Dipole for the LHC upgrade

    CERN Document Server

    Hoa, C

    2007-01-01

    This note gives the first results of energy deposition calculation on a simplified model for an early scheme separation dipole D0, located at 3.5 m from the IP. The Monte Carlo code FLUKA version 2006.3 has been used for modelling the multi-particle interactions and energy transport. After a short introduction to particle interaction with matter and power deposition processes, the FLUKA modelling is described with bench marked power deposition calculation on the TAS, the absorber located in front of the triplet quadrupoles. The power deposition results for the D0 early scheme are then discussed in details, with the averaged and peak power density, and the variations of the total heat load in the dipole with the longitudinal position and with the aperture diameter.

  19. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  20. Most critical collimator-mask-magnet sequence in the SPS-to-LHC transfer lines: energy deposition study.

    CERN Document Server

    Marzo, Matteo; Lechner, Anton; Vlachoudis, Vasilis

    2017-01-01

    This technical note refers to a study on the relation between the impact conditions of the SPS 450GeV proton beam and the energy deposited downstream the Target Collimator Dump In- jection Long (TCDIL) collimators [1], in the SPS-to-LHC transfer lines TI2 and TI8. Such an analysis is relevant in order to simulate the worst scenario of failure, in case the beam impacts on the TCDIL collimator’s jaw, in the frame of the LHC Injectors Upgrade (LIU), in view of the High Luminosity LHC (HL-LHC) phase. Previous studies already showed the dependency of the energy deposited in the downstream masks on the collimators-masks distance [2]. In absence of a (realistic) impact parameter, we perform now a study to select the most pessimistic one, trying to understand the origin of the various components responsible for the energy deposition on the downstream mask and magnet. The set up of the Monte Carlo FLUKA [3] [4] simulations and the most relevant results will be presented in this document. A sensitivity analysis was a...

  1. Energy consumption patterns. A theoretical analysis; Energieverbrauchsverhalten. Eine theoretische Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Flandrich, D.

    2006-07-01

    The author questions the methodological and methodical foundations of energy consumption research and attempts a theory of energy consumption patterns on the basis of psychology, opening up a quite new perspective that has been neglected so far. Energy policy and energy marketing are two fields of applications which are getting more important in these times of increasing prices of energy resources, high public awareness of environmental issues, and deregulated energy markets. (orig.)

  2. The effect of energy and momentum transfer during magnetron sputter deposition of yttrium oxide thin films

    Science.gov (United States)

    Xia, Jinjiao; Liang, Wenping; Miao, Qiang; Depla, Diederik

    2018-05-01

    The influence of the ratio between the energy and the deposition flux, or the energy per arriving atom, on the growth of Y2O3 sputter deposited thin films has been studied. The energy per arriving atom has been varied by the adjustment of the discharge power, and/or the target-to-substrate distance. The relationship between the energy per arriving atom and the phase evolution, grain size, microstructure, packing density and residual stress was investigated in detail. At low energy per arriving atom, the films consist of the monoclinic B phase with a preferential (1 1 1) orientation. A minority cubic C phase appears at higher energy per arriving atom. A study of the thin film cross sections showed for all films straight columns throughout the thickness, typically for a zone II microstructure. The intrinsic stress is compressive, and increases with increasing energy per atom. The same trend is observed for the film density. Simulations show that the momentum transfer per arriving atom also scales with the energy per arriving atom. Hence, the interpretation of the observed trends as a function of the energy per arriving atom must be treated with care.

  3. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    Science.gov (United States)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  4. Pattern formation on Ge by low energy ion beam erosion

    International Nuclear Information System (INIS)

    Teichmann, Marc; Lorbeer, Jan; Frost, Frank; Rauschenbach, Bernd; Ziberi, Bashkim

    2013-01-01

    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies (⩽ 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection. (paper)

  5. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  6. Photon beam convolution using polyenergetic energy deposition kernels

    International Nuclear Information System (INIS)

    Hoban, P.W.; Murray, D.C.; Round, W.H.

    1994-01-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, μ, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio μ ab /μ as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author)

  7. Indigenous patterns of energy healing with special reference to ...

    African Journals Online (AJOL)

    The approach of this article is on energy healing as holistic, contextual and essentially psychological. In order to explicate common themes, various indigenous patterns of energy healing in Africa, India and China are examined. Core themes that emerge include views of the universe as an interrelated whole, of illness as a ...

  8. Pattern recognition in high energy physics

    International Nuclear Information System (INIS)

    Tenner, A.G.

    1980-01-01

    In high energy physics experiments tracks of elementary particles are recorded by different types of equipment. Coordinates of points of these tracks have to be measured for the geometrical reconstruction and the further analysis of the observed events. Pattern recognition methods may facilitate the detection of tracks or whole events and the separation of relevant from non-relevant information. They may also serve for the automation of measurement. Generally, all work is done by digital computation. In a bubble chamber tracks appear as strings of vapour bubbles that can be recorded photographically. Two methods of pattern recognition are discussed. The flying spot digitizer encodes the pattern on the photograph into point coordinates in the memory of a computer. The computer carries out the pattern recognition procedure entirely on the basis of the stored information. Cathode ray instruments scan the photograph by means of a computer steered optical device. Data acquisition from the film is performed in a feedback loop of the computation. In electronic experimental equipment tracks are defined by the spacial distribution of hits of counters (wire counters, scintillation counters, spark chambers). Pattern recognition is generally performed in various stages both by on-line and off-line equipment. Problems in the data handling arise both from the great abundance of data and from the time limits imposed on the on-line computation by high measuring rates. The on-line computation is carried out by hardwired logic, small computers, and to an increasing extent by microprocessors. (Auth.)

  9. Actual building energy use patterns and their implications for predictive modeling

    International Nuclear Information System (INIS)

    Heidarinejad, Mohammad; Cedeño-Laurent, Jose G.; Wentz, Joshua R.; Rekstad, Nicholas M.; Spengler, John D.; Srebric, Jelena

    2017-01-01

    Highlights: • Developed three building categories based on energy use patterns of campus buildings. • Evaluated implication of temporal energy data granularity on predictive modeling. • Demonstrated importance of monitoring daily chilled water consumption. • Identified interval electricity data as an indicator of building operation schedules. • Demonstrated a calibration process for energy modeling of a campus building. - Abstract: The main goal of this study is to understand the patterns in which commercial buildings consume energy, rather than evaluating building energy use based on aggregate utility bills typically linked to building principal tenant activity or occupancy type. The energy consumption patterns define buildings as externally-load, internally-load, or mixed-load dominated buildings. Penn State and Harvard campuses serve as case studies for this particular research project. The buildings in these two campuses use steam, chilled water, and electricity as energy commodities and maintain databases of different resolutions to include minute, hourly, daily, and monthly data instances depending on the commodity and available data acquisition system. The results of this study show monthly steam consumption directly correlates to outdoor environmental conditions for 88% of the studied buildings, while chilled water consumption has negligible correlation to the outdoor environmental conditions. Thus, in terms of monthly chilled water consumption, 86% of buildings are internally-load and mixed-load dominated, respectively. Chilled water consumption is better suited for the daily analyses compared to the monthly and hourly analyses. While the influence of building operation schedules affects the analyses at the hourly level, the monthly chilled water consumptions are not good indicators of the building energy consumption patterns. Electricity consumption at the monthly (or seasonal) level can support the building energy simulation tools for the

  10. Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons

    Science.gov (United States)

    Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.

    2015-08-01

    Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.

  11. Spatial correlation of energy deposition events in irradiated liquid water

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.; Ritchie, R.H.

    1978-01-01

    Monte Carlo electron transport computer code is used to study in detail the slowing down of electrons and all of their secondaries with initial energies up to 1.5 MeV in liquid water. The probability distributions for the number of ionizations and for the energy deposited in cubical volume elements from electron tracks in the water are analyzed. Both the electron energies and the sizes of the cubical cells are varied. Results are shown for electron energies between 100 eV and 10 keV and for cell sizes between 40 A and 1500 A. Good general agreement is found with results presented by Paretzke at the last symposium. The code can be used to obtain other basic distributions of importance in microdosimetry. As an example, microdosimetric single-event spectra for 500-eV electrons are computed in cubes with edges that range in size from 40 A to 200 A. The importance of correlations is shown explicitly in a comparison of secondary electrons produced by 60 Co and 50-keV photons

  12. Sedimentation Deposition Patterns on the Chukchi Shelf Using Radionuclide Inventories

    Science.gov (United States)

    Cooper, L. W.; Grebmeier, J. M.

    2016-02-01

    Sediment core collections and assays of the anthropogenic and natural radioisotopes, 137Cs and 210Pb, respectively, are providing long-term indications of sedimentation and current flow processes on the Chukchi and East Siberian sea continental shelf. This work, which has been integrated into interdisciplinary studies of the Chukchi Sea supported by both the US Bureau of Ocean Energy Management (COMIDA Hanna Shoal Project) and the National Oceanic and Atmospheric Administration (Russian-US Long Term Census of the Arctic, RUSALCA) includes studies of total radiocesium inventories, sedimentation rate determinations, where practical, and depths of maxima in radionuclide deposition. Shallow maxima in the activities of the anthropogenic radionuclide in sediment cores reflect areas with higher current flow (Barrow Canyon and Herald Canyon; 3-6 cm) or low sedimentation (Hanna Shoal; 1-3 cm). The first sedimentation studies from Long Strait are consistent with quiescent current conditions and steady recent sedimentation of clay particles. Elsewhere, higher and more deeply buried radionuclide inventories (> 2 mBq cm-2 at 15-17 cm depth) in the sediments correspond to areas of high particle deposition north of Bering Strait where bioturbation in productive sediments is also clearly an important influence. Radiocesium activities from bomb fallout dating to 1964 are now present at low levels (20 cm. Independent sedimentation rate measurements with the natural radionuclide 210Pb are largely consistent with the radiocesium measurements.

  13. Global patterns of renewable energy innovation, 1990–2009

    OpenAIRE

    Bayer, Patrick; Dolan, Lindsay; Urpelainen, Johannes

    2013-01-01

    Cost-effective approaches to mitigating climate change depend on advances in clean energy technologies, such as solar and wind power. Given increased technology innovation in developing countries, led by China, we focus our attention on global patterns of renewable energy innovation. Utilizing highly valuable international patents as our indicator of innovation, we examine the economic and political determinants of energy innovation in 74 countries across the world, 1990–2009. We find that hi...

  14. Electrostatic Deposition of Large-Surface Graphene

    Directory of Open Access Journals (Sweden)

    Charles Trudeau

    2018-01-01

    Full Text Available This work describes a method for electrostatic deposition of graphene over a large area using controlled electrostatic exfoliation from a Highly Ordered Pyrolytic Graphite (HOPG block. Deposition over 130 × 130 µm2 with 96% coverage is achieved, which contrasts with sporadic micro-scale depositions of graphene with little control from previous works on electrostatic deposition. The deposition results are studied by Raman micro-spectroscopy and hyperspectral analysis using large fields of view to allow for the characterization of the whole deposition area. Results confirm that laser pre-patterning of the HOPG block prior to cleaving generates anchor points favoring a more homogeneous and defect-free HOPG surface, yielding larger and more uniform graphene depositions. We also demonstrate that a second patterning of the HOPG block just before exfoliation can yield features with precisely controlled geometries.

  15. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  16. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  17. Structural and optical properties of pulse laser deposited Ag2O thin films

    Science.gov (United States)

    Agasti, Souvik; Dewasi, Avijit; Mitra, Anirban

    2018-05-01

    We deposited Ag2O films in PLD system on glass substrate for a fixed partial oxygen gas pressure (70 mili Torr) and, with a variation of laser energy from 75 to 215 mJ/Pulse. The XRD patterns confirm that the films have well crystallinity and deposited as hexagonal lattice. The FESEM images show that the particle size of the films increased from 34.84 nm to 65.83 nm. The composition of the films is analyzed from EDX spectra which show that the percentage of oxygen increased by the increment of laser energy. From the optical characterization, it is observed that the optical band gap appears in the visible optical range in an increasing order from 0.87 to 0.98 eV with the increment of laser energy.

  18. Holidays in lights: Tracking cultural patterns in demand for energy services

    Science.gov (United States)

    Román, Miguel O.; Stokes, Eleanor C.

    2015-06-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  19. Holiday in Lights: Tracking Cultural Patterns in Demand for Energy Services

    Science.gov (United States)

    Roman, Miguel O.; Stokes, Eleanor C.

    2015-01-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  20. Patterns of technological innovation and evolution in the energy sector: A patent-based approach

    International Nuclear Information System (INIS)

    Lee, Kyungpyo; Lee, Sungjoo

    2013-01-01

    Given the ever-increasing pace and complexity of technological innovation in the energy sector, monitoring technological changes has become of strategic importance. One of the most common techniques for technology monitoring is patent analysis, which enables the identification of technological trends over time. However, few previous studies have carried out patent analysis in the energy sector. This study aims to explore patterns of innovation and of evolution in energy technologies, particularly focusing on similarities and differences across technologies. For this purpose, we first defined the relevant energy technologies and extracted the associated patent data from the United States Patents and Trademark Office (USPTO) and then adopted six patent indices and developed six patent maps to analyze their innovation characteristics. We then clustered energy technologies with similar characteristics, so defining innovation categories, and analyzed the changes in these characteristics over time to define their evolution categories. As one of the few attempts to investigate the overall trends in the energy sector's innovation and evolution, this study is expected to help develop an in-depth understanding of the energy industry, which will be useful in establishing technology strategies and policy in this rapidly changing sector. - Highlights: • We examined the patterns of innovation and evolution of energy technologies. • Six types of innovation patterns such as “competitive” or “mature” were identified. • Six types of evolution patterns such as “towards closed innovation” were identified. • The patterns of evolution were related to the patterns of innovation

  1. New DRIE-Patterned Electrets for Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Chaillout J.-J.

    2012-10-01

    Full Text Available This paper is about a new manufacturing process aimed at developing stable SiO2/Si3N4 patterned electrets using a Deep Reactive Ion Etching (DRIE step for an application in electret-based Vibration Energy Harvesters (e-VEH. This process consists in forming continuous layers of SiO2/Si3N4 electrets in order to limit surface conduction phenomena and is a new way to see the problem of electret patterning. Experimental results prove that patterned electrets charged by a positive corona discharge show excellent stability with high surface charge densities that may reach 5mC/m2 on 1.1μm-thick layers, even with fine patterning and harsh temperature conditions (up to 250°C. This paves the way to new e-VEH designs and manufacturing processes.

  2. Effects of deposited nuclear and electronic energy on the hardness of R7T7-type containment glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuget, S. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)]. E-mail: sylvain.peuget@cea.fr; Noel, P.-Y. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Loubet, J.-L. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Pavan, S. [Laboratoire de Tribologie et Dynamique des Systemes, UMR CNRS 5513, Ecole Centrale de Lyon 36, avenue Guy de Collongue, 69134 Ecully Cedex (France); Nivet, P. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Chenet, A. [Commissariat a l' Energie Atomique, CEA Marcoule, DEN/DTCD/SECM/LMPA, Batiment 166, BP 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2006-05-15

    The effects of elastic and inelastic interactions induced by cumulative alpha decay on the hardness of R7T7-type nuclear containment glass were investigated on actinide-doped glass specimens and by external irradiation of inactive glass by light and heavy ions. Vickers microindentation and nanoindentation hardness measurements showed that in the deposited energy range investigated (below 3 x 10{sup 22} keV/cm{sup 3}) inelastic effects have no influence on the plastic response of the glass. Conversely, identical hardness variations versus the nuclear energy deposited in the material were observed on curium-doped glass and on glass irradiated by ion bombardment. The observed hardness variation stabilized after the deposited energy reached about 3 x 10{sup 2} keV{sub nucl}/cm{sup 3}. These findings indicate that the change in the plastic response of the glass is a consequence of ballistic effects.

  3. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    Energy Technology Data Exchange (ETDEWEB)

    Sadekar, H K [Arts, Commerce and Science college, Sonai 414105 (M.S.) (India); Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Deshpande, N G; Gudage, Y G; Ghosh, A; Chavhan, S D; Gosavi, S R [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Sharma, Ramphal [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India)

    2008-04-03

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has {approx}120 {+-} 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient ({approx}75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV.

  4. Energy in rural Ethiopia: consumption patterns, associated problems, and prospects for a sustainable energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mulugetta, Y.

    1999-07-01

    This paper provides a picture of energy resources and their current use in rural Ethiopia and presents an analysis of energy supply patterns and consumption trends. This exercise aims to build an empirical knowledge of ''real'' energy systems in the country and also to synthesize and analyze the general and specific problems that exist within the current energy system. Based on these lines of analysis, a series of technical and policy-oriented recommendations for rural energy development are discussed. (author)

  5. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  6. Energy deposited in the high luminosity inner triplets of the LHC by collision debris

    International Nuclear Information System (INIS)

    Wildner, E.; Broggi, F.; Cerutti, F.; Ferrari, A.; Hoa, C.; Koutchouk, J.-P.; Mokhov, N.V.

    2008-01-01

    The 14 TeV center of mass proton-proton collisions in the LHC produce not only debris interesting for physics but also showers of particles ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of this contribution to the heat, that has to be transported by the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC base-line are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the consolidation of the calculations, a dedicated comparative study of these two codes was performed for a reduced setup

  7. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  8. The role of Energy Deposition in the Epitaxial Layer in Triggering SEGR in Power MOSFETs

    Science.gov (United States)

    Selva, L.; Swift, G.; Taylor, W.; Edmonds, L.

    1999-01-01

    In these SEGR experiments, three identical-oxide MOSFET types were irradiated with six ions of significantly different ranges. Results show the prime importance of the total energy deposited in the epitaxial layer.

  9. Measurements of the Energy Deposition Profile for 238U Ions with Energy 500 and 950 MEV/U in Stainless Steel and Copper Targets

    CERN Document Server

    Mustafin, Edil; Gnutov, A; Golubev, Alexander; Hofmann, Ingo; Kantsyrev, Alexei; Kunin, Andrey; Latysheva, Ludmila N; Luckjashin, Victor; Panova, Yulia; Schardt, Dieter; Sobolevskiy, Nikolai; Vatulin, Vladimir; Weyrich, Karin

    2005-01-01

    Sub-millimeter wall thickness is foreseen for the vacuum tubes in the magnets of the superconducting dipoles of the SIS100 and SIS300 of the FAIR Project. The Bragg peak of the energy deposition by the U ions in these walls may lie dangerously close to the superconducting cables. Thus the precise knowledge of the dE/dx profile is essential for estimating the heat load by the lost ions in the vicinity of the superconducting wires. Here we present the results of the measurement of the U ion beam energy deposition profile in Cu and stainless steel targets and compare the measured data with the Monte-Carlo simulation using the SHIELD code.

  10. Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2017-08-01

    The use of proton beams in several modern technologies to probe or modify the properties of materials, such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into account the main interactions that occur between these electrons and the condensed phase target. After analyzing the influence that several angular distributions of the electrons generated by the proton beam have on the resulting radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton energy we recommend lower proton energies than previously published for reducing proximity effects around a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based imaging and manufacturing techniques.

  11. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  12. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Baiyegunhi Christopher

    2017-11-01

    Full Text Available Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicate the dominance of low energy environment. The bivariate plots show that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are lacustrine or deltaic deposits. The C-M plots indicated that the sediments were deposited mainly by suspension and saltation, and graded suspension. Visher diagrams show that saltation is the major process of transportation, followed by suspension.

  13. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

    Science.gov (United States)

    Baiyegunhi, Christopher; Liu, Kuiwu; Gwavava, Oswald

    2017-11-01

    Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicate the dominance of low energy environment. The bivariate plots show that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are lacustrine or deltaic deposits. The C-M plots indicated that the sediments were deposited mainly by suspension and saltation, and graded suspension. Visher diagrams show that saltation is the major process of transportation, followed by suspension.

  14. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    Science.gov (United States)

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive

  15. Transmission electron microscopy study of ion energy deposition in gold: evidence for a spike threshold

    International Nuclear Information System (INIS)

    Ruault, M.O.; Bernas, H.; Chaumont, J.

    1978-01-01

    Nine different atomic species, from K to Yb, were implanted into gold at energies ranging from 20 to 150 keV. The nature and depth-distribution of the resultant defect clusters were studied by transmission electron microscopy techniques as well as a modification of the '2 1/2-D' stereo technique developed by Mitchell and Bell. The effect of implanted ion dose and sample purity were determined. The cluster depth distributions are in overall agreement with the damage distributions deduced from the energy deposition calculations of Winterbon, Sigmund, and Sanders. The nature of the defect clusters is found to depend on the mass and energy of the incoming ion, in agreement with our previously reported work. These results are suggested to provide evidence for the decisive influence of the deposited energy density on the nature of visible damage. We conclude that it is possible to distinguish between cascade and 'spike' effects, the latter setting in when the average energy per atom in the cascade is approximately 2 eV/atom. All results (obtained -at low doses on pure samples- for a variety of ion species in Au, Al, Cu, W, Mo and Ni) may be related to each other in this way

  16. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  17. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  18. Energy pattern and conservations of condiment produced from soybean (Glycine max)

    OpenAIRE

    Ismaila B. Anjorin; Rahman Akinoso; Mayowa S. Sanusi

    2018-01-01

    Energy being one of the largest operating expenses in most organizations especially manufacturing and processing industries leading to considerable scope for energy conservation and hence cost. Information on energy utilization and conservation pattern were obtained based on time taken, number of person involved and sources of energy using standard energy equations. A total of 445.40 ± 17.32MJkg-1 where thermal energy (420MJ ≈ 94%) and manual energy (25.40MJ ≈ 6%) were the only forms of energ...

  19. Mind your step: Energy cost while walking at an enforced gait pattern

    NARCIS (Netherlands)

    Wezenberg, D.; de Haan, A.; van Bennekom, C.A.M.; Houdijk, J.H.P.

    2011-01-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement

  20. Mind your step: metabolic energy cost while walking an enforced gait pattern

    NARCIS (Netherlands)

    Wezenberg, D.; de Haan, A.; van Bennekom, C. A. M.; Houdijk, H.

    2011-01-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement

  1. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  2. Optimization of the LHC interaction region with respect to beam-induced energy deposition

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Strait, J.B.

    1996-06-01

    Energy deposition in the superconducting magnets by particles from p- p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studies the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7x7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture ≥70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets

  3. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  4. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    International Nuclear Information System (INIS)

    Sadekar, H.K.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Chavhan, S.D.; Gosavi, S.R.; Sharma, Ramphal

    2008-01-01

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has ∼120 ± 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient (∼75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV

  5. Multiobjective Synthesis of Steerable UWB Circular Antenna Array considering Energy Patterns

    Directory of Open Access Journals (Sweden)

    Leopoldo A. Garza

    2015-01-01

    Full Text Available True-time delay antenna arrays have gained a prominent attention in ultrawideband (UWB applications such as directional communications and radar. This paper presents the design of steerable UWB circular array by using a multiobjective time-domain synthesis of energy pattern for circular antenna arrays. By this way we avoid individual beamforming for each frequency in UWB spectrum if the problem was addressed from the frequency domain. In order to obtain an energy pattern with low side lobe level and a desired main beam, the synthesis presented is performed by optimizing the true-time delays and amplitude coefficients for the antenna elements in a circular geometry. The method of Differential Evolution for Multiobjective Optimization (DEMO is used as the optimization algorithm in this work. This design of steerable UWB circular arrays considers the optimization of the true-time exciting delays and the amplitude coefficients across the antenna elements to operate with optimal performance in the whole azimuth plane (360°. A comparative analysis of the performance of the optimized design with the case of conventional progressive delay excitations is achieved. The provided results show a good performance for energy patterns and for their respective power patterns in the UWB spectrum.

  6. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Trenholm, D [Massachusetts General Hospital, Boston, MA (United States); Verburg, J; Paganetti, H; Schuemann, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiple positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their

  7. Spatial distribution patterns of energy deposition and cellular radiation effects in lung tissue following simulated exposure to alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.

    1990-01-01

    Randomly oriented sections of rat tissue have been digitised to provide the contours of tissue-air interfaces and the locations of individual cell nuclei in the alveolated region of the lung. Sources of alpha particles with varying irradiation geometries and densities are simulated to compute the resulting random pattern of cellular irradiation, i.e. spatial coordinates, frequency, track length, and energy of traversals by the emitted alpha particles. Probabilities per unit track lengths, derived from experimental data on in vitro cellular inactivation and transformation, are then applied to the results of the alpha exposure simulations to yield an estimate of the number of both dead and viable transformed cells and their spatial distributions. If lung cancer risk is linearly related to the number of transformed cells, the carcinogenic risk for hot particles is always smaller than that for a uniform nuclide distribution of the same activity. (author)

  8. PREPARATION AND CHARACTERIZATION OF IRON SULPHIDE THIN FILMS BY CHEMICAL BATH DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-06-01

    Full Text Available FeS2 thin films have been deposited by using low cost chemical bath deposition technique. The films obtained under deposition parameters such as bath temperature (90 °C, deposition period (90 min, electrolyte concentration (0.15 M and pH of the reactive mixture (pH 2.5. The thin films were characterized using X-ray diffraction and atomic force microscopy in order to study the structural and morphological properties. The band gap energy, transition type and absorption properties were determined using UV-Vis Spectrophotometer. X-ray diffraction displayed a pattern consistent with the formation of an orthorhombic structure, with a strong (110 preferred orientation. Atomic force microscopy image showed the substrate surface is well covered with irregular grains. A direct band gap of 1.85 eV was obtained according to optical absorption studies.   Keywords: Iron sulfide, X-ray diffraction, chemical bath deposition, thin films

  9. COREL, Ion Implantation in Solids, Range, Straggling Using Thomas-Fermi Cross-Sections. RASE4, Ion Implantation in Solids, Range, Straggling, Energy Deposition, Recoils. DAMG2, Ion Implantation in Solids, Energy Deposition Distribution with Recoils

    International Nuclear Information System (INIS)

    Brice, D. K.

    1979-01-01

    1 - Description of problem or function: COREL calculates the final average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 calculates the instantaneous average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 also calculates the instantaneous rate at which the projectile is depositing energy into atomic processes (damage) and into electronic processes (electronic excitation), the average range of target atom recoils projected onto the direction of motion of the projectiles, and the standard deviation in the recoil projected range. DAMG2 calculates the distribution in depth of the energy deposited into atomic processes (damage), electronic processes (electronic excitation), or other energy-dependent quality produced by energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. 2 - Method of solution: COREL: The truncated differential equation which governs the several variables being sought is solved through second-order by trapezoidal integration. The energy-dependent coefficients in the equation are obtained by rectangular integration over the Thomas-Fermi elastic scattering cross section. RASE4: The truncated differential equation which governs the range and straggling variables is solved through second-order by trapezoidal integration. The energy

  10. Local energy deposited for alpha particles emitted from inhaled radon daughters

    International Nuclear Information System (INIS)

    Al-affan, I.A.M.; Haque, A.K.M.M.

    1989-01-01

    An analytical method has been developed to calculate the local energy deposited by alpha particles emitted from radon daughters deposited on the mucus surface in the lung airways. For the particular case of 218 Po (Ra A) and 214 Bi (Ra C'), microdose spectra have been evaluated in test spheres of 1 μm diameter which were taken to lie within airways of diameters 18 000, 3500 and 600 μm. In each case, the contributions of the near and far wall were computed separately. The average microdosimetric parameters y-bar F and y-bar D have also been calculated. For the two smaller airways, y-bar F and y-bar D values were found to be about 110 and 135 keV μm -1 for 218 Po and about 87 and 107 keV μm -1 for 214 Bi respectively. The corresponding values were about 10% higher for the largest airway. (author)

  11. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.

    Science.gov (United States)

    Biewener, Andrew A

    2006-11-01

    Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially

  12. Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication.

    Science.gov (United States)

    Zhuang, Hao; Song, Bo; Staedler, Thorsten; Jiang, Xin

    2011-10-04

    By combining microcontact printing with a nanodiamond seeding technique, a precise micrometer-sized chemical vapor deposition (CVD) diamond pattern have been obtained. On the basis of the guidance of basic theoretical calculations, monodisperse detonation nanodiamonds (DNDs) were chosen as an "ink" material and oxidized poly(dimethylsiloxane) (PDMS) was selected to serve as a stamp because it features a higher interaction energy with the DNDs compared to that of the original PDMS. The adsorption kinetics shows an approximately exponential law with a maximum surface DND density of 3.4 × 10(10) cm(-2) after 20 min. To achieve a high transfer ratio of DNDs from the PDMS stamp to a silicon surface, a thin layer of poly(methyl methacrylate) (PMMA) was spin coated onto the substrates. A microwave plasma chemical vapor deposition system was used to synthesize the CVD diamond on the seeded substrate areas. Precise diamond patterns with a low expansion ratio (3.6%) were successfully prepared after 1.5 h of deposition. Further increases in the deposition time typically lead to a high expansion rate (∼0.8 μm/h). The general pattern shape, however, did not show any significant change. Compared with conventional diamond pattern deposition methods, the technique described here offers the advantages of being simple, inexpensive, damage-free, and highly compatible, rendering it attractive for a broad variety of industrial applications. © 2011 American Chemical Society

  13. Energy determines broad pattern of plant distribution in Western Himalaya.

    Science.gov (United States)

    Panda, Rajendra M; Behera, Mukunda Dev; Roy, Partha S; Biradar, Chandrashekhar

    2017-12-01

    Several factors describe the broad pattern of diversity in plant species distribution. We explore these determinants of species richness in Western Himalayas using high-resolution species data available for the area to energy, water, physiography and anthropogenic disturbance. The floral data involves 1279 species from 1178 spatial locations and 738 sample plots of a national database. We evaluated their correlation with 8-environmental variables, selected on the basis of correlation coefficients and principal component loadings, using both linear (structural equation model) and nonlinear (generalised additive model) techniques. There were 645 genera and 176 families including 815 herbs, 213 shrubs, 190 trees, and 61 lianas. The nonlinear model explained the maximum deviance of 67.4% and showed the dominant contribution of climate on species richness with a 59% share. Energy variables (potential evapotranspiration and temperature seasonality) explained the deviance better than did water variables (aridity index and precipitation of the driest quarter). Temperature seasonality had the maximum impact on the species richness. The structural equation model confirmed the results of the nonlinear model but less efficiently. The mutual influences of the climatic variables were found to affect the predictions of the model significantly. To our knowledge, the 67.4% deviance found in the species richness pattern is one of the highest values reported in mountain studies. Broadly, climate described by water-energy dynamics provides the best explanation for the species richness pattern. Both modeling approaches supported the same conclusion that energy is the best predictor of species richness. The dry and cold conditions of the region account for the dominant contribution of energy on species richness.

  14. Modified energy-deposition model, for the computation of the stopping-power ratio for small cavity sizes

    International Nuclear Information System (INIS)

    Janssens, A.C.A.

    1981-01-01

    This paper presents a modification to the Spencer-Attix theory, which allows application of the theory to larger cavity sizes. The modified theory is in better agreement with the actual process of energy deposition by delta rays. In the first part of the paper it is recalled how the Spencer-Attix theory can be derived from basic principles, which allows a physical interpretation of the theory in terms of a function describing the space and direction average of the deposited energy. A realistic model for the computation of this function is described and the resulting expression for the stopping-power ratio is calculated. For the comparison between the Spencer-Attix theory and this modified expression a correction factor to the ''Bragg-Gray inhomogeneous term'' has been defined. This factor has been computed as a function of cavity size for different source energies and mean excitation energies; thus, general properties of this factor have been elucidated. The computations have been extended to include the density effect. It has been shown that the computation of the inhomogeneous term can be performed for any expression describing the energy loss per unit distance of the electrons as a function of their energy. Thus an expression has been calculated which is in agreement with a quadratic range-energy relationship. In conclusion, the concrete procedure for computing the stopping-power ratio is reviewed

  15. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  16. Influence of plasma-induced energy deposition effects, the equation of state, thermal ionization, pulse shaping, and radiation on ion-beam-driven expansions of plane metal targets

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1986-01-01

    In a previous paper by Long and Tahir [Phys. Fluids 29, 275 (1986)], the motion of plane targets irradiated by ion beams whose energy deposition was assumed to be independent of the ion energy, and the temperature and density of the plasma, was analyzed. In this paper, the analytic solution is extended in order to include the effects of a temperature-and density-dependent energy deposition as a result of electron excitation, an improved equation of state, thermal ionization, a pulse shape, and radiation losses. The change in the energy deposition with temperature and density leads to range shortening and an increased power deposition in the target. It is shown how the analytic theory can be used to analyze experiments to measure the enhanced energy deposition. In order to further analyze experiments, numerical simulations are presented which include the plasma-induced effects on the energy deposition. It is shown that since the change in the range is due to both decrease in density and the increase in temperature, it is not possible to separate these two effects in present experiments. Therefore, the experiments which measure the time-dependent energy of the ions emerging from the back side of a plane target do not as yet measure the energy loss as a function of the density and temperature of the plasma or of the energy of the ion, but only an averaged loss over certain ranges of these physical quantities

  17. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  18. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  19. On the energy pattern factor in wind measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; Doherty, M A; McMullan, J.T., Morgan, R.; Murray, R B

    1977-01-01

    Measurements of energy pattern factor K/sub e/ were made using a continuous-analogue wind-power metering technique, rather than by the more usual sampling procedure. The values obtained were significantly larger than the usually accepted figure. The discrepancy is attributed partly to the method of measurement, which includes the actual power present rather than the amount that can be extracted, and partly to the use of rather more typical wind speeds. It is concluded, however, that more energy can be derived from wind schemes than was thought, even during periods of light wind. These conclusions improve the viability of wind power plants.

  20. A climate signal in exhumation patterns revealed by porphyry copper deposits

    Science.gov (United States)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  1. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  2. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Neutron-photon energy deposition in CANDU reactor fuel channels: a comparison of modelling techniques using ANISN and MCNP computer codes

    International Nuclear Information System (INIS)

    Bilanovic, Z.; McCracken, D.R.

    1994-12-01

    In order to assess irradiation-induced corrosion effects, coolant radiolysis and the degradation of the physical properties of reactor materials and components, it is necessary to determine the neutron, photon, and electron energy deposition profiles in the fuel channels of the reactor core. At present, several different computer codes must be used to do this. The most recent, advanced and versatile of these is the latest version of MCNP, which may be capable of replacing all the others. Different codes have different assumptions and different restrictions on the way they can model the core physics and geometry. This report presents the results of ANISN and MCNP models of neutron and photon energy deposition. The results validate the use of MCNP for simplified geometrical modelling of energy deposition by neutrons and photons in the complex geometry of the CANDU reactor fuel channel. Discrete ordinates codes such as ANISN were the benchmark codes used in previous work. The results of calculations using various models are presented, and they show very good agreement for fast-neutron energy deposition. In the case of photon energy deposition, however, some modifications to the modelling procedures had to be incorporated. Problems with the use of reflective boundaries were solved by either including the eight surrounding fuel channels in the model, or using a boundary source at the bounding surface of the problem. Once these modifications were incorporated, consistent results between the computer codes were achieved. Historically, simple annular representations of the core were used, because of the difficulty of doing detailed modelling with older codes. It is demonstrated that modelling by MCNP, using more accurate and more detailed geometry, gives significantly different and improved results. (author). 9 refs., 12 tabs., 20 figs

  4. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    Science.gov (United States)

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  5. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  6. Development of amorphous silicon based EUV hardmasks through physical vapor deposition

    Science.gov (United States)

    De Silva, Anuja; Mignot, Yann; Meli, Luciana; DeVries, Scott; Xu, Yongan; Seshadri, Indira; Felix, Nelson M.; Zeng, Wilson; Cao, Yong; Phan, Khoi; Dai, Huixiong; Ngai, Christopher S.; Stolfi, Michael; Diehl, Daniel L.

    2017-10-01

    Extending extreme ultraviolet (EUV) single exposure patterning to its limits requires more than photoresist development. The hardmask film is a key contributor in the patterning stack that offers opportunities to enhance lithographic process window, increase pattern transfer efficiency, and decrease defectivity when utilizing very thin film stacks. This paper introduces the development of amorphous silicon (a-Si) deposited through physical vapor deposited (PVD) as an alternative to a silicon ARC (SiARC) or silicon-oxide-type EUV hardmasks in a typical trilayer patterning scheme. PVD offers benefits such as lower deposition temperature, and higher purity, compared to conventional chemical vapor deposition (CVD) techniques. In this work, sub-36nm pitch line-space features were resolved with a positive-tone organic chemically-amplified resist directly patterned on PVD a-Si, without an adhesion promotion layer and without pattern collapse. Pattern transfer into the underlying hardmask stack was demonstrated, allowing an evaluation of patterning metrics related to resolution, pattern transfer fidelity, and film defectivity for PVD a-Si compared to a conventional tri-layer patterning scheme. Etch selectivity and the scalability of PVD a-Si to reduce the aspect ratio of the patterning stack will also be discussed.

  7. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    Science.gov (United States)

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Early Forming a Hummingbird-like Hovering Neural Network Circuitry Pattern with Reentrant Spatiotemporal Energy-Sensory Orientation Privileged to Avoid “Epilepsy” Based on a Biomimetic Acetylcholinesterase Memcapacitor Prosthesis

    Directory of Open Access Journals (Sweden)

    Ellen T. Chen

    2015-08-01

    Full Text Available The hummingbird’s significant asymmetry hovering flight with energy conservation pattern is remarkable among all vertebrates. However, little is known to human’s neuronal network circuitry current flow pattern for whether or not has this privilege during slow wave sleeping (SWS. What is the advantage in order to avoid diseases if we have this network pattern ? A memory device was developed with nanostructured biomimetic acetylcholinesterase (ACHE gorge membrane on gold chips as memcapacitor 1, served as a normal brain network prosthesis, compared with a mutated ACHE prosthesis as device 2, for evaluation of neuronal network circuitry integrity in the presence of Amyloid- beta (Ab under the conditions of free from tracers and antibodies in spiked NIST SRM 965A human serum. Three categories of Reentrant Energy-Sensory images are presented based on infused brain pulse energies in a matrix of “Sensory Biomarkers” having frequencies over 0.25-333 Hz at free and fixed Ab levels, respectively. Early non-symptomatic epilepsy was indentified and predicted by device 2 due to Pathological High Frequency Oscillation (pHFO and large areas of 38 µM Ab re-depositions. Device 1 sensitively “feels” Ab damage because of its Frequency Oscillation (HFO enhanced the hummingbird- like hovering pattern with higher reentrant energy sensitivity of 0.12 pj/bit/s/µm3 without Ab compared with Ab, 13 aj/bit/s/µm3/nM over 3.8-471 nM range over 0.003-4s. Device 1 reliably detected early CR dysfunction privileged to avoid epilepsy.

  9. Investigating the effect of design patterns on energy consumption

    NARCIS (Netherlands)

    Feitosa, Daniel; Alders, Rutger; Ampatzoglou, Apostolos; Avgeriou, Paris; Nakagawa, Elisa Yumi

    Gang of Four (GoF) patterns are well-known best practices for the design of object-oriented systems. In this paper, we aim at empirically assessing their relationship to energy consumption, ie, a performance indicator that has recently attracted the attention of both researchers and practitioners.

  10. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  11. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  12. The use of energy pattern factor (EPF) in estimating wind power ...

    African Journals Online (AJOL)

    The Energy Pattern Factor (EPF) method is a less computational method of estimating the available wind power density of an area and wind speed variation account for the energy power density throughout a given period. Using the Average daily wind speed data for an 11 year period (2004-2014) obtained from the ...

  13. Characterization of space radiation environment in terms of the energy deposition in functionally important volumes

    International Nuclear Information System (INIS)

    Braby, L.A.; Metting, N.F.; Wilson, W.E.; Ratcliffe, C.A.

    1988-01-01

    Since the damage which initiates detrimental effects occurs in a small site (semiconductor junctions, or biological cell nuclei), these differences in spatial distribution of ionization maybe the relevant factor controlling the effectiveness of different radiations. Again, when the appropriate cross section data are available Monte Carlo methods can be used to simulate the positions of all ionizations and excitations produced by a typical charged particle. This calculated track structure must interact with the biological or electronic entity in which it occurs to produce the effect. However, we do not know the mechanisms of this interaction and thus cannot specify which characteristics of the charged particle track are responsible for the relevant damage. From track structure we can obtain the spectrum of energy deposition in small volumes which may be relevant to the processes of concern. This has lead to a new approach to dosimetry, one which emphasizes the stochastic nature of energy deposition in small sites, known as microdosimetry. 6 refs., 4 figs

  14. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  15. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA

    Science.gov (United States)

    Clow, David W.; Roop, Heidi; Nanus, Leora; Fenn, Mark; Sexstone, Graham A.

    2015-01-01

    Lakes and streams in Class 1 wilderness areas in the western United States (U.S.) are at risk from atmospheric deposition of nitrogen (N) and sulfur (S), and protection of these resources is mandated under the Federal Clean Air Act and amendments. Assessment of critical loads, which are the maximum exposure to pollution an area can receive without adverse effects on sensitive ecosystems, requires accurate deposition estimates. However, deposition is difficult and expensive to measure in high-elevation wilderness, and spatial patterns in N and S deposition in these areas remain poorly quantified. In this study, ion-exchange resin (IER) collectors were used to measure dissolved inorganic N (DIN) and S deposition during June 2006–September 2007 at approximately 20 alpine/subalpine sites spanning the Continental Divide in Rocky Mountain National Park. Results indicated good agreement between deposition estimated from IER collectors and commonly used wet + dry methods during summer, but poor agreement during winter. Snowpack sampling was found to be a more accurate way of quantifying DIN and S deposition during winter. Summer DIN deposition was significantly greater on the east side of the park than on the west side (25–50%; p ≤ 0.03), consistent with transport of pollutants to the park from urban and agricultural areas to the east. Sources of atmospheric nitrate (NO3−) were examined using N isotopes. The average δ15N of NO3− from IER collectors was 3.5‰ higher during winter than during summer (p model critical loads by filling gaps in geographic coverage of deposition monitoring/modeling programs and thus may enable policy makers to better protect sensitive natural resources in Class 1 Wilderness areas.

  16. Geometric morphometric analysis of cyclical body shape changes in color pattern variants of Cichla temensis Humboldt, 1821 (Perciformes: Cichlidae demonstrates reproductive energy allocation

    Directory of Open Access Journals (Sweden)

    Paul Reiss

    Full Text Available Previously recognized color and pattern variants of adult Cichla temensis in Amazon flood pulse river environments reflect the cycling of individuals through seasonal sexual maturity and spawning. Individuals also vary in shape from blocky to fusiform. To determine if shape differences are related to patterns of fat reserve deposition and utilization, and to quantify the relationship of shape with color and pattern variation and life history status, specimens in each of four previously defined grades of color and pattern variation were compared using geometric morphometric techniques. Progressive shape changes occurred between grades independent of sex and correlated to gonosomatic index (GSI. Thin plate spline deformation visualizations indicate that the observed shape differences are related to fat deposition patterns. The seasonal timing of shape change and its link to color pattern variation, sexual maturity and local water level conditions suggests a relationship between the physiological and behavioral characteristics of C. temensis and the cyclical flood pulse pattern of its habitat.

  17. Research for superconducting energy storage patterns and its practical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.H., E-mail: lindehua_cn@yahoo.com.cn [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Wang, X.Q. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030 (China)

    2013-10-15

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  18. Research for superconducting energy storage patterns and its practical countermeasures

    International Nuclear Information System (INIS)

    Lin, D.H.; Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L.; Wang, X.Q.

    2013-01-01

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage

  19. Factors affecting on the particle deposition in the respiratory tract

    International Nuclear Information System (INIS)

    Kubota, Yoshihisa

    1991-01-01

    The deposition pattern of inhaled particles in the respiratory tracts is affected by anatomical structure of the respiratory tracts and respiratory pattern of animals, which are modified by many factors as animal species, physiological and psychological conditions, age, sex, smoking drug, lung diseases, etc. In human, studies have been focused on the initial lung deposition of particles and have made it clear that the respiratory pattern, gender, and diseases may have influence on the deposition pattern. On the other hand, there was little knowledge on the initial lung deposition of particles in laboratory animals. Recently, Raabe et al. have reported the initial lung deposition of 169 Yb-aluminosilicate particles in mice, rats, hamsters, guinea pigs and rabbits. The authors have also investigated the lung deposition of latex particles with different sizes and 198 Au-colloid in rats whose respiratory volumes during the inhalation were monitored by body plethysmography. These experiments indicated that the deposition of inhaled particles in distal lung e.g. small bronchiolar and alveolar region, was much lower in laboratory animals than that of human. This species difference may be due to smaller diameter of respiratory tract and/or shallower breathing and higher respiratory rate of laboratory animals. The experimental animals in which respiratory diseases were induced artificially have been used to investigate the modification factors on the deposition pattern of inhaled particles. As respiratory diseases, emphysema was induced in rats, hamsters, beagle dogs in some laboratories and pulmonary delayed type hypersensitivity reaction in rats was in our laboratory. The initial lung deposition of particles in these animals was consistently decreased in comparison with normals, regardless of the animal species and the type of disease. (author)

  20. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  1. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-01-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  2. Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition

    Science.gov (United States)

    Shin, Yung C.; Bailey, Neil; Katinas, Christopher; Tan, Wenda

    2018-05-01

    This paper presents an overview of vertically integrated comprehensive predictive modeling capabilities for directed energy deposition processes, which have been developed at Purdue University. The overall predictive models consist of vertically integrated several modules, including powder flow model, molten pool model, microstructure prediction model and residual stress model, which can be used for predicting mechanical properties of additively manufactured parts by directed energy deposition processes with blown powder as well as other additive manufacturing processes. Critical governing equations of each model and how various modules are connected are illustrated. Various illustrative results along with corresponding experimental validation results are presented to illustrate the capabilities and fidelity of the models. The good correlations with experimental results prove the integrated models can be used to design the metal additive manufacturing processes and predict the resultant microstructure and mechanical properties.

  3. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  4. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  5. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  6. Reconstruction of Axial Energy Deposition in Magnetic Liner Inertial Fusion Based on PECOS Shadowgraph Unfolds Using the AMR Code FLASH

    Science.gov (United States)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration

    2017-10-01

    Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.

  7. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  8. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof of Concept Study using Computational Fluid Dynamics

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P. Worth

    2016-01-01

    The objective of this study is to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics (CFD), to in vivo human pharmacokinetic (PK) plasma concentration profiles. This is accomplished through the use of CFD simulations coupled with compartmental PK modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all of the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long time periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics and clinical studies. PMID:27238495

  9. Effect of the pattern of food intake on human energy metabolism.

    Science.gov (United States)

    Verboeket-van de Venne, W P; Westerterp, K R; Kester, A D

    1993-07-01

    The pattern of food intake can affect the regulation of body weight and lipogenesis. We studied the effect of meal frequency on human energy expenditure (EE) and its components. During 1 week ten male adults (age 25-61 years, body mass index 20.7-30.4 kg/m2) were fed to energy balance at two meals/d (gorging pattern) and during another week at seven meals/d (nibbling pattern). For the first 6 d of each week the food was provided at home, followed by a 36 h stay in a respiration chamber. O2 consumption and CO2 production (and hence EE) were calculated over 24 h. EE in free-living conditions was measured over the 2 weeks with doubly-labelled water (average daily metabolic rate, ADMR). The three major components of ADMR are basal metabolic rate (BMR), diet-induced thermogenesis (DIT) and EE for physical activity (ACT). There was no significant effect of meal frequency on 24 h EE or ADMR. Furthermore, BMR and ACT did not differ between the two patterns. DIT was significantly elevated in the gorging pattern, but this effect was neutralized by correction for the relevant time interval. With the method used for determination of DIT no significant effect of meal frequency on the contribution of DIT to ADMR could be demonstrated.

  10. Energy accumulating substances for increase of replacement factor of petroleum from layer on Kumkol deposit

    International Nuclear Information System (INIS)

    Yunusov, U.I.; Ospanov, E.S.; Nurabaev, B.K.; Ajshuakov, K.A.; Tursunkulov, Eh.T.

    1997-01-01

    Laboratory researches with using of alloys of energy accumulating substances are carried out with the purpose of petroleum output increase on Kumkol deposit. Factor of petroleum replacement within range from 79.5 to 82.0 % is received by use silico-barium, silico-calcium and ferro-silicium with alkali and aluminium. (author)

  11. Optimizing Fukushima Emissions Through Pattern Matching and Genetic Algorithms

    Science.gov (United States)

    Lucas, D. D.; Simpson, M. D.; Philip, C. S.; Baskett, R.

    2017-12-01

    Hazardous conditions during the Fukushima Daiichi nuclear power plant (NPP) accident hindered direct observations of the emissions of radioactive materials into the atmosphere. A wide range of emissions are estimated from bottom-up studies using reactor inventories and top-down approaches based on inverse modeling. We present a new inverse modeling estimate of cesium-137 emitted from the Fukushima NPP. Our estimate considers weather uncertainty through a large ensemble of Weather Research and Forecasting model simulations and uses the FLEXPART atmospheric dispersion model to transport and deposit cesium. The simulations are constrained by observations of the spatial distribution of cumulative cesium deposited on the surface of Japan through April 2, 2012. Multiple spatial metrics are used to quantify differences between observed and simulated deposition patterns. In order to match the observed pattern, we use a multi-objective genetic algorithm to optimize the time-varying emissions. We find that large differences with published bottom-up estimates are required to explain the observations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  13. Use of cycle stacking patterns to define third-order depositional sequences: Middle to Late Cambrian Bonanza King Formation, southern Great basin

    Energy Technology Data Exchange (ETDEWEB)

    Montanez, I.P.; Droser, M.L. (Univ. of California, Riverside (United States))

    1991-03-01

    The Middle to Late Cambrian Bonanza King Formation (CA, NV) is characterized by superimposed scales of cyclicity. Small-scale cycles (0.5 to 10m) occur as shallowing-upward peritidal and subtidal cycles that repeat at high frequencies (10{sup 4} to 10{sup 5}). Systematic changes in stacking patterns of meter-scale cycles define several large-scale (50-250 m) third-order depositional sequences in the Bonanza King Formation. Third-order depositional sequences can be traced within ranges and correlated regionally across the platform. Peritidal cycles in the Bonanza King Formation are both subtidal- and tidal flat-dominated. Tidal flat-dominated cycles consist of muddy bases grading upward into thrombolites or columnar stromatolites all capped by planar stromatolites. Subtidal cycles in the Bonanza King Formation consist of grainstone bases that commonly fine upward and contain stacked hardgrounds. These are overlain by digitate-algal bioherms with grainstone channel fills and/or bioturbated ribbon carbonates with grainstone lenses. Transgressive depositional facies of third-order depositional sequences consist primarily of stacks of subtidal-dominated pertidial cycles and subtidal cycles, whereas regressive depositional facies are dominated by stacks of tidal flat-dominated peritidal cycles and regoliths developed over laminite cycle caps. The use of high frequency cycles in the Bonanza King Formation to delineate regionally developed third-order depositional sequences thus provides a link between cycle stratigraphy and sequence stratigraphy.

  14. Electron energy deposition in the middle atmosphere

    International Nuclear Information System (INIS)

    Vampola, A.L.; Gorney, D.J.

    1983-01-01

    Spectra of locally precipating 36- to 317-keV electrons obtained by instrumentation on the S3-2 satellite are used to calculate energy deposition profiles as a function of latitude, longitude, and altitude. In the 70- to 90-km altitude, mid-latitude ionization due to these precipitating energetic electrons can be comparable to that due to direct solar H Lyman α. At night, the electrons produce ionization more than an order of magnitude greater than that expected from scattered H Lyman α. Maximum precipitation rates in the region of the South Atlantic Anomaly are of the order of 10 -2 erg/cm 2 s with a spectrum of form j(E) = 1.34 x 10 5 E/sup -2.27/ (keV). Southern hemisphere precipitation dominates that in the north for 1.1< L<6 except for regions of low local surface field in the northern hemisphere. Above L = 6, local time effects dominate: i.e., longitudinal effects due to the asymmetric magnetic field which are strong features below L = 6 disappear and are replaced by high-latitude precipitation events which are local time features

  15. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    International Nuclear Information System (INIS)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.; Pytel, K.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Jagielski, J.

    2015-01-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  16. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brun, J.; Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Tarchalski, M.; Pytel, K. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Jagielski, J. [National Centre for Nuclear Research A. Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland)

    2015-07-01

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for the thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling

  17. To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?

    Science.gov (United States)

    Cadieux, Sarah B.; Kah, Linda C.

    2015-03-01

    Craters within Arabia Terra, Mars, contain hundreds of meters of layered strata showing systematic alternation between slope- and cliff-forming units, suggesting either rhythmic deposition of distinct lithologies or similar lithologies that experienced differential cementation. On Earth, rhythmically deposited strata can be examined in terms of stratal packaging, wherein the interplay of tectonics, sediment deposition, and base level (i.e., the position above which sediment accumulation is expected to be temporary) result in changes in the amount of space available for sediment accumulation. These predictable patterns of sediment deposition can be used to infer changes in basin accommodation regardless of the mechanism of deposition (e.g. fluvial, lacustrine, or aeolian). Here, we analyze sedimentary deposits from three craters (Becquerel Crater, Danielson Crater, Crater A) in Arabia Terra. Each crater contains layered deposits that are clearly observed in orbital images. Although orbital images are insufficient to specifically determine the origin of sedimentary deposits, depositional couplets can be interpreted in terms of potential accommodation space available for deposition, and changes in the distribution of couplet thickness through stratigraphy can be interpreted in terms of changing base level and the production of new accommodation space. Differences in stratal packaging in these three craters suggest varying relationships between sedimentary influx, sedimentary base level, and concomitant changes in accommodation space. Previous groundwater upwelling models hypothesize that layered sedimentary deposits were deposited under warm climate conditions of early Mars. Here, we use observed stacking patterns to propose a model for deposition under cold climate conditions, wherein episodic melting of ground ice could raise local base level, stabilize sediment deposition, and result in differential cementation of accumulated strata. Such analysis demonstrates that

  18. Energy deposition and radiation quality of radon and radon daughters. Final report

    International Nuclear Information System (INIS)

    Karam, L.R.; Caswell, R.S.

    1996-01-01

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of 218 Po and 214 Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny

  19. On the energy deposition into the plasma for an inverted fireball geometry

    Science.gov (United States)

    Levko, Dmitry; Gruenwald, Johannes

    2017-10-01

    Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.

  20. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    International Nuclear Information System (INIS)

    Rodriguez-Lazcano, Y.; Pena, Yolanda; Nair, M.T.S.; Nair, P.K.

    2005-01-01

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb 2 Se 3 . Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10 -8 (Ω cm) -1 and photoconductivity, about 10 -6 (Ω cm) -1 under tungsten halogen lamp illumination with intensity of 700 W m -2 . An estimate for the mobility life time product for the film is 4 x 10 -9 cm 2 V -1

  1. Energy availabilities for state and local development: projected energy patterns for 1980 and 1985

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, D. P.; Rice, P. L.; Pai, V. P.

    1978-06-01

    This report presents projections of the supply, demand, and net imports of seven fuel types and four final consuming sectors for BEAs, states, census regions, and the nation for 1980 and 1985. The data are formatted to present regional energy availability from primary extraction, as well as from regional transformation processes. As constructed, the tables depict energy balances between availability and use for each of the specific fuels. The objective of the program is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration of regional growth issues that may be influenced by the regional energy system. This basic data must be supplemented by region-specific information which only the local policy analyst can bring to bear in his assessment of the energy conditions which characterize each region. The energy data, coupled with specific knowledge of projected economic growth and employment patterns, can assist EDA in developing its grant-in-aid investment strategy.

  2. The development of the Ptolemais lignite deposit, present situation and future perspective of the electrical energy market (Greece)

    International Nuclear Information System (INIS)

    Kavourides, Kostas

    1997-01-01

    PPC is by far the major producer of solid fuels in Greece. Currently the known exploitable reserves of solid fuels, are 4,0 billions tones of lignite and 4 billion cubic meters of peat. Mining of Lignite in Greece started in 1951 at the Aliveri underground mine and was continued at the open cast mines at Ptolemais (1955) and Megalopolis (1919). For more than 45 years. PPC has successfully exploited the Greece Lignite deposit for the production of electricity in order to satisfy the demand in Greece. Today PPC produces 60 million tons of lignite and handles approximately 275 million cubic meters of masses (overburden, lignite and interculated) per year. Lignite is the main energy resource in Greece and its combustion provides 75-80% of the electrical energy consumed in Greece.The Lignite Center of Ptolemais - Amyndeon (LCP-A) operated by the Greece PPC is located in northern Greece, about 110 km west of the city of Thessaloniki. The lignite deposits under exploitation cover an area. of 120 km 2 including 4000 Mt of proven geological reserves and 2700 Mt of exploitable lignite under current economic and technological criteria. Today LCP-A manages six active mines which in 1997 have a rate of handling 245 mil cubic meter of material and producing approx. 48 mil for of lignite. The continuous mining method which employs BWES, conveyors and strackers is the principal mining method used in all the lignite mines at the Ptolemais-Amyndeon Lignite Center. The implementation of selective mining procedures as well as discontinuous and /or combined mining methods differentiates the mining technology at the LCP-A from the respective technology applied in Germany lignite mines. The quality properties suggest that the lignite deposits in Greece are among the world's worst quality deposits exploited for energy production, where approximately 2 kg of lignite are consumed per I kWh of generated power. The main advantages of PPC'S coal orientated development program are the following

  3. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  4. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  5. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  6. Patterns and Features of Global Uranium Resources and Production

    Science.gov (United States)

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  7. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  8. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Science.gov (United States)

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  9. Calculation of neutron radiation energy deposition distribution in subcellular parts of tissue using recombination chamber microdosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    Recombination chamber microdosimetry was used as an instrument for determination of local neutron radiation energy deposition distribution. The method allows to simulate of subcellular regions of tissue of the order of 70 nm in size. The results obtained qualitatively correspond to relationship between biological efficiency and neutron energy, and show regular differences of distributions achieved by the recombination method and distributions measured using tissue equivalent proportional counters (TEPC), which simulates greater tissue regions of 1 μm in size

  10. High-energy high-rate pulsed-power processing of materials by powder consolidation and by railgun deposition. Technical report (Final), 10 April 1985-10 February 1987

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Marcus, H.L.; Weldon, W.F.

    1987-03-31

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other high-energy high-rate processing. The characteristics of the high-energy-high-rate (1MJ/s) powder consolidation using megampere current pulses from a homopolar generator, were defined. Molybdenum Alloy TZM, a nickel-based metallic glass, copper/graphite composites, and P/M aluminum alloy X7091 were investigated. The powder-consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with subsecond high-temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time temperature transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Inherent control of energy input, and time-to-peak processing temperature developed to be held to short times. Deposition experiments were conducted using an exploding-foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid, or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate. Deposits of a wide variety of single- and multi-specie materials were produced on several types of substrates. In a series of ancillary experiments, pulsed-skin-effect heating and self quenching of metallic conductors was discovered to be a new means of surface modification by high-energy high-rate-processing.

  11. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, Valerio; Grigutis, Robertas [Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 11, I-22100 Como (Italy); Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); LOA, ENSTA-ParisTech, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91762 Palaiseau (France); Couairon, Arnaud [Centre de Physique Theorique, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau (France); Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2016-07-07

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of the absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.

  12. Influence of the impact energy on the pattern of blood drip stains

    Science.gov (United States)

    Smith, F. R.; Nicloux, C.; Brutin, D.

    2018-01-01

    The maximum spreading diameter of complex fluid droplets has been extensively studied and explained by numerous physical models. This research focuses therefore on a different aspect, the bulging outer rim observed after evaporation on the final dried pattern of blood droplets. A correlation is found between the inner diameter, the maximum outer diameter, and the impact speed. This shows how the drying mechanism of a blood drip stain is influenced by the impact energy, which induces a larger spreading diameter and thus a different redistribution of red blood cells inside the droplet. An empirical relation is established between the final dried pattern of a passive bloodstain and its impact speed, yielding a possible forensic application. Indeed, being able to relate accurately the energy of the drop with its final pattern would give a clue to investigators, as currently no such simple and accurate tool exists.

  13. Depth determination of low-energy photon emitter deposits in tissue by means of high-resolution X-ray spectrometry

    International Nuclear Information System (INIS)

    Schlueter, W.

    1982-01-01

    A method has been developed for ascertaining the depth of low-energy photon emitters deposited in wounds. It is based on the determination of the energy-dependent absorption of the emitted photons by the tissue separating source and detector. The method is applicable to counting for low-energy photon-emitting nuclides that can be characterized by more than one quantum energy. Attenuation coefficients were given for lard, beef, and five tissue- equivalent materials. For spectrometry, a planar Ge(Li) detector proved most suitable. (author)

  14. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  15. Effect of water side deposits on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Bhatt, M. Siddhartha

    2006-01-01

    This paper presents the effects of water side deposits in the 210 MW coal fired thermal power plant components (viz., boiler, turbine, feed water heaters, condensers and lube oil coolers) on the energy efficiency of these components and that of the overall system at 100% maximum continuous rating (MCR). The origin, composition and rate of build up of deposits on the water side are presented. A linear growth rate of deposits is assumed for simplicity. The effects of the reduction in heat transfer, increased pressure drop and increased pumping power/reduced power output in the components are quantified in the form of curve fits as functions of the deposit thickness (μm). The reduction in heat transfer in the boiler components is in the range of 0.2-2.0% under normal scaling. The increased pumping power is of the order of 0.6-7.6% in the boiler components, 29% in the BFP circuit, 26% in the LPH circuit, 21% in the HPH circuit and 18% in the lube oil cooler circuits. The effects on the overall coal fired plant is quantified through functional relations between the efficiencies and the notional deposit thickness. The sensitivity indices to the notional deposit thickness are: boiler efficiency: -0.0021% points/μm, turbine circuit efficiency: -0.0037% points/μm, auxiliary power efficiency: -0.00129% points/μm, gross overall efficiency: -0.0039% points/μm and net overall efficiency: -0.0040% points/μm. The overall effect of scale build up is either increased power input of ∼68 kW/μm (at a constant power output) or decreased power output ∼25 kW/μm (at a constant power input). Successful contaminant control techniques are highlighted. Capacity reduction effects due to water side deposits are negligible

  16. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  17. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using Computational Fluid Dynamics.

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-06-01

    The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Block Copolymer Patterns as Templates for the Electrocatalyzed Deposition of Nanostructures on Electrodes and for the Generation of Surfaces of Controlled Wettability.

    Science.gov (United States)

    Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar

    2016-01-20

    ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.

  19. Emotion regulation, emotional eating and the energy-rich dietary pattern. A population-based study in Chinese adolescents.

    Science.gov (United States)

    Lu, Qingyun; Tao, Fangbiao; Hou, Fangli; Zhang, Zhaocheng; Ren, Ling-Ling

    2016-04-01

    Research investigating the influence of emotion regulation (ER) strategies on emotional eating and diet among Chinese adolescents is scarce. The aim of this study was to test associations between two ER strategies (suppression/cognitive reappraisal), emotional eating, and an energy-rich dietary pattern. A total of 4316 adolescents from 10 high schools were surveyed. Dietary patterns were derived using factor analysis. Bivariate correlations were analyzed to examine associations between ER strategies, emotional eating behavior and an energy-rich dietary pattern, by gender. The mediating effect of emotional eating in the relationship between ER and energy-rich food consumption by gender was estimated using structural equation modeling. A higher level of suppression, but no lack of cognitive reappraisal, was associated with emotional eating in boys and girls. A higher level of suppression and lack of cognitive reappraisal were associated with a greater intake of energy-rich foods in girls only. Emotional eating mediated the relationship between a higher level of suppression and a greater intake of energy-rich food in girls. This study revealed significant associations between two ER strategies and an energy-rich dietary pattern in girls, and provided evidence that higher levels of suppression may put girls at risk for emotional eating, potentially affecting the energy-rich dietary pattern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    Science.gov (United States)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  1. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents

    Energy Technology Data Exchange (ETDEWEB)

    Bendell, L.I., E-mail: bendell@sfu.ca

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of 'pulse' toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a 'snap-shot' of soil, plant or avian tissue trace metal analysis post-mining activity. - Research Highlights: {yields} Archived gizzard samples reveals mining history. {yields} Grit ingestion exposes grouse to cadmium and lead. {yields} Grit selection includes particles enriched in cadmium. {yields} Cadmium enriched particles are of toxicological significance.

  2. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  3. A three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition in graphite components of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.O.; Robinson, A.T.; Allen, D.A.; Picton, D.J.; Thornton, D.A. [TCS, Serco, Rutherford House, Olympus Park, Quedgeley, Gloucester, Gloucestershire GL2 4NF (United Kingdom); Shaw, S.E. [EDF Energy, Barnet Way, Barnwood, Gloucester GL4 3RS (United Kingdom)

    2011-07-01

    This paper describes the development of a three-dimensional methodology for the assessment of neutron damage and nuclear energy deposition (or nuclear heating) throughout the graphite cores of the UK's Advanced Gas-cooled Reactors. Advances in the development of the Monte Carlo radiation transport code MCBEND have enabled the efficient production of detailed fully three-dimensional models that utilise three-dimensional source distributions obtained from Core Follow data supplied by the reactor physics code PANTHER. The calculational approach can be simplified to reduce both the requisite number of intensive radiation transport calculations, as well as the quantity of data output. These simplifications have been qualified by comparison with explicit calculations and they have been shown not to introduce significant systematic uncertainties. Simple calculational approaches are described that allow users of the data to address the effects on neutron damage and nuclear energy deposition predictions of the feedback resulting from the mutual dependencies of graphite weight loss and nuclear energy deposition. (authors)

  4. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  5. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    Science.gov (United States)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  6. Micro- and nano-surface structures based on vapor-deposited polymers

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Chen

    2017-07-01

    Full Text Available Vapor-deposition processes and the resulting thin polymer films provide consistent coatings that decouple the underlying substrate surface properties and can be applied for surface modification regardless of the substrate material and geometry. Here, various ways to structure these vapor-deposited polymer thin films are described. Well-established and available photolithography and soft lithography techniques are widely performed for the creation of surface patterns and microstructures on coated substrates. However, because of the requirements for applying a photomask or an elastomeric stamp, these techniques are mostly limited to flat substrates. Attempts are also conducted to produce patterned structures on non-flat surfaces with various maskless methods such as light-directed patterning and direct-writing approaches. The limitations for patterning on non-flat surfaces are resolution and cost. With the requirement of chemical control and/or precise accessibility to the linkage with functional molecules, chemically and topographically defined interfaces have recently attracted considerable attention. The multifunctional, gradient, and/or synergistic activities of using such interfaces are also discussed. Finally, an emerging discovery of selective deposition of polymer coatings and the bottom-up patterning approach by using the selective deposition technology is demonstrated.

  7. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  8. Intestinal intraepithelial lymphocyte cytometric pattern is more accurate than subepithelial deposits of anti-tissue transglutaminase IgA for the diagnosis of celiac disease in lymphocytic enteritis.

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Bañares

    Full Text Available BACKGROUND & AIMS: An increase in CD3+TCRγδ+ and a decrease in CD3- intraepithelial lymphocytes (IEL is a characteristic flow cytometric pattern of celiac disease (CD with atrophy. The aim was to evaluate the usefulness of both CD IEL cytometric pattern and anti-TG2 IgA subepithelial deposit analysis (CD IF pattern for diagnosing lymphocytic enteritis due to CD. METHODS: Two-hundred and five patients (144 females who underwent duodenal biopsy for clinical suspicion of CD and positive celiac genetics were prospectively included. Fifty had villous atrophy, 70 lymphocytic enteritis, and 85 normal histology. Eight patients with non-celiac atrophy and 15 with lymphocytic enteritis secondary to Helicobacter pylori acted as control group. Duodenal biopsies were obtained to assess both CD IEL flow cytometric (complete or incomplete and IF patterns. RESULTS: Sensitivity of IF, and complete and incomplete cytometric patterns for CD diagnosis in patients with positive serology (Marsh 1+3 was 92%, 85 and 97% respectively, but only the complete cytometric pattern had 100% specificity. Twelve seropositive and 8 seronegative Marsh 1 patients had a CD diagnosis at inclusion or after gluten free-diet, respectively. CD cytometric pattern showed a better diagnostic performance than both IF pattern and serology for CD diagnosis in lymphocytic enteritis at baseline (95% vs 60% vs 60%, p = 0.039. CONCLUSIONS: Analysis of the IEL flow cytometric pattern is a fast, accurate method for identifying CD in the initial diagnostic biopsy of patients presenting with lymphocytic enteritis, even in seronegative patients, and seems to be better than anti-TG2 intestinal deposits.

  9. Energy deposition by a {sup 106}Ru/{sup 106}Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2011-09-15

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  10. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  11. Local deposition patterns of inhaled radon progeny in human bronchial airways

    International Nuclear Information System (INIS)

    Heistracher, T.; Hofmann, W.; Balashazy, I.

    1996-01-01

    The local distribution of radon decay products deposited within bronchial bifurcations, particularly the formation of hot spots, may be more relevant for the determination of cellular doses in bronchial tissue than the commonly computed deposition efficiency, which is conceptually equivalent to the assumption of a uniform nuclide distribution. It is well known that the initial states of lung cancer in humans preferably occur in upper airways close to the cardinal location. In this study we use a recently developed geometric approach of a physiologically realistic bifurcation to demonstrate the site sensitivity of radon progeny deposition for two particle sizes, which are representative of the unattached and attached fraction of radon progeny

  12. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2011-07-01

    A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

  13. Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets.

    Science.gov (United States)

    Sun, Jiazhen; Bao, Bin; He, Min; Zhou, Haihua; Song, Yanlin

    2015-12-30

    Inkjet printing has been widely used in functional material patterning for fabrication of optical/electrical devices. The depositing morphologies of inkjet droplets are critical to the resolution and performance of resulted functional patterns. This review summarizes various strategies to control the depositing morphologies of inkjet droplets, including suppressing and utilizing coffee-ring effect, employing liquid substrates, developing patterned substrates and controlling droplets coalescence. Moreover, the remaining challenges in controlling inkjet droplets are presented, and the broad research and application prospects of controlling nanomaterial patterning by inkjet printing are proposed.

  14. FCC-hh final-focus for flat-beams: parameters and energy deposition studies

    CERN Document Server

    AUTHOR|(CDS)2081283; Cruz Alaniz, Emilia; Seryi, Andrei; Van Riesen-Haupt, Leon; Besana, Maria Ilaria

    2017-01-01

    The international Future Circular Collider (FCC) study comprises the study of a new scientific structure in a tunnel of 100 km. This will allow the installation of two accelerators, a 45.6–175 GeV lepton collider and a 100-TeV hadron collider. An optimized design of a final-focus system for the hadron collider is presented here. The new design is more compact and enables unequal ${\\beta}$$^{∗}$ in both planes, whose choice is justified here. This is followed by energy deposition studies, where the total dose in the magnets as a consequence of the collision debris is evaluated.

  15. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    Science.gov (United States)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  16. Development of TiO2 containing hardmasks through PEALD deposition

    Science.gov (United States)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hao; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-03-01

    With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.

  17. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  18. Deposition pattern and throughfall fluxes in secondary cool temperate forest, South Korea

    Science.gov (United States)

    Kumar Gautam, Mukesh; Lee, Kwang-Sik; Song, Byeong-Yeol

    2017-07-01

    Chemistry and deposition fluxes in the rainfall and throughfall of red pine (Pinus densiflora), black locust (Robinia pseudoacacia), and chestnut (Castanea crenata) monocultures, and mixed red pine-black locust-chestnut stands were examined in a nutrient-limited cool temperate forest of central South Korea. Throughfall was enriched in both basic and acidic constituents relative to rainfall, suggesting that both dry deposition and canopy leaching are important sources of throughfall constituents. Net throughfall fluxes (NTFs) of cations and anions significantly differed among four different stands as well as seasonally. Red pine exhibited highest fluxes (TF and NTF) for Ca2+, black locust for K+, mixed stands for Mg2+, and chestnut for Na+. In contrast, NTF of SO42-, NO3-, and NH4+was highest in the red pine, intermediate in the chestnut and mixed stands, and lowest in the black locust. In general, canopy uptake of H+ and NH4+ for all stands was higher in summer than in winter. Dry deposition appears to play a major role in atmospheric deposition to this cool temperate forest, especially in summer. Dry deposition for both cations and anions displayed high spatial variability, even though stands were adjacent to one another and experienced identical atmospheric deposition loads. Canopy leaching of K+ (95-78% of NTF), Mg2+ (92-23% of NTF), and Ca2+ (91-12% of NTF) was highest for the black locust, lowest for chestnut, and intermediate for the red pine and mixed stands. The present study documented significant changes in throughfall chemistry and NTF among different forest stands, which presumably be related with the differences in the canopy characteristics and differences in their scavenging capacity for dry deposition and canopy exchange. Difference in the canopy retention of H+ and base cation leaching suggests that canopy exchange was mainly driven by weak acid excretion and lesser by H+ exchange reaction. Our results indicate that despite a high base cation

  19. Atmospheric deposition patterns of (210)Pb and (7)Be in Cienfuegos, Cuba.

    Science.gov (United States)

    Alonso-Hernández, Carlos M; Morera-Gómez, Yasser; Cartas-Águila, Héctor; Guillén-Arruebarrena, Aniel

    2014-12-01

    The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03' N, 80° 29' W) (Cuba), are analysed in this paper. Measurement of (7)Be and (210)Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of (7)Be and (210)Pb are in the range of 13.2-132 and 1.24-8.29 Bq m(-2), and their mean values are: 56.6 and 3.97 Bq m(-2), respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of (210)Pb and (7)Be were 47 and 700 Bq m(-2) y(-1), respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of (7)Be and (210)Pb were moderately well correlated with precipitation and well correlated with one another. The (210)Pb/(7)Be ratios in the monthly depositions samples varied in the range of 0.05-0.10 and showed a strong correlation with the number of rainy days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa

    International Nuclear Information System (INIS)

    Madubansi, M.; Shackleton, C.M.

    2006-01-01

    Following the democratic transition in South Africa in the early 1990s the government has implemented a widespread electrification programme, as well as introduced a free basic electricity allowance as a means of poverty alleviation. Yet there are limited longitudinal studies on the impacts of the introduction of electricity on the patterns of household energy use, and even more so in the neglected rural sector. This study reports on the patterns of household energy use in five rural settlements in 1991 and again in 2002. Results indicate a changing pattern of energy use for lighting and powering entertainment appliances, more specifically from dry-cell batteries and paraffin to electricity. Yet for thermal needs, most notably cooking, fuelwood has remained the most widespread fuel, and the amount used per month has not changed, despite increasing scarcity of wood in the local environment. There has been an increase in the proportion of households purchasing fuelwood as opposed to collecting their own. Overall, the mean total number of fuel types used per household has increased, indicating that electricity is simply viewed as an additional energy, rather than an alternative. Yet, electricity accounted for approximately 60% of expenditure on energy sources in 2002, despite the government's policy of a free basic allowance of 5-6 kWh per month. This has implications for energy supply costing, as well as the poverty alleviation dimensions of the whole programme

  1. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  2. Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminium oxides for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lucia eIglesias

    2015-03-01

    Full Text Available Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminium doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 µF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.

  3. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Tepe, A.; Yushkov, A.; Ziolkowski, M.; Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C.E.; Sarmento, R.; Tome, B.; Aglietta, M.; Bertaina, M.E.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G.; Ahn, E.J.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P.O.; Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Salamida, F.; Suomijaervi, T.; Albuquerque, I.F.M.; Gouffon, P.; Santos, E.M.; Allekotte, I.; Asorey, H.; Bertou, X.; Berisso, M.G.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O.A.; Allen, J.; Awal, N.; Farrar, G.; Zaw, I.; Allison, P.; Beatty, J.J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M.S.; Almela, A.; Etchegoyen, A.; Wainberg, O.; Castillo, J.A.; D'Olivo, J.C.; Medina-Tanco, G.; Nellen, L.; Galicia, J.F.V.; Vargas Cardenas, B.; Alvarez-Muniz, J.; Ave, M.; Roca, S.T.G.; Agueera, A.L.; Parente, G.; Parra, A.; Carvalho, W.R. de; Cabo, I.R.; Elipe, G.T.; Tueros, M.; Valino, I.; Vazquez, R.A.; Zas, E.; Batista, R.A.; Schiffer, P.; Sigl, G.; Vliet, A. van; Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.; Aminaei, A.; Buitink, S.; Schulz, J.; Aar, G. van; Velzen, S. van; Wykes, S.; Anchordoqui, L.; Aranda, V.M.; Arqueros, F.; Garcia-Pinto, D.; Minaya, I.A.; Rosado, J.; Vazquez, J.R.; Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P.L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M.; Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M.; Avila, G.; Vitale, P.F.G.; Badescu, A.M.; Fratu, O.; Barber, K.B.; Bellido, J.A.; Blaess, S.; Clay, R.W.; Cooper, M.J.; Dawson, B.R.; Grubb, T.D.; Harrison, T.A.; Hill, G.C.; Malacari, M.; Nguyen, P.; Saffi, S.J.; Sorokin, J.; Bodegom, P. van; Baeuml, J.; Baus, C.; Fuchs, B.; Gonzalez, J.G.; Huber, D.; Kambeitz, O.; Katkov, I.; Link, K.; Ludwig, M.; Maurel, D.; Melissas, M.; Palmieri, N.; Werner, F.; Becker, K.H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K.H.; Krohm, N.; Kruppke-Hansen, D.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Winchen, T.; Wittkowski, D.; Biermann, P.L.; Caramete, L.; Curutiu, A.; Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M.R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.

    2015-01-01

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6 x 10 19 eV by analyzing cosmic rays with energies above E ≥ 5 x 10 18 eVarriving within an angular separation of approximately 15 circle . We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources. (orig.)

  4. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  5. Roles of Chronic Low-Grade Inflammation in the Development of Ectopic Fat Deposition

    Directory of Open Access Journals (Sweden)

    Lulu Liu

    2014-01-01

    Full Text Available Pattern of fat distribution is a major determinant for metabolic homeostasis. As a depot of energy, the storage of triglycerides in adipose tissue contributes to the normal fat distribution. Decreased capacity of fat storage in adipose tissue may result in ectopic fat deposition in nonadipose tissues such as liver, pancreas, and kidney. As a critical biomarker of metabolic complications, chronic low-grade inflammation may have the ability to affect the process of lipid accumulation and further lead to the disorder of fat distribution. In this review, we have collected the evidence linking inflammation with ectopic fat deposition to get a better understanding of the underlying mechanism, which may provide us with novel therapeutic strategies for metabolic disorders.

  6. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn W deposit, Germany

    Science.gov (United States)

    Monecke, T.; Dulski, P.; Kempe, U.

    2007-01-01

    The chondrite-normalized rare earth element (REE) patterns of whole rock samples from evolved granitic systems hosting rare metal deposits sometimes show a split into four consecutive curved segments, referred to as tetrads. In the present contribution, a rigorous statistical method is proposed that can be used to test whether geological significance should be attributed to tetrads that are only of limited size. The method involves a detailed evaluation of element and sample specific random and systematic errors that are constrained on the basis of independent repeated preparations and analyses of sample and reference materials. Application of the proposed method to samples from the granite-hosted Zinnwald Sn-W deposit, Germany, revealed that at least two tetrads in normalized whole rock REE patterns have to be analytically significant to rule out that fractional crystallization led to the unusual behavior of the REEs. Based on the analysis of altered albite granite and greisen samples from the endocontact of the Zinnwald granite massif, it is demonstrated that the lanthanide tetrad effect is responsible for the formation of the convex tetrads. Geological and petrological evidence suggests that the tetrads in the samples developed prior to greisenization and related cassiterite precipitation. In contrast to the endocontact samples, the rhyolitic wall rocks are typified by normalized REE patterns having tetrads that are variable in size and frequently close to the limit of analytical significance. The sizes of the tetrads apparently correlate with the intensity of albitization, but show no relation to subsequent alteration processes including greisenization and low-temperature argillization. This observation proves that curved segments in normalized whole rock REE patterns can be introduced during hydrothermal fluid-rock interaction.

  7. Self-organized dendritic patterns in the polymer Langmuir-Blodgett film

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Jun, E-mail: jun_m@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Toshio; Mikayama, Takeshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Aoki, Atsushi [Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Shouwa-ku, Nagoya 466-8555 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan)

    2011-01-03

    We report the formation of a self-organized dendritic pattern of nanometer thickness in polymer Langmuir-Blodgett (LB) films. Poly(N-dodecylacrylamide) (pDDA)/chloroform solution was spread on a water surface to form a stable polymer monolayer. A pDDA monolayer was deposited onto a hydrophilic silicon substrate by upward deposition from a water subphase, and a second layer was then deposited by downward deposition. The substrate with the two layers was withdrawn from a clean water surface at a high speed to form the dendritic pattern, which was imaged by atomic force microscopy. The height of the pattern, 3.5 nm, corresponds to the height of a bilayer pDDA LB film, suggesting that the pattern forms when the deposited outermost layer overturns by meniscus oscillation. A similar dendritic structure of narrower width and lower height was fabricated on a hydrophobic silicon substrate.

  8. Impact of the daily meal pattern on energy balance

    OpenAIRE

    Bellisle, France

    2008-01-01

    The daily distribution of food intake can influence the regulation of energy balance and, in consequence, the control of body weight. Two aspects of this question must be considered: the daily number of eating occasions and their temporal distribution. Since the 1960s, epidemiological studies have reported an inverse relationship between frequency of eating and body weight, suggesting that a ‘‘nibbling’’ pattern could help to prevent obesity. This notion has later been...

  9. Structure of fast ion energy depositions in water. Application to the Monte Carlo study of cellular inactivation

    International Nuclear Information System (INIS)

    Champion, Ch.

    1999-01-01

    In order to understand the physical processes involved in the heavy ion irradiation of biological samples, a Monte Carlo simulation code and a random inventory code for interaction clusters in volumes comparable to those of sensible biological sites like nucleosomes (few nm 3 ) have been developed. It is now well known that macroscopic parameters like the dose rate or the stopping power are not suitable to explain the cellular inactivation induced by heavy ions irradiation. The aim of this work is the development of a mechanistic model based on the identification of primary processes susceptible to be of major importance on the biological aspect. The code developed simulates the creation and transport in water of all secondary particles produced by the impact of heavy ions. Once all energy depositions generated, an algorithm of random inventory of interaction clusters has been built in order to evaluate the type of critical energy deposition which presents a correlation with the experimental data of cellular inactivation. For light ions, like particles, this cluster model has permitted to reproduce the variations of the experimental number of lethal lesions observed, in particular the decay of biological efficiency. However, for heavy ions, these parameters do not allow to reproduce the experimental data of cellular inactivation. Therefore, the concept of ionization clusters described in terms of critical deposition in critical volumes is not sufficient. (J.S.)

  10. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  11. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  12. Polymer nanocomposite patterning by dip-pen nanolithography

    International Nuclear Information System (INIS)

    Kandemir, Ayse Cagil; Ma, Huan; Reiser, Alain; Spolenak, Ralph; Erdem, Derya

    2016-01-01

    The ultimate aim of this study is to construct polymer nanocomposite patterns by dip-pen nanolithography (DPN). Recent investigations have revealed the effect of the amount of ink (Laplace pressure) on the mechanism of liquid ink writing. In this study it is shown that not only the amount of ink, but also physisorption and surface diffusion are relevant. After a few writing steps, physisorption and surface diffusion outweigh the influence of the amount of ink, allowing consistent patterning governed by dwell times and writing speeds. Polymer matrices can be utilized as a delivery medium to deposit functional particles. DPN patterning of polymer nanocomposites allows for local tuning of the functionality and mechanical strength of the written patterns in high resolution, with the benefit of pattern flexibility. Typically polymer matrices with volatile components are used as a delivery medium for nanoparticle deposition, with subsequent removal of loosely bound matrix material by heating or oxygen plasma. In our study, nanocomposite patterns were constructed, and the differences between polymer and nanocomposite patterning were investigated. Cross-sectional SEM and TEM analysis confirmed that nanoparticles can be deposited with the liquid-polymer ink and are evenly distributed in the polymer matrix. (paper)

  13. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Tepe, A.; Yushkov, A.; Ziolkowski, M. [Universitaet Siegen, Siegen (Germany); Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santo, C.E.; Sarmento, R.; Tome, B. [Universidade de Lisboa - UL, Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP and Instituto Superior Tecnico - IST, Lisbon (Portugal); Aglietta, M.; Bertaina, M.E.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Morello, C.; Navarra, G. [Universita di Torino, Osservatorio Astrofisico di Torino (INAF), Torino (Italy); INFN, Torino (Italy); Ahn, E.J.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P.O. [Fermilab, Batavia, IL (United States); Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Salamida, F.; Suomijaervi, T. [Universite Paris 11, CNRS-IN2P3, Institut de Physique Nucleaire d' Orsay (IPNO), Orsay (France); Albuquerque, I.F.M.; Gouffon, P.; Santos, E.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Allekotte, I.; Asorey, H.; Bertou, X.; Berisso, M.G.; Harari, D.; Mollerach, S.; Purrello, V.; Roulet, E.; Sidelnik, I.; Taborda, O.A. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J.; Awal, N.; Farrar, G.; Zaw, I. [New York University, New York, NY (United States); Allison, P.; Beatty, J.J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M.S. [Ohio State University, Columbus, OH (United States); Almela, A.; Etchegoyen, A.; Wainberg, O. [Instituto de Tecnologias en Deteccion y Astroparticulas (CNEA, CONICET, UNSAM), Buenos Aires (Argentina); Universidad Tecnologica Nacional - Facultad Regional Buenos Aires, Buenos Aires (Argentina); Castillo, J.A.; D' Olivo, J.C.; Medina-Tanco, G.; Nellen, L.; Galicia, J.F.V.; Vargas Cardenas, B. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J.; Ave, M.; Roca, S.T.G.; Agueera, A.L.; Parente, G.; Parra, A.; Carvalho, W.R. de; Cabo, I.R.; Elipe, G.T.; Tueros, M.; Valino, I.; Vazquez, R.A.; Zas, E. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Batista, R.A.; Schiffer, P.; Sigl, G.; Vliet, A. van [Universitaet Hamburg, Hamburg (Germany); Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L. [Universita di Napoli ' ' Federico II' ' , Napoli (Italy); INFN, Napoli (Italy); Aminaei, A.; Buitink, S.; Schulz, J.; Aar, G. van; Velzen, S. van; Wykes, S. [IMAPP, Radboud University Nijmegen, Nijmegen (Netherlands); Anchordoqui, L. [City University of New York, Department of Physics and Astronomy, New York (United States); Aranda, V.M.; Arqueros, F.; Garcia-Pinto, D.; Minaya, I.A.; Rosado, J.; Vazquez, J.R. [Universidad Complutense de Madrid, Madrid (Spain); Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Gaior, R.; Ghia, P.L.; Letessier-Selvon, A.; Muenchmeyer, M.; Settimo, M. [Universites Paris 6 et Paris 7, CNRS-IN2P3, Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE), Paris (France); Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Grenoble (France); Avila, G.; Vitale, P.F.G. [Observatorio Pierre Auger and Comision Nacional de Energia Atomica, Malarguee (Argentina); Badescu, A.M.; Fratu, O. [University Politehnica of Bucharest, Bucharest (Romania); Barber, K.B.; Bellido, J.A.; Blaess, S.; Clay, R.W.; Cooper, M.J.; Dawson, B.R.; Grubb, T.D.; Harrison, T.A.; Hill, G.C.; Malacari, M.; Nguyen, P.; Saffi, S.J.; Sorokin, J.; Bodegom, P. van [University of Adelaide, Adelaide, SA (Australia); Baeuml, J.; Baus, C.; Fuchs, B.; Gonzalez, J.G.; Huber, D.; Kambeitz, O.; Katkov, I.; Link, K.; Ludwig, M.; Maurel, D.; Melissas, M.; Palmieri, N.; Werner, F. [Karlsruhe Institute of Technology - Campus South - Institut fuer Experimentelle, Kernphysik (IEKP), Karlsruhe (Germany); Becker, K.H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K.H.; Krohm, N.; Kruppke-Hansen, D.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Winchen, T.; Wittkowski, D. [Bergische Universitaet Wuppertal, Wuppertal (Germany); Biermann, P.L.; Caramete, L.; Curutiu, A. [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M.R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V. [Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Universita del Salento, Lecce (Italy); INFN, Lecce (Italy); and others

    2015-06-15

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6 x 10{sup 19} eV by analyzing cosmic rays with energies above E ≥ 5 x 10{sup 18} eVarriving within an angular separation of approximately 15 {sup circle}. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources. (orig.)

  14. The patterns of energy use in the chemical industry

    International Nuclear Information System (INIS)

    Steinmeyer, D.

    1997-01-01

    This paper was sculpted from a report commissioned by the Department of Energy to assess the impact of proposed energy taxes on energy use by the US chemical industry. The discussion of energy taxes is eliminated here, however the broader discussion of the impact of energy prices on energy use is retained. The US chemical industry is currently the world leader by many important measures, such as technology contributions and employment. This leadership traces to a slate of advantages: science base, low cost energy, large market and economic/political stability. The focus of this paper is on the patterns of energy use: (1) There is an optimum economic trade of capital against energy. Industry optimizes this trade to lower its costs. For the large volume chemicals which dominate energy use, this tradable capital cost exceeds energy cost by a factor of 1.5. (2) The capital/energy trade follows clearly defined rules. The basic rules are rooted in thermodynamics. (3) An increase in energy prices would result in a drop in process energy use: a doubling of process energy prices would cut process energy use by approximately 1/3 but the capital cost would be in excess of $100 billion if driven into a short time span, such as 5 years. This is because of the long useful lifetime of capital facilities. (4) Process energy is about half the total energy use, with feedstock being the balance. Feedstock use is much less sensitive to price. Restated, the doubling of energy price will result in roughly a 1/6 reduction in total energy use. (5) Technology progress will also reduce energy use. This reduction is distinct from the impact of energy price. Technological progress will be at least as important in reducing energy use as will energy pricing, for the foreseeable future. (6) Technology progress can be sorted into two themes: (a) Learning curve improvements, which are almost inherent in the production process and the nature of competition; and (b) Breakthroughs that happen in a

  15. Simulating discrete models of pattern formation by ion beam sputtering

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Kree, Reiner; Yasseri, Taha

    2009-01-01

    A class of simple, (2+1)-dimensional, discrete models is reviewed, which allow us to study the evolution of surface patterns on solid substrates during ion beam sputtering (IBS). The models are based on the same assumptions about the erosion process as the existing continuum theories. Several distinct physical mechanisms of surface diffusion are added, which allow us to study the interplay of erosion-driven and diffusion-driven pattern formation. We present results from our own work on evolution scenarios of ripple patterns, especially for longer timescales, where nonlinear effects become important. Furthermore we review kinetic phase diagrams, both with and without sample rotation, which depict the systematic dependence of surface patterns on the shape of energy depositing collision cascades after ion impact. Finally, we discuss some results from more recent work on surface diffusion with Ehrlich-Schwoebel barriers as the driving force for pattern formation during IBS and on Monte Carlo simulations of IBS with codeposition of surfactant atoms.

  16. Deposition of inhaled radionuclides in bronchial airways: Implications for extrapolation modeling

    International Nuclear Information System (INIS)

    Balashazy, I.; Hofmann, W.; Heistracher, T.

    1996-01-01

    The laboratory rat has frequently been used as a human surrogate to estimate potential health effects following the inhalation of radioactive aerosol particles. Interspecies differences in biological response are commonly related to interspecies differences in particle deposition efficiencies. In addition, the documented site selectivity of bronchial carcinomas suggests that localized particle deposition patterns within bronchial airway bifurcations may have important implications for inhalation risk assessments. Interspecies differences in particle deposition patterns may be related primarily to differences in airway morphometries. Thus the validity of extrapolating rat deposition data to human inhalation conditions depends on their morphometric similarities and differences. It is well known that there are significant structural differences between the human - rather symmetric - and the rat - monopodial - airway systems. In the present approach, we focus on localized deposition patterns and deposition efficiencies in selected asymmetric bronchial airway bifurcations, whose diameters, lengths and branching angles were derived from the stochastic airway models of human and rat lungs (Koblinger and Hofmann, 1985;1988), which are based on the morphometric data of Raabe et al. (1976). The effects of interspecies differences in particle deposition patterns are explored in this study for two asymmetric bifurcation geometries in segmental bronchi and terminal bronchioles of both the human and rat lungs at different particle sizes. In order to examine the effect of flow rate on particle deposition in the human lung, we selected two different minute volumes, i.e., 10 and 60 1 min -1 , which are representative of low and heavy physical activity breathing conditions. In the case of the rat we used a minute volume of 0.234 1 min -1 (Hofmann et al., 1993)

  17. Cathodic deposition of CdSe films from dimethyl formamide solution at optimized temperature

    Energy Technology Data Exchange (ETDEWEB)

    Datta, J. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India)]. E-mail: jayati_datta@rediffmail.com; Bhattacharya, C. [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India); Visiting Research Associate, School of Materials Science and Engineering, UNSW (Australia); Bandyopadhyay, S. [School of Materials Science and Engineering, UNSW, Sydney 2052 (Australia)

    2006-12-15

    In the present paper, thin film CdSe compound semiconductors have been electroplated on transparent conducting oxide coated glass substrates from nonaqueous dimethyl formamide bath containing CdCl{sub 2}, KI and Se under controlled temperature ranging from 100 to 140 deg. C. Thickness of the deposited films as obtained through focussed ion beam technique as well as their microstructural and photoelectrochemical properties have been found to depend on temperature. The film growth was therefore optimized at a bath temperature {approx}125 deg. C. The formation of crystallites in the range of 100-150 nm size has been ascertained through atomic force microscopy and scanning electron microscopy. Energy dispersive analysis of X-rays for the as deposited film confirmed the 1:1 composition of CdSe compound in the matrix exhibiting band-gap energy of 1.74 eV. Microstructural properties of the deposited films have been determined through X-ray diffraction studies, high-resolution transmission electron microscopy and electron diffraction pattern analysis. Electrochemical impedance spectroscopy and current-potential measurements have been performed to characterize the electrochemical behavior of the semiconductor-electrolyte interface. The photo-activity of the films have been recorded in polysulphide solution under illumination and solar conversion efficiency {>=}1% was achieved.

  18. Analysis of energy use patterns in the domestic sectror of Pakistan

    International Nuclear Information System (INIS)

    Sahir, M.H.; Main, N.A.

    1995-01-01

    Energy use patterns in the domestic sector have been studied with particular reference to social, economic and topographical conditions of Pakistan is based on surveys and past data manipulations which reveal useful facts and trends. They also help to identity areas of real concern for future planning needs. (author)

  19. Interaction of protons with the C{sub 60} molecule: calculation of deposited energies and electronic stopping cross sections (v{sub {<=}}5 au)

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: pmc@irsamc.ups-tlse.fr; Bordenave-Montesquieu, D.; Rentenier, A.; Bordenave-Montesquieu, A. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-09-28

    The energy deposited by a proton in a C{sub 60} molecule is calculated over a broad collision velocity range from 0.1 to 5 au, using the free-electron gas model of Lindhard and Winther (1964 Mat. Fys. Medd. K Dan. Vidensk. Selsk. 34) and the C{sub 60} electron density distribution calculated by Puska and Nieminen. The energy lost by the proton is maximum near 1.8 au collision velocity in contrast with the saturation found in the low-velocity regime, in the 0.25-0.5 au velocity range, by Kunert and Schmidt. From the impact parameter dependence we deduce the distributions of deposited energies, the averaged energy losses and the C{sub 60} electronic stopping cross sections. It is found that the C{sub 60} molecule behaves as a carbon foil giving very similar absolute stopping cross sections per atom. (author). Letter-to-the-editor.

  20. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  1. Focused ion beam machining and deposition for nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Davies, S T; Khamsehpour, B [Warwick Univ., Coventry (United Kingdom). Dept. of Engineering

    1996-05-01

    Focused ion beam micromatching (FIBM) and focused ion beam deposition (FIBD) enable spatially selective, maskless, patterning and processing of materials at extremely high levels of resolution. State-of-the-art focused ion beam (FIB) columns based on high brightness liquid metal ion source (LMIS) technology are capable of forming probes with dimensions of order 10 nm with a lower limit on spot size set by the inherent energy spread of the LMIS and the chromatic aberration of ion optical systems. The combination of high lateral and depth resolution make FIBM and FIBD powerful tools for nanotechnology applications. In this paper we present some methods of controlling FIBM and FIBD processes for nanofabrication purposes and discuss their limitations. (author).

  2. Continental-scale assessment of long-term trends in wet deposition trajectories: Role of anthropogenic and hydro-climatic drivers

    Science.gov (United States)

    Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.

    2012-12-01

    The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a

  3. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  4. Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia

    Science.gov (United States)

    Majzlan, Juraj; Berkh, Khulan; Kiefer, Stefan; Koděra, Peter; Fallick, Anthony E.; Chovan, Martin; Bakos, František; Biroň, Adrián; Ferenc, Štefan; Lexa, Jaroslav

    2018-02-01

    In this contribution, we report new data on mineralogy, alteration patterns, geochemistry, fluid properties and source of fluids for the deposit Nová Baňa, one of the smaller epithermal deposits in the Middle Miocene Štiavnica andesite stratovolcano (Western Carpathians, Slovakia). Ore veins and the associated rocks were studied in samples from outcrops and old mines, grab samples, and bore holes from the central part of the deposit (ore structures Althandel, Jozef, Jakub, Vavrinec), northern part (Freischurf), SE part (Gupňa) and SW part (Šibeničný vrch). Pervasive hydrothermal alteration transformed the rock-forming minerals into a mixture of adularia and fine-grained quartz, with lesser amount of pyrite, Ti oxides and Fe oxides. This assemblage was further altered to omnipresent interstratified illite/smectite that was used in this study as a geothermometer, corroborating the results from the fluid inclusion work. Ore minerals comprise predominantly pyrite, sphalerite, galena but all sulfides are relatively sparse in the samples studied. Minerals of precious metals are electrum, Ag-tetrahedrite, acanthite, members of the polybasite-pearceite and pyrargyrite-proustite solid solution, and rare miargyrite, Hg-Ag tetrahedrite, and diaphorite. In the central part, we have found also some stibnite. In the SE part of the deposit, acanthite, uytenbogaardtite, and petrovskaite occur and seem to be related to supergene enrichment of the ores. In bulk ore samples, Zn usually dominates over Pb and Cu. The average Ag:Au ratio for the entire deposit is 64:1. The concentrations of precious metals in the grab samples reach maxima of 50 ppm Au and 570 ppm Ag in the SE part and 116 ppm Au and 1110 ppm Ag in the central part of the deposit. Fluid inclusions show signs of trapping of a heterogeneous fluid. In the central, northern and SE parts of the deposit, homogenization temperatures of 190-260 °C and consistently low salinities of minerals is recalculated to fluid

  5. Measurement of energy deposition distributions produced in cylindrical geometry by irradiation with 15 MeV neutrons

    International Nuclear Information System (INIS)

    Brandan, M.E.

    1979-01-01

    Cellular survival experiments have shown that the biological damage induced by radiation depends on the density of energy deposition along the trajectory of the ionizing particle. The quantity L is defined to measure the density of energy transfer along a charged particle's trajectory. It is equal to sigma/l, where sigma is the energy transferred to a medium and l is the path length along which the transfer takes place. L is the stochastic quantity whose mean value is the unrestricted linear energy transfer, L/sub infinity/. Measurements of the distribution of L in a thin medium by secondary charged particles from fast neutron irradiation were undertaken. A counter operating under time coincidence between two coaxial cylindrical detectors was designed and built for this purpose. Secondary charged particles enter a gas proportional counter and deposit some energy sigma. Those particles traversing the chamber along a radial trajectory strike a CsI scintillator. A coincidence between both detectors' signals selects a known path length for these events, namely the radius of the cavity. Measurements of L distributions for l = 1 μm in tissue were obtained for 3 and 15 MeV neutron irradiation of a tissue-equivalent target wall and for 15 MeV neutron irradiation of a graphite wall. Photon events were corrected for by measurements with a Pb target wall and 15 MeV neutron irradiation as well as exposure to a pure photon field. The measured TE wall distributions with 15 MeV neutron bombardment show contributions from protons, α-particles, 9 Be and 12 C recoils. The last three comprise the L distribution for irradiation of the graphite wall. The proton component of the measured L distributions at 3 and 15 MeV was compared to calculated LET distributions

  6. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  7. Depositional characteristics of cretaceous cover in Xiangyangshan area of Heilongjiang province and analysis on prospect for sandstone hosted interlayer oxidation zone type uranium deposits

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Shengxiang; Dong Wenming

    2003-01-01

    The depositional systems and characteristics of Cretaceous Cover depositional facies are discussed. In combination with logging curves in Xiangyangshan area, two depositional systems (namely, alluvial fan depositional system and alluvial plain depositional system) and five types of depositional facies are distinguished. Results of detailed research are given for each depositional facies in aspects of lithology, depositional structure, logging curve and grain size distribution pattern. Temporal and spatial distribution features of the depositional facies and the development features of interlayer oxidation zones of the second member of Quantou Formation are analyzed. Finally, conclusions on prospects for sandstone-hosted interlayer oxidation zone type uranium deposits in the study area are given in the aspect of depositional facies. (authors)

  8. Intracavitary deposits on Essure® hysteroscopic sterilization devices: A case report.

    Science.gov (United States)

    Maassen, L W; van Gastel, D M; Lentjes, E G W M; Bongers, M Y; Veersema, S

    2017-07-01

    To study the composition of intracavitary deposits on Essure® hysteroscopic sterilization devices. Case report. Reproductive Medicine and Gynecology department of a University Hospital. A 39 years old patient presenting with a request for surgical removal of Essure® sterilization devices. Diagnostic hysteroscopy showed a crystal like white deposit attached to one of the devices. Diagnostic hysteroscopy and surgical removal of Essure® devices was performed. The deposits were collected and infrared spectroscopy analysis was performed. Chemical composition of the deposits attached to the device. Infrared spectroscopy of the material showed patterns conclusive with calcite (calcium carbonate, CaCO 3 ). Until now, it is not clear if there is a relationship between reported complaints and formation of calcite deposits on Essure®. Infrared spectroscopy of deposits on Essure® devices showed a pattern conclusive with calcite. The relationship between reported complaints and the formation of calcite deposits on Essure® remains unclear.

  9. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms

    Science.gov (United States)

    Rostoker, G.; Akasofu, S. I.; Baumjohann, W.; Kamide, Y.; Mcpherron, R. L.

    1987-01-01

    The contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in an unpredictable manner are considered. Two physical processes for the dispensation of the energy input from the solar wind are identified: (1) a driven process in which energy supplied from the solar wind is directly dissipated in the ionosphere; and (2) a loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere. The pattern of substorm development in response to changes in the interplanetary medium has been elucidated for a canonical isolated substorm.

  10. Ion-assisted deposition of thin films

    International Nuclear Information System (INIS)

    Barnett, S.A.; Choi, C.H.; Kaspi, R.; Millunchick, J.M.

    1993-01-01

    Recent work on low-energy ion-assisted deposition of epitaxial films is reviewed. Much of the recent interest in this area has been centered on the use of very low ion energies (∼ 25 eV) and high fluxes (> 1 ion per deposited atom) obtained using novel ion-assisted deposition techniques. These methods have been applied in ultra-high vacuum, allowing the preparation of high-purity device-quality semiconductor materials. The following ion-surface interaction effects during epitaxy are discussed: improvements in crystalline perfection during low temperature epitaxy, ion damage, improved homogeneity and properties in III-V alloys grown within miscibility gaps, and changes in nucleation mechanism during heteroepitaxial growth

  11. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    International Nuclear Information System (INIS)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli

    2016-01-01

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  12. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shanxi 710049 (China)

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  13. Long-term deposition patterns of airborne wastes in the North-East of Estonia

    International Nuclear Information System (INIS)

    Kaasik, M.; Kaasik, H.

    1999-01-01

    The deposition loads of fly ash and sulfur have been high in the North-East Estonia since the late fifties, when the oil shale energetics, chemical and cement industry achieved the remarkable extent. The combined effects of both pollutants have seriously damaged sensitive ecosystems (forest on podsolic soils and bog). Most of sulphur deposition is closely related to the oil shale fly ash deposition. The main effects are related with alkalisation due to accumulation of fly ash components and the Sphagnum growth inhibition due to sulfur load. These effects have the time scale of several years or even more. The pollution loads have been changed during recent 40 years due to launching and reconstruction of enterprises (incl. purification systems) and variations of production capacity. First representative data on air pollution deposition originate from the middle of eighties. Only model estimations could be used to quantify the deposition fluxes before that time, as well as for assessing the future scenarios

  14. Pattern interpolation in thin films of lamellar, symmetric copolymers on nano-patterned substrates

    Science.gov (United States)

    Detcheverry, Francois; Nagpal, Umang; Liu, Guoliang; Nealey, Paul; de Pablo, Juan

    2009-03-01

    A molecular model of block copolymer systems is used to conduct a systematic study of the morphologies that arise when thin films of symmetric, lamellar forming block copolymer materials are deposited on nanopatterned surfaces. Over 500 distinct cases are considered. It is found that, in general, three distinct morphologies can arise depending on the strength of the substrate-polymer interactions, the film thickness, and the period of the substrate pattern. The relative stability of those morphologies is determined by direct calculation of the free energy differences. The dynamic propensity of those morphologies to emerge is examined by careful analysis of simulated trajectories. The results of this systematic study are used to interpret recent experimental data for films of polystyrene-PMMA copolymers on chemically nanopatterned surfaces.

  15. Effects of deposition period on the chemical bath deposited Cu4SnS4 thin films

    International Nuclear Information System (INIS)

    Kassim, Anuar; Wee Tee, Tan; Soon Min, Ho.; Nagalingam, Saravanan

    2010-01-01

    Cu 4 SnS 4 thin films were prepared by simple chemical bath deposition technique. The influence of deposition period on the structural, morphological and optical properties of films was studied. The films were characterized using X-ray diffraction, atomic force microscopy and UV-Vis Spectrophotometer. X-ray diffraction patterns indicated that the films were polycrystalline with prominent peak attributed to (221) plane of orthorhombic crystal structure. The films prepared at 80 min showed significant increased in the intensity of all diffractions. According to AFM images, these films indicated that the surface of substrate was covered completely. The obtained films also produced higher absorption characteristics when compared to the films prepared at other deposition periods based on optical absorption studies. The band gap values of films deposited at different deposition periods were in the range of 1.6-2.1 eV. Deposition for 80 min was found to be the optimum condition to produce good quality thin films under the current conditions. (author).

  16. Sediment problems in reservoirs. Control of sediment deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Tom

    1997-12-31

    When a reservoir is formed on a river, sediment will deposit in the reservoir. Such processes are unfortunate, for instance, for the implementation of hydroelectric energy. This thesis studies the problem of reservoir sedimentation and discusses methods of removing the sediments. Various aspects of reservoir sedimentation are discussed. Anthropogenic impacts seem to greatly affect the erosion processes. Temporal distribution is uneven, mainly because of the very large flood events. A world map showing the Reservoir Capacity: Annual Sediment Inflow ratio for reservoirs with volume equal to 10% of annual inflow has been prepared. The map shows that sedimentation is severe in the western parts of North and South America, eastern, southern and northern Africa, parts of Australia and most of Asia. The development of medium-sized reservoirs is difficult, as they are too large for conventional flushing technique and too small to store the sediment that accumulates during their economic lifetime. A computer model, SSIIM, was used with good results in a case study of two flood drawdown trials in Lake Roxburg, New Zealand. Two techniques have been developed that permits controlled suction of sediment and water into a pipe: the Slotted Pipe Sediment Sluicer (SPSS) and the Saxophone Sediment Sluicer (SSS). The techniques exploit the inflow pattern in through a slot in a pipe. An equation describing this inflow pattern was derived and verified experimentally. The SPSS is fixed near the reservoir bed, and sediment that deposits on top of it is removed in the sluicing process. The SSS sluices sediment from the surface of the sediment deposits. Some technical and economic conditions affecting the economics of sediment removal from reservoirs have been identified and studied. 79 refs., 112 figs., 14 tabs.

  17. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    Science.gov (United States)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  18. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    Science.gov (United States)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  19. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  20. Industrial energy utilization patterns in a developing country: a case study of selected industries in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Wolde-Ghiorgis, W. (Addis Ababa Univ. (Ethiopia))

    1991-01-01

    Energy utilization patterns in three factories involved in cement production, textile manufacturing, and food processing in Ethiopia are discussed. The study uses data of energy consumption and products to obtain specific energy consumption figures for two of the factories. Results show areas of apparent energy losses and corresponding conservation possibilities. (author).

  1. Direct formation of thin films and epitaxial overlayers at low temperatures using a low-energy (10-500 eV) ion beam deposition system

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Alton, G.D.; Appleton, B.R.; Herbots, N.; Noggle, T.S.; Pennycook, S.J.

    1987-01-01

    A low-energy ion beam deposition system has been developed at Oak Ridge National Laboratory and has been applied successfully to the growth of epitaxial films at low temperatures for a number of different elements. The deposition system utilizes the ion source and optics of a commercial ion implantation accelerator. The 35 keV mass- and energy-analyzed ion beam from the accelerator is decelerated in a four-element electrostatic lens assembly to energies between 10 and 500 eV for direct deposition onto a target under UHV conditions. Current densities on the order of 10 μA/cm 2 are achieved with good uniformity over a 1.4 cm diameter spot. The completed films are characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning have been studied. Epitaxial overlayers which show good minimum yields by ion channeling (3 to 4%) have been produced at temperatures as low as 375 0 C for Si on Si(100) and 250 0 C for Ge on Ge(100) at growth rates that exceed the solid-phase epitaxy rates at these temperatures by more than an order of magnitude

  2. Sediment-hosted contaminants and distribution patterns in the Mississippi and Atchafalaya River Deltas

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack G.; Ferina, Nicholas; Dreher, Chandra

    2002-01-01

    The Mississippi and Atchafalaya Rivers transport very large amounts of bedload and suspended sediments to the deltaic and coastal environments of the northern Gulf of Mexico. Absorbed onto these sediments are contaminants that may be detrimental to the environment. To adequately assess the impact of these contaminants it is first necessary to develop an understanding of sediment distribution patterns in these deltaic systems. The distribution patterns are defined by deltaic progradational cycles. Once these patterns are identified, the natural and industrial contaminant inventories and their depositional histories can be reconstructed. Delta progradation is a function of sediment discharge, as well as channel and receiving-basin dimensions. Fluvial energy controls the sediment distribution pattern, resulting in a coarse grained or sandy framework, infilled with finer grained material occupying the overbank, interdistributary bays, wetlands and abandoned channels. It has been shown that these fine-grained sediments can carry contaminants through absorption and intern them in the sediment column or redistribute them depending on progradation or degradation of the delta deposit. Sediment distribution patterns in delta complexes can be determined through high-resolution geophysical surveys and groundtruthed with direct sampling. In the Atchafalaya and Mississippi deltas, remote sensing using High-Resolution Single-Channel Seismic Profiling (HRSP) and Sidescan Sonar was correlated to 20-ft vibracores to develop a near-surface geologic framework that identifies variability in recent sediment distribution patterns. The surveys identified bedload sand waves, abandoned-channel back-fill, prodelta and distributary mouth bars within the most recently active portions of the deltas. These depositional features respond to changes in deltaic processes and through their response may intern or transport absorbed contaminants. Characterizing these features provides insight into the

  3. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  4. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  5. Patterns of daily energy management at work: relations to employee well-being and job characteristics.

    Science.gov (United States)

    Kinnunen, Ulla; Feldt, Taru; de Bloom, Jessica; Korpela, Kalevi

    2015-11-01

    The present study aimed at identifying subgroups of employees with similar daily energy management strategies at work and finding out whether well-being indicators and job characteristics differ between these subgroups. The study was conducted by electronic questionnaire among 1122 Finnish employees. First, subgroups of employees with unique and distinctive patterns of energy management strategies were identified using latent profile analysis. Second, differences in well-being indicators and job characteristics between the subgroups were investigated by means of ANCOVA. Four subgroups (i.e., patterns) were identified and named: Passives (n = 371), Averages (n = 390), Casuals (n = 272) and Actives (n = 89). Passives used all three (i.e., work-related, private micro-break and physical micro-break) strategies less frequently than other subgroups, whereas Actives used work-related and physical energy management strategies more frequently than other subgroups. Averages used all strategies on an average level. Casuals' use of all strategies came close to that of Actives, notably in a shared low use of private micro-break strategies. Active and Casual patterns maintained vigor and vitality. Autonomy and social support at work played a significant role in providing opportunities for the use of beneficial energy management strategies. Autonomy and support at work seem to support active and casual use of daily energy management, which is important in staying energized throughout the working day.

  6. Energy consumption and conservation patterns in Canadian households. Summary report. Habitudes de consommation et de conservation de l'energie dans les foyers Canadiens. Resume

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G H.G.; Ritchie, J R.B.; Claxton, J D

    1978-01-01

    To examine the consumer behavior sector of energy demand patterns in Canada, this report undertook to identify major groupings of households based on energy consumption profiles and energy values, to relate these groupings to situational and demographic factors, and to initiate a comparative analysis of the receptivity of the major groupings to alternative energy conservation policy proposals. Data were collected from household surveys and energy suppliers. Householders were asked about their attitudes to energy conservation and energy policy, and profiles of energy consumption patterns of typical households were identified. To aid in evaluating the research, households were classified according to their levels of in-home energy consumption and automobile gasoline consumption. The findings indicated a range of lifestyles highly interrelated in terms of levels of energy consumption, ownership of energy-consuming products, knowledge and concern for energy issues, willingness to cut back energy consumption, and preferences for alternative conservation policies. The study has shown that most consumers are not very aware of the energy problem, do not see conservation as a serious need, and are unlikely to accept major policy interventions that result in major changes in energy supplies and current lifestyles. A number of recommendations are made as to policies, and their possible impact, to conserve household energy. 8 refs. 11 tabs.

  7. Depositional History of the Western Amundsen Basin, Arctic Ocean, and Implications for Neogene Climate and Oceanographic Conditions

    Science.gov (United States)

    Hopper, J. R.; Castro, C. F.; Knutz, P. C.; Funck, T.

    2017-12-01

    Seismic reflection data collected in the western Amundsen Basin as part of the Law of the Sea program for the Kingdom of Denmark show a uniform and continuous cover of sediments over oceanic basement. An interpretation of seismic facies units shows that the depositional history of the basin reflects changing tectonic, climatic, and oceanographic conditions throughout the Cenozoic. In this contribution, the Miocene to present history is summarized. Two distinct changes in the depositional environment are proposed, first in response to the development of a deep water connection between the Arctic and North Atlantic, and the second in response to the onset of perennial sea ice cover in the Arctic. In the early to mid-Miocene, a buildup of contourite deposits indicates a distinct change in sedimentation that is particularly well developed near the flank of the Lomonosov Ridge. It is suggested that this is a response to the opening of the Fram Strait and the establishment of geostrophic bottom currents that flowed from the Laptev Sea towards Greenland. These deposits are overlain by a seismic facies unit characterized by buried channels and erosional features. These include prominent basinward levee systems that suggest a channel morphology maintained by overbank deposition of muddy sediments carried by suspension currents periodically spilling over the channel pathway. These deposits indicate a change to a much higher energy environment that is proposed to be a response to brine formation associated with the onset of perennial sea ice cover in the Arctic Ocean. This interpretation implies that the development of extensive sea ice cover results in a significant change in the energy environment of the ocean that is reflected in the depositional and erosional patterns observed. The lack of similar high energy erosional features and the presence of contourite deposits throughout most of the Miocene may indicate the Arctic Ocean was relatively ice-free until the very latest

  8. Reconstruction and analysis of 137Cs fallout deposition patterns in the Marshall Islands.

    Science.gov (United States)

    Whitcomb, Robert C

    2002-03-01

    Estimates of 137Cs deposition caused by fallout originating from nuclear weapons testing in the Marshall Islands have been estimated for several locations in the Marshall Islands. These retrospective estimates are based primarily on historical exposure rate and gummed film measurements. The methods used to reconstruct these deposition estimates are similar to those used in the National Cancer Institute study for reconstructing 131I deposition from the Nevada Test Site. Reconstructed cumulative deposition estimates are validated against contemporary measurements of 137Cs concentration in soil with account taken for estimated global fallout contributions. These validations show that the overall geometric bias in predicted-to-observed (P:O) ratios is 1.0 (indicating excellent agreement). The 5th to 95th percentile range of this distribution is 0.35-2.95. The P:O ratios for estimates using historical gummed film measurements tend to slightly overpredict more than estimates using exposure rate measurements. The deposition estimate methods, supported by the agreement between estimates and measurements, suggest that these methods can be used with confidence for other weapons testing fallout radionuclides.

  9. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  10. Measurement of simulated lung deposition of radon daughters

    International Nuclear Information System (INIS)

    Jonassen, N.; Jensen, B.

    1992-01-01

    A measurement system for the lung deposition of radon daughters based on respiratory models was suggested by Hopke et al. By choosing suitable mesh size and flow velocities it is possible to design a multiple-wire screen sampler simulating deposition in the respiratory tract of aerosols over the size range 0.5-1000 nm. This paper describes a preliminary investigation where simulated deposition in the nasal tract and in the bronchii (for mouth breathing as well as nasal breathing) is determined. The measurements were performed in atmospheres where the normalised exposure rate (equilibrium factor) was varied by changing the aerosol loading of the air as well as by enhanced electrostatic plateout. The general results of the measurements are that the energy deposited in the nose with nasal breathing and in the bronchii with mouth breathing varies as the calculated dose while the energy deposited in the bronchii with nasal breathing follows the exposure. It is also demonstrated that the energy deposited for a fixed value of the radon concentration may vary by a factor of 2-7 depending on the treatment of the air. (author)

  11. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    International Nuclear Information System (INIS)

    Lancastre, Joana J.H.; Falcão, António N.; Margaça, Fernanda M.A.; Ferreira, Luís M.; Miranda Salvado, Isabel M.; Almásy, László; Casimiro, Maria H.; Meiszterics, Anikó

    2015-01-01

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  13. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  14. Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy

    Energy Technology Data Exchange (ETDEWEB)

    Lancastre, Joana J.H., E-mail: jlancastre@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Falcão, António N. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Margaça, Fernanda M.A., E-mail: fmargaca@ctn.ist.utl.pt [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Ferreira, Luís M. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela, LRS (Portugal); Miranda Salvado, Isabel M. [CICECO & Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Almásy, László [Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, PO Box 49, 1525 Budapest (Hungary); Casimiro, Maria H. [REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Meiszterics, Anikó [Gedeon Richter Ltd., PO Box 27, H-1475 Budapest (Hungary)

    2015-10-15

    Highlights: • Hybrid materials were prepared by direct energy deposition. • The influence of the catalyst content (PrZr) was investigated. • The developed oxide network was found to be strongly dependent on the PrZr content. • A model is proposed for the development of the oxide network in these materials. - Abstract: Organic–inorganic materials have been the object of intense research due to their wide range of properties and therefore innumerous applications. We prepared organic–inorganic hybrid materials by direct energy deposition on a mixture of polydimethylsiloxane silanol terminated (33 wt% fixed content), tetraethylorthosilicate and a minor content of zirconium propoxide that varied from 1 to 5 wt% using gamma radiation from a Co-60 source. The samples, dried in air at room temperature, are bulk, flexible and transparent. Their nanostructure was investigated by small angle neutron scattering. It was found that the inorganic oxide network has fractal structure, which becomes denser as the zirconium propoxide content decreases. The results suggest that oxide nanosized regions grow from the OH terminal group of PDMS which are the condensation seeds. Their number and position remains unaltered with the variation of zirconium propoxide content that only affects their microstructure. A model is proposed for the nanostructure of the oxide network that develops in the irradiation processed hybrid materials.

  15. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  16. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  17. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2002-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that, in pp collisions, the minijet-transverse-energy production in a central rapidity window is essentially unbalanced in azimuth because of asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse-energy flow generated by semihard degrees of freedom at the early stage of high-energy nuclear collisions and its dependence on the number of semihard collisions in the models either including or neglecting soft contributions to the inelastic cross section at RHIC and LHC energies, as well as on the choice of infrared cutoff

  18. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2000-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that in pp collisions the minijet transverse energy production in a central rapidity window is essentially unbalanced in the azimuth due to asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse energy flow generated by the semihard degrees of freedom at the early stage of high energy nuclear collisions and its dependence on the number of semihard collisions in the models both including and neglecting soft contributions to the inelastic cross section at RHIC and LHC energies as well as on the choice of the infrared cutoff. (orig.)

  19. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts

    International Nuclear Information System (INIS)

    Fonseca, Jimeno A.; Schlueter, Arno

    2015-01-01

    Highlights: • A model to describe spatiotemporal building energy demand patterns was developed. • The model integrates existing methods in urban and energy planning domains. • The model is useful to analyze energy efficiency strategies in neighborhoods. • Applicability in educational, urban and energy planning practices was found. - Abstract: We introduce an integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. The model addresses the need for a comprehensive method to identify present and potential states of building energy consumption in the context of urban transformation. The focus lies on determining the spatiotemporal variability of energy services in both standing and future buildings in the residential, commercial and industrial sectors. This detailed characterization facilitates the assessment of potential energy efficiency measures at the neighborhood and city district scales. In a novel approach we integrated existing methods in urban and energy planning domains such as spatial analysis, dynamic building energy modeling and energy mapping to provide a comprehensive, multi-scale and multi-dimensional model of analysis. The model is part of a geographic information system (GIS), which serves as a platform for the allocation and future dissemination of spatiotemporal data. The model is validated against measured data and a peer model for a city district in Switzerland. In this context, we present practical applications in the analysis of energy efficiency measures in buildings and urban zoning. We furthermore discuss potential applications in educational, urban and energy planning practices

  20. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    Directory of Open Access Journals (Sweden)

    Keith M Godfrey

    Full Text Available Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001 and at age 4 years (r = 0.16, P = 0.02. In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02. This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04. We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  1. On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films

    International Nuclear Information System (INIS)

    Krishnan, B.; Arato, A.; Cardenas, E.; Roy, T.K. Das; Castillo, G.A.

    2008-01-01

    In the present paper, we have reported the room temperature growth of antimony sulphide (Sb 2 S 3 ) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 at 27 deg. C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb 2 S 3 films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb 2 S 3 first converts into orthorhombic form and then further heating results in the formation of Sb 2 O 3 crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively

  2. Patterns in coupled water and energy cycle: Modeling, synthesis with observations, and assessing the subsurface-landsurface interactions

    Science.gov (United States)

    Rahman, A.; Kollet, S. J.; Sulis, M.

    2013-12-01

    In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics

  3. Energy Deposition Studies for the LHC Insertion Region Upgrade Phase-I

    CERN Document Server

    Cerutti, F; Ferrari, A; Mereghetti, A; Wildner, E

    2010-01-01

    While the Large Hadron Collider (LHC) at CERN is starting operation with beam, aiming to achieve nominal performance in the shortest term, the upgrade of the LHC interaction regions is actively pursued in order to enhance the physics reach of the machine. Its first phase, with the target of increasing the LHC luminosity to 2-3 1034cm-2s-1, relies on the mature Nb-Ti superconducting magnet technology and is intended to maximize the use of the existing infrastructure. The impact of the increased power of the collision debris has been investigated through detailed energy deposition studies, considering the new aperture requirements for the low-ß quadrupoles and a number of other elements in the insertions. Effective solutions in terms of shielding options and design/layout optimization have been envisaged and the crucial factors have been pointed out.

  4. Household energy consumption patterns and its environmental implications: Assessment of energy access and poverty in Nepal

    International Nuclear Information System (INIS)

    Malla, Sunil

    2013-01-01

    Approximately 87% of Nepal's total final energy is consumed by households. This paper analyzes the patterns of household energy use and associated air pollutant emissions in Nepal based on LEAP framework for thirteen analytical regions and three end-uses. Four scenarios involving different growth paths for socio economic and energy system development through the year 2040 are considered. The study finds that household energy use is heterogeneous across the regions and biomass for cooking dominates the country's energy-mix. Households' CO 2 emissions are less significant but their local indoor pollutant emissions will continue to rise in the future. To help strengthen government's commitment to the UN's sustainable energy for all initiative, this study devises an energy development index (EDI) to assess country's energy access and poverty across the regions. The results reveal that the current level of both energy access and energy poverty in the country is below the basic human needs and this situation will improve by little in next 30 years. The paper argues that to improve these situations require more coordinated and innovative plans and policies from the government. The paper suggests that greater emphasis will be needed in reducing dependence of biomass for cooking, promoting domestic alternative energy sources, scaling up biomass improved cookstoves programs and developing periodic regional level energy database. - Highlights: • Household energy use and air pollutant emissions in Nepal are analyzed based on LEAP framework. • Household energy use is heterogeneous across the regions and biomass for cooking dominates country's energy-mix. • Energy Development Index is devised to assess country's energy access and poverty across the regions. • Scaling up RETs and biomass ICS programs are suggested. • Coordination with inter-agencies and ODAs is vital in alleviating energy poverty in Nepal

  5. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  6. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    International Nuclear Information System (INIS)

    Wook Jung, Min; Myung, Sung; Woong Kim, Ki; Song, Wooseok; Suk Lee, Sun; Lim, Jongsun; An, Ki-Seok; Jo, You-Young; Park, Chong-Yun

    2014-01-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  7. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    Science.gov (United States)

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  8. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  9. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish

    Science.gov (United States)

    Hoey, J.; McCormick, M. I.; Hoey, A. S.

    2007-09-01

    The effect of depth on the distribution and sex-specific energy allocation patterns of a common coral reef fish, Chrysiptera rollandi (Pomacentridae), was investigated using depth-stratified collections over a broad depth range (5-39 m) and a translocation experiment. C. rollandi consistently selected rubble habitats at each depth, however abundance patterns did not reflect the availability of the preferred microhabitat suggesting a preference for depth as well as microhabitat. Reproductive investment (gonado-somatic index), energy stores (liver cell density and hepatocyte vacuolation), and overall body condition (hepato-somatic index and Fulton’s K) of female fish varied significantly among depths and among the three reefs sampled. Male conspecifics displayed no variation between depth or reef. Depth influenced growth dynamics, with faster initial growth rates and smaller mean asymptotic lengths with decreasing depth. In female fish, relative gonad weight and overall body condition (Fulton’s K and hepato-somatic index) were generally higher in shallower depths (≤10 m). Hepatic lipid storage was highest at the deepest sites sampled on each reef, whereas hepatic glycogen stores tended to decrease with depth. Depth was found to influence energy allocation dynamics in C. rollandi. While it is unclear what processes directly influenced the depth-related patterns in energy allocation, this study shows that individuals across a broad depth gradient are not all in the same physiological state and may contribute differentially to the population reproductive output.

  10. Simple phalanx pattern leads to energy saving in cohesive fish schooling.

    Science.gov (United States)

    Ashraf, Intesaaf; Bradshaw, Hanaé; Ha, Thanh-Tung; Halloy, José; Godoy-Diana, Ramiro; Thiria, Benjamin

    2017-09-05

    The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. In this study, we use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri , which is known to swim in highly cohesive groups, to analyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, and stereoscopic video recordings are used to track the 3D positions of each individual in a school, as well as their tail-beating kinematics. Challenging the widespread idea of fish favoring a diamond pattern to swim more efficiently [Weihs D (1973) Nature 241:290-291], we observe that when fish are forced to swim fast-well above their free-swimming typical velocity, and hence in a situation where efficient swimming would be favored-the most frequent configuration is the "phalanx" or "soldier" formation, with all individuals swimming side by side. We explain this observation by considering the advantages of tail-beating synchronization between neighbors, which we have also characterized. Most importantly, we show that schooling is advantageous as compared with swimming alone from an energy-efficiency perspective.

  11. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  12. Intracavitary deposits on Essure® hysteroscopic sterilization devices: A case report

    Directory of Open Access Journals (Sweden)

    L.W. Maassen

    2017-07-01

    Capsule: Infrared spectroscopy of deposits on Essure® devices showed a pattern conclusive with calcite. The relationship between reported complaints and the formation of calcite deposits on Essure® remains unclear.

  13. Pattern of callose deposition during the course of meiotic diplospory in Chondrilla juncea (Asteraceae, Cichorioideae).

    Science.gov (United States)

    Musiał, Krystyna; Kościńska-Pająk, Maria

    2017-07-01

    Total absence of callose in the ovules of diplosporous species has been previously suggested. This paper is the first description of callose events in the ovules of Chondrilla juncea, which exhibits meiotic diplospory of the Taraxacum type. We found the presence of callose in the megasporocyte wall and stated that the pattern of callose deposition is dynamically changing during megasporogenesis. At the premeiotic stage, no callose was observed in the ovules. Callose appeared at the micropylar pole of the cell entering prophase of the first meioticdivision restitution but did not surround the megasporocyte. After the formation of a restitution nucleus, a conspicuous callose micropylar cap and dispersed deposits of callose were detected in the megasporocyte wall. During the formation of a diplodyad, the micropylar callose cap decreased and the walls of a newly formed megaspores showed scattered distribution of callose. Within the older diplodyad, callose was mainly accumulated in the wall between megaspores, as well as in the wall of the micropylar cell; however, a dotted fluorescence of callose was also visible in the wall of the chalazal megaspore. Gradual degradation of callose in the wall of the chalazal cell and intense callose accumulation in the wall of the micropylar cell were related to the selection of the functional megaspore. Thus, our findings may suggest that callose fulfills a similar role both during megasporogenesis in sexual angiosperms and in the course of meiotic diplospory in apomicts and seems to form a regulatory interface between reproductive and somatic cells.

  14. Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Halbleib, J.A.

    1983-01-01

    Over the past several years the TIGER series of coupled electron/photon Monte Carlo transport codes has been applied to a variety of problems involving nuclear and space radiations, electron accelerators, and radioactive sources. In particular, they have been used at Sandia to simulate the interaction of electron beams, generated by pulsed-power accelerators, with various target materials for weapons effect simulation, and electron beam fusion. These codes are based on the ETRAN system which was developed for an energy range from about 10 keV up to a few tens of MeV. In this paper we will discuss the modifications that were made to the TIGER series of codes in order to extend their applicability to energies of interest to the high energy physics community (up to 1 GeV). We report the results of a series of benchmark calculations of the energy deposition by high energy electron beams in various materials using the modified codes. These results are then compared with the published results of various experimental measurements and other computational models

  15. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  16. Effect of uncertainty in nasal airway deposition of radioactive particles on effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R.A.; Birchall, A.; Jarvis, N.S

    1998-07-01

    In the current ICRP human respiratory tract (RT) model (ICRP Publication 66), the deposition of particles in various regions of the RT during natural breathing is modelled by considering the RT as a series of filters, resulting in deposition probabilities for distal portions of the RT being dependent on those of the proximal segments. Thus, uncertainties in regional deposition in proximal segments of the RT are reflected or propagated in uncertainties in deposition in the distal segments of the lung. Experimental data on aerosol particle deposition have demonstrated significant variability in nasal airway (NA) deposition for different individuals studied. This report summarises the impact of introducing variability in NA deposition efficiency on the calculation of effective doses using the ICRP 66 model for selected radionuclides. The computer software LUDEP, modified for this purpose, was used to customise deposition patterns, and effective doses were calculated for several radionuclides ({sup 111}In, {sup 106}Ru, {sup 60}Co, {sup 210}Po, {sup 238}U and {sup 239}Pu) chosen to represent isotopes with various decay schemes and half-lives. The results indicated significant but particle-size-specific effects of assumed NA deposition efficiencies on the calculated effective doses, which varied typically by factors of five to six. The majority of the variability was associated with direct effects on deposition patterns, but in some cases, alterations of radiation dose distribution within the various target organs also contributed to the variability. These results provide a basis for evaluating uncertainties due to inter-individual differences in deposition patterns for radiation protection and risk analysis. (author)

  17. Creating a database for evaluating the distribution of energy deposited at prostate using simulation in phantom with the Monte Carlo code EGSnrc

    International Nuclear Information System (INIS)

    Resende Filho, T.A.; Vieira, I.F.; Leal Neto, V.

    2009-01-01

    An exposition computational model (ECM) composed of a water tank phantom, a punctual and mono energetic source, emitter of photons, coupled to a Monte Carlo code to simulation the interaction and deposition of energy emitted by I-125, is a tool that presents many advantages to realize dosimetric evaluations in many areas as planning of a brachytherapy treatments. Using the DOSXYZnrc, was possible to construct a data bank allowing the final user estimates previously the space distribution of the prostate dose, being an important tool at the brachytherapy procedure. The results obtained show the fractional energy deposited into the water phantom evaluated on the energies 0.028 MeV and 0.035 MeV both indicated to this procedure, as well the dose distribution at the range between 0.10334 and 0.53156 μGy. The medium error is less than 2%, limited tolerance value considered at radiotherapy protocols. (author)

  18. Pattern recognition applied to uranium prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, P L; Press, F [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences

    1977-07-14

    It is stated that pattern recognition techniques provide one way of combining quantitative and descriptive geological data for mineral prospecting. A quantified decision process using computer-selected patterns of geological data has the potential for selecting areas with undiscovered deposits of uranium or other minerals. When a natural resource is mined more rapidly than it is discovered, its continued production becomes increasingly difficult, and it has been noted that, although a considerable uranium reserve may remain in the U.S.A., the discovery rate for uranium is decreasing exponentially with cumulative exploration footage drilled. Pattern recognition methods of organising geological information for prospecting may provide new predictive power, as well as insight into the occurrence of uranium ore deposits. Often the task of prospecting consists of three stages of information processing: (1) collection of data on known ore deposits; (2) noting any regularities common to the known examples of an ore; (3) selection of new exploration targets based on the results of the second stage. A logical pattern recognition algorithm is here described that implements this geological procedure to demonstrate the possibility of building a quantified uranium prospecting guide from diverse geologic data.

  19. Energy consumption and conservation patterns in Canadian households. Summary report. Habitudes de consommation et de conservation de l'energie dans les foyers Canadiens. Resume

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G.H.G.; Ritchie, J.R.B.; Claxton, J.D.

    1978-01-01

    To examine the consumer behavior sector of energy demand patterns in Canada, this report undertook to identify major groupings of households based on energy consumption profiles and energy values, to relate these groupings to situational and demographic factors, and to initiate a comparative analysis of the receptivity of the major groupings to alternative energy conservation policy proposals. Data were collected from household surveys and energy suppliers. Householders were asked about their attitudes to energy conservation and energy policy, and profiles of energy consumption patterns of typical households were identified. To aid in evaluating the research, households were classified according to their levels of in-home energy consumption and automobile gasoline consumption. The findings indicated a range of lifestyles highly interrelated in terms of levels of energy consumption, ownership of energy-consuming products, knowledge and concern for energy issues, willingness to cut back energy consumption, and preferences for alternative conservation policies. The study has shown that most consumers are not very aware of the energy problem, do not see conservation as a serious need, and are unlikely to accept major policy interventions that result in major changes in energy supplies and current lifestyles. A number of recommendations are made as to policies, and their possible impact, to conserve household energy. 8 refs. 11 tabs.

  20. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  1. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  2. The Energy Saving Potential of Occupancy-Based Lighting Control Strategies in Open-Plan Offices: The Influence of Occupancy Patterns

    Directory of Open Access Journals (Sweden)

    Christel de Bakker

    2017-12-01

    Full Text Available Occupancy-based lighting control strategies have been proven to be effective in diminishing offices’ energy consumption. These strategies have typically worked by controlling lighting at the room level but, recently, lighting systems have begun to be equipped with sensors on a more fine-grained level, enabling lighting control at the desk level. For some office cases, however, the savings gained using this strategy may not outweigh the costs and design efforts compared to room control. This is because, in some offices, individual occupancy patterns are similar, hence the difference in savings between desk and room control would be minimal. This study examined the influence of occupancy pattern variance within an office space on the relative energy savings of control strategies with different control zone sizes. We applied stochastic modeling to estimate the occupancy patterns, as this method can account for uncertainty. To validate our model, simulation results were compared to earlier studies and real measurements, which demonstrated that our simulations provided realistic occupancy patterns. Next, office cases varying in both job-function type distribution and office policy were investigated on energy savings potential to determine the influence of occupancy pattern variance. The relative energy savings potential of the different control strategies differed minimally for the test cases, suggesting that variations in individual occupancy patterns negligibly influence energy savings. In all cases, lighting control at the desk level showed a significantly higher energy savings potential than strategies with lower control zone granularity, suggesting that it is useful to implement occupancy-based lighting at the desk level in all office cases. This strategy should, thus, receive more attention from both researchers and lighting designers.

  3. Effect of the ions energy in the physical properties of thin films of CNx deposited by laser ablation

    International Nuclear Information System (INIS)

    Arrieta C, A.; Escobar A, L.; Camps C, E.; Romero H, S.; Mejia H, J.A.; Gonzalez, P.R.; Camacho L, M.A.

    2004-01-01

    Thin films of carbon nitride were deposited using the laser ablation technique starting from a carbon target in atmosphere of N 2 , varying the fluence of the laser and maintaining fixed the distance target-substrate. It was diagnosed the formed plasma, being determined the average kinetic energy of the ions present in the plasma, as well as their density. The characterization of the deposited films includes composition, optical gap, chemical structure and microstructure. They were related the properties of the layers with the plasma parameters with the purpose of clarifying that paper plays in the growth of the layer. Additionally it was studied their thermoluminescent response to being excited with UV radiation. (Author)

  4. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn–W deposit, Germany

    OpenAIRE

    T. Monecke; Peter Dulski; U. Kempe

    2007-01-01

    The chondrite-normalized rare earth element (REE) patterns of whole rock samples from evolved granitic systems hosting rare metal deposits sometimes show a split into four consecutive curved segments, referred to as tetrads. In the present contribution, a rigorous statistical method is proposed that can be used to test whether geological significance should be attributed to tetrads that are only of limited size. The method involves a detailed evaluation of element and sample specific random a...

  5. Evaluation of Uranium depositional system in sedimentary rocks of Sibolga formation, Tapanuli Tengah

    International Nuclear Information System (INIS)

    I Gde Sukadana; Heri Syaeful

    2016-01-01

    Uranium in nature formed in various deposit type, depends on its sources, process, and depositional environments. Uranium occurrence in Sibolga, hosted in sedimentary rocks of Sibolga Formation, is properly potential to develop; nevertheless, the depositional pattern and uranium mineralization process so far had not been recognized. The research aim is to determine the rock distribution patterns and the existence of uranium grade anomalies based on surface geology and borehole log data. Mineralization occurrences from borehole log data distributed from basalt conglomerate unit (Kgl 1), sandstone 1 unit (Bp 1), conglomerate 2 unit (Kgl 2), and sandstone 2 unit (Bp 2) with their distribution and thickness are thinning to the top. Mineralization distribution in the eastern area, mainly on Kgl 1 unit, dominated by detritus materials from epi-genetic depositional in the form of monazite which is formed along with the formation of granite as its source rock. Meanwhile, mineralization on the upper rocks units formed a channel pattern trending northeast-southwest, which formed in syn-genetic process consist of uraninite, carnotite, and coffinite. Sibolga Formation deposition originated from east to west and uranium deposit formed because of the differences of depositional environment from oxidation in the east to the more reductive in the southwest. The increasing of organic materials in southwest basin caused the reduction condition of depositional environment. (author)

  6. Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition

    Science.gov (United States)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-04-01

    With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD)