WorldWideScience

Sample records for energy demand levels

  1. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Science.gov (United States)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  2. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, Tilman, E-mail: tilman@santarius.de [Visiting Scholar, Institute of European Studies and Energy and Resources Group, University of California, Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  3. Creating hourly distributions at national level for various energy demands and renewable energy supplies

    DEFF Research Database (Denmark)

    Connolly, David; Drysdale, Dave; Hansen, Kenneth

    2015-01-01

    being recorded over longer time horizons, for example over one day. In this paper, a methodology is presented for creating hourly distributions for energy systems analysis tools. On the demand side, hourly distributions are developed for electricity, heating, cooling, and transport while the supply side...... includes wind, solar (photovoltaic and thermal), and wave power. Distributions are not created for dispatchable plants, such as coal, gas, and nuclear thermal plants, since their output is usually determined by the energy modelling tool rather than by a dependent resource. The methodologies are purposely...

  4. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    Science.gov (United States)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    any specified level were estimated by three several method including the strain energy in which is the areas of hysteresis loops, the arias intensity and the kinetic energy computed from the acceleration time histories at its corresponding level. Finally, the dependency of the demand energy to the soil and seismological parameters was shown by means of several diagrams.

  5. Demand Response Technology Readiness Levels for Energy Management in Blocks of Buildings

    Directory of Open Access Journals (Sweden)

    Tracey Crosbie

    2018-01-01

    Full Text Available Fossil fuels deliver most of the flexibility in contemporary electricity systems. The pressing need to reduce CO2 emissions requires new methods to provide this flexibility. Demand response (DR offers consumers a significant role in the delivery of flexibility by reducing or shifting their electricity usage during periods of stress or constraint. Blocks of buildings offer more flexibility in the timing and use of energy than single buildings, however, and a lack of relevant scalable ICT tools hampers DR in blocks of buildings. To ameliorate this problem, a current innovation project called “Demand Response in Blocks of Buildings” (DR-BoB: www.dr-bob.eu has integrated existing technologies into a scalable cloud-based solution for DR in blocks of buildings. The degree to which the DR-BoB energy management solution can increase the ability of any given site to participate in DR is dependent upon its current energy systems, i.e., the energy metering, the telemetry and control technologies in building management systems, and the existence/capacity of local power generation and storage plants. To encourage the owners and managers of blocks of buildings to participate in DR, a method of assessing and validating the technological readiness to participate in DR energy management solutions at any given site is required. This paper describes the DR-BoB energy management solution and outlines what we have called the demand response technology readiness levels (DRTRLs for the implementation of such a solution in blocks of buildings.

  6. On energy demand

    International Nuclear Information System (INIS)

    Haefele, W.

    1977-01-01

    Since the energy crisis, a number of energy plans have been proposed, and almost all of these envisage some kind of energy demand adaptations or conservation measures, hoping thus to escape the anticipated problems of energy supply. However, there seems to be no clear explanation of the basis on which our foreseeable future energy problems could be eased. And in fact, a first attempt at a more exact definition of energy demand and its interaction with other objectives, such as economic ones, shows that it is a highly complex concept which we still hardly understand. The article explains in some detail why it is so difficult to understand energy demand

  7. Demand response in energy markets

    International Nuclear Information System (INIS)

    Skytte, K.; Birk Mortensen, J.

    2004-11-01

    Improving the ability of energy demand to respond to wholesale prices during critical periods of the spot market can reduce the total costs of reliably meeting demand, and the level and volatility of the prices. This fact has lead to a growing interest in the short-run demand response. There has especially been a growing interest in the electricity market where peak-load periods with high spot prices and occasional local blackouts have recently been seen. Market concentration at the supply side can result in even higher peak-load prices. Demand response by shifting demand from peak to base-load periods can counteract the market power in the peak-load. However, demand response has so far been modest since the current short-term price elasticity seems to be small. This is also the case for related markets, for example, green certificates where the demand is determined as a percentage of the power demand, or for heat and natural gas markets. This raises a number of interesting research issues: 1) Demand response in different energy markets, 2) Estimation of price elasticity and flexibility, 3) Stimulation of demand response, 4) Regulation, policy and modelling aspects, 5) Demand response and market power at the supply side, 6) Energy security of supply, 7) Demand response in forward, spot, ancillary service, balance and capacity markets, 8) Demand response in deviated markets, e.g., emission, futures, and green certificate markets, 9) Value of increased demand response, 10) Flexible households. (BA)

  8. The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries

    International Nuclear Information System (INIS)

    Galli, R.; Univ. della Svizzera Italiana, Lugano

    1998-01-01

    This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita

  9. Assessing the state-level consequences of global warming: Socio-economic and energy demand impacts

    International Nuclear Information System (INIS)

    Rubin, B.M. Gailmard, S.; Marsh, D.; Septoff, A.

    1996-01-01

    The large body of research on climate change has begun to recognize a significant deficiency: the lack of analysis of the impact of climate change at a spatial level consistent with the anticipated occurrence of climate change. Climate change is likely to vary by region, while impact analysis has focused on much larger political units. Clearly, adaptation/mitigation strategies must be developed at a level consistent with political and policy-making processes. This paper specifically addresses this deficiency by identifying the potential socio-economic and energy demand consequences of climate change for subnational regions. This is accomplished via the development and application of a regional simultaneous equation, econometric simulation model that focuses on five states (Illinois, Indiana, Michigan, Ohio, and Wisconsin) in the Great Lakes region of the US. This paper presents a process for obtaining state-specific assessments of the consequences of climate change for the socio-economic system. As such, it provides an indication of which economic sectors are most sensitive to climate change for a specific state (Indiana), a set of initial mitigation/adaptation strategies for this state, and the results of testing these strategies in the policy analysis framework enabled by the model. In addition, the research demonstrates an effective methodology for assessing impacts and policy implications of climate change at a level consistent with policy making authority

  10. Global energy demand outlook

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1999-01-01

    Perhaps the most compelling issue the world will face in the next century is the quality of life of the increasing populations of the poorer regions of the world. Energy is the key to generating wealth and protecting the environment. Today, most of the energy generated comes from fossil fuels and there should be enough for an increase in consumption over the next half century. However, this is likely to be impacted by the Kyoto Protocol on carbon dioxide emissions. Various authoritative studies lead to a global energy demand projection of between 850 to 1070 EJ per year in the mid-21 st century, which is nearly three times as much as the world uses today. The studies further indicate that, unless there is a major thrust by governments to create incentives and/or to levy heavy taxes, the use of fossil fuels will continue to increase and there will be a major increase in carbon dioxide emissions globally. Most of the increase will come from the newly industrializing countries which do not have the technology or financial resources to install non-carbon energy sources such as nuclear power, and the new renewable energy technologies. The real issue for the nuclear industry is investment cost. Developing countries, in particular will have difficulty in raising capital for energy projects with a high installed cost and will have difficulties in raising large blocks of capital. A reduction in investment costs of the order of 50% with a short construction schedule is in order if nuclear power is to compete and contribute significantly to energy supply and the reduction of carbon dioxide emissions. Current nuclear power plants and methods are simply not suited to the production of plants that will compete in this situation. Mass production designs are needed to get the benefits of cost reduction. Water cooled reactors are well demonstrated and positioned to achieve the cost reduction necessary but only via some radical thinking on the part of the designers. The reactors of

  11. Energy demand patterns

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, L; Schipper, L; Meyers, S; Sathaye, J; Hara, Y

    1984-05-01

    This report brings together three papers on energy demand presented at the Energy Research Priorities Seminar held in Ottawa on 8-10 August 1983. The first paper suggests a framework in which energy demand studies may be organized if they are to be useful in policy-making. Disaggregation and the analysis of the chain of energy transformations are possible paths toward more stable and reliable parameters. The second paper points to another factor that leads to instability in sectoral parameters, namely a changeover from one technology to another; insofar as technologies producing a product (or service) vary in their energy intensity, a technological shift will also change the energy intensity of the product. Rapid technological change is characteristic of some sectors in developing countries, and may well account for the high aggregate GDP-elasticities of energy consumption observed. The third paper begins with estimates of these elasticities, which were greater than one for all the member countries of the Asian Development Bank in 1961-78. The high elasticities, together with extreme oil dependence, made them vulnerable to the drastic rise in the oil price after 1973. The author distinguishes three diverging patterns of national experience. The oil-surplus countries naturally gained from the rise in the oil price. Among oil-deficit countries, the newly industrialized countries expanded their exports so rapidly that the oil crisis no longer worried them. For the rest, balance of payments adjustments became a prime concern of policy. Whether they dealt with the oil bill by borrowing, by import substitution, or by demand restraint, the impact of energy on their growth was unmistakable. The paper also shows why energy-demand studies, and energy studies in general, deserve to be taken seriously. 16 refs., 4 figs., 18 tabs.

  12. Demand for electrical energy

    International Nuclear Information System (INIS)

    Bergougnoux, J.; Fouquet, D.

    1983-01-01

    The different utilizations of electric energy are reviewed in the residential and tertiary sectors, in the industry. The competitive position of electricity in regard to other fuels has been strengthned by the sudden rise in the price of oil in 1973-1974 and 1979-1980. The evolution of electricity prices depended on the steps taken to adjust the electricity generation system. The substitution of electricity applications for hydro-carbons is an essential point of energy policy. The adjustment at all times, at least cost and most reliability, of the supply of electricity to the demand for it is a major problem in the design and operation of electric systems. National demand for power at a given moment is extremely diversified. Electricity consumption presents daily and seasonal variations, and variations according to the different sectors. Forecasting power requirements is for any decision on operation or investment relating to an electrical system. Load management is desirable (prices according to the customers, optional tariffs for ''peak-day withdrawal''). To conclude, prospects for increased electricity consumption are discussed [fr

  13. Guidelines for forecasting energy demand

    International Nuclear Information System (INIS)

    Sonino, T.

    1976-11-01

    Four methodologies for forecasting energy demand are reviewed here after considering the role of energy in the economy and the analysis of energy use in different economic sectors. The special case of Israel is considered throughout, and some forecasts for energy demands in the year 2000 are presented. An energy supply mix that may be considered feasible is proposed. (author)

  14. On the Climate Variability and Energy Demands for Indoor Human Comfort Levels in Tropical Urban Environment

    Science.gov (United States)

    Pokhrel, R.; Ortiz, L. E.; González, J. E.; Ramírez-Beltran, N. D.

    2017-12-01

    The main objective of this study is to identify how climate variability influences human comfort levels in tropical urban environments. San Juan Metropolitan Area (SJMA) of the island of Puerto Rico was chosen as a reference point. A new human discomfort index (HDI) based on environmental enthalpy is defined. This index is expanded to determine the energy required to maintain indoor human comfort levels and was compared to Total Electricity consumption for the Island of Puerto Rico. Regression analysis shows that both Temperature and HDI are good indictor to predict total electrical energy consumption. Results showed that over the past 35 years the average enthalpy have increased and have mostly been above thresholds for human comfort for SJMA. The weather stations data further shows a clear indication of urbanization biases ramping up the index considered. From the trend analysis local scale (weather station) data shows a decreasing rate of maximum cooling at -11.41 kW-h/years, and minimum is increasing at 10.64 kW-h/years. To compare human comfort levels under extreme heat wave events conditions, an event of 2014 in the San Juan area was identified. The analysis for this extreme heat event is complemented by data from the National Center for environmental Prediction (NCEP) at 250km spatial resolution, North American Re-Analysis (NARR) at 32 km spatial resolution, by simulations of the Weather Forecasting System (WRF) at a resolution of 2 km, and by weather station data for San Juan. WRF simulation's results showed an improvement for both temperature and relative humidity from the input NCEP data. It also shows that difference in Energy per Capita (EPC) in urban area during a heat wave event can increase to 16% over a non-urban area. Sensitivity analysis was done by modifying the urban land cover to the most common rural references of evergreen broadleaf forest and cropland to investigate the Urban Heat Island (UHI) effect on HDI. UHI is seen to be maximum during

  15. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  16. Residential energy demand in Brazil

    International Nuclear Information System (INIS)

    Arouca, M.; Gomes, F.M.; Rosa, L.P.

    1981-01-01

    The energy demand in Brazilian residential sector is studied, discussing the methodology for analyzing this demand from some ideas suggested, for developing an adequate method to brazilian characteristics. The residential energy consumption of several fuels in Brazil is also presented, including a comparative evaluation with the United States and France. (author)

  17. Energy demand: Facts and trends

    Energy Technology Data Exchange (ETDEWEB)

    Chateau, B; Lapillonne, B

    1982-01-01

    The relationship between economic development and energy demand is investigated in this book. It gives a detailed analysis of the energy demand dynamics in industrialized countries and compares the past evolution of the driving factors behind energy demand by sector and by end-uses for the main OECD countries: residential sector (space heating, water heating, cooking...), tertiary sector, passenger and goods transport by mode, and industry (with particular emphasis on the steel and cement industry). This analysis leads to a more precise understanding of the long-term trends of energy demand; highlighting the influence on these trends of energy prices, especially after the oil price shocks, and of the type of economic development pattern.

  18. Temperature Effect on Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    We provide various estimates of temperature effect for accommodating seasonality in energy demand, particularly natural gas demand. We exploit temperature response and monthly temperature distribution to estimate the temperature effect on natural gas demand. Both local and global smoothed temperature responses are estimated from empirical relationship between hourly temperature and hourly energy consumption data during the sample period (1990 - 1996). Monthly temperature distribution estimates are obtained by kernel density estimation from temperature dispersion within a month. We integrate temperature response and monthly temperature density over all the temperatures in the sample period to estimate temperature effect on energy demand. Then, estimates of temperature effect are compared between global and local smoothing methods. (author). 15 refs., 14 figs., 2 tabs.

  19. Coordination of Energy Efficiency and Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  20. Designing an EU energy and climate policy portfolio for 2030: Implications of overlapping regulation under different levels of electricity demand

    International Nuclear Information System (INIS)

    Flues, Florens; Löschel, Andreas; Lutz, Benjamin Johannes; Schenker, Oliver

    2014-01-01

    The European Union's current climate and energy policy has to operate under an ex ante unforeseen economic crisis. As a consequence prices for carbon emission allowances in the EU Emissions Trading System collapsed. However, this price collapse may be amplified by the interaction of a carbon emission cap with supplementary policy targets such as minimum shares for renewables in the power sector. The static interaction between climate and renewable policies has been discussed extensively. This paper extends this debate by analysing the efficiency and effectiveness of a policy portfolio containing a cap and trade scheme and a target for a minimum renewable share in different states of aggregate electricity demand. Making use of a simple partial equilibrium model of the power sector we identify an asymmetric interaction of emissions trading and renewable quotas with respect to different states of aggregate electricity demand. The results imply that unintended consequences of the policy interaction may be particularly severe and costly when aggregate electricity demand is low and that carbon prices are more sensitive to changes in economic activity if they are applied in combination with renewable energy targets. Our analysis of the policy interaction focuses on the EU, yet the conclusions may also be of relevance for fast growing emerging economies like China. - Highlights: • A minimum renewable quota that is added to an existing emissions trading system causes excess costs. • Excess costs depend on electricity demand and are highest when electricity demand is low. • Excess costs can reach up to 1.2 Billion Euro annually in the European Union in 2030. • CO 2 prices are more sensitive to changes in electricity demand if combined with minimum renewable quota

  1. Energy demand and population change.

    Science.gov (United States)

    Allen, E L; Edmonds, J A

    1981-09-01

    During the post World War 2 years energy consumption has grown 136% while population grew about 51%; per capita consumption of energy expanded, therefore, about 60%. For a given population size, demographic changes mean an increase in energy needs; for instance the larger the group of retirement age people, the smaller their energy needs than are those for a younger group. Estimates indicate that by the year 2000 the energy impact will be toward higher per capita consumption with 60% of the population in the 19-61 age group of workers. Rising female labor force participation will increase the working group even more; it has also been found that income and energy grow at a proportional rate. The authors predict that gasoline consumption within the US will continue to rise with availability considering the larger number of female drivers and higher per capita incomes. The flow of illegal aliens (750,000/year) will have a major impact on income and will use greater amounts of energy than can be expected. A demographic change which will lower energy demands will be the slowdown of the rate of household formation caused by the falling number of young adults. The response of energy demand to price changes is small and slow but incomes play a larger role as does the number of personal automobiles and social changes affecting household formation. Households, commercial space, transportation, and industry are part of every demand analysis and population projections play a major role in determining these factors.

  2. Climate change and energy demand

    International Nuclear Information System (INIS)

    Hengeveld, H.G.

    1991-01-01

    Climate and weather events affect energy demand in most economic sectors. Linear relationships exist between consumption and heating degree days, and peak electricity demand increases significantly during heat waves. The relative magnitudes of demand changes for a two times carbon dioxide concentration scenario are tabulated, illustrating heating degree days and cooling degree days for 5 Prairie locations. Irrigation, water management, crop seeding and harvesting and weed control are examples of climate-dependent agricultural activities involving significant energy use. The variability of summer season liquid fuel use in the agricultural sector in the Prairie provinces from 1984-1989 shows a relationship between agricultural energy use and regional climate fluctuations. 4 refs., 2 figs., 1 tab

  3. Controlling energy demand. What history?

    International Nuclear Information System (INIS)

    Beers, Marloes; Bonhomme, Noel; Bouvier, Yves; Pautard, Eric; Fevrier, Patrick; Lanthier, Pierre; Goyens, Valerie; Desama, Claude; Beltran, Alain

    2012-01-01

    this special dossier of the historical annals of electricity collection takes stock of the post 1970's history of energy demand control in industrialized countries: Abatement of energy dependence, the European Communities program of rational use of energy in the 1970's (Marloes Beers); The G7 and the energy cost: the limits of dialogue between industrialized countries - 1975-1985 (Noel Bonhomme); Saving more to consume more. The ambiguity of EDF's communication during the 'energy saving' era (Yves Bouvier); From rationing to energy saving certificates, 4 decades of electricity demand control in France and in the UK (eric Pautard); The French agency of environment and energy mastery (ADEME): between energy control and sustainable development (Patrick Fevrier); Hydro-Quebec and efficiency in household energy consumption, from 1990 to the present day (Pierre Lanthier); Control of energy consumption since the 1970's, the policy of rational use of energy in Walloon region - Belgium (Valerie Goyens); Electricity distribution in the new energy paradigm (Claude Desama); Conclusion (Alain Beltran)

  4. Matching energy sources to demand

    International Nuclear Information System (INIS)

    Hendry, A.

    1979-01-01

    Diagrams show the current pattern of energy usage in Scotland; primary energy inputs; the various classes of user; the disposition of input energy in terms of useful and waste energy; an energy flow diagram showing the proportions of primary fuels taken by the various user groups and the proportions of useful energy derived by each. Within the S.S.E.B. area, installed capacity and maximum demand are shown for the present and projected future to the year 2000. A possible energy flow diagram for Scotland in 1996 is shown. The more efficient use of energy is discussed, with particular reference to the use of electricity. The primary energy inputs considered are oil, coal, nuclear, hydro and gas. (U.K.)

  5. Energy demand analysis in the industrial sector

    International Nuclear Information System (INIS)

    Lapillone, B.

    1991-01-01

    This Chapter of the publication is dealing with Energy Demand Analysis in the Industrial Sector.Different estimates of energy consumption in Industry taking Thailand as an example is given. Major energy consuming industrial sectors in selected Asian countries are given. Suggestion for the analysis of the energy consumption trends in industry, whether at the overall level or at the sub-sector level (e.g. food) using the conventional approach , through energy/output ratio is given. 4 refs, 7 figs, 13 tabs

  6. Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China

    International Nuclear Information System (INIS)

    Sun, Chuanwang; Ouyang, Xiaoling

    2016-01-01

    Urbanization, one of the most obvious characteristics of economic growth in China, has an apparent “lock-in effect” on residential energy consumption pattern. It is expected that residential sector would become a major force that drives China's energy consumption after urbanization process. We estimate price and expenditure elasticities of residential energy demand using data from China's Residential Energy Consumption Survey (CRECS) that covers households at different income levels and from different regional and social groups. Empirical results from the Almost Ideal Demand System model are in accordance with the basic expectations: the demands for electricity, natural gas and transport fuels are inelastic in the residential sector due to the unreasonable pricing mechanism. We further investigate the sensitivities of different income groups to prices of the three types of energy. Policy simulations indicate that rationalizing energy pricing mechanism is an important guarantee for energy sustainable development during urbanization. Finally, we put forward suggestions on energy pricing reform in the residential sector based on characteristics of China's undergoing urbanization process and the current energy consumption situations.

  7. Energy supply and demand in California

    Science.gov (United States)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  8. Decomposing energy demand across BRIIC countries

    International Nuclear Information System (INIS)

    Adetutu, Morakinyo O.; Glass, Anthony J.; Weyman-Jones, Thomas G.

    2016-01-01

    Energy plays an important role within the production technology of fast emerging economies, such that firms' reaction to changes in energy prices provides useful information on factor productivity and factor intensity, as well as the likely outcome of energy policy initiatives, among other things. Drawing on duality theory, this paper decomposes changes in energy demand into substitution and output effects using annual sector-level production data for Brazil, Russia, India, Indonesia and China (BRIIC) for the period 1995–2009. Unlike previous studies, this study analyzed the economic properties of the underlying production technology. Results indicate that changes in energy demand are strongly dominated by substitution effects. More importantly, an intriguing finding that emerges from our analysis is the role of economies of scale and factor accumulation, as opposed to technical progress, in giving rise to the growth performance of sampled economies. - Highlights: • The analysis examines the structure and channels of changes in energy demand across productive sectors in BRIIC countries during 1995–2009. • We evaluate substitution and output effects as well as the nature of firm productivity across these countries. • Changes in energy demand arising from changes in (relative) price of energy is strongly dominated by substitution effects. • The main drivers of economic performance and energy use over the sample period are economies of scale and factor accumulation.

  9. Automation of energy demand forecasting

    Science.gov (United States)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  10. Regulation of breeding behavior: do energy-demanding periods induce a change in prolactin or corticosterone baseline levels in the common tern (Sterna hirundo)?

    Science.gov (United States)

    Riechert, Juliane; Chastel, Olivier; Becker, Peter H

    2014-01-01

    Hormones are involved in reproductive decisions, linking environmental cues and body condition and adapting behavior. Mass loss is often accompanied by decreased prolactin and increased corticosterone concentrations, influencing incubation and brooding behavior and ultimately triggering nest desertion. Using blood-sucking bugs (Dipetalogaster maxima), we measured baseline prolactin, corticosterone, and ketone body values in incubating common terns (Sterna hirundo) between 2006 and 2009 during energy-demanding periods: 50 pairs were sampled hungry (after an incubation bout) and again fed (after foraging). In a second approach, we sampled 57 other pairs (experienced and inexperienced birds) three times over their individual breeding period, because reproduction, especially chick rearing, is a very energy-demanding process. In line with the common physiological pattern of fasting, we found significantly lower baseline prolactin values in hungry terns, which were negatively related to mass loss over the incubation bout, whereas corticosterone and ketone body levels were marginally increased. Compared to that in the incubation phase, the prolactin level dropped after hatching of chicks in inexperienced birds, perhaps indicating lower parental expenditure. Corticosterone, on the other hand, increased after hatching in males, probably linked to higher foraging activity, as males mainly deliver food during the first days. These energy-demanding periods clearly influenced hormones and ketone bodies, maybe reinforced by the low energy margin of this small seabird species, but energy reserves were not depleted to a level affecting behavior or reproductive success.

  11. Growing energy demand - environmental impact

    International Nuclear Information System (INIS)

    Rama Rao, G.A.

    2012-01-01

    Scientists can bring information, insights, and analytical skills to bear on matters of public concern. Often they can help the public and its representatives to understand the likely causes of events (such as natural and technological disasters) and to estimate the possible effects of projected policies. Often they can testify to what is not possible. Even so, scientists can seldom bring definitive answers to matters of public debate. Some issues are too complex to fit within the current scope of science, or there may be little reliable information available, or the values involved may lie outside of science. Scientists and technologists strive to find an answer to the growing energy demand

  12. A model approach for analysing trends in energy supply and demand at country level: case study of industrial development in China

    International Nuclear Information System (INIS)

    Miranda-da-Cruz, S.M.

    2007-01-01

    Ideally, national energy supply and demand choices would be based on comprehensive models and predictions of the energy sources, energy transformations, energy carriers and energy end-uses expected to play major roles into the foreseeable future (20-40 years). However, in many cases, the necessary detailed, high quality, consistent and timely data is not available for such comprehensive models to be constructed, in particular in large and complex developing economies expected to be major energy users in the near future. In the developing countries that are the focus of UNIDO's work, attention has been concentrated on making progress simultaneously on two fronts: (a) a dramatic decrease in energy intensity, particularly in activities linked to industrial production and (b) a major increase in the contribution of local renewable energy to limit growth in fossil fuel use. National policies need to be oriented towards a strict and strategic monitoring of the respective energy matrices with a simultaneous focus on both fronts. Robust assessments of industrial development trends throughout the whole 20-40 year transition phase are needed to achieve both objectives. Until more comprehensive energy-related models can be built up, to overcome the limited availability of data at country level it is proposed that a simple energy supply and demand model analysis consisting of three phases be used for identifying the consistency of future scenarios and corresponding policy requirements. This model analysis, which is a dynamic exercise, consists, first, of an analysis at aggregate level of the current and future national energy matrices; secondly, an analysis of perspectives for decreasing the energy intensity of the most inefficient systems or industrial sectors; and thirdly, an analysis of perspectives for increasing the supply and cost-effectiveness of sustainable energy sources. As an illustration of this model approach, the case of China is analysed with emphasis on the

  13. The CEDSS model of direct domestic energy demand

    OpenAIRE

    Gotts, Nicholas Mark

    2014-01-01

    This paper describes the design, implementation and testing of the CEDSS model of direct domestic energy demand, and the first results of its use to produce estimates of future demand under a range of scenarios. CEDSS simulates direct domestic energy demand at within communities of approximately 200 households. The scenarios explored differ in the economic conditions assumed, and policy measures adopted at national level.

  14. Chinese energy demand falls back

    Energy Technology Data Exchange (ETDEWEB)

    Smil, V.

    1977-10-01

    China's growth in energy demand and production declined in 1976, partly because of difficulty of sustaining a rapid 5.4 percent growth and partly because of the disruptions caused by a major earthquake and the deaths of Mao Tse-Tung and Chou En-Lai. The earthquake, which damaged all mines, the power station, refineries, and transportation lines in the Tangshan area, has had serious economic consequences. The failure to back up a growing coal industry with adequate investments and mechanization was recognized in 1975 and prompted a 10-year modernization program. Progress has been made with new mine shafts, pulverizing equipment, and the use of small mines for local industries. Oil and gas production increased after the discovery of new fields and the use of new technology in the hydrocarbon industries. Ports and terminal facilities to handle large tankers will increase China's oil export traffic. Electricity generation increased with new power facilities, although China's dependence on human and animal power is still a major factor. Changes in energy consumption patterns are developing, but industry still represents 50 percent and transportation less than 10 percent. (DCK)

  15. The UFE Prospective scenarios for energy demand

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the French energy consumption in 2011 (final energy consumption, distribution of CO 2 emissions related to energy consumption), this Power Point presentation proposes graphs and figures illustrating UFE's prospective scenarios for energy demand. The objective is to foresee energy demand in 2050, to study the impact of possible actions on energy demand, and to assess the impact on greenhouse gas emissions. Hypotheses relate to demographic evolution, economic growth, energy intensity evolution, energy efficiency, and use transfers. Factors of evolution of energy demand are discussed: relationship between demography and energy consumption, new uses of electricity (notably with TICs), relationship between energy intensity and economic growth. Actions on demand are discussed. The results of different scenarios of technical evolution are presented

  16. Measuring the security of energy exports demand in OPEC economies

    International Nuclear Information System (INIS)

    Dike, Jude Chukwudi

    2013-01-01

    One of the objectives of OPEC is the security of demand for the crude oil exports of its members. Achieving this objective is imperative with the projected decline in OECD countries' crude oil demand among other crude oil demand shocks. This paper focuses on determining the external crude oil demand security risks of OPEC member states. In assessing these risks, this study introduces two indexes. The first index, Risky Energy Exports Demand (REED), indicates the level of energy export demand security risks for OPEC members. It combines measures of export dependence, economic dependence, monopsony risk and transportation risk. The second index, Contribution to OPEC Risk Exposure (CORE), indicates the individual contribution of the OPEC members to OPEC's risk exposure. This study utilises the disaggregated index approach in measuring energy demand security risks for crude oil and natural gas and involves a country level analysis. With the disaggregated approach, the study shows that OPEC's energy export demand security risks differ across countries and energy types. - Highlights: • REED and CORE indexes are suitable measures for energy exports demand security risk. • The indexes show that energy demand security risk is different for each OPEC country. • The countries contribution to OPEC's energy demand security risk is also different. • The outcome is necessary for OPEC's common energy and climate change policies. • The outcome makes a case for oil demand security as a topical issue in the literature

  17. Sectoral energy demand data: Sources and Issues

    International Nuclear Information System (INIS)

    Ounali, A.

    1991-01-01

    This chapter of the publication is dealing with Sectoral Energy Demand Data giving details about the Sources and Issues. Some comments are presented on rural energy surveys. Guidelines for the Definition and Desegregation of Sectoral Energy Consumption is given and Data Necessary for Sectoral Energy Demand Analysis is discussed

  18. Exploring energy consumption and demand in China

    International Nuclear Information System (INIS)

    Fan, Ying; Xia, Yan

    2012-01-01

    China has been experiencing industrialization and urbanization since reform and opening of its economy in 1978. Energy consumption in the country has featured issues such as a coal-dominated energy mix, low energy efficiency and high emissions. Thus, it is of great importance to explore the factors driving the increase in energy consumption in the past two decades and estimate the potential for decreasing energy demands in the future. In this paper a hybrid energy input–output model is used to decompose driving factors to identify how these factors impact changes in energy intensity. A modified RAS approach is applied to project energy requirements in a BAU scenario and an alternative scenario. The results show that energy input mix, industry structure and technology improvements have major influences on energy demand. Energy demand in China will continue to increase at a rapid rate if the economy develops as in the past decades, and is projected to reach 4.7 billion tce in 2020. However, the huge potential for a decrease cannot be neglected, since growth could be better by adjusting the energy mix and industrial structure and enhancing technology improvements. The total energy demand could be less than 4.0 billion tce in 2020. -- Highlights: ► In this paper a hybrid energy input–output model is used to decompose driving factors to China’s energy intensity change. ► A modified RAS approach is applied to project energy requirements in China. ► The results show that energy input mix, industry structure and technology improvements have major influences on energy demand. ► Energy demand in China will reach 4.7 billion ton in 2020 if the economy develops as in the past decades. ► There is a huge potential for a decrease of energy demand by adjusting the energy mix and industrial structure and enhancing technology improvements.

  19. Energy demand and life quality in America

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2004-01-01

    Being considered an intermediate growth among projections of technological development expressive or of development restricted by ecological considerations, in the next 50 years, the demand of primary energy in the countries of the American continent arrived to value sufficiently high to allow to consent at levels of quality of life but next to those enjoyed at the moment in developed countries. There will be an expansion substantial of electric power demand that rots to require the installation, in countries of Latin America and Caribbean, of power plants with total capacity of the order of 400 GW until half-filled of century. The resource to the nuclear source was accentuated starting from the decade of 2020 and an enormous challenge for the governments of the region it will be the one of driving the construction of about 2.300 MW/year nuclear power plants between 2020 and 2050. (Author)

  20. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  1. Demand, Energy, and Power Factor

    Science.gov (United States)

    1994-08-01

    POWER FACTOR DEFINITION I Basically , power factor (pf) is a measure of how effectively the plant uses the electricity it purchases from the utility. It...not be made available by the plant. U 24 This video is relatively short, less than fifteen-minutes, and covers the basics on demand, block extenders... ratemaking methodology and test period as used in determining the NC-RS rates. Pending final decision by the FERC, the Federal Government would pay a rate as

  2. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  3. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand.

    Science.gov (United States)

    Hamid, Naima; Syed, Jabir Hussain; Junaid, Muhammad; Mahmood, Adeel; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2018-04-01

    Due to the severe fuel crisis in terms of natural gas, a paradigm shift in fuel combustion (diesel, gasoline, and biomass) may increase the atmospheric emissions and associated health risks in Pakistan. Present study was aimed to investigate the concentration of fugitive PAHs in the environment (outdoor and indoor settings), associated probabilistic health risk assessment in the exposed population, and possible linkage between fuel consumption patterns and PAHs emissions in twin cities (Rawalpindi and Islamabad) of Pakistan. Results showed that the mean PAHs concentrations (air: 2390pgm -3 ; dust: 167ngg -1 ) in the indoor environment were higher than that of the outdoor environment (air: 2132pgm -3 ; dust: 90.0ngg -1 ). Further, the source apportionment PCA-MLR receptor model identified diesel and gasoline combustion as the primary PAHs sources in the urban and sub-urban settings. Estimated life cancer risk (LCR) potential via inhalation to indoor PAHs was higher with a probability of 2.0 cases per 10,000 inhabitants as compared to outdoor exposure. Incremental lifetime cancer risk (ILCR) model from exposure to dust bound PAHs showed risk in the order of ingestion>dermal>inhalation for various exposure pathways. Likewise, estimated daily intake (EDI) model reflects that PAHs in surface dust enter into the human body mainly through the respiratory system because EDI for breathing was reported higher than that of oral intake. Therefore, adoption of sustainable fuels is recommended to meet the energy requirements and to reduce PAHs emissions and related health risks in the twin cities of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dynamics of final sectoral energy demand and aggregate energy intensity

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2011-01-01

    This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge. - Research Highlights: → The residential sector accounts for most of final energy consumption at low income levels. → Its share drops at the benefit of the industrial, services and road transportation sectors in turn. → Sectoral shares' pattern is affected by changes in geographic, sociologic and economic factors. → Final energy intensity may show various shapes and does not exhibit necessarily a bell-shape.

  5. The energy demand in the Narino Department

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    2000-01-01

    In the object of making a first approach of regional energy requirements analysis and the good way of satisfying them, the UPME undertook a global energy study for the Narino Department. In this study (UPME 1999) was carried out an analysis of the energy demand and of the socioeconomic factors that determine it; they were also studied the consumptions and the current energy offer and the alternatives of future evolution, with the purpose of having the basic tools of a departmental energy plan. The present article refers specifically to the analysis of the demand and it seeks to show the readers the complexity and the volume of necessary information to carry out the demand studies. They are multiple factors that determine the energy demand in the Narino Department. The size, growth populations, geographical distribution and cultural characteristic, the border condition, the faulty infrastructure of communications, the agricultural economic structure and the low entrance per capita

  6. Energy demand seen as an open perspective

    International Nuclear Information System (INIS)

    Scholz, L.

    1990-01-01

    In the course assessments of the potentials of conserving energy it has become clear that the major problems in such attempts do not come from the field of science or technology, but rather from the economy and the society. The chapter on prognostic assessment of energy demand therefore discusses the procedures in the Federal Republic of Germany and prognoses of energy demand and supply in their context, which is made up of ecological, economic, political and sociological factors. (DG) [de

  7. Main tendencies meeting future energy demands

    International Nuclear Information System (INIS)

    Flach, G.; Riesner, W.; Ufer, D.

    1989-09-01

    The economic development in the German Democratic Republic within the preceding 10 years has proved that future stable economic growth of about 4 to 4.5% per annum is only achievable by ways including methods of saving resources. This requires due to the close interdependences between the social development and the level of the development in the energy sector long-term growth rates of the national income of 4 to 4.5% per annum at primary energy growth rates of less than 1% per annum. It comprises three main tendencies: 1. Organization of a system with scientific-technical, technological, economic structural-political and educational measures ensuring in the long term less increase of the energy demand while keeping the economic growth at a constant level. 2. The long-term moderate extension and modernization of the GDR's energy basis is characterized by continuing use of the indigenous brown coal resources for the existing power plant capacities and for district heating. 3. The use of modern and safe nuclear power technologies defines a new and in future more and more important element of the energy basis. Currently about 10% of electricity in the GDR are covered by nuclear energy, in 2000 it will be one third, after 2000 the growth process will continue. The experience shows: If conditions of deepened scientific consideration of all technological processes and the use of modern diagnosis and computer technologies as well as permanent improvement of the safety-technological components and equipment are guaranteed an increasing use of such systems for the production of electricity and heat is socially acceptable. Ensuring a high level of education and technical training of everyone employed in the nuclear energy industry, strict safety restrictions and independent governmental control of these restrictions are important preconditions for the further development in this field. 3 refs, 5 tabs

  8. Household energy demand. Empirical studies concerning Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Dargay, J; Lundin, A

    1978-06-01

    This paper investigates the effects of energy policy on households in Sweden and provides the material necessary for evaluation of current and proposed energy-conservation measures. Emphasis is placed on the impact of enery taxation or price changes on household demand for electricity, heating oil, and gasoline and the consequences of such measures for income distribution. The results of the Swedish studies of household demand for heating oil and gasoline indicate that price changes can have a considerable long run impact on fuel utilization. In the short run, price responsiveness is notably reduced, but it is nevertheless of consequence for energy demand.

  9. A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response

    International Nuclear Information System (INIS)

    Ju, Liwei; Tan, Zhongfu; Yuan, Jinyun; Tan, Qingkun; Li, Huanhuan; Dong, Fugui

    2016-01-01

    Highlights: • Our research focuses on Virtual Power Plant (VPP). • Virtual Power Plant consists of WPP, PV, CGT, ESSs and DRPs. • Robust optimization theory is introduced to analyze uncertainties. • A bi-level stochastic scheduling optimization model is proposed for VPP. • Models are built to measure the impacts of ESSs and DERPs on VPP operation. - Abstract: To reduce the uncertain influence of wind power and solar photovoltaic power on virtual power plant (VPP) operation, robust optimization theory (ROT) is introduced to build a stochastic scheduling model for VPP considering the uncertainty, price-based demand response (PBDR) and incentive-based demand response (IBDR). First, the VPP components are described including the wind power plant (WPP), photovoltaic generators (PV), convention gas turbine (CGT), energy storage systems (ESSs) and demand resource providers (DRPs). Then, a scenario generation and reduction frame is proposed for analyzing and simulating output stochastics based on the interval method and the Kantorovich distance. Second, a bi-level robust scheduling model is proposed with a double robust coefficient for WPP and PV. In the upper layer model, the maximum VPP operation income is taken as the optimization objective for building the scheduling model with the day-ahead prediction output of WPP and PV. In the lower layer model, the day-ahead scheduling scheme is revised with the actual output of the WPP and PV under the objectives of the minimum system net load and the minimum system operation cost. Finally, the independent micro-grid in a coastal island in eastern China is used for the simulation analysis. The results illustrate that the model can overcome the influence of uncertainty on VPP operations and reduce the system power shortage cost by connecting the day-ahead scheduling with the real-time scheduling. ROT could provide a flexible decision tool for decision makers, effectively addressing system uncertainties. ESSs could

  10. Addressing Energy Demand through Demand Response. International Experiences and Practices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dudley, Junqiao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Martin, Phil [Enernoc, Inc., Boston, MA (United States); Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  11. Demand Response and Energy Storage Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.; Matson, Nance; Sohn, Michael D.; Rose, Cody M.; Dudley, Junqiao Han; Goli, Sasank; Kiliccote, Sila; Cappers, Peter; MacDonald, Jason; Denholm, Paul; Hummon, Marissa; Jorgenson, Jennie; Palchak, David; Starke, Michael; Alkadi, Nasr; Bhatnagar, Dhruv; Currier, Aileen; Hernandez, Jaci; Kirby, Brendan; O' Malley, Mark

    2016-03-01

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational value in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.

  12. Energy in China: Coping with increasing demand

    International Nuclear Information System (INIS)

    Sandklef, Kristina

    2004-11-01

    Sustaining the increasing energy consumption is crucial to future economic growth in China. This report focuses on the current and future situation of energy production and consumption in China and how China is coping with its increasing domestic energy demand. Today, coal is the most important energy resource, followed by oil and hydropower. Most energy resources are located in the inland, whereas the main demand for energy is in the coastal areas, which makes transportation and transmission of energy vital. The industrial sector is the main driver of the energy consumption in China, but the transport sector and the residential sector will increase their share of consumption in China, but the transport sector and the residential sector will increase their share of consumption by 2020. China's energy intensity decreased during the 1990s, but it is still high in a global comparison. China is projected to increase its energy consumption at least two times between 2000 and 2025. The government has an equal focus on energy conservation and to develop the current energy resources. Coal will continue to be the most important fuel, but the demand for oil, hydropower, natural gas and nuclear power will also increase. The main future challenges are transportation of energy resources within China and securing oil supply, both domestic and imports

  13. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  14. An overview of the energy demand

    International Nuclear Information System (INIS)

    Lavergne, R.

    2009-01-01

    According to IEA the world demand for energy is likely to grow by 45% from now to 2030 if today's tendency is extrapolated and coal would represent the third of this energy increase. The world CO 2 releases might have grown by 55% in 2030 compared to today's releases. Today at the world scale, the sector that generates most greenhouse effect gases is the energy production (26%) followed by industry (19%). France's strategy concerning climate change and energy policy is recalled and fits with European Union's action plan. This action plan in the energy sector follows 6 axes: -) the setting of an European market of energy, -) +20% in energy efficiency by 2020, -) 20% of renewable energies in the energy mix by 2020, -) the development of a European technology for a low carbon future, -) the development of nuclear energy, and -) The setting of a European foreign energy policy. (A.C.)

  15. Economic modelling of energy services: Rectifying misspecified energy demand functions

    International Nuclear Information System (INIS)

    Hunt, Lester C.; Ryan, David L.

    2015-01-01

    Although it is well known that energy demand is derived, since energy is required not for its own sake but for the energy services it produces – such as heating, lighting, and motive power – energy demand models, both theoretical and empirical, often fail to take account of this feature. In this paper, we highlight the misspecification that results from ignoring this aspect, and its empirical implications – biased estimates of price elasticities and other measures – and provide a relatively simple and empirically practicable way to rectify it, which has a strong theoretical grounding. To do so, we develop an explicit model of consumer behaviour in which utility derives from consumption of energy services rather than from the energy sources that are used to produce them. As we discuss, this approach opens up the possibility of examining many aspects of energy demand in a theoretically sound way that have not previously been considered on a widespread basis, although some existing empirical work could be interpreted as being consistent with this type of specification. While this formulation yields demand equations for energy services rather than for energy or particular energy sources, these are shown to be readily converted, without added complexity, into the standard type of energy demand equation(s) that is (are) typically estimated. The additional terms that the resulting energy demand equations include, compared to those that are typically estimated, highlight the misspecification that is implicit when typical energy demand equations are estimated. A simple solution for dealing with an apparent drawback of this formulation for empirical purposes, namely that information is required on typically unobserved energy efficiency, indicates how energy efficiency can be captured in the model, such as by including exogenous trends and/or including its possible dependence on past energy prices. The approach is illustrated using an empirical example that involves

  16. Energy supply and demand in Canada and export demand for Canadian energy, 1966--1990

    Energy Technology Data Exchange (ETDEWEB)

    1969-01-01

    This report presents the results of a National Energy Board staff study of energy supply and demand in Canada to 1990. The study covers all forms of energy in Canada, and probable sources of supply for serving both indigenous and export demand for Canadian energy. Energy demand by market sector (residential and commercial, industrial, and transportation) is discussed in Chapters III, IV and V, respectively. Chapters VI, VII, VIII, and IX deal with supply prospects for Canadian petroleum, natural gas, coal, and electricity serving indigenous and export markets. A summary of the report is contained in Chapter II. Appendix A reviews general assumptions including those relating to population and household growth. Appendix B summarizes the methodology used for estimating residential energy demand, automobile transportation energy demand, and electricity supply. Appendix C includes a number of tables which provide detailed information. A list of definitions and abbreviations follows the Table of Contents.

  17. Economic growth, regional disparities and energy demand in China

    International Nuclear Information System (INIS)

    Sheng, Yu; Shi, Xunpeng; Zhang, Dandan

    2014-01-01

    Using the panel data of 27 provinces between 1978 and 2008, we employed a instrumental regression technique to examine the relationship between economic growth, energy demand/production and the related policies in China. The empirical results show that forming a cross-province integrated energy market will in general reduce the response of equilibrium user costs of energy products to their local demand and production, through cross-regional energy transfer (including both energy trade and cross-regional reallocation). In particular, reducing transportation costs and improving marketization level are identified as two important policy instruments to enhance the role of energy market integration. The findings support the argument for a more competitive cross-province energy transfer policies and calls for more developed energy connectivity and associate institutional arrangements within China. These policy implications may also be extended to the East Asia Summit region where energy market integration is being actively promoted. - Highlights: • Development driving energy demand has different impacts on energy prices than others. • EMI will reduce the response of equilibrium energy prices to local demand and production. • Reducing transportation costs and improving marketization level enhance the role of EMI. • More market competition and better physical and institutional connectivity are better. • Policy implications to China may be extended to the East Asia Summit region

  18. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  19. Leveling off the energy demand. Air conditioning by town gas NEXT STAGE. Energy juyo no heijunka wo motomete. Gas reibo NEXT STAGE

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K. (Keio Univ., Tokyo (Japan). Faculty of Science and Technology)

    1994-07-01

    Utilizing various types of energy with combining them rationally is now drawing attention. One of these types of energy is the town gas. The air conditioning by town gas draws a special attention. The town gas is characterized by environmental conservation, energy saving, and comfortability. The town gas does not contain sulfur compounds which cause the acid rain. The town gas produces the least amount of carbon dioxide among all the fossil fuel. The air conditioning by the town gas is getting popular. Examples are Tokyo Dome in Tokyo, Pavilion Plaza, a new shopping spot in Fukuoka, Umeda Sky Building in Osaka, Dai-ich Apparel Center in Tokyo, Ohno Memorial Hospital in Osaka, Nagoya Municipal Integrated Stadium in Nagoya, Meguro-Gajoen in Tokyo, and New Yomiuri-Shimbun Building in Sapporo. 41 figs.

  20. An overview of world future energy demand

    International Nuclear Information System (INIS)

    Jenkin, F.P.

    1995-01-01

    The World Energy Council Commission's report Energy for Tomorrow's World was published in September 1993. The Commission's three year study of world energy problems involved both bottom-up studies, undertaken by groups of experts in nine main regions of the world, and top-down studies of global aspects. The latter included the preparation of energy demand and supply projections up to the study horizon of 2020, together with a brief look at prospects up to 2100. This Paper is based on the Commission's work. (author)

  1. Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database

    International Nuclear Information System (INIS)

    Hamilton, Ian G.; Steadman, Philip J.; Bruhns, Harry; Summerfield, Alex J.; Lowe, Robert

    2013-01-01

    The UK Government has unveiled an ambitious retrofit programme that seeks significant improvement to the energy efficiency of the housing stock. High quality data on the energy efficiency of buildings and their related energy demand is critical to supporting and targeting investment in energy efficiency. Using existing home improvement programmes over the past 15 years, the UK Government has brought together data on energy efficiency retrofits in approximately 13 million homes into the Homes Energy Efficiency Database (HEED), along with annual metered gas and electricity use for the period of 2004–2007. This paper describes the HEED sample and assesses its representativeness in terms of dwelling characteristics, the energy demand of different energy performance levels using linked gas and electricity meter data, along with an analysis of the impact retrofit measures has on energy demand. Energy savings are shown to be associated with the installation of loft and cavity insulation, and glazing and boiler replacement. The analysis illustrates this source of ‘in-action’ data can be used to provide empirical estimates of impacts of energy efficiency retrofit on energy demand and provides a source of empirical data from which to support the development of national housing energy efficiency retrofit policies. - Highlights: • The energy efficiency level for 50% of the British housing stock is described. • Energy demand is influenced by size and age and energy performance. • Housing retrofits (e.g. cavity insulation, glazing and boiler replacements) save energy. • Historic differences in energy performance show persistent long-term energy savings

  2. The relationship between agricultural technology and energy demand in Pakistan

    International Nuclear Information System (INIS)

    Zaman, Khalid; Khan, Muhammad Mushtaq; Ahmad, Mehboob; Rustam, Rabiah

    2012-01-01

    The purpose of this study was two fold: (i) to investigate the casual relationship between energy consumption and agricultural technology factors, and (ii) electricity consumption and technological factors in the agricultural sector of Pakistan. The study further evaluates four alternative but equally plausible hypotheses, each with different policy implications. These are: (i) Agricultural technology factors cause energy demand (the conventional view), (ii) energy demand causes technological factors, (iii) There is a bi-directional causality between the two variables and (iv) Both variables are causality independent. By applying techniques of Cointegration and Granger causality tests on energy demand (i.e., total primary energy consumption and electricity consumption) and agricultural technology factors (such as, tractors, fertilizers, cereals production, agriculture irrigated land, high technology exports, livestock; agriculture value added; industry value added and subsides) over a period of 1975–2010. The results infer that tractor and energy demand has bi-directional relationship; while irrigated agricultural land; share of agriculture and industry value added and subsides have supported the conventional view i.e., agricultural technology cause energy consumption in Pakistan. On the other hand, neither fertilizer consumption and high technology exports nor energy demand affect each others. Government should form a policy of incentive-based supports which might be a good policy for increasing the use of energy level in agriculture. - Highlights: ► Find the direction between green technology factors and energy demand in Pakistan. ► The results indicate that there is a strong relationship between them. ► Agriculture machinery and energy demand has bi-directional relationship. ► Green technology causes energy consumption i.e., unidirectional relationship. ► Agriculture expansion is positive related to total primary energy consumption.

  3. US residential energy demand and energy efficiency: A stochastic demand frontier approach

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.

    2012-01-01

    This paper estimates a US frontier residential aggregate energy demand function using panel data for 48 ‘states’ over the period 1995 to 2007 using stochastic frontier analysis (SFA). Utilizing an econometric energy demand model, the (in)efficiency of each state is modeled and it is argued that this represents a measure of the inefficient use of residential energy in each state (i.e. ‘waste energy’). This underlying efficiency for the US is therefore observed for each state as well as the relative efficiency across the states. Moreover, the analysis suggests that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controlling for a range of economic and other factors, the measure of energy efficiency obtained via this approach is. This is a novel approach to model residential energy demand and efficiency and it is arguably particularly relevant given current US energy policy discussions related to energy efficiency.

  4. How to tackle energy saving and load leveling. Energy saving towards 2000 and measures for the coming winter (energy-saving activities by California`s SCE, demand side management activities); Sho energy fuka heijunka ni do torikumuka. Seireki 2000 nen ni muketa sho energy to konto no shoene taisaku, Kashu SCE no sho energy (DSM katsudo wo saguru)

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, S. [The Energy Conservation Center Japan, Tokyo (Japan)

    1997-02-01

    Tokyo Electric Power has realized a peak shift of 5% for the maximum power demand by various measures to cope with increasing power demand and differential rate by time zone, including expansion of the differential rate system and heat-storage systems. Some of more notable recent techniques are eco-ice and eco-vendor systems, the former storing ice in the heat-storage tanks and the latter strongly cooling vending machines during nighttime. The NAS battery system is being developed as the new technique for load leveling. The energy-related advisory organ for Minister of International Trade and Industry asks each industrial unit to save at least 1% of power on the annual average as the energy-saving measure towards 2000. The energy-saving measures promoted by the government for the coming winter are controlled release of wastes, efficient use of power, setting room temperature at 19{degree}C or lower and voluntarily refrain from commuting by cars. The US power industry is abandoning the concept of DSM in the midst of deregulation and increased competition, and cutting budgets for new energy development. California`s SCE is promoting energy-saving through expanded use of high-efficiency motors, accurate grasp of customers` needs and publicity activities through internet systems. 4 figs., 1 tab.

  5. The energy demand in the Netherlands

    International Nuclear Information System (INIS)

    Stoffers, M.J.

    1992-01-01

    Based on three scenarios for the global and economic developments the CPB (Dutch Central Planning Bureau) made projections of the Dutch energy demand to the year 2015. Factors of interest are the development of the energy prices, sectoral analysis of the economic growth and the government policy. The scenarios are Balanced Growth, characterized by a strong economic growth, sustainable economic development, and a dynamic technological development, the Global Shift scenario, characterized by a very dynamic technological development, and the European Renaissance scenario with a less dynamic development. 2 ills., 5 tabs., 2 refs

  6. Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand

    International Nuclear Information System (INIS)

    Adeyemi, Olutomi I.; Hunt, Lester C.

    2014-01-01

    This paper explores the way technical progress and improvements in energy efficiency are captured when modelling OECD industrial energy demand. The industrial sectors of the developed world involve a number of different practices and processes utilising a range of different technologies. Consequently, given the derived demand nature of energy, it is vital when modelling industrial energy demand that the impact of technical progress is appropriately captured. However, the energy economics literature does not give a clear guide on how this can be achieved; one strand suggests that technical progress is ‘endogenous’ via asymmetric price responses whereas another strand suggests that it is ‘exogenous’. More recently, it has been suggested that potentially there is a role for both ‘endogenous’ technical progress and ‘exogenous’ technical progress and consequently the general model should be specified accordingly. This paper therefore attempts to model OECD industrial energy demand using annual time series data over the period 1962–2010 for 15 OECD countries. Using the Structural Time Series Model framework, the general specifications allow for both asymmetric price responses (for technical progress to impact endogenously) and an underlying energy demand trend (for technical progress and other factors to impact exogenously, but in a non-linear way). The results show that almost all of the preferred models for OECD industrial energy demand incorporate both a stochastic underlying energy demand trend and asymmetric price responses. This gives estimated long-run income elasticities in the range of 0.34 to 0.96; estimated long-run price-maximum elasticities in the range of − 0.06 to − 1.22; estimated long-run price-recovery elasticities in the range of 0.00 to − 0.27; and estimated long-run price-cut elasticities in the range of 0.00 to − 0.18. Furthermore, the analysis suggests that when modelling industrial energy demand there is a place for

  7. Modelling energy demand in the Norwegian building stock

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor

    2008-07-15

    Energy demand in the building stock in Norway represents about 40% of the final energy consumption, of which 22% goes to the residential sector and 18% to the service sector. In Norway there is a strong dependency on electricity for heating purposes, with electricity covering about 80% of the energy demand in buildings. The building sector can play an important role in the achievement of a more sustainable energy system. The work performed in the articles presented in this thesis investigates various aspects related to the energy demand in the building sector, both in singular cases and in the stock as a whole. The work performed in the first part of this thesis on development and survey of case studies provided background knowledge that was then used in the second part, on modelling the entire stock. In the first part, a literature survey of case studies showed that, in a life cycle perspective, the energy used in the operating phase of buildings is the single most important factor. Design of low-energy buildings is then beneficial and should be pursued, even though it implies a somewhat higher embodied energy. A case study was performed on a school building. First, a methodology using a Monte Carlo method in the calibration process was explored. Then, the calibrated model of the school was used to investigate measures for the achievement of high energy efficiency standard through renovation work. In the second part, a model was developed to study the energy demand in a scenario analysis. The results showed the robustness of policies that included conservation measures against the conflicting effects of the other policies. Adopting conservation measures on a large scale showed the potential to reduce both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlighted the inertia to change of the building stock, due to low activity levels compared to the stock size. It also became clear that a deeper

  8. Modelling UK energy demand to 2000

    International Nuclear Information System (INIS)

    Thomas, S.D.

    1980-01-01

    A recent long-term demand forecast for the UK was made by Cheshire and Surrey. (SPRU Occasional Paper Series No.5, Science Policy Research Unit, Univ. Of Sussex, 1978.) Although they adopted a sectoral approach their study leaves some questions unanswered. Do they succeed in their aim of making all their assumptions fully explicit. How sensitive are their estimates to changes in assumptions and policies. Are important problems and 'turning points' fully identified in the period up to and immediately beyond their time horizon of 2000. The author addresses these questions by using a computer model based on the study by Cheshire and Surrey. This article is a shortened version of the report, S.D. Thomas, 'Modelling UK Energy Demand to 2000', Operational Research, Univ. of Sussex, Brighton, UK, 1979, in which full details of the author's model are given. Copies are available from the author. (author)

  9. Modelling UK energy demand to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S D [Sussex Univ., Brighton (UK)

    1980-03-01

    A recent long-term demand forecast for the UK was made by Cheshire and Surrey. (SPRU Occasional Paper Series No.5, Science Policy Research Unit, Univ. Of Sussex, 1978.) Although they adopted a sectoral approach their study leaves some questions unanswered. Do they succeed in their aim of making all their assumptions fully explicit. How sensitive are their estimates to changes in assumptions and policies. Are important problems and 'turning points' fully identified in the period up to and immediately beyond their time horizon of 2000. The author addresses these questions by using a computer model based on the study by Cheshire and Surrey. This article is a shortened version of the report, S.D. Thomas, 'Modelling UK Energy Demand to 2000', Operational Research, Univ. of Sussex, Brighton, UK, 1979, in which full details of the author's model are given. Copies are available from the author.

  10. Austria's Energy Perspectives - It's the Demand Side, Stupid

    International Nuclear Information System (INIS)

    Lechner, H.

    2009-01-01

    During the last decade Austria made remarkable progress in developing renewable energy sources. But at the same time energy demand has steadily increased so that the share of renewables in the energy mix has remained more or less stable over the years. Rising energy demand and import dependence is also forecast in a business-as-usual scenario for the future. If Austria is to fulfill the EU obligatory target to increase the share of renewables up to 34% in 2020 (recently 25%) and to move on a sustainable, low-carbon track it will have to decrease energy consumption or at least stabilise it at the level of 2005. This requires considerable efforts to boost energy efficiency, especially in the building and transport sector.(author).

  11. Modelling future private car energy demand in Ireland

    International Nuclear Information System (INIS)

    Daly, Hannah E.; Ó Gallachóir, Brian P.

    2011-01-01

    Targeted measures influencing vehicle technology are increasingly a tool of energy policy makers within the EU as a means of meeting energy efficiency, renewable energy, climate change and energy security goals. This paper develops the modelling capacity for analysing and evaluating such legislation, with a focus on private car energy demand. We populate a baseline car stock and car activity model for Ireland to 2025 using historical car stock data. The model takes account of the lifetime survival profile of different car types, the trends in vehicle activity over the fleet and the fuel price and income elasticities of new car sales and total fleet activity. The impacts of many policy alternatives may only be simulated by such a bottom-up approach, which can aid policy development and evaluation. The level of detail achieved provides specific insights into the technological drivers of energy consumption, thus aiding planning for meeting climate targets. This paper focuses on the methodology and baseline scenario. Baseline results for Ireland forecast a decline in private car energy demand growth (0.2%, compared with 4% in the period 2000–2008), caused by the relative growth in fleet efficiency compared with activity. - Highlights: ► Bottom-up private car energy forecasting model developed. ► The demographic and technological distribution of vehicle activity is a key veriable. ► Irish car energy demand growth predicted to slow steadily. ► Change in vehicle taxation forecast to save 10% energy.

  12. Energy Supply and Demand Planning Aspects in Slovenia

    International Nuclear Information System (INIS)

    Tomsic, M.; Urbancic, A.; Al Mansour, F.; Merse, S.

    1997-01-01

    Slovenia can be considered a sufficiently homogenous region, even though specific climatic conditions exist in some parts of the country. Urban regions with high energy consumptions density differ in logistic aspects and in the potential of renewable energy sources. The difference in household energy demand is not significant. The planning study is based on the ''Integrated Resource Planning'' approach. A novel energy planning tool, the MESAP-PlaNet energy system model, supplemented by auxiliary models of technology penetration, electricity demand analysis and optimal expansion planning (the WASP package) has been used. The following segments has been treated in detail: industry, households and both central and local supply systems. Three intensities of energy efficiency strategies are compared: Reference, Moderate and Intensive. The intensity of demand side management programs influence the level and dynamics of activation of conservation potentials. Energy tax is considered in the Moderate and Intensive strategies. On the supply side the issue of domestic coal use is discussed. Reduction in the use of coal is linked to energy efficiency strategies. It has been found that energy efficiency strategies consistently improve economic efficiency, security of supply and protection of health and environment. The only conflicting area is social acceptability, due to both the energy tax reform and the loss of mining jobs. (author)

  13. Factors influencing energy demand in dairy farming | Kraatz | South ...

    African Journals Online (AJOL)

    The efficiency of energy utilization is one of the key indicators for developing more sustainable agricultural practices. Factors influencing the energy demand in dairy farming are the cumulative energy demand for feed-supply, milk yield as well as the replacement rate of cows. The energy demand of dairy farming is ...

  14. Modelling energy demand in the buildings sector within the EU

    Energy Technology Data Exchange (ETDEWEB)

    O Broin, Eoin

    2012-11-01

    fuel mixes are applied in three scenarios. The rates for expansion of floor area and increases in living standards are the same for all the scenarios. The model outputs predict that if energy efficiency remains at the current level, then expansion of the building floor area and other increases in living standards would increase final energy demand in the EU by almost 70 % by 2050. The other two scenarios reveal the levels of improvements in efficiency that are needed to maintain energy demand at current rates or reduce it by 20 %. The results of the modelling provide a conceptual framework for the development of fiscal and regulatory policy decisions in relation to energy prices and various categories of energy efficiency measures, with the overall objective of meeting future demand for energy services of the building sector within the EU in a sustainable manner.

  15. Energy demand on dairy farms in Ireland.

    Science.gov (United States)

    Upton, J; Humphreys, J; Groot Koerkamp, P W G; French, P; Dillon, P; De Boer, I J M

    2013-10-01

    Reducing electricity consumption in Irish milk production is a topical issue for 2 reasons. First, the introduction of a dynamic electricity pricing system, with peak and off-peak prices, will be a reality for 80% of electricity consumers by 2020. The proposed pricing schedule intends to discourage energy consumption during peak periods (i.e., when electricity demand on the national grid is high) and to incentivize energy consumption during off-peak periods. If farmers, for example, carry out their evening milking during the peak period, energy costs may increase, which would affect farm profitability. Second, electricity consumption is identified in contributing to about 25% of energy use along the life cycle of pasture-based milk. The objectives of this study, therefore, were to document electricity use per kilogram of milk sold and to identify strategies that reduce its overall use while maximizing its use in off-peak periods (currently from 0000 to 0900 h). We assessed, therefore, average daily and seasonal trends in electricity consumption on 22 Irish dairy farms, through detailed auditing of electricity-consuming processes. To determine the potential of identified strategies to save energy, we also assessed total energy use of Irish milk, which is the sum of the direct (i.e., energy use on farm) and indirect energy use (i.e., energy needed to produce farm inputs). On average, a total of 31.73 MJ was required to produce 1 kg of milk solids, of which 20% was direct and 80% was indirect energy use. Electricity accounted for 60% of the direct energy use, and mainly resulted from milk cooling (31%), water heating (23%), and milking (20%). Analysis of trends in electricity consumption revealed that 62% of daily electricity was used at peak periods. Electricity use on Irish dairy farms, therefore, is substantial and centered around milk harvesting. To improve the competitiveness of milk production in a dynamic electricity pricing environment, therefore, management

  16. Influence of Shading on Cooling Energy Demand

    Science.gov (United States)

    Rabczak, Sławomir; Bukowska, Maria; Proszak-Miąsik, Danuta; Nowak, Krzysztof

    2017-10-01

    The article presents an analysis of the building cooling load taking into account the variability of the factors affecting the size of the heat gains. In order to minimize the demand for cooling, the effect of shading elements installed on the outside on the windows and its effect on size of the cooling capacity of air conditioning system for the building has been estimated. Multivariate building cooling load calculations to determine the size of the reduction in cooling demand has derived. Determination of heat gain from the sun is laborious, but gives a result which reflects the influence of the surface transparent partitions, devices used as sunscreen and its location on the building envelope in relation to the world, as well as to the internal heat gains has great attention in obtained calculation. In this study, included in the balance sheet of solar heat gains are defined in three different shading of windows. Calculating the total demand cooling is made for variants assuming 0% shading baffles transparent, 50% shading baffles transparent external shutters at an angle of 45 °, 100% shading baffles transparent hours 12 from the N and E and from 12 from the S and W of the outer slat blinds. The calculation of the average hourly cooling load was taken into account the option assuming the hypothetical possibility of default by up to 10% of the time assumed the cooling season temperatures in the rooms. To reduce the consumption of electricity energy in the cooling system of the smallest variant identified the need for the power supply for the operation of the cooling system. Also assessed the financial benefits of the temporary default of comfort.

  17. Energy demand in seven OECD countries

    International Nuclear Information System (INIS)

    Patry, M.

    1990-01-01

    The intensity of utilization of energy has been declining in all OECD countries since the first oil price shock of 1973. In 1988, the OECD countries were consuming 1.7 billion tonnes of crude oil, that is two hundred million tonnes less than fifteen years ago. From 1974 to 1988, OECD oil consumption decreased at an average annual rate of 1.3% while the GDP of these countries rose by an average of 2.6% per annum. The authors present here a model of sectoral energy demand and interfuel substitution for the G-7 countries: Canada, France, Germany, Italy, Japan, the United Kingdom and the United States. The ultimate goal is to determine the relative importance of the contributing factors to the observed reversal in energy consumption per unit of production in these countries. The results they present should be viewed as preliminary. They point in the paper to a number of extensions that should improve the theoretical quality of the modeling effort and the statistical robustness of the results. They are presently expanding the data set to pinpoint more adequately the effects of structural change and conservation

  18. Dynamic energy-demand models. A comparison

    International Nuclear Information System (INIS)

    Yi, Feng

    2000-01-01

    This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs

  19. Energy demand in Portuguese manufacturing: a two-stage model

    International Nuclear Information System (INIS)

    Borges, A.M.; Pereira, A.M.

    1992-01-01

    We use a two-stage model of factor demand to estimate the parameters determining energy demand in Portuguese manufacturing. In the first stage, a capital-labor-energy-materials framework is used to analyze the substitutability between energy as a whole and other factors of production. In the second stage, total energy demand is decomposed into oil, coal and electricity demands. The two stages are fully integrated since the energy composite used in the first stage and its price are obtained from the second stage energy sub-model. The estimates obtained indicate that energy demand in manufacturing responds significantly to price changes. In addition, estimation results suggest that there are important substitution possibilities among energy forms and between energy and other factors of production. The role of price changes in energy-demand forecasting, as well as in energy policy in general, is clearly established. (author)

  20. DeMand: A tool for evaluating and comparing device-level demand and supply forecast models

    DEFF Research Database (Denmark)

    Neupane, Bijay; Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    Fine-grained device-level predictions of both shiftable and non-shiftable energy demand and supply is vital in order to take advantage of Demand Response (DR) for efficient utilization of Renewable Energy Sources. The selection of an effective device-level load forecast model is a challenging task......, mainly due to the diversity of the models and the lack of proper tools and datasets that can be used to validate them. In this paper, we introduce the DeMand system for fine-tuning, analyzing, and validating the device-level forecast models. The system offers several built-in device-level measurement...... datasets, forecast models, features, and errors measures, thus semi-automating most of the steps of the forecast model selection and validation process. This paper presents the architecture and data model of the DeMand system; and provides a use-case example on how one particular forecast model...

  1. The impact of predicted demand on energy production

    Science.gov (United States)

    El kafazi, I.; Bannari, R.; Aboutafail, My. O.

    2018-05-01

    Energy is crucial for human life, a secure and accessible supply of power is essential for the sustainability of societies. Economic development and demographic progression increase energy demand, prompting countries to conduct research and studies on energy demand and production. Although, increasing in energy demand in the future requires a correct determination of the amount of energy supplied. Our article studies the impact of demand on energy production to find the relationship between the two latter and managing properly the production between the different energy sources. Historical data of demand and energy production since 2000 are used. The data are processed by the regression model to study the impact of demand on production. The obtained results indicate that demand has a positive and significant impact on production (high impact). Production is also increasing but at a slower pace. In this work, Morocco is considered as a case study.

  2. Remarks on economic growth and energy demand

    International Nuclear Information System (INIS)

    Mueller, W.

    1979-01-01

    An energy policy according to the principles of decoupling is impossible without an increase in reasonable and profitable power application. It is also impossible without increased nuclear energy. Energy policy according to the principles of decoupling connects the natural growth tendency of a liberally arranged industry with the natural limits of the production factor 'nature'. Energy policy is the very sphere where tomorrow's necessities must be planned today. If in long range, a constant level of energy production struturised different from today's can be assumed, then this is future-bound. For it takes into consideration today tomorrow's necessities. This is the only guarantee we have for our industry to be able to grow tomorrow. On the basis of historical experience, an economic system will believe in the goal of a constant energy supply just as it was believing in abounding in energy up to day. The structure of the growth might change in long term. But accepting the thoughts of decoupling, progress will come. (orig./HP) [de

  3. An empirical analysis of energy demand in Namibia

    International Nuclear Information System (INIS)

    De Vita, G.; Hunt, L.C.

    2006-01-01

    Using a unique database of end-user local energy data and the recently developed Autoregressive Distributed Lag (ARDL) bounds testing approach to cointegration, we estimate the long-run elasticities of the Namibian energy demand function at both aggregated level and by type of energy (electricity, petrol and diesel) for the period 1980-2002. Our main results show that energy consumption responds positively to changes in GDP and negatively to changes in energy price and air temperature. The differences in price elasticities across fuels uncovered by this study have significant implications for energy taxation by Namibian policy makers. We do not find any significant cross-price elasticities between different fuel types. (author)

  4. A multi-scale adaptive model of residential energy demand

    International Nuclear Information System (INIS)

    Farzan, Farbod; Jafari, Mohsen A.; Gong, Jie; Farzan, Farnaz; Stryker, Andrew

    2015-01-01

    Highlights: • We extend an energy demand model to investigate changes in behavioral and usage patterns. • The model is capable of analyzing why demand behaves the way it does. • The model empowers decision makers to investigate DSM strategies and effectiveness. • The model provides means to measure the effect of energy prices on daily profile. • The model considers the coupling effects of adopting multiple new technologies. - Abstract: In this paper, we extend a previously developed bottom-up energy demand model such that the model can be used to determine changes in behavioral and energy usage patterns of a community when: (i) new load patterns from Plug-in Electrical Vehicles (PEV) or other devices are introduced; (ii) new technologies and smart devices are used within premises; and (iii) new Demand Side Management (DSM) strategies, such as price responsive demand are implemented. Unlike time series forecasting methods that solely rely on historical data, the model only uses a minimal amount of data at the atomic level for its basic constructs. These basic constructs can be integrated into a household unit or a community model using rules and connectors that are, in principle, flexible and can be altered according to the type of questions that need to be answered. Furthermore, the embedded dynamics of the model works on the basis of: (i) Markovian stochastic model for simulating human activities, (ii) Bayesian and logistic technology adoption models, and (iii) optimization, and rule-based models to respond to price signals without compromising users’ comfort. The proposed model is not intended to replace traditional forecasting models. Instead it provides an analytical framework that can be used at the design stage of new products and communities to evaluate design alternatives. The framework can also be used to answer questions such as why demand behaves the way it does by examining demands at different scales and by playing What-If games. These

  5. Sensitivity analysis of energy demands on performance of CCHP system

    International Nuclear Information System (INIS)

    Li, C.Z.; Shi, Y.M.; Huang, X.H.

    2008-01-01

    Sensitivity analysis of energy demands is carried out in this paper to study their influence on performance of CCHP system. Energy demand is a very important and complex factor in the optimization model of CCHP system. Average, uncertainty and historical peaks are adopted to describe energy demands. The mix-integer nonlinear programming model (MINLP) which can reflect the three aspects of energy demands is established. Numerical studies are carried out based on energy demands of a hotel and a hospital. The influence of average, uncertainty and peaks of energy demands on optimal facility scheme and economic advantages of CCHP system are investigated. The optimization results show that the optimal GT's capacity and economy of CCHP system mainly lie on the average energy demands. Sum of capacities of GB and HE is equal to historical heating demand peaks, and sum of capacities of AR and ER are equal to historical cooling demand peaks. Maximum of PG is sensitive with historical peaks of energy demands and not influenced by uncertainty of energy demands, while the corresponding influence on DH is adverse

  6. The Demand for Oil and Energy in Developing Countries

    National Research Council Canada - National Science Library

    Wolf, Jr., Charles; Relles, Daniel A; Navarro, Jaime

    1980-01-01

    ...? How will world demand be affected by the economic growth of the NOLDCs? In this report, the authors try to develop some reasonable forecasts of the range of NOLDC energy demands in the next 10 years...

  7. Demand-Side Flexibility for Energy Transitions: Ensuring the Competitive Development of Demand Response Options

    OpenAIRE

    Nursimulu, Anjali; Florin, Marie-Valentine; Vuille, François

    2015-01-01

    This report provides an overview of the current debates about demand response development, focusing primarily on Europe, with some comparisons to the United States. ‘Demand response’ includes strategies that involve end-use customers adapting or altering their electricity demand in response to grid conditions or market prices. It is viewed as a multi-purpose power-system resource that enhances the energy system’s capacity to cope with increasing demand, rising costs of conventional transmissi...

  8. ENVIRONMENTAL IMPLICATIONS OF THE INCREASING DEMAND FOR ENERGY

    Directory of Open Access Journals (Sweden)

    Perticas Diana

    2012-07-01

    Full Text Available During human society’s development on large geographical areas, a series of cultural systems have appeared and have determined a certain approach concerning the environment and social relations. These systems of thought persist even today and they are strongly influenced by individuals’ thinking and approaches in that society, thing that requires a specific approach for the implementation of these relatively new concepts (e.g. sustainable development, pollution, ecological approaches on social life. Furthermore, the continuous growth of the demand for energy in the world is seen as an alarm. Between 1970 and 1997 world energy consumption has almost doubled and it is projected to grow by about 57% during 2004-2030 and the thing which should be mentioned is that with the increasing energy demand, pollution levels will increase too. But we must not forget that electric and thermal power represent one of the basic needs of mankind, and when the fulfilment of this need started to affect the climate and implicitly human health this problem turned into a hardly manageable one. We must not forget that the world’s population is growing rapidly and the level of pollution per capita increased we might even say in direct proportion. In many cases, increased pollution has its explanation in the growing number of individuals at global level and also the increasing needs, desires, aspirations, standard of living, of these. This paper intends to objectively analyse the interconnections that arise between the environment and the growth of the demand for energy, emphasizing the devastating effects of pollution created by burning fossil fuels in order to obtain electric and thermal power as well as the current and future possibilities for the replacement of these energy reserves with renewable energy reserves. The whole analysis will be accompanied by case studies and will follow strictly imposed goals by sustainable development.

  9. MITI revises outlooks for energy and power demand

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The Ministry of International Trade and Industry has revised downward its long-term outlook on energy supply and demand, lowering the estimated primary energy demand for fiscal 2000 from 600 million tons in oil equivalent to 540 MTOE, and reducing total power demand for fiscal 2000 from 899.1 billion kWh to 838 billion. In this content, the outlook for installed nuclear capacity has been revised downward from 62,000 MW to 53,500 MW. This revision of the power supply-demand outlook was reported on Oct. 1 to the supply and demand committee (Chairman - Yoshihiko Morozumi, Adviser to Nippon Schlum-berger) of the Electric Utility Industry Council; the energy supply-demand outlook was decided on Oct. 14 by the MITI Supply and Demand Subcommittee of the Advisory Committee for Energy and reported on Oct. 16 to the conference of ministers concerned with energy. (author)

  10. Energy demand and supply, energy policies, and energy security in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Hoseok; Shin, Eui-soon; Chung, Woo-jin

    2011-01-01

    The Republic of Korea (ROK) has enjoyed rapid economic growth and development over the last 30 years. Rapid increases in energy use-especially petroleum, natural gas, and electricity, and especially in the industrial and transport sectors-have fueled the ROK's economic growth, but with limited fossil fuel resources of its own, the result has been that the ROK is almost entirely dependent on energy imports. The article that follows summarizes the recent trends in the ROK energy sector, including trends in energy demand and supply, and trends in economic, demographic, and other activities that underlie trends in energy use. The ROK has been experiencing drastic changes in its energy system, mainly induced by industrial, supply security, and environmental concerns, and energy policies in the ROK have evolved over the years to address such challenges through measures such as privatization of energy-sector activities, emphases on enhancing energy security through development of energy efficiency, nuclear power, and renewable energy, and a related focus on reducing greenhouse gas emissions. The assembly of a model for evaluating energy futures in the ROK (ROK2010 LEAP) is described, and results of several policy-based scenarios focused on different levels of nuclear energy utilization are described, and their impacts on of energy supply and demand in the ROK through the year 2030 are explored, along with their implications for national energy security and long-term policy plans. Nuclear power continues to hold a crucial position in the ROK's energy policy, but aggressive expansion of nuclear power alone, even if possible given post-Fukushima global concerns, will not be sufficient to attain the ROK's 'green economy' and greenhouse gas emissions reduction goals. - Research highlights: →Rapid industrialization caused ROK energy use to increase over 10-fold during 1970-2000, with dramatic structural changes. → Growth in energy use after 2000 slowed to under 5%/yr, and

  11. Energy demand and environmental taxes: the case of Greece

    International Nuclear Information System (INIS)

    Rapanos, V.T.; Polemis, M.L.

    2005-01-01

    The purpose of this paper is to analyze the effects that energy taxes may have on reducing environmental pollution in Greece. We study the demand for residential energy for the period 1965-1998, and on the basis of these estimates we make forecasts for CO 2 emissions in the coming years. Furthermore we develop alternative scenarios for tax changes, and study their effects on CO 2 emissions. According to our findings the harmonization of the Greek energy taxes to the average European Union levels implies an increase of total CO 2 emissions by 6% annually. If taxes are raised, however, to the highest European Union levels, the CO 2 emissions are restricted significantly. These empirical findings may indicate that environmental taxation cannot be the unique instrument for combating pollution. (author)

  12. Energy demand and environmental taxes: the case of Greece

    International Nuclear Information System (INIS)

    Rapanos, Vassilis T.; Polemis, Michael L.

    2005-01-01

    The purpose of this paper is to analyze the effects that energy taxes may have on reducing environmental pollution in Greece. We study the demand for residential energy for the period 1965-1998, and on the basis of these estimates we make forecasts for CO 2 emissions in the coming years. Furthermore we develop alternative scenarios for tax changes, and study their effects on CO 2 emissions. According to our findings the harmonization of the Greek energy taxes to the average European Union levels implies an increase of total CO 2 emissions by 6% annually. If taxes are raised, however, to the highest European Union levels, the CO 2 emissions are restricted significantly. These empirical findings may indicate that environmental taxation cannot be the unique instrument for combating pollution

  13. Short- and long-run elasticities in energy demand

    International Nuclear Information System (INIS)

    Bentzen, J.; Engsted, T.

    1993-01-01

    Short- and long-run energy demand elasticities are estimated on Danish annual data for 1948-90. Energy consumption, the real price of energy and real GDP appear to be non-stationary variables. Cointegration and error-correction methods are therefore applied. All estimated parameters have the expected signs and magnitudes and no evidence is found of a structural break in energy demand caused by the increases in real energy prices since 1973/74. (author)

  14. Long-range prospects of world energy demands and future energy sources

    International Nuclear Information System (INIS)

    Kozaki, Yasuji

    1998-01-01

    The long-range prospects for world energy demands are reviewed, and the major factors which are influential in relation to energy demands are discussed. The potential for various kinds of conventional and new energy sources such as fossil fuels, solar energies, nuclear fission, and fusion energies to need future energy demands is also discussed. (author)

  15. Long-range outlook of energy demands and supplies

    International Nuclear Information System (INIS)

    1984-01-01

    An interim report on the long-range outlook of energy demands and supplies in Japan as prepared by an ad hoc committee, Advisory Committee for Energy was given for the period up to the year 2000. As the energy demands in terms of crude oil, the following figures are set: 460 million kl for 1990, 530 million kl for 1995, and 600 million kl for 2000. In Japan, without domestic energy resources, over 80% of the primary energy has been imported; the reliance on Middle East where political situation is unstable, for petroleum is very large. The following things are described. Background and policy; energy demands in industries, transports, and people's livelihood; energy supplies by coal, nuclear energy, petroleum, etc.; energy demand/supply outlook for 2000. (Mori, K.)

  16. Influence of India’s transformation on residential energy demand

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2015-01-01

    Highlights: • The middle income group emerges as the dominant segment by 2030. • Commercial residential energy demand increases 3–4 folds compared to 2010. • Electricity and LPG demand grows above 6% per year in the reference scenario. • India faces the potential of displacing the domination of biomass by 2030. - Abstract: India’s recent macro-economic and structural changes are transforming the economy and bringing significant changes to energy demand behaviour. Life-style and consumption behaviour are evolving rapidly due to accelerated economic growth in recent times. The population structure is changing, thereby offering the country with the potential to reap the population dividend. The country is also urbanising rapidly, and the fast-growing middle class segment of the population is fuelling consumerism by mimicking international life-styles. These changes are likely to have significant implications for energy demand in the future, particularly in the residential sector. Using the end-use approach of demand analysis, this paper analyses how residential energy demand is likely to evolve as a consequence of India’s transformation and finds that by 2030, India’s commercial energy demand in the residential sector can quadruple in the high scenario compared to the demand in 2010. Demand for modern fuels like electricity and liquefied petroleum gas is likely to grow at a faster rate. However, there is a window of opportunity to better manage the evolution of residential demand in India through energy efficiency improvement

  17. Causality relationship between energy demand and economic ...

    African Journals Online (AJOL)

    This paper attempts to examine the causal relationship between electricity demand and economic growth in Nigeria using data for 1970 – 2003. The study uses the Johansen cointegration VAR approach. The ADF and Phillips – Perron test statistics were used to test for stationarity of the data. It was found that the data were ...

  18. A simple tool to evaluate the effect of the urban canyon on daylight level and energy demand in the early stages of building design

    DEFF Research Database (Denmark)

    Petersen, Steffen; Momme, Amalie Jin; Hviid, Christian Anker

    2014-01-01

    Daylight is a restricted resource in urban contexts. Rooms situated in an urban context often have a significant proportion of the sky and the sun blocked out by the urban building mass. The reduced direct daylight potential makes daylight reflected from outdoor surfaces an important daylight sou...... the impact of urban canyon parameters on indoor environment and energy performance....

  19. Global energy demand and its constraints

    International Nuclear Information System (INIS)

    Drenckhahn, Wolfgang; Pyc, Ireneusz; Riedle, Klaus

    2009-01-01

    This paper will address how the energy needs are covered today and will also present scenarios for tomorrow. Better technologies can stretch the limited energy resources, reduce the ecological impact and improve the security of supply for many countries depending on energy imports. Many of these efficient technologies are available today but need time and often financial support to penetrate the market, when not cost competitive. The other important lever is increasing the share of renewable and nuclear energy. (orig.)

  20. Energy demand : analysis, management and conservation

    International Nuclear Information System (INIS)

    Munasinghe, Mohan

    1990-01-01

    The papers in this book are expected make useful contributions to energy research and policy whether they are driven with the objective of augmenting supplies to reduce oil dependence, to increase the economic benefit per unit of energy consumed, or to reduce the impact of energy use on the environment. Papers relevant to INIS subject scopes are indexed separately. (original)

  1. Energy demand and mix for global welfare and stable ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Kern, C.; Kaiser, P.

    2012-07-01

    Social indicators show that an annual energy consumption of 2 tonnes of oil equivalent per capita (toe pc) should be enough to ensure a sufficient global average level of welfare and happiness. Hence, rich countries with currently up to 8 toe pc should reduce and poor should legitimately increase their energy demand until 2 toe pc are reached. At today's global energy mix with 80% fossil fuels, even this optimistic scenario will inevitably lead to a conflict between welfare and stable ecosystems. The population will be 9 billion by 2050 and the ecological footprint would rise from today 1.5 to 2 planet Earths. The only option to reach the desired footprint of one planet Earth is a complete shift from fossil fuels to renewables. (orig.)

  2. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    International Nuclear Information System (INIS)

    Kesicki, Fabian; Anandarajah, Gabrial

    2011-01-01

    In order to reduce energy-related CO 2 emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO 2 emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: → A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. → The role of demand is a lot higher in transport than in the residential sector. → Contribution of demand reduction is higher in early periods of the 21st century. → Societal welfare loss is found to be high when the price elasticity of demand is low. → Regional shares in residual emissions vary under different elasticity scenarios.

  3. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kesicki, Fabian, E-mail: fabian.kesicki.09@ucl.ac.uk [UCL Energy Institute, University College London, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Anandarajah, Gabrial [UCL Energy Institute, University College London, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom)

    2011-11-15

    In order to reduce energy-related CO{sub 2} emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO{sub 2} emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: > A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. > The role of demand is a lot higher in transport than in the residential sector. > Contribution of demand reduction is higher in early periods of the 21st century. > Societal welfare loss is found to be high when the price elasticity of demand is low. > Regional shares in residual emissions vary under different elasticity scenarios.

  4. Heuristic Scheduling in Grid Environments: Reducing the Operational Energy Demand

    Science.gov (United States)

    Bodenstein, Christian

    In a world where more and more businesses seem to trade in an online market, the supply of online services to the ever-growing demand could quickly reach its capacity limits. Online service providers may find themselves maxed out at peak operation levels during high-traffic timeslots but too little demand during low-traffic timeslots, although the latter is becoming less frequent. At this point deciding which user is allocated what level of service becomes essential. The concept of Grid computing could offer a meaningful alternative to conventional super-computing centres. Not only can Grids reach the same computing speeds as some of the fastest supercomputers, but distributed computing harbors a great energy-saving potential. When scheduling projects in such a Grid environment however, simply assigning one process to a system becomes so complex in calculation that schedules are often too late to execute, rendering their optimizations useless. Current schedulers attempt to maximize the utility, given some sort of constraint, often reverting to heuristics. This optimization often comes at the cost of environmental impact, in this case CO 2 emissions. This work proposes an alternate model of energy efficient scheduling while keeping a respectable amount of economic incentives untouched. Using this model, it is possible to reduce the total energy consumed by a Grid environment using 'just-in-time' flowtime management, paired with ranking nodes by efficiency.

  5. The use of physical indicators for industrial energy demand scenarios

    International Nuclear Information System (INIS)

    Schenk, Niels J.; Moll, Henri C.

    2007-01-01

    Scientific information on the size and nature of the threat of climate change is needed by politicians in order to weight their decisions. Computerised models are extremely useful tools to quantify the long-term effects of current policies. This paper describes a new modelling approach that allows formulation of industrial energy demand projections consistent with the assumptions for scenario drivers such as GDP and population. In the model, a level of industrial production is used as a key variable, and we define it in physical units, rather than in monetary units. The aim of this research is to increase insights that come with long-term energy demand scenarios. This research clearly shows that physical indicators provide additional insights in scenario analysis. The use of physical indicators instead of monetary indicators seems to affect the energy scenarios significantly. The differences with monetary indicators are larger in developing regions than in OECD regions. We conclude that an integrated energy and materials approach reveals developments that are hardly visible using a monetary approach. Moreover, this research shows the potential and benefits of the use of physical indicators for scenario development. (author)

  6. An energy supply and demand model for South Africa

    International Nuclear Information System (INIS)

    Silberberg, R.B.

    1981-08-01

    The topic of this thesis is the development of a model of energy supply and demand in South Africa to project energy flows up to the year 2005 and also to assess the implications of policy actions. In this thesis, a method of determining energy flows taking generally accepted economic and technological factors into account is developed. Also, various situations are tested, in order to determine the following: 1) Likely energy flows up to 2005, as well as possible upper and lower bounds. 2) Significant final demand sectors, in terms of energy requirements. 3) The effects of changes in supply and demand sector technology. 4) The implications of policy options such as enengy independence. Owing to the different characteristics of the energy supply and demand sectors, the following techniques were used: 1) Energy demand sectors. 2) Energy supply sectors. 3) Supply/demand equilibration 4) Output. Through successive runs of the model, the policy-maker is able to indentify likely values of energy flows, as well as upper and lower boundaries given the described set of assumptions. The following statements are made as conclusions: 1) The growth rate of domectic coal demand is likely to be 5,5 % per annum up to 2005. 2) The Iron and Steel industry and the Mining industry have the greatest potential effect on coal demand. 3) The coal growth rate stated above implies certain improvements in coal to liquid fuel and electricity conversion. 4) The coal demands of oil energy independence are listed, highlighting the fact that major coal exports and energy independence may be mutually exclusive. Other conclusions regarding capital requirements, oil imports and coking coal utilization are described. The model permits a consistent and inteqrated forecast of national energy flows to be made, providing the policymaker with projections that include the effects of uncertainty with regard to future technologies and economic output. This feature is crucial for policy formulation

  7. The effect of expected energy prices on energy demand: implications for energy conservation and carbon taxes

    International Nuclear Information System (INIS)

    Kaufmann, R.K.

    1994-01-01

    This paper describes an empirical method for estimating the effect of expected prices on energy demand. Data for expected oil prices are compiled from forecasts for real oil prices. The effect of expectations on energy demand is simulated with an expectation variable that proxies the return on investment for energy efficient capital. Econometric results indicate that expected prices have a significant effect on energy demand in the US between 1975 and 1989. A model built from the econometric results indicates that the way in which consumers anticipate changes in energy prices that are generated by a carbon tax affects the quantity of emissions abated by the tax. 14 refs., 4 figs., 1 tab

  8. The structure of residential energy demand in Greece

    International Nuclear Information System (INIS)

    Rapanos, Vassilis T.; Polemis, Michael L.

    2006-01-01

    This paper attempts to shed light on the determinants of residential energy demand in Greece, and to compare it with some other OECD countries. From the estimates of the short-run and long-run elasticities of energy demand for the period 1965-1999, we find that residential energy demand appears to be price inelastic. Also, we do not find evidence of a structural change probably because of the low efficiency of the energy sector. We find, however, that the magnitude of the income elasticity varies substantially between Greece and other OECD countries

  9. Meeting energy demands: chaos round the corner

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, A J

    1976-02-01

    In this interview with Coal Gold and Base Minerals, Dr. Petrick talks about several aspects of his recent report and indicates that it will only be in the next 20 or 30 years that the real energy crisis will appear. He goes on to warn of possible chaos if energy is continually squandered throughout the world.

  10. Demand for oil and energy in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  11. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  12. Long term energy demand projections for croatian transport sector

    DEFF Research Database (Denmark)

    Puksec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    Transport sector in Croatia represents one of the largest consumers of energy today with a share of almost one third of final energy demand. That is why improving energy efficiency and implementing different mechanisms that would lead to energy savings in this sector would be relevant. Through th...

  13. Energy demand in the world of tomorrow

    International Nuclear Information System (INIS)

    Oehme, W.

    1979-01-01

    The ability to make use of energy has been one of the main incentives of human development - a matter of course which was never thought about until the availability of energy became uncertain. This explains why people feel deeply concerned when hearing or reacting the words 'energy' and 'future'. Formerly, these words had been connected with the hope for a better future - nowadays people are afraid that their present standard of living may turn out to be nothing but a stage of transition. (orig.) [de

  14. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  15. Spatial analysis of the electrical energy demand in Greece

    International Nuclear Information System (INIS)

    Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.

    2017-01-01

    The Electrical Energy Demand (EED) of the agricultural, commercial and industrial sector in Greece, as well as its use for domestic activities, public and municipal authorities and street lighting are analysed spatially using Geographical Information System and spatial statistical methods. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the NUTS (Nomenclature of Territorial Units for Statistics) level 3. The aim is to identify spatial patterns of the EED and its transformations such as the ratios of the EED to socioeconomic variables, i.e. the population, the total area, the population density and the Gross Domestic Product (GDP). Based on the analysis, Greece is divided in five regions, each one with a different development model, i.e. Attica and Thessaloniki which are two heavily populated major poles, Thessaly and Central Greece which form a connected geographical region with important agricultural and industrial sector, the islands and some coastal areas which are characterized by an important commercial sector and the rest Greek areas. The spatial patterns can provide additional information for policy decision about the electrical energy management and better representation of the regional socioeconomic conditions. - Highlights: • We visualize spatially the Electrical Energy Demand (EED) in Greece. • We apply spatial analysis methods to the EED data. • Spatial patterns of the EED are identified. • Greece is classified in five distinct groups, based on the analysis. • The results can be used for optimal planning of the electric system.

  16. Empirical Analysis of Renewable Energy Demand in Ghana with Autometrics

    OpenAIRE

    Ishmael Ackah; Mcomari Asomani

    2015-01-01

    Increased investment in renewable energy has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana’s energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. Due to dearth of studie...

  17. The SEEC United Kingdom energy demand forecast (1993-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, R; Hawdon, D; Pearson, P; Robinson, C; Stevens, P

    1993-12-16

    The aims of this paper are to present the underlying determinants of fuel consumption, such as economic activity and prices, develop a series of simple yet reliable sectoral models of energy demand, which incorporate recent modelling developments; provide forecasts of energy demand and its environmental consequences; examine the effects of VAT on domestic fuel and increased competition in the electricity sector; and aid the present debate on energy markets. The paper analyses world oil prices, with a particular focus on Iraq's role, reviews energy policy in the UK and discusses SEEC's expectations about UK fuel prices in coming years and how they vary among sectors. It forecasts final user demand in the domestic, iron and steel, other industry, transport, agricultural, public administration and defence and miscellaneous sectors. The paper also examines the major changes that are underway in electricity generators' demand for fuel, and primary energy consumption and its environmental implications.

  18. Continental integration and energy demand in the United States

    International Nuclear Information System (INIS)

    Manning, D.J.

    2004-01-01

    This presentation highlighted some of the major issues regarding energy demand in the United States and continental integration. The energy markets in Canada and the United States are economically integrated with large cross-border investment. Therefore, the energy infrastructure can be significantly affected by inconsistencies between the two countries in policy, regulatory processes and fiscal regimes. The author discussed the inelasticity in the natural gas demand in the United States in the near-term, and how natural gas consumption, particularly for power generation, is greater than North America's supply capacity. New supplies such as liquefied natural gas and arctic gas are needed to meet growing demands. The role of renewable energy technologies and energy efficiency was also discussed. It was emphasized that imbalances in supply and demand inevitably lead to price volatility and that high prices are a major obstacle to economic growth. tabs., figs

  19. Managing the growing energy demand - The case of Egypt

    Energy Technology Data Exchange (ETDEWEB)

    El-Kholy, Hosni; Faried, Ragy

    2010-09-15

    The electric energy consumption rate in Egypt has an average increase of 7% per year through the last three decades. In order to satisfy the ever increasing energy demand, several actions were, and have to be taken. These actions have to be carried out in parallel. The one having the greatest effect is the measures carried out for energy conservation and loss reduction. Diversifying the energy source such as utilization of Renewable Energy technologies can contribute to satisfying the demand and extending the hydro-carbon reserves life. Regional integration of electrical networks will save expenditures used to build additional power plants.

  20. Measuring and controlling unfairness in decentralized planning of energy demand

    NARCIS (Netherlands)

    Pournaras, E.; Vasirani, M.; Kooij, R.E.; Aberer, K.

    2014-01-01

    Demand-side energy management improves robustness and efficiency in Smart Grids. Load-adjustment and load-shifting are performed to match demand to available supply. These operations come at a discomfort cost for consumers as their lifestyle is influenced when they adjust or shift in time their

  1. Automated Demand Response for Energy Sustainability

    Science.gov (United States)

    2015-05-01

    technology), particularly when coupled with an installation’s microgrid control systems, could provide much needed stabilization. By causing load to...include advanced energy control systems that provide load reduction services to non-critical loads. The microgrid system will use these controls to...signals from the grid operator. Thus, the technology creates a dual- use model for advanced microgrid controls . 14 2.0 TECHNOLOGY DESCRIPTION This

  2. Reevaluation of Turkey's hydropower potential and electric energy demand

    International Nuclear Information System (INIS)

    Yueksek, Omer

    2008-01-01

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  3. Mexico's long-term energy outlook : results of a detailed energy supply and demand simulation

    International Nuclear Information System (INIS)

    Conzelmann, G.; Quintanilla, J.; Conde, L.A.; Fernandez, J.; Mar, E.; Martin del Campo, C.; Serrato, G.; Ortega, R.

    2006-01-01

    This article discussed the results of a bottom-up analysis of Mexico's energy markets which was conducted using an energy and power evaluation program. The program was used to develop energy market forecasts to the year 2025. In the first phase of the study, dynamic optimization software was used to determine the optimal, least-cost generation system expansion path to meet growing demand for electricity. A separate model was used to determine the optimal generating strategy of mixed hydro-thermal electric power systems. In phase 2, a nonlinear market-based approach was used to determine the energy supply and demand balance for the entire energy system, as well as the response of various segments of the energy system to changes in energy price and demand levels. Basic input parameters included information on the energy system structure; base-year energy statistics; and, technical and policy constraints. A total of 14 scenarios were modelled to examine variations in load growth, sensitivities to changes in projected fuel prices, variations in assumed natural gas availability, system reliability targets, and the potential for additional nuclear capacity. Forecasts for the entire energy system were then developed for 4 scenarios: (1) reference case; (2) limited gas scenario; (3) renewable energy; and (4) additional nuclear power generation capacity. Results of the study showed that Mexico's crude oil production is projected to increase annually by 1 per cent to 2025. Imports of petroleum products resulting from the country's rapidly growing transportation sector will increase. Demand for natural gas is expected to outpace projected domestic production. The long-term market outlook for Mexico's electricity industry shows a heavy reliance on natural gas-based generating technologies. It was concluded that alternative results for a constrained-gas scenario showed a substantial shift to coal-based generation and associated effects on the natural gas market. 4 refs., 26

  4. Optimizing renewable energy, demand response and energy storage to replace conventional fuels in Ontario, Canada

    International Nuclear Information System (INIS)

    Richardson, David B.; Harvey, L.D. Danny

    2015-01-01

    Electricity systems with high penetrations of renewable energy require a mix of resources to balance supply with demand, and to maintain safe levels of system reliability. A load balancing methodology is developed to determine the optimal lowest-cost mix of renewable energy resources, demand response, and energy storage to replace conventional fuels in the Province of Ontario, Canada. Three successive cumulative scenarios are considered: the displacement of fossil fuel generation, the planned retirement of an existing nuclear reactor, and the electrification of the passenger vehicle fleet. The results show that each of these scenarios is achievable with energy generation costs that are not out of line with current and projected electricity generation costs. These transitions, especially that which proposes the electrification of the vehicle fleet, require significant investment in new generation, with installed capacities much higher than that of the current system. Transitions to mainly renewable energy systems require changes in our conceptualization of, and approach to, energy system planning. - Highlights: • Model three scenarios to replace conventional fuels with renewables, storage and DR (demand response). • Determine optimal low-cost mix of resources for each scenario. • Scenarios require much higher installed capacities than current system. • Energy transitions require changes in approach to energy system planning.

  5. Demand-Side Flexibility for Energy Transitions: Policy Recommendations for Developing Demand Response

    OpenAIRE

    Nursimulu, Anjali; Florin, Marie-Valentine; Vuille, François

    2016-01-01

    As a follow-up to IRGC's report on demand-side flexibility for energy transitions, this Policy Brief highlights that increasing flexibility in power systems is needed to accommodate higher shares of non-controllable and intermittent renewable generation, and that this requires changes to the market design and regulatory framework, to facilitate the development and deployment of appropriate technologies and market-based instruments (e.g. taxes and subsidies). The Policy Brief focuses on demand...

  6. Demand Response Resource Quantification with Detailed Building Energy Models

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine; Horsey, Henry; Merket, Noel; Stoll, Brady; Nag, Ambarish

    2017-04-03

    Demand response is a broad suite of technologies that enables changes in electrical load operations in support of power system reliability and efficiency. Although demand response is not a new concept, there is new appetite for comprehensively evaluating its technical potential in the context of renewable energy integration. The complexity of demand response makes this task difficult -- we present new methods for capturing the heterogeneity of potential responses from buildings, their time-varying nature, and metrics such as thermal comfort that help quantify likely acceptability of specific demand response actions. Computed with an automated software framework, the methods are scalable.

  7. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  8. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    Science.gov (United States)

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-01

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced. PMID:29315250

  9. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids.

    Science.gov (United States)

    Pop, Claudia; Cioara, Tudor; Antal, Marcel; Anghel, Ionut; Salomie, Ioan; Bertoncini, Massimo

    2018-01-09

    In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  10. Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids

    Directory of Open Access Journals (Sweden)

    Claudia Pop

    2018-01-01

    Full Text Available In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.. In our approach, a blockchain based distributed ledger stores in a tamper proof manner the energy prosumption information collected from Internet of Things smart metering devices, while self-enforcing smart contracts programmatically define the expected energy flexibility at the level of each prosumer, the associated rewards or penalties, and the rules for balancing the energy demand with the energy production at grid level. Consensus based validation will be used for demand response programs validation and to activate the appropriate financial settlement for the flexibility providers. The approach was validated using a prototype implemented in an Ethereum platform using energy consumption and production traces of several buildings from literature data sets. The results show that our blockchain based distributed demand side management can be used for matching energy demand and production at smart grid level, the demand response signal being followed with high accuracy, while the amount of energy flexibility needed for convergence is reduced.

  11. Analysis of energy and utility service demands

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The collection, analysis, and review of existing data on a community's service requirements are documented. The research focused on the analysis of energy-using activities including both micro activities such as space heating, cooking, lighting, and transportation; and macro activities such as providing shelter, health care, education, etc. The technical report describes the analytical framework developed for community description; describes an indexing system by which a catalog of services can be accessed; illustrates the application of the data to an existing community; and provides ancillary information on data availability. A catalog of data is presented which includes several sets of indices which facilitate access of data using various keys. Abstracts of 48 data sources are analyzed. Each abstract includes a description and evaluation of the data, a sampling of that data, an assessment as to how that data may be applied to other analyses, and a reference where the user can secure additional data. (MCW)

  12. Energy Demands and Efficiency Strategies in Data Center Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature

  13. Research on energy supply, demand and economy forecasting in Japan

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Kamezaki, Hiroshi; Yuyama, Tomonori; Suzuki, Atsushi

    1999-10-01

    This project aims to do research on forecasts of energy demand structure and electricity generation cost in each power plant in Japan in the 21st century, considering constructing successful FBR scenario. During the process of doing research on forecasts of energy demand structure in Japan, documents published from organizations in inside and outside of Japan were collected. These documents include prospects of economic growth rate, forecasts of amount for energy supply and demand, the maximum amount of introducing new energy resources, CO2 regulation, and evaluation of energy best mixture. Organizations in Japan such as Economic Council and Japan Energy Economic Research Institute have provided long-term forecasts until the early 21st century. Meanwhile, organizations overseas have provided forecasts of economic structure, and demand and supply for energy in OECD and East Asia including Japan. In connection with forecasts of electricity generation cost in each power plant, views on the ultimate reserves and cost of resources are reviewed in this report. According to some views on oil reserves, making assumptions based on reserves/production ratio, the maximum length of the time that oil reserves will last is 150 years. In addition, this report provides summaries of cost and potential role of various resources, including solar energy and wind energy; and views on waste, safety, energy security-related externality cost, and the price of transferring CO2 emission right. (author)

  14. Embedded generation for industrial demand response in renewable energy markets

    International Nuclear Information System (INIS)

    Leanez, Frank J.; Drayton, Glenn

    2010-01-01

    Uncertainty in the electrical energy market is expected to increase with growth in the percentage of generation using renewable resources. Demand response can play a key role in giving stability to system operation. This paper discusses the embedded generation for industrial demand response in renewable energy markets. The methodology of the demand response is explained. It consists of long-term optimization and stochastic optimization. Wind energy, among all the renewable resources, is becoming increasingly popular. Volatility in the wind energy sector is high and this is explained using examples. Uncertainty in the wind market is shown using stochastic optimization. Alternative techniques for generation of wind energy were seen to be needed. Embedded generation techniques include co-generation (CHP) and pump storage among others. These techniques are analyzed and the results are presented. From these results, it is seen that investment in renewables is immediately required and that innovative generation technologies are also required over the long-term.

  15. Modelling transport energy demand: A socio-technical approach

    International Nuclear Information System (INIS)

    Anable, Jillian; Brand, Christian; Tran, Martino; Eyre, Nick

    2012-01-01

    Despite an emerging consensus that societal energy consumption and related emissions are not only influenced by technical efficiency but also by lifestyles and socio-cultural factors, few attempts have been made to operationalise these insights in models of energy demand. This paper addresses that gap by presenting a scenario exercise using an integrated suite of sectoral and whole systems models to explore potential energy pathways in the UK transport sector. Techno-economic driven scenarios are contrasted with one in which social change is strongly influenced by concerns about energy use, the environment and well-being. The ‘what if’ Lifestyle scenario reveals a future in which distance travelled by car is reduced by 74% by 2050 and final energy demand from transport is halved compared to the reference case. Despite the more rapid uptake of electric vehicles and the larger share of electricity in final energy demand, it shows a future where electricity decarbonisation could be delayed. The paper illustrates the key trade-off between the more aggressive pursuit of purely technological fixes and demand reduction in the transport sector and concludes there are strong arguments for pursuing both demand and supply side solutions in the pursuit of emissions reduction and energy security.

  16. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  17. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    OpenAIRE

    Huang, Junbing; Tang, Yuee; Chen, Shuxing

    2018-01-01

    Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based) model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to ...

  18. Report on energy supply and demand in Canada : 2002

    International Nuclear Information System (INIS)

    Dion, M.; Lacroix, J.; Smalldridge, G.; Svab, J.; Cromey, N.

    2003-01-01

    This paper presents an analysis of energy use in Canada. The year 1990 was used as a starting point because that is the base year for energy inventories for the Kyoto Protocol. Data was derived from monthly and quarterly surveys. The report describes data quality and methodology as well as energy conversion factors. It includes individual tables on primary and secondary energy for: coal, crude oil, natural gas, natural gas liquids, primary electricity, steam, coke, secondary electricity, refined petroleum products, non-energy refined petroleum products, solid wood waste, and spent liquor. The most recent data on energy demand and supply indicates that Canadians consumed energy for transportation twice as fast as the nation's industries did in the past 12 years. From 1990 to 2002, energy consumption in the transportation sector increased 22.7 per cent while demand in the industrial sector rose by 11.7 per cent. Canada's energy consumption increased 17.6 per cent from 1990 to 2002. In 2002, the transportation and industrial sectors each accounted for 30 per cent of total energy consumption. Consumption of natural gas, refined petroleum and coal increased 18.1 per cent, with the greatest increased being in natural gas. In 2002, electricity produced by water, nuclear power, wind and tidal action accounted for 25 per cent of energy consumption. Secondary electricity generation from fossil fuels increased steadily. The general increase in domestic demand for energy in 2002 was due to an increase in energy consumption by the industrial sector and by growing residential sales. In 2002, the rate of increase in energy consumption in Alberta was higher than in any other province due to a booming economy and rising population. Ontario consumed the most energy in 2002, accounting for 34 per cent of the country's energy demand

  19. Scenarios of energy demand and efficiency potential for Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  20. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  1. The world energy demand in 2007: How high oil prices impact the global energy demand? June 9, 2008

    International Nuclear Information System (INIS)

    2008-01-01

    How high oil prices impact the global energy demand? The growth of energy demand continued to accelerate in 2007 despite soaring prices, to reach 2,8 % (+ 0,3 point compared to 2006). This evolution results from two diverging trends: a shrink in energy consumption in most of OECD countries, except North America, and a strong increase in emerging countries. Within the OECD, two contrasting trends can be reported, that compensate each other partially: the reduction of energy consumption in Japan (-0.8%) and in Europe (-1.2%), particularly significant in the EU-15 (-1.9%); the increase of energy consumption in North America (+2%). Globally, the OECD overall consumption continued to increase slightly (+0.5%), while electricity increased faster (2,1%) and fuels remained stable. Elsewhere, the strong energy demand growth remained very dynamic (+5% for the total demand, 8% for electricity only), driven by China (+7.3%). The world oil demand increased by 1% only, but the demand has focused even more on captive end usages, transports and petrochemistry. The world gasoline and diesel demand increased by around 5,7% in 2007, and represents 53% of the total oil products demand in 2007 (51% in 2006). If gasoline and diesel consumption remained quasi-stable within OECD countries, the growth has been extremely strong in the emerging countries, despite booming oil prices. There are mainly two factors explaining this evolution where both oil demand and oil prices increased: Weak elasticity-prices to the demand in transport and petrochemistry sectors Disconnection of domestic fuel prices in major emerging countries (China, India, Latin America) compared to world oil market prices Another striking point is that world crude oil and condensate production remained almost stable in 2007, hence the entire demand growth was supported by destocking. During the same period, the OPEC production decreased by 1%, mainly due to the production decrease in Saudi Arabia, that is probably more

  2. Energy demand analysis in the household, commercial and agriculture sector

    International Nuclear Information System (INIS)

    Lapillonne, B.

    1991-01-01

    This chapter of the publication is dealing with Energy Demand Analysis in the Household, Commercial and Agricultural Sector. Per Capita total energy consumption in the residential and commercial sector is given and variation among countries are discussed. 12 figs, 1 tab

  3. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  4. Some ideas on the energy demand in the 21. century

    International Nuclear Information System (INIS)

    Frot, J.

    2007-01-01

    The author reviews different scenarios to quench the worldwide demand for energy. 4 scenarios have been studied for the 2000-2100 period. The scenarios differ on the importance given to concepts like: -) the behaviour towards future generations, -) the solidarity between rich and poor countries, -) the acknowledgement of the climate change, -) the risk of energy dearth, -) the improvement of energy efficiency, -) the necessity of gross national product growth, -) the public acceptance of nuclear power, and -) CO 2 sequestration. One of the scenarios is extremely courageous: politicians and population are aware of the great problems that are looming and take the right decisions quite early. This scenario leads to a demand of 18 Gtep/year in 2100. In the worst scenario people are reluctant to any change in their way to use energy, this scenario leads to a demand of 49 Gtep/year

  5. A supply and demand based volatility model for energy prices

    International Nuclear Information System (INIS)

    Kanamura, Takashi

    2009-01-01

    This paper proposes a new volatility model for energy prices using the supply-demand relationship, which we call a supply and demand based volatility model. We show that the supply curve shape in the model determines the characteristics of the volatility in energy prices. It is found that the inverse Box-Cox transformation supply curve reflecting energy markets causes the inverse leverage effect, i.e., positive correlation between energy prices and volatility. The model is also used to show that an existing (G)ARCH-M model has the foundations on the supply-demand relationship. Additionally, we conduct the empirical studies analyzing the volatility in the U.S. natural gas prices. (author)

  6. A supply and demand based volatility model for energy prices

    Energy Technology Data Exchange (ETDEWEB)

    Kanamura, Takashi [J-POWER, 15-1, Ginza 6-Chome, Chuo-ku, Tokyo 104-8165 (Japan)

    2009-09-15

    This paper proposes a new volatility model for energy prices using the supply-demand relationship, which we call a supply and demand based volatility model. We show that the supply curve shape in the model determines the characteristics of the volatility in energy prices. It is found that the inverse Box-Cox transformation supply curve reflecting energy markets causes the inverse leverage effect, i.e., positive correlation between energy prices and volatility. The model is also used to show that an existing (G)ARCH-M model has the foundations on the supply-demand relationship. Additionally, we conduct the empirical studies analyzing the volatility in the U.S. natural gas prices. (author)

  7. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes

    Science.gov (United States)

    Kelly, Jack; Knottenbelt, William

    2015-03-01

    Many countries are rolling out smart electricity meters. These measure a home’s total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the ‘ground truth’ demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset.

  8. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes.

    Science.gov (United States)

    Kelly, Jack; Knottenbelt, William

    2015-01-01

    Many countries are rolling out smart electricity meters. These measure a home's total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the 'ground truth' demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset.

  9. The aging US population and residential energy demand

    International Nuclear Information System (INIS)

    Tonn, Bruce; Eisenberg, Joel

    2007-01-01

    This piece explores the relationships between a rapidly aging U.S. population and the demand for residential energy. Data indicate that elderly persons use more residential energy than younger persons. In this time of steeply rising energy costs, energy is an especially important financial issue for the elderly with low and/or fixed incomes. As the absolute number of elderly as well as their proportion of the total US population both continue to increase, energy and the elderly population looms as another energy policy challenge

  10. Energy demand of the German and Dutch residential building stock under climate change

    Science.gov (United States)

    Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics

  11. Energy demands during a judo match and recovery.

    Science.gov (United States)

    Degoutte, F; Jouanel, P; Filaire, E

    2003-06-01

    To assess energy demand during a judo match and the kinetics of recovery by measuring the metabolites of the oxypurine cascade, lipolytic activity, and glycolytic pathway. Venous blood samples were taken from 16 national judoists (mean (SEM) age 18.4 (1.6) years), before (T(1)) and three minutes (T(2)), one hour (T(3)), and 24 hours (T(4)) after a match. A seven day diet record was used to evaluate nutrient intake. Nutrient analysis indicated that these athletes followed a low carbohydrate diet. Plasma lactate concentration had increased to 12.3 (1.8) mmol/l at the end of the match. An increase in the levels of extracellular markers of muscle adenine nucleotide catabolism, urea, and creatinine was observed at T(2), while uric acid levels remained unchanged. High concentrations of urea persisted for 24 hours during the recovery period. Ammonia, hypoxanthine, xanthine, and creatinine returned to control levels within the 24 hour recovery period. Uric acid concentrations rose from T(3) and had not returned to baseline 24 hours after the match. The levels of triglycerides, glycerol, and free fatty acids had increased significantly (p<0.05) after the match (T(2)) but returned to baseline values within 24 hours. Concentrations of high density lipoprotein cholesterol and total cholesterol were significantly increased after the match. These results show that a judo match induces both protein and lipid metabolism. Carbohydrate availability, training adaptation, and metabolic stress may explain the requirement for these types of metabolism.

  12. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  13. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...... electricity production mix, taking into account country’s development plans (without climate change); 2) Climate Change Damage Case, which introduces the climate changes by adjusting the heating and cooling degree days inputs, consistent with the existing national climate scenarios; and 3) Climate Change...... Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages...

  14. Demand-side management and demand response in the Ontario energy sectors

    International Nuclear Information System (INIS)

    2004-01-01

    A directive from the former Minister of Energy was received by the Ontario Energy Board (OEB), directing the Board to consult with stakeholders on options for the delivery of demand-side management (DSM) and demand response (DR) activities within the electricity sector, including the role of local distribution companies in such activities. The implementation costs were to be balanced with the benefits to both consumers and the entire system. The scope of the review was expanded by the Board to include the role of gas distribution companies in DSM. A consultation process was implemented and stakeholders were invited to participate. A series of recommendations was made, including: (1) a hybrid framework utilizing market-based and public-policy approaches should deliver DSM and DR activities in Ontario's energy markets, (2) DSM and DR activities should come under the responsibility of a central agency, (3) DSM and DR activities should be coordinated through cooperation between the Ministry of Energy, the Independent Electricity Market Operator (IMO) and the Ontario Energy Board, (4) regulatory mechanisms to induce gas distributors, electricity transmitters and electricity distributors to reduce distribution system losses should be put in place, (5) all electricity consumers should fund electricity DSM and some retail DR initiatives through a transparent, non-bypassable consumption charge, and (6) the Board should design, develop and deliver information to consumers regarding energy conservation, energy efficiency, load management, and cleaner sources of energy. refs., 4 figs

  15. Energy Demand and Supply Analysis and Outlook - Energy Forecast for 2001 and Policy Issues

    Energy Technology Data Exchange (ETDEWEB)

    Na, In Gang; Ryu, Ji Chul [Korea Energy Economics Institute, Euiwang (Korea)

    2000-12-01

    The energy consumption in Korea has grown at impressive rates during the last 3 decades, along with the economic growth. The global concern about the environment issue and the restructuring in Korea energy industry has an effect on the pattern and trend of energy demand in Korea. Under the situation, this research are focusing on the analysis of energy consumption and forecast of energy demand. First of all, we analyze the trends and major characteristics of energy consumption, beginning with 1970s and up to the third quarter of 2000. In the analysis of energy consumption by energy types, we also perform qualitative analysis on the trends and characteristics of each energy types, including institutional analysis. In model section, we start with the brief description of synopsis and outline the survey on empirical models for energy demand. The econometric model used in KEEI's short-term energy forecast is outlined, followed by the result of estimations. The 2001 energy demand forecast is predicted in detail by sectors and energy types. In the year 2001, weak demand is projected to continue through the First Half, and pick up its pace of growth only in the Second Half. Projected total demand is 201.3 million TOE or 4.4% growth. In the last section, the major policy issues are summarized in three sub-sections: the restructuring in energy industry, the security of energy demand and supply, international energy cooperation including south-north energy cooperation. (author). 86 refs., 43 figs., 73 tabs.

  16. The timing and societal synchronisation of energy demand

    OpenAIRE

    Mattioli, G; Shove, E; Torriti, J

    2014-01-01

    It is increasingly important to know about when energy is used in the home, at work and on the move. Issues of time and timing have not featured strongly in energy policy analysis and in modelling, much of which has focused on estimating and reducing total average annual demand per capita. If smarter ways of balancing supply and demand are to take hold, and if we are to make better use of decarbonised forms of supply, it is essential to understand and intervene in patterns of societal synchro...

  17. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  18. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2013-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  19. Energy demand forecasting method based on international statistical data

    International Nuclear Information System (INIS)

    Glanc, Z.; Kerner, A.

    1997-01-01

    Poland is in a transition phase from a centrally planned to a market economy; data collected under former economic conditions do not reflect a market economy. Final energy demand forecasts are based on the assumption that the economic transformation in Poland will gradually lead the Polish economy, technologies and modes of energy use, to the same conditions as mature market economy countries. The starting point has a significant influence on the future energy demand and supply structure: final energy consumption per capita in 1992 was almost half the average of OECD countries; energy intensity, based on Purchasing Power Parities (PPP) and referred to GDP, is more than 3 times higher in Poland. A method of final energy demand forecasting based on regression analysis is described in this paper. The input data are: output of macroeconomic and population growth forecast; time series 1970-1992 of OECD countries concerning both macroeconomic characteristics and energy consumption; and energy balance of Poland for the base year of the forecast horizon. (author). 1 ref., 19 figs, 4 tabs

  20. Energy demand forecasting method based on international statistical data

    Energy Technology Data Exchange (ETDEWEB)

    Glanc, Z; Kerner, A [Energy Information Centre, Warsaw (Poland)

    1997-09-01

    Poland is in a transition phase from a centrally planned to a market economy; data collected under former economic conditions do not reflect a market economy. Final energy demand forecasts are based on the assumption that the economic transformation in Poland will gradually lead the Polish economy, technologies and modes of energy use, to the same conditions as mature market economy countries. The starting point has a significant influence on the future energy demand and supply structure: final energy consumption per capita in 1992 was almost half the average of OECD countries; energy intensity, based on Purchasing Power Parities (PPP) and referred to GDP, is more than 3 times higher in Poland. A method of final energy demand forecasting based on regression analysis is described in this paper. The input data are: output of macroeconomic and population growth forecast; time series 1970-1992 of OECD countries concerning both macroeconomic characteristics and energy consumption; and energy balance of Poland for the base year of the forecast horizon. (author). 1 ref., 19 figs, 4 tabs.

  1. Meeting India's growing energy demand with nuclear power

    International Nuclear Information System (INIS)

    Matzie, R.

    2009-01-01

    Full text: With world energy demand expected to nearly double by 2030, the need for safe, reliable and clean energy is imperative. In India, energy demand has outpaced the increase in energy production, with the country experiencing as much as a 12 percent gap between peak demand and availability. To meet demand, nuclear power is the ideal solution for providing baseload electricity, and as much as 40-60 GWe of nuclear capacity will need to be added throughout the county over the next 20 years. This presentation will describe the benefits of nuclear power compared to other energy sources, provide an overview of new nuclear power plant construction projects worldwide, and explain the benefits and advantages of the Westinghouse AP1000 nuclear power plant. The presentation will also outline the steps that Westinghouse is taking to help facilitate new nuclear construction in India, and how the company's 'Buy Where We Build' approach to supply chain management will positively impact the Indian economy through continued in-country supplier agreements, job creation, and the exporting of materials and components to support AP1000 projects outside of India. Finally, the presentation will show that the experience Westinghouse is gaining in constructing AP1000 plants in both China and the United States will help ensure the success of projects in India

  2. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Junbing Huang

    2018-01-01

    Full Text Available Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a new energy demand forecasting framework is presented at first. On the basis of historical annual data of electricity usage over the period of 1985–2015, the coefficients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater accuracy and reliability compared with other single optimization methods.

  3. Holidays in lights: Tracking cultural patterns in demand for energy services

    Science.gov (United States)

    Román, Miguel O.; Stokes, Eleanor C.

    2015-06-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  4. Holiday in Lights: Tracking Cultural Patterns in Demand for Energy Services

    Science.gov (United States)

    Roman, Miguel O.; Stokes, Eleanor C.

    2015-01-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  5. Demand-side management and demand response in the Ontario energy sectors

    International Nuclear Information System (INIS)

    2003-01-01

    In June 2003, the Ontario Energy Board was asked by the Minister of Energy to identify and review options for the delivery of demand-side management (DSM) and demand response (DR) activities within the electricity sector, by consulting with stakeholders. The role of local distribution company (distributor) in such activities was also to be determined. The objective was to balance implementation costs with the benefits to consumers and the entire system. The preliminary research and ideas were presented in this discussion paper. Definitions of both DSM and DR were provided, followed by an overview of economic theory and competitive markets. The framework for discussion was presented, along with a list of issues and other considerations. A spectrum of potential approaches to a DSM and DR framework was included and jurisdictional examples provided. A brief overview of the concept of load aggregation was presented and the next steps for consultations were outlined. 30 refs., 7 tabs

  6. Overview of energy demand and opportunities for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, P. J.

    1977-10-15

    The widespread practice of conservation could make a substantial reduction in the rate of growth of demand and hence in the rate at which resources need to be developed and consumed. An attempt is not made to show that conservation is an alternative to increasing energy supply. After reviewing the consumption of energy before the 1973 energy crisis, the main features of conservation which have brought it to the forefront of energy policy are examined. Some information on present consumption patterns in New Zealand is presented.

  7. Forecasting long-term energy demand of Croatian transport sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Krajačić, Goran; Lulić, Zoran

    2013-01-01

    predictions for the Croatian transport sector are presented. Special emphasis is given to different influencing mechanisms, both legal and financial. The energy demand predictions presented in this paper are based on an end-use simulation model developed and tested with Croatia as a case study. The model...

  8. The role of nuclear power in meeting future energy demands

    International Nuclear Information System (INIS)

    Fuchs, K.

    1977-01-01

    Future energy demands and possibilities of meeting them are outlined. The current status and future developments of nuclear energetics all over the world and in the CMEA member states are discussed considering reactor safety, fission product releases, and thermal pollution of the environment

  9. Uruguaian rural area: energy demand and sources supply

    International Nuclear Information System (INIS)

    Reolon, R.

    1994-01-01

    The present work is about the energy demand in rural areas and its electrification like one of the factors of its residents maintenance, in the means that they are essential for the development but intensive of agrarian intensity, nevertheless we will try to determine their quantity and the character one of them

  10. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  11. Power without manpower: Forecasting labour demand for Estonian energy sector

    International Nuclear Information System (INIS)

    Meriküll, Jaanika; Eamets, Raul; Humal, Katrin; Espenberg, Kerly

    2012-01-01

    As energy demand and prices continue to grow, oil shale might help mitigate the energy crisis—it can widely be found all over the world but so far has not been widely used. Estonia is unique in the world for producing a large majority of energy out of oil shale and has been set as an example in numerous papers covering oil shale deposits, technology etc. This paper is the first to analyse oil shale energy related workforce and provides scenario forecasts of the labour demand for the Estonian energy sector in 2010–2020. The contribution of the paper is twofold. First, the paper provides a valuable insight into oil shale energy related workforce, enabling to take into consideration the educational needs in countries where oil shale industry might be set up. Second, methodology-wise, the paper relates labour demand and supply to different scenarios of energy production capacities. The results illustrate problems related to aging of the workforce in energy production. If the existing trends continue in educational attainment in Estonia, there will be a serious shortage of high-skilled engineering and manufacturing specialists. Our method provides a simple yet reliable enough way to check for such problems early enough. - Highlights: ► This paper analyses oil shale energy related workforce and provides scenario forecasts. ► This is the first study to investigate the workforce related to oil shale energy production. ► The main workforce-related problem in the sector is ageing of the workforce. ► Workers immigrating to the sector during the Soviet times are at the retirement age. ► There will be a serious shortage of engineers for energy sector in the near future.

  12. Projection of future transport energy demand of Thailand

    International Nuclear Information System (INIS)

    Limanond, Thirayoot; Jomnonkwao, Sajjakaj; Srikaew, Artit

    2011-01-01

    The objective of this study is to project transport energy consumption in Thailand for the next 20 years. The study develops log-linear regression models and feed-forward neural network models, using the as independent variables national gross domestic product, population and the numbers of registered vehicles. The models are based on 20-year historical data between years 1989 and 2008, and are used to project the trends in future transport energy consumption for years 2010-2030. The final log-linear models include only gross domestic product, since all independent variables are highly correlated. It was found that the projection results of this study were in the range of 54.84-59.05 million tonnes of oil equivalent, 2.5 times the 2008 consumption. The projected demand is only 61-65% of that predicted in a previous study, which used the LEAP model. This major discrepancy in transport energy demand projections suggests that projects related to this key indicator should take into account alternative projections, because these numbers greatly affect plans, policies and budget allocation for national energy management. - Research highlights: → Thailand transport energy consumption would increase to 54.4-59.1 MTOE in Year 2030. → The log-linear models yield a slightly higher projection than the ANN models. → The elasticity of transport energy demand with respect to GDP is 0.995.

  13. Projection of future transport energy demand of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Limanond, Thirayoot, E-mail: tlimanond@yahoo.co [School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jomnonkwao, Sajjakaj [School of Transportation Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Srikaew, Artit [School of Electrical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2011-05-15

    The objective of this study is to project transport energy consumption in Thailand for the next 20 years. The study develops log-linear regression models and feed-forward neural network models, using the as independent variables national gross domestic product, population and the numbers of registered vehicles. The models are based on 20-year historical data between years 1989 and 2008, and are used to project the trends in future transport energy consumption for years 2010-2030. The final log-linear models include only gross domestic product, since all independent variables are highly correlated. It was found that the projection results of this study were in the range of 54.84-59.05 million tonnes of oil equivalent, 2.5 times the 2008 consumption. The projected demand is only 61-65% of that predicted in a previous study, which used the LEAP model. This major discrepancy in transport energy demand projections suggests that projects related to this key indicator should take into account alternative projections, because these numbers greatly affect plans, policies and budget allocation for national energy management. - Research highlights: {yields} Thailand transport energy consumption would increase to 54.4-59.1 MTOE in Year 2030. {yields} The log-linear models yield a slightly higher projection than the ANN models. {yields} The elasticity of transport energy demand with respect to GDP is 0.995.

  14. GRI baseline projection of U.S. Energy supply and demand to 2010. 1991 edition

    International Nuclear Information System (INIS)

    Holtberg, P.D.; Woods, T.J.; Lihn, M.L.; McCabe, N.C.

    1991-04-01

    The report summarizes the 1991 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand and presents a series of summary tables, sectoral breakdowns of energy demand, and the natural gas supply and price trends. Appendixes include a discussion of the methodology and assumptions used to prepare the 1991 projection, a brief discussion of the potential for higher levels of gas demand, a description of industrial and commercial cogeneration, a description of the independent power producer (IPP) methodology and projection, a comparison of the 1991 edition with previous projections, and a discussion of additional data used in developing the projection

  15. Energy demand in Mexico, a vision to the future

    International Nuclear Information System (INIS)

    Esquivel E, J.; Xolocostli M, J. V.

    2017-09-01

    The energy planning allows to know the current and future energy needs of the country, with the objective of efficiently guaranteeing the supply of energy demand through the diversity of the sources used, promoting the use of clean energies such as nuclear energy. Mexico, by participating in the ARCAL project -Support for the preparation of national energy plans in order to meet energy needs in the countries of the region, making effective use of resources in the medium and long term- has developed the study of energy demand for the period 2015-2050, where, given the socio-economic and technological conditions of the country in 2012, four scenarios are proposed: Decrement al, with decreases in the GDP growth rate and in the production of the manufacturing sector; Incremental, which shows an increase in the GDP growth rate and in the manufacturing sector; Incremental Dual, scenario similar to the Incremental plus an incentive in the service sector and finally, the Tendencial scenario, which corresponds to a typical scenario-business as usual-. The study that concerns this work was developed with the MAED tool and the results that are presented correspond to the energy requirements in each scenario, for the agriculture, construction, mining, manufacturing and transport sectors. (Author)

  16. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids

    International Nuclear Information System (INIS)

    Baldi, Simone; Karagevrekis, Athanasios; Michailidis, Iakovos T.; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • Energy efficient operation of photovoltaic-equipped interconnected microgrids. • Optimized energy demand for a block of heterogeneous buildings with different sizes. • Multiobjective optimization: matching demand and supply taking into account thermal comfort. • Intelligent control mechanism for heating, ventilating, and air conditioning units. • Optimization of energy consumption and thermal comfort at the aggregate microgrid level. - Abstract: Electrical smart microgrids equipped with small-scale renewable-energy generation systems are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control mechanism takes into account the available solar energy, the building dynamics and the thermal comfort of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing only on how each building behaves individually, the optimization algorithm employs a central controller that allows interaction among the buildings of the microgrid. The control objective is to optimize the aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in

  17. Energy Policy and Long Term Energy Demand in Croatian Households Sector

    International Nuclear Information System (INIS)

    Puksec, T.; Duic, N.

    2011-01-01

    Households sector in Croatia represents one of the largest consumers of energy today with around 75,75PJ, which is almost 29% of Croatia's final energy demand. Considering this consumption, implementing different mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom-up approach model which combines and process large number of input data. The Model will be compared to Croatian national Energy Strategy and certain difference will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels. (author)

  18. Predicting residential energy and water demand using publicly available data

    International Nuclear Information System (INIS)

    Hoşgör, Enes; Fischbeck, Paul S.

    2015-01-01

    Highlights: • We built regression models using publicly available data as independent variables. • These models were used to predict monthly utility usage. • Such models can empower demand-side management program design, implementation and evaluation. • As well as planning for changes in energy and water demand. - Abstract: The overarching objective behind this work is to merge publicly available data with utility consumption histories and extract statistically significant insight on utility usage for a group of houses (n = 7022) in Gainesville, USA. This study investigates the statistical descriptive power of publicly available information for modeling utility usage. We first examine the deviations that arise from monthly utility usage reading dates as reading dates tend to shift and reading periods tend to vary across different months. Then we run regression models for individual months which in turn we compare to a yearly regression model which accounts for months as a dummy variable to understand whether a monthly model or a yearly model has a larger statistical power. It is shown that publicly available data can be used to model residential utility usage in the absence of highly private utility data. The obtained results are helpful for utilities for two reasons: (1) using the models to predict the monthly changes in demand; and (2) predicting utility usage can be translated into energy-use intensity as a first-cut metric for energy efficiency targeting in their service territory to meet their state demand reduction targets

  19. Outlook of Japan's economy and energy demand for FY2017

    International Nuclear Information System (INIS)

    Aoshima, Momoko; Yorita, Y.; Tsunoda, M.

    2017-01-01

    This paper disclosed the prospects of Japan's economy and energy demand as the standard scenario, with the following major preconditions in mind: (1) world economy grows moderately, (2) supply and demand of crude oil are gently balanced, (3) exchange rate is Yen110/$, (4) nuclear power generation gradually moves back to operation, and the number of cumulative reopening units until the end of FY2017 reaches 14, and (5) supply and demand of electric power can secure 3% supply reserve ratio necessary for stable supply of electricity nationwide. In addition, this paper carried out evaluation analyses on the following various influences: macro economy, production activity, primary energy domestic supply, final energy consumption, electricity sales volume and power source composition (electric power companies), city gas sales volume (gas companies), fuel oil and LPG sales volume and crude oil throughput, renewable energy power generation, impact of nuclear power plant restart base, income/expenditure for on renewable energy generation, and impact of realization of large scale coal thermal power plant plan. (A.O.)

  20. A Study on strengthening demand management of energy price

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Hwan [Korea Energy Economics Institute, Euiwang (Korea)

    1999-02-01

    Until 1980s, energy sector had been operated as a monopoly of public enterprises in most countries. Price regulation of government had an influence on energy supply and demand by not fully giving information on market situation (supply and demand). Recently, as energy related technology and information technology have developed, the developed countries including UK and some developing countries could raise efficiency of industry through competitive market by recognizing the limit of government regulation and opening up many sectors of energy industry to the private sector. Korea is also implementing a measure for introducing competition through the participation of private sector into electricity and natural gas industries step by step. If the private sector is participated and competition is introduced, energy price cannot be a policy instrument setting up by the government, so demand management through price regulation is meaningless. Under such circumstances, a policy function should be converted to the direction of promoting competition and increasing market efficiency. In this study, it examines how the government regulation and industry has been changed through the transition of natural gas and electricity industries in UK, USA, and France and then it tries to derive suggestions to Korea. (author). 49 refs., 58 figs., 32 tabs.

  1. The role of hydropower in meeting Turkey's electric energy demand

    International Nuclear Information System (INIS)

    Yuksek, Omer; Komurcu, Murat Ihsan; Yuksel, Ibrahim; Kaygusuz, Kamil

    2006-01-01

    The inherent technical, economic and environmental benefits of hydroelectric power, make it an important contributor to the future world energy mix, particularly in the developing countries. These countries, such as Turkey, have a great and ever-intensifying need for power and water supplies and they also have the greatest remaining hydro potential. From the viewpoint of energy sources such as petroleum and natural gas, Turkey is not a rich country; but it has an abundant hydropower potential to be used for generation of electricity and must increase hydropower production in the near future. This paper deals with policies to meet the increasing electricity demand for Turkey. Hydropower and especially small hydropower are emphasized as Turkey's renewable energy sources. The results of two case studies, whose results were not taken into consideration in calculating Turkey's hydro electric potential, are presented. Turkey's small hydro power potential is found to be an important energy source, especially in the Eastern Black Sea Region. The results of a study in which Turkey's long-term demand has been predicted are also presented. According to the results of this paper, Turkey's hydro electric potential can meet 33-46% of its electric energy demand in 2020 and this potential may easily and economically be developed

  2. Biomass energy consumption in Nigeria: integrating demand and supply

    International Nuclear Information System (INIS)

    Momoh, S.; Soaga, J.

    1999-01-01

    The study examined the present and future consumption of biomass energy in Nigeria. Direct consumption of fire wood for domestic purposes is the predominant form of biomass energy consumption. Charcoal plays minot roles in biomass energy supply. The current and expected demand for fuelwood is projected to increase by 399% whereas supply is expected to decrease by 17.2% between 1995 and year 2010. Resource adequacy in terms of planned supply is on the decline. Forest estates which is the only planned strategy for fuelwood and wood production is projected to decline from 6.37 million ha. in 1990 to 2.4 million ha, in year 2010. The possibilities of meeting the fuelwood demand in the future is precarious. Policy measures aimed at increasing forest estates. reduction of loss of forest lands to other uses and encouragement of private forestry are recommended

  3. Study on energy demand function of korea considering replacement among energy sources and the structural changes of demand behavior

    Energy Technology Data Exchange (ETDEWEB)

    Moon, C.K. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    If the necessity of careful study on energy function is mentioned, it should be stressed that energy investment not only needs a long gestation period but also, acts as the bottleneck in the production capacity of an economy when investment is not enough. Thereby, the adverse effect of an energy supply shortage is very big. Especially, the replacement/supplemental relationship between energy and capital which corresponds to the movement on the iso-quanta curve is believed to have a direct relation with the answer as to whether long-term economic development would be possible under an energy crisis and its influence on technology selection. Furthermore, the advantages of technological advances which correspond to the movement on the iso-quanta curve has a direct relation with the question whether long-term economic development would be possible under an energy crisis depending on whether its direction is toward energy-saving or energy-consuming. This study tackles the main issues and outlines of the quantitative approach method based on the accounting approach method for modeling energy demand, quantitative economics approach method, and production model. In order to model energy demand of the Korean manufacturing industry, related data was established and a positive analytical model is completed and presented based on these. 122 refs., 10 tabs.

  4. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  5. Model for Analysis of Energy Demand (MAED-2)

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  6. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  7. Canadian energy supply and demand 1993 - 2010: Trends and issues

    International Nuclear Information System (INIS)

    1994-07-01

    The National Energy Board has since 1959 prepared and maintained projections of energy supply requirements and has from time to time published reports on them. The objectives of this report are to provide a comprehensive 'all energy' market analysis and outlook to service as a standard of reference for all parties interested in Canadian energy issues; to provide a framework for public discussion on emerging energy issues of national importance and to monitor the prospects for the supply, demand and price of natural gas in Canada pursuant to the Market-Based Procedure for regulating. The focus being on the broad outlines of prospective energy market developments under different underlying assumptions about key variables. 7 tabs., 60 figs

  8. Canadian energy supply and demand 1993 - 2010: Trends and issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The National Energy Board has since 1959 prepared and maintained projections of energy supply requirements and has from time to time published reports on them. The objectives of this report are to provide a comprehensive `all energy` market analysis and outlook to service as a standard of reference for all parties interested in Canadian energy issues; to provide a framework for public discussion on emerging energy issues of national importance and to monitor the prospects for the supply, demand and price of natural gas in Canada pursuant to the Market-Based Procedure for regulating. The focus being on the broad outlines of prospective energy market developments under different underlying assumptions about key variables. 7 tabs., 60 figs.

  9. Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response

    International Nuclear Information System (INIS)

    Vahid-Pakdel, M.J.; Nojavan, Sayyad; Mohammadi-ivatloo, B.; Zare, Kazem

    2017-01-01

    Highlights: • Studying heating market impact on energy hub operation considering price uncertainty. • Investigating impact of implementation of heat demand response on hub operation. • Presenting stochastic method to consider wind generation and prices uncertainties. - Abstract: Multi carrier energy systems or energy hubs has provided more flexibility for energy management systems. On the other hand, due to mutual impact of different energy carriers in energy hubs, energy management studies become more challengeable. The initial patterns of energy demands from grids point of view can be modified by optimal scheduling of energy hubs. In this work, optimal operation of multi carrier energy system has been studied in the presence of wind farm, electrical and thermal storage systems, electrical and thermal demand response programs, electricity market and thermal energy market. Stochastic programming is implemented for modeling the system uncertainties such as demands, market prices and wind speed. It is shown that adding new source of heat energy for providing demand of consumers with market mechanism changes the optimal operation point of multi carrier energy system. Presented mixed integer linear formulation for the problem has been solved by executing CPLEX solver of GAMS optimization software. Simulation results shows that hub’s operation cost reduces up to 4.8% by enabling the option of using thermal energy market for meeting heat demand.

  10. Optimising building net energy demand with dynamic BIPV shading

    International Nuclear Information System (INIS)

    Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A.

    2017-01-01

    Highlights: •Coupled analysis of PV generation and building energy using adaptive BIPV shading. •20–80% net energy saving compared to an equivalent static system. •The system can in some cases compensate for the entire heating/cooling/lighting load. •High resolution radiation simulation including impacts of module self shading. -- Abstract: The utilisation of a dynamic photovoltaic system for adaptive shading can improve building energy performance by controlling solar heat gains and natural lighting, while simultaneously generating electricity on site. This paper firstly presents an integrated simulation framework to couple photovoltaic electricity generation to building energy savings through adaptive shading. A high-resolution radiance and photovoltaic model calculates the photovoltaic electricity yield while taking into account partial shading between modules. The remaining solar irradiation that penetrates the window is used in a resistance-capacitance building thermal model. A simulation of all possible dynamic configurations is conducted for each hourly time step, of which the most energy efficient configuration is chosen. We then utilise this framework to determine the optimal orientation of the photovoltaic panels to maximise the electricity generation while minimising the building’s heating, lighting and cooling demand. An existing adaptive photovoltaic facade was used as a case study for evaluation. Our results report a 20–80% net energy saving compared to an equivalent static photovoltaic shading system depending on the efficiency of the heating and cooling system. In some cases the Adaptive Solar Facade can almost compensate for the entire energy demand of the office space behind it. The control of photovoltaic production on the facade, simultaneously with the building energy demand, opens up new methods of building management as the facade can control both the production and consumption of electricity.

  11. Regional Differences in the Price-Elasticity of Demand for Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, M. A.; Griffin, J.

    2006-02-01

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  12. Geo-economy of world energy supply and demand

    International Nuclear Information System (INIS)

    Gauthier, Jean-Michel

    2009-01-01

    For over 50 years now, the global primary energy demand structure has been based on fossil fuels for more than 80%. In 25 years, our energy needs will still be covered by an over 80% fossil energy mix according to the reference scenario of most energy agencies. Over this period of time, the economics of energy will be radically altered as a result of a long term sustained global demand of energy and a growing constraint on some hydrocarbon production, conventional oil in particular. The oil production profile on currently operated oil fields, essentially in the OECD, will further decline or require significantly increasing investments. Non conventional oil sources are already proving to be even more capital-intensive. In the face of dwindling reserves in the old OECD hydrocarbon basins, the only resource-rich region in the world with low extraction costs and available swing supply capacities is the Middle East. Tomorrow's oil industry and markets will therefore represent a risk concentrated around a single region in the world, whilst the global gas industry will face a risk concentrated around two regions in the world, including Russia and the Middle East. Massive investments in energy infrastructures will be necessary to bring gas from these two sources to the remote markets in Asia, Europe or the US. The era of cheap energy is definitely gone. Far from being an obsolete fuel, coal is and will remain the most abundant, competitive and favoured source of energy for power generation across the world. CO_2 emissions from coal use are coal's only handicap. The vision of our energy future is in front of us: the environment will be filthy, energy will be costly and geopolitical tensions between producers and consumers will be strong

  13. Canadian energy supply and demand 1993 - 2010: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The National Energy Board has since 1959 prepared and maintained projections of energy supply requirements and has from tine to time published reports on them. The objectives of this report are to provide a comprehensive `all energy` market analysis and outlook to service as a standard of reference for all parties interested in Canadian energy issues; to provide a framework for public discussion on emerging energy issues of national importance and to monitor the prospects for the supply, demand and price of natural gas in Canada pursuant to the Market-Based Procedure for regulating. The focus of the technical report provides detailed descriptions of the analytical methods used and the quantitative results. The quantitative analysis will be of value to users who wish to develop their own views of prospects or to have a detailed assessment of the impact of alternative assumptions. 106 tabs., 171 figs.

  14. Canadian energy supply and demand 1993 - 2010: Technical report

    International Nuclear Information System (INIS)

    1994-12-01

    The National Energy Board has since 1959 prepared and maintained projections of energy supply requirements and has from tine to time published reports on them. The objectives of this report are to provide a comprehensive 'all energy' market analysis and outlook to service as a standard of reference for all parties interested in Canadian energy issues; to provide a framework for public discussion on emerging energy issues of national importance and to monitor the prospects for the supply, demand and price of natural gas in Canada pursuant to the Market-Based Procedure for regulating. The focus of the technical report provides detailed descriptions of the analytical methods used and the quantitative results. The quantitative analysis will be of value to users who wish to develop their own views of prospects or to have a detailed assessment of the impact of alternative assumptions. 106 tabs., 171 figs

  15. Single-Family Houses That Meet The Future Energy Demands

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2002-01-01

    ). Before any further tightening of the regulations are introduced, however, it is necessary to illustrate the consequences of such actions with regard to finance, building technology, indoor climate and comfort. Therefore a series of investigations and experimental projects are being launched, in order...... to examine these consequences thoroughly. The department is presently contributing to this end by participating in quite a few investigative projects, where single-family houses are designed to meet the proposed future energy demands. This paper describes the results obtained from one such project where...... the department, in co-operation with a major building entrepreneur, has developed a single-family house that shows that there are no evident problems in meeting the future energy demands....

  16. Potentials for energy savings and long term energy demand of Croatian households sector

    International Nuclear Information System (INIS)

    Pukšec, Tomislav; Vad Mathiesen, Brian; Duić, Neven

    2013-01-01

    Highlights: ► Long term energy demand of Croatian households sector has been modelled. ► Developed model can describe the whole households sector. ► Main modes include heating, cooling, electrical appliances, cooking and hot water. ► Different scenarios regarding future energy demand are presented and discussed. -- Abstract: Households represent one of the most interesting sectors, when analyzing Croatia’s energy balance. It makes up one of the largest energy consumers with around 75 PJ per year, which is almost 29% of Croatia’s final energy demand. Considering this consumption, implementing various mechanisms, which would lead to improvements in energy efficiency of this sector, seems relevant. In order to plan future energy systems, important would be to know future possibilities and needs regarding energy demand of different sectors. Through this paper, long term energy demand projections of Croatian households sector will be shown. Focus of the paper will be on various mechanisms influencing future energy demand scenarios. Important would be to quantify this influence, whether positive or negative, and see which mechanisms would be the most significant. Energy demand projections in this paper are based upon bottom-up approach model which combines and processes a large number of input data. The model will be compared to Croatian National Energy Strategy and certain differences and conclusions will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which leads to lower GHG emissions and lower Croatian dependence on foreign fossil fuels.

  17. Energy and electricity demand forecasting for nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1988-07-01

    This Guidebook is designed to be a reference document to forecast energy and electricity demand. It presents concepts and methodologies that have been developed to make an analytical approach to energy/electricity demand forecasting as part of the planning process. The Guidebook is divided into 6 main chapters: (Energy demand and development, energy demand analysis, electric load curve analysis, energy and electricity demand forecasting, energy and electricity demand forecasting tools used in various organizations, IAEA methodologies for energy and electricity demand forecasting) and 3 appendices (experience with case studies carried out by the IAEA, reference technical data, reference economic data). A bibliography and a glossary complete the Guidebook. Refs, figs and tabs

  18. Energy supply and demand result in fiscal 1995 and a short-term prospect. Report submitted by the energy supply and demand trend investigation committee; 1995 nendo energy jukyu jisseki to tanki tenbo. Energy jukyu doko chosa iinkai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This paper describes the energy demand and supply result in fiscal 1995 and a short-term prospect. The business condition in Japan is regaining some brightness. While the net GDP growth has stayed at 0.9%, the domestic primary energy supply has increased by 2.9% and the final energy consumption by 3.2% over the previous year, respectively. The energy consumption has increased by 3.7% with the background of increase in production levels in the industrial department in material industries induced by external demand. The consumer department showed as high growth as 5.1% centering on household room heating due to cold winter. The business and transportation departments presented an increase of 2.2% and 2.4%, respectively. Sharp growth of 3.0% was shown in the net GDP during January through March, 1996, having the net GDP growth rate for fiscal 1995 escaped from zero growth that has lasted three years. The recovery of the domestic business condition is moving gradually centering on the consumer demand, wherein the point to be focused from now on is how much the recovery can compensate for decline in the public demand and reduction in the external demand. Attention is given on path of the business condition recovery and future trends in energy demand under the situation of risen consumption tax and deregulated oil business. 42 figs., 73 tabs.

  19. Demands on thermal power plants in the liberalised energy market

    International Nuclear Information System (INIS)

    Hein, D.; Kwanka, K.; Fischer, T.

    2005-01-01

    In the liberalised energy market, a diversified set (''mix'') of power plants will be needed. By investigating present and anticipated future criteria in detail, available technologies and outlines of further development are identified and discussed. Among them, concepts for efficiency-optimised base load plants as well as units with an improved cycling operation capability are both attributed to a specific valued benefit. Following the demand for a significant reduction of the overall greenhouse gas emissions, centralised power plants fed by fossil fuels and modified for retention of CO 2 are needed to guarantee a supply of energy at moderate costs in the 21st century. (author)

  20. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  1. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  2. Economic, demographic and social factors of energy demand in Mexican households, 2008-2014

    Science.gov (United States)

    Perez Pena, Rafael

    This research project focuses on estimating the effect of economic, demographic, and social factors in residential energy demand in Mexico from 2008 to 2014. Therefore, it estimates demand equations for electricity, natural gas, liquefied petroleum gas (LPG), coal and natural gas using Mexican household data from 2008 to 2014. It also applies accessibility theory and it estimates energy access indicators using different specifications of demand for LPG in 2014. Sprawl measures, gravity model, and central place theory are the accessibility theory supporting the energy access indicators. Results suggest the greater the household income, the population size, the educational level of the householder, the energy access, and the lower the energy price and the household size, the greater the demand for energy in Mexico from 2008 to 2014. The greater the education, the lower the demand for firewood and coal. LPG and firewood have a monopolistically competitive market structure. Energy access indicators informed by accessibility theory are statistically significant and show the expected sign when applied to LPG in Mexican household in 2014.

  3. Capacity market design and renewable energy: Performance incentives, qualifying capacity, and demand curves

    Energy Technology Data Exchange (ETDEWEB)

    Botterud, Audun; Levin, Todd; Byers, Conleigh

    2018-01-01

    A review of capacity markets in the United States in the context of increasing levels of variable renewable energy finds substantial differences with respect to incentives for operational performance, methods to calculate qualifying capacity for variable renewable energy and energy storage, and demand curves for capacity. The review also reveals large differences in historical capacity market clearing prices. The authors conclude that electricity market design must continue to evolve to achieve cost-effective policies for resource adequacy.

  4. Essays on economic development, energy demand, and the environment

    Science.gov (United States)

    Medlock, Kenneth Barry, III

    2000-10-01

    The rapid expansion of industry at the outset of economic development and the subsequent growth of the transportation and residential and commercial sectors dictate both the rate at which energy demand increases and the composition of primary fuel sources used to meet secondary requirements. Each of these factors each has an impact on the pollution problems that nations may face. Growth in consumer wealth, however, appears to eventually lead to a shift in priorities. In particular, the importance of the environment begins to take precedent over the acquisition of goods. Accordingly, cleaner energy alternatives are sought out. The approach taken here is to determine the energy profile of an average nation, and apply those results to a model of economic growth. Dematerialization of production and saturation of consumer bundles results in declining rates of growth of energy demand in broadly defined end-use sectors. The effects of technological change in fossil fuel efficiency, fossil fuel recovery, and 'backstop' energy resources on economic growth and the emissions of carbon dioxide are then analyzed. A central planner is assumed to optimize the consumption of goods and services subject to capital and resource constraints. Slight perturbations in the parameters are used to determine their local elasticities with respect to different endogenous variables, and give an indication of the effects of changes in the various assumptions.

  5. Energy demand for materials in an international context.

    Science.gov (United States)

    Worrell, Ernst; Carreon, Jesus Rosales

    2017-06-13

    Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to current best practices, the energy-efficiency improvement potential would be between 20% and 35% for most sectors. While these are considerable potentials, especially for sectors that have historically paid a lot of attention to energy-efficiency improvement, realization of these potentials under current 'business as usual' conditions is slow due to a large variety of barriers and limited efforts by industry and governments around the world. Importantly, the potentials are not sufficient to achieve the deep reductions in carbon emissions that will be necessary to stay within the climate boundaries as agreed in the 2015 Paris Conference of Parties. Other opportunities need to be included in the menu of options to mitigate GHG emissions. It is essential to develop integrated policies combining energy efficiency, renewable energy and material efficiency and material demand reduction, offering the most economically attractive way to realize deep reductions in carbon emissions.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  6. 2009 reference case scenario : Canadian energy demand and supply to 2020 : an energy market assessment

    International Nuclear Information System (INIS)

    2009-01-01

    The National Energy Board regulates the construction and operation of interprovincial and international oil and gas pipelines and power lines as well as the tolls and tariffs for the pipelines under its jurisdictions. The import and export of natural gas is also regulated by the NEB. The NEB examined the possible energy futures that might unfold for Canadians up to the year 2020. The factors that affect the supply of crude oil, natural gas, liquefied natural gas, electricity and coal in the short term were examined to determine the outlook for deliverability through 2020. The growing demand for energy was reviewed along with the adequacy of future energy supplies, and related issues of emerging technologies, energy infrastructure and energy exports. This assessment provided separate production outlooks for hydrocarbons, electricity and coal and outlined the key uncertainties to the supply outlook. The likely impact of recent economic, energy and policy trends on energy demand and supply were considered. It was concluded that energy markets in Canada will continue to function well. Energy prices will provide appropriate market signals for the development of energy resources to meet Canadian and export demand. A significant portion of Canadian demand for energy will be met by fossil fuels. However, the demand to move towards greener energy fuels should result in fewer greenhouse gas emissions. 1 tab., 27 figs.

  7. Three Essays Examining Household Energy Demand and Behavior

    Science.gov (United States)

    Murray, Anthony G.

    This dissertation consists of three essays examining household energy decisions and behavior. The first essay examines the adoption of energy efficient Energy Star home appliances by U.S. households. Program effectiveness requires that consumers be aware of the labeling scheme and also change their purchase decisions based on label information. The first essay examines the factors associated with consumer awareness of the Energy Star label of recently purchased major appliances and the factors associated with the choice of Energy Star labeled appliances. The findings suggest that eliminating identified gaps in Energy Star appliance adoption would result in house electricity cost savings of $164 million per year and associated carbon emission reductions of about 1.1 million metric tons per year. The second essay evaluates household energy security and the effectiveness of the Low-Income Home Energy Assistance Program (LIHEAP), the single largest energy assistance program available to poor households within the United States. Energy security is conceptually akin to the well-known concept of food security. Rasch models and household responses to energy security questions in the 2005 Residential Energy Consumption Survey are used to generate an energy insecurity index that is consistent with those found in the food insecurity literature. Participating in LIHEAP is found to significantly reduce household energy insecurity score in the index. Further, simulations show that the elimination of the energy assistance safety net currently available to households increases the number of energy insecure house- holds by over 16 percent. The third essay develops a five equation demand system to estimate household own-price, cross-price and income elasticities between electricity, natural gas, food at home, food away from home, and non-durable commodity groups. Household cross-price elasticities between energy and food commodities are of particular importance. Energy price shocks

  8. Price and income elasticities of residential energy demand in Germany

    International Nuclear Information System (INIS)

    Schulte, Isabella; Heindl, Peter

    2017-01-01

    We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.

  9. Design and Implementation of Demand Response Information Interactive Service Platform Based on “Internet Plus” Smart Energy

    Science.gov (United States)

    Cui, Gaoying; Fan, Jie; Qin, Yuchen; Wang, Dong; Chen, Guangyan

    2017-05-01

    In order to promote the effective use of demand response load side resources, promote the interaction between supply and demand, enhance the level of customer service and achieve the overall utilization of energy, this paper briefly explain the background significance of design demand response information platform and current situation of domestic and foreign development; Analyse the new demand of electricity demand response combined with the application of Internet and big data technology; Design demand response information platform architecture, construct demand responsive system, analyse process of demand response strategy formulate and intelligent execution implement; study application which combined with the big data, Internet and demand response technology; Finally, from information interaction architecture, control architecture and function design perspective design implementation of demand response information platform, illustrate the feasibility of the proposed platform design scheme implemented in a certain extent.

  10. Energy demand in the Norwegian building stock: Scenarios on potential reduction

    International Nuclear Information System (INIS)

    Sartori, Igor; Wachenfeldt, Bjorn Jensen; Hestnes, Anne Grete

    2009-01-01

    A model has been developed for studying the effect of three hypothetical approaches in reducing electricity and energy demand in the Norwegian building stock: wide diffusion of thermal carriers, heat pumps and conservation measures, respectively. Combinations of these are also considered. The model has a demand side perspective, considers both residential and service sectors, and calculates energy flows from net to delivered energy. Energy demand is given by the product of activity and intensity matrices. The activity levels are defined for the stock and the new construction, renovation and demolition flows. The intensity properties are defined in archetypes, and are the result of different energy class and heating carriers share options. The scenarios are shaped by combining the activity flows with different archetypes. The results show that adopting conservation measures on a large scale does allow reducing both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlight the importance of making a clear distinction between the assumptions on intensity and activity levels.

  11. Energy demand in the Norwegian building stock. Scenarios on potential reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor; Hestnes, Anne Grete [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway); Wachenfeldt, Bjoern Jensen [SINTEF Building and Infrastructure, 7465 Trondheim (Norway)

    2009-05-15

    A model has been developed for studying the effect of three hypothetical approaches in reducing electricity and energy demand in the Norwegian building stock: wide diffusion of thermal carriers, heat pumps and conservation measures, respectively. Combinations of these are also considered. The model has a demand side perspective, considers both residential and service sectors, and calculates energy flows from net to delivered energy. Energy demand is given by the product of activity and intensity matrices. The activity levels are defined for the stock and the new construction, renovation and demolition flows. The intensity properties are defined in archetypes, and are the result of different energy class and heating carriers share options. The scenarios are shaped by combining the activity flows with different archetypes. The results show that adopting conservation measures on a large scale does allow reducing both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlight the importance of making a clear distinction between the assumptions on intensity and activity levels. (author)

  12. Energy demand in the Norwegian building stock: Scenarios on potential reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Igor [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)], E-mail: igor.sartori@sintef.no; Wachenfeldt, Bjorn Jensen [SINTEF Building and Infrastructure, 7465 Trondheim (Norway); Hestnes, Anne Grete [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)

    2009-05-15

    A model has been developed for studying the effect of three hypothetical approaches in reducing electricity and energy demand in the Norwegian building stock: wide diffusion of thermal carriers, heat pumps and conservation measures, respectively. Combinations of these are also considered. The model has a demand side perspective, considers both residential and service sectors, and calculates energy flows from net to delivered energy. Energy demand is given by the product of activity and intensity matrices. The activity levels are defined for the stock and the new construction, renovation and demolition flows. The intensity properties are defined in archetypes, and are the result of different energy class and heating carriers share options. The scenarios are shaped by combining the activity flows with different archetypes. The results show that adopting conservation measures on a large scale does allow reducing both electricity and total energy demand from present day levels while the building stock keeps growing. The results also highlight the importance of making a clear distinction between the assumptions on intensity and activity levels.

  13. The energy issue. Demand and potentials, utilization, risks, costs

    International Nuclear Information System (INIS)

    Heinloth, K.

    1997-01-01

    Will the demand for energy be growing or decreasing in future? How are prosperity and energy consumption linked up? How can the CO 2 reduction target announced at the Earth Summit in Rio de Janeiro be achieved? What is the price for ''''benign'''' energy as compared to ''''malignant'''' energy? What is the future contribution to energy supplies that can be expected from renewable energy sources? What are the good and the evil aspects of nuclear energy? These are questions that will sooner or later concern us all, and in any case when it comes to paying the bill for our present squandering. The author Klaus Heinloth, a renown expert in this field, presents with this book a scientifically well-founded and unbiased analysis and source of information that may serve politicians as a basis for objective debates about the future energy policy. Provided with a generous grant by the Heraeus foundation, the author was free to pursue his studies and inquiries independent of industry and relevant associations, and collect, evaluate and analyse the required information. (orig./CB) [de

  14. Modelling of Sudan’s Energy Supply, Transformation, and Demand

    Directory of Open Access Journals (Sweden)

    Ali A. Rabah

    2016-01-01

    Full Text Available The study aimed to develop energy flow diagram (Sankey diagram of Sudan for the base year 2014. The developed Sankey diagram is the first of its kind in Sudan. The available energy balance for the base year 2012 is a simple line draw and did not count the energy supply by private and mixed sectors such as sugar and oil industries and marine and civil aviation. The private and mixed sectors account for about 7% of the national grid electric power. Four energy modules are developed: resources, transformation, demand, and export and import modules. The data are obtained from relevant Sudanese ministries and directorates and Sudan Central Bank. “e!Sankey 4 pro” software is used to develop the Sankey diagram. The main primary types of energy in Sudan are oil, hydro, biomass, and renewable energy. Sudan has a surplus of gasoline, petroleum coke, and biomass and deficit in electric power, gasoil, jet oil, and LPG. The surplus of gasoline is exported; however, the petroleum coke is kept as reserve. The deficit is covered by import. The overall useful energy is 76% and the loss is 24%. The useful energy is distributed among residential (38%, transportation (33%, industry (12%, services (16%, and agriculture (1% sectors.

  15. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H

    1998-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  16. Forecasting energy demand and CO{sub 2}-emissions from energy production in the forest industry

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H.

    1997-12-31

    The purpose of this study was to develops new energy forecasting methods for the forest industry energy use. The scenarios have been the most commonly used forecasts, but they require a lot of work. The recent scenarios, which are made for the forest industry, give a wide range of results; e.g. from 27,8 TWh to 38 TWh for electricity use in 2010. There is a need for more simple and accurate methods for forecasting. The time scale for the study is from 1975 to 2010, i.e. 36 years. The basic data for the study is collected from time period 1975 - 1995. It includes the wood use, production of main product categories and energy use in the forest industry. The factors affecting energy use at both industry level and at mill level are presented. The most probable technology trends, which can have an effect on energy production and use and CO{sub 2}-emissions are studied. Recent forecasts for the forest industry energy use till the year 2010 are referred and analysed. Three alternative forecasting methods are studied more closely. These methods are (a) Regression analysis, (b) Growth curves and (c) Delphi-method. Total electricity demand, share of purchased electricity, total fuel demand and share of process-based biofuels are estimated for the time period 1996 - 2010. The results from the different methods are compared to each other and to the recent scenarios. The comparison is made for the results concerning the energy use and the usefulness of the methods in practical work. The average energy consumption given by the forecasts for electricity was 31,6 TWh and for fuel 6,2 Mtoe in 2010. The share of purchased electricity totalled 73 % and process based fuels 77 %. The figures from 1995 are 22,8 TWh, 5,5 Mtoe, 64 % and 68 % respectively. All three methods were suitable for forecasting. All the methods required less working hours and were easier to use than scenarios. The methods gave results with a smaller deviation than scenarios, e.g. with electricity use in 2010 from

  17. Understanding errors in EIA projections of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Carolyn; Herrnstadt, Evan; Morgenstern, Richard [Resources for the Future, 1616 P St. NW, Washington, DC 20036 (United States)

    2009-08-15

    This paper investigates the potential for systematic errors in the Energy Information Administration's (EIA) widely used Annual Energy Outlook, focusing on the near- to mid-term projections of energy demand. Based on analysis of the EIA's 22-year projection record, we find a fairly modest but persistent tendency to underestimate total energy demand by an average of 2 percent per year after controlling for projection errors in gross domestic product, oil prices, and heating/cooling degree days. For 14 individual fuels/consuming sectors routinely reported by the EIA, we observe a great deal of directional consistency in the errors over time, ranging up to 7 percent per year. Electric utility renewables, electric utility natural gas, transportation distillate, and residential electricity show significant biases on average. Projections for certain other sectors have significant unexplained errors for selected time horizons. Such independent evaluation can be useful for validating analytic efforts and for prioritizing future model revisions. (author)

  18. The electric energy demand-side planning: necessity and possibilities of execution

    International Nuclear Information System (INIS)

    Sposito, E.S.

    1991-05-01

    Aiming at reducing the level of investments, is presented a demand-side planning approach, divided into two parts. The first part is an analysis on the actual need of our demand-side approaching. In view of this, is showed a set of data and comments both on economic and technological aspects concerning the electric network and sector, as well as evaluation of the social, ecological and financial aspects which could act against the full expansion of the electric system. In the second part, a demand-side planning methodology is introduced, as well as its main concepts, its variables and its instruments of affecting the demand: energy conservation, replacement of sources, reduction of losses and electric power decentralized generation. Each of them is fully detailed in a set of planning policies and actions. Concluding is presented the basic elements of a National Electric Energy Substitution and Conservation Plan - PLANSCON. (author)

  19. An energy service company's perspective on demand-side management

    International Nuclear Information System (INIS)

    Bullock, C.G.

    1993-01-01

    In 1985, Massachusetts Electric Company held a bid for demand reduction to be supplied by energy service companies (ESCOs). It was one of the first demand-side management (DSM) bidding programs held in the United States. Since then, several DSM auctions have been held. Many people expected DSM bidding to be a key component in integrated resource planning. Many observed similarities with supply side bidding, and expected DSM bidding to grow according. Today, more than $2 billion annually is being spent by utilities on DSM programs. Less than $100 million is spent with ESCOs. This chapter explores some of the reasons for the current situation and suggests some alternatives, which could benefit all of the players

  20. Leisure activities, caregiving demands and catecholamine levels in dementia caregivers.

    Science.gov (United States)

    Chattillion, Elizabeth A; Mausbach, Brent T; Roepke, Susan K; von Känel, Roland; Mills, Paul J; Dimsdale, Joel E; Allison, Matthew; Ziegler, Michael G; Patterson, Thomas L; Ancoli-Israel, Sonia; Grant, Igor

    2012-01-01

    This study examined whether satisfaction from leisure activities moderates the relationship between caregiving demands (i.e., hours per day spent caring for a spouse with dementia) and resting levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). Spousal caregivers (n = 107; mean age = 73.95 ± 8.12 years) were assessed in home for plasma levels of NE and EPI, amount of care provided, and leisure satisfaction. Regression was used to determine whether leisure satisfaction moderated the relationship between hours providing care per day and catecholamine levels. A significant interaction was found between hours caregiving and leisure satisfaction for NE, but not for EPI. Post hoc regressions were conducted for both NE and EPI. At low leisure satisfaction, time spent caring for a spouse was positively associated with plasma NE (β = 0.41; p = 0.005) and EPI (β = 0.44; p = 0.003). In contrast, at high levels of satisfaction, time caregiving was not significantly associated with plasma NE (β = -0.08; p = 0.57) or EPI (β = 0.23; p = 0.12). These findings suggest that leisure satisfaction may protect caregivers from increases in catecholamines, which have been implicated in cardiovascular risk. Further support for these findings may impact psychological treatments for distressed caregivers.

  1. Energy demand, economic growth, and energy efficiency - the Bakun dam-induced sustainable energy policy revisited

    International Nuclear Information System (INIS)

    Keong, C.Y.

    2005-01-01

    In embarking on a dynamic course of economic development and industrial modernism, Malaysia sees the need to increase its electricity generation capacity through the development of a mega-dam project - the Bakun dam. Although hydroelectricity generation offers one of the benign options in accommodating the increasing energy consumption per capita in Malaysia, it is argued that the construction of Bakun's dam which involves a complete and irreversible destruction of 69,640 ha of old forest ecosystem remains a difficult and uncertain endeavour. It is further argued that apart from mega-dam technology, there are also other means to orchestrate a sustainable energy system in Malaysia. These include the implementation of demand and supply initiatives, such as the deployment of energy saving technology or influencing behavioral change towards a sustainable energy consumption pattern

  2. Optimal balance between energy demand and onsite energy generation for robust net zero energy buildings considering future scenarios

    NARCIS (Netherlands)

    Kotireddy, R.R.; Hoes, P.; Hensen, J.L.M.

    2015-01-01

    Net-zero energy buildings have usually very low energy demand, and consequently heating ventilation and air conditioning (HVAC) systems are designed and controlled to meet this low energy demand. However, a number of uncertainties in the building use, operation and external conditions such as

  3. Energy demand and supply prompts record results for Canadian companies

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The Canadian energy industry has shown consistent growth in recent years. This trend is expected to continue due high energy prices resulting from concerns regarding energy supply and increased demand for energy. The 2005 annual survey by Pricewaterhouse Coopers states that Canadian energy sectors have seen average revenues grow by 12.4 per cent from $934 million to $1.05 billion for conventional companies and by 30.5 per cent from $285 million to $372 million for income trusts. The survey provides a summary of Canada's energy industry, including crude oil, natural gas, oil and gas services, oil sands and electricity. The financial and operating information of the top 100 Canadian public oil and gas companies is also summarized, along with 31 oil and gas income trusts. The survey found that crude oil prices were influenced by price volatility and record highs in 2004. Price volatility was due to global political tensions, increased demand from China, India and the United States and lower crude supplies in the United States. Production of Canadian crude, including conventional, synthetic crude, heavy crude, natural gas and natural gas from liquids continued to increase in 2004. A strong pricing environment will likely continue, according to industry expectations, due to political instability in the Middle East and OPEC's tight crude supply strategy. Strong pricing is expected to enhance natural gas economics and promote increased capital investment and production. In 2004, the oil and gas service industry drilled a record 21,593 wells in Western Canada and a record 28,630 drilling permits will be issued. In 2004, there was also a strong demand for field services and improvements in many manufacturing firms. Production from Canadian oil sands in 2004 was over 1 million barrels per day. An estimated 174 billion barrels of oil lie within the oil sands, making Canada the second largest country in terms of global proven crude oil reserves. Several oil sands projects have

  4. Examining demand response, renewable energy and efficiencies to meet growing electricity needs

    International Nuclear Information System (INIS)

    Elliot, N.; Eldridge, M.; Shipley, A.M.; Laitner, J.S.; Nadel, S.; Silverstein, A.; Hedman, B.; Sloan, M.

    2007-01-01

    While Texas has already taken steps to improve its renewable energy portfolio (RPS), and its energy efficiency improvement program (EEIP), the level of savings that utilities can achieve through the EEIP can be greatly increased. This report estimated the size of energy efficiency and renewable energy resources in Texas, and suggested a range of policy options that might be adopted to further extend EEIP. Current forecasts suggest that peak demand in Texas will increase by 2.3 per cent annually from 2007-2012, a level of growth which is threatening the state's ability to maintain grid reliability at reasonable cost. Almost 70 per cent of installed generating capacity is fuelled by natural gas in Texas. Recent polling has suggested that over 70 per cent of Texans are willing support increased spending on energy efficiency. Demand response measures that may be implemented in the state include incentive-based programs that pay users to reduce their electricity consumption during specific times and pricing programs, where customers are given a price signal and are expected to moderate their electricity usage. By 2023, the widespread availability of time-varying retail electric rates and complementary communications and control methods will permanently change the nature of electricity demand in the state. At present, the integrated utilities in Texas offer a variety of direct load control and time-of-use, curtailable, and interruptible rates. However, with the advent of retail competition now available as a result of the structural unbundling of investor-owned utilities, there is less demand response available in Texas. It was concluded that energy efficiency, demand response, and renewable energy resources can meet the increasing demand for electricity in Texas over the next 15 years. 4 figs

  5. Modelling lifestyle effects on energy demand and related emissions

    International Nuclear Information System (INIS)

    Weber, C.

    2000-01-01

    An approach to analyse and quantify the impact of lifestyle factors on current and future energy demand is developed. Thereby not only directly environmentally relevant consumer activities such as car use or heating have been analysed, but also expenditure patterns which induce environmental damage through the production of the consumed goods. The use of household survey data from the national statistical offices offers the possibility to cover this wide range of activities. For the available social-economic household characteristics a variety of different behavioural patterns have been observed. For evaluating the energy and emission consequences of the consumed goods enhanced input-output models are used. The additions implemented - a mixed monetary-energetic approach for inter-industry flows and a separate treatment of transport -related emissions - improve the reliability of the obtained results. The developed approach has been used for analysing current emissions profiles and distributions in West Germany, France and the Netherlands as well as scenarios for future energy demand and related emissions. It therefore provides a comprehensive methodology to analyse environmental effects in a consumer and citizen perspective and thus contributes to an increase transparency of complex economic and ecological interconnections. (author)

  6. Energy demand modelling: pointing out alternative energy sources. The example of industry in OECD countries

    International Nuclear Information System (INIS)

    Renou, P.

    1992-01-01

    This thesis studies energy demand and alternative energy sources in OECD countries. In the first part, the principle models usually used for energy demand modelling. In the second part, the author studies the flexible functional forms (translog, generalized Leontief, generalized quadratic, Fourier) to obtain an estimation of the production function. In the third part, several examples are given, chosen in seven countries (Usa, Japan, Federal Republic of Germany, France, United Kingdom, Italy, Canada). Energy systems analysis in these countries, can help to choose models and gives informations on alternative energies. 246 refs., 24 figs., 27 tabs

  7. Policy implications of considering pre-commitments in U.S. aggregate energy demand system

    International Nuclear Information System (INIS)

    Rowland, Christopher S.; Mjelde, James W.; Dharmasena, Senarath

    2017-01-01

    Linear approximations of the Generalized Almost Ideal Demand System and Almost Ideal Demand System for U.S. energy are compared to contrast the explicit inclusion and exclusion of pre-committed consumption levels. Results indicate that pre-commitment levels, the quantity of a good that is consumed in the short run with little regard for price, helps to better explain energy demand in the U.S. compared to the system that does not explicitly consider pre-commitments. Policy implications are if pre-commitments are a legitimate assumption, larger price changes are necessary to achieve a given policy objective than if there are no pre-commitments. - Highlights: • Pre-commitments are the quantity that is consumed with little regard for price. • Demand systems with pre-commitment levels better explain energy demand. • Elasticities from assuming pre-commitments are more elastic. • Estimated elasticities apply to discretionary and not pre-commitment consumption. • Pre-commitments require larger price changes to achieve a given policy objective.

  8. Innovations in managing demand and supply of energy

    Energy Technology Data Exchange (ETDEWEB)

    Loughborough, K. [Enwave District Energy, Toronto, ON (Canada)

    2004-07-01

    Enwave District Energy Ltd. is one of North America's largest district energy system manufacturers which provides outsourced heating and cooling to more than 130 major buildings in downtown Toronto. This presentation described innovations in managing the supply and demand of energy, and provided several viewgraphs depicting service heating, district cooling, and the district energy distribution network in Toronto. One of Enwave's greatest innovations is the deep lake water cooling (DLWC) district cooling system. The $175 million capital joint infrastructure project which began in June 2002 will be on line in 2004. The district cooling system represents the largest renewable energy project in Canada with a total cooling capacity of 52,000 tons. The system relies on DLWC and conventional chillers. DLWC uses naturally cold water from Lake Ontario. The coldness from the water is used to provide air conditioning to the buildings in Toronto. The benefits include 75 per cent reduced energy use, the elimination of ozone depleting refrigerants, and the use of a renewable resource for providing a stable cooling supply. Emissions of carbon dioxide, nitrogen oxides and oxides of sulphur are also reduced. The benefits to the city include a reduced strain on the electricity infrastructure, cleaner air and improved health. tabs., figs.

  9. Report on the planning of Senegal's energy demand by MAED

    International Nuclear Information System (INIS)

    Kanouté, Mamadou

    2012-01-01

    This study was carried out to strengthen the capacities of the participants in the implementation of a global energy balance of a country using the MAED model. The training which saw the participation of two teams (Senegal and Mali) took place from 30 July to 17 August 2012. The aim of this study is to: 1. Develop future scenarios on the volution of energy consumption. 2. Propose concrete measures to enable the country to face Soaring prices of petroleum products. 3. Streamlining and distributing energy consumption in a safe and sustainable manner. 4. Better planning for energy demand. Also, this study showed that the household sector occupies the leading position in terms of energy consumption. The Agriculture sector does not consume much energy because of the lack of modernization that prevails in the agricultural process with the use of rudimentary tools when tractors are used in developed countries. However, given the objectives of the State of Senegal to revive the economy of Senegal, there are significant changes in all sectors. The share of agriculture in GDP tends to decline in the future as the share of services increases slightly. In the household sector, it should be stressed that the use of modern biomass tends to increase in the coming decades to the detriment of traditional fuels which follow a stagnant trend.

  10. Energy demand and supply in human skeletal muscle.

    Science.gov (United States)

    Barclay, C J

    2017-04-01

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min -1 during isometric contractions of various intensity to as much as 400 mM min -1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min -1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min -1 . During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min -1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  11. Intelligent demand side management of residential building energy systems

    Science.gov (United States)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  12. Including Energy Efficiency and Renewable Energy Policies in Electricity Demand Projections

    Science.gov (United States)

    Find more information on how state and local air agencies can identify on-the-books EE/RE policies, develop a methodology for projecting a jurisdiction's energy demand, and estimate the change in power sector emissions.

  13. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    Science.gov (United States)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  14. Electricity demand in France: what's at stake for the energy transition?

    International Nuclear Information System (INIS)

    Berghmans, Nicolas

    2017-02-01

    This study identifies five key issues linked to electricity consumption to be taken into consideration in the management of the French power system transition: articulating the building stock renovation strategy and electricity consumption; integrating demand for electricity stemming from the development of electric vehicles; addressing winter 'peak' demand with specific demand-side policies; establishing energy demand management economic models as a flexible solution for the power system; identifying the impact of the emergence of a power system that is decentralised, balanced locally and connected with other energy carriers on the nature of demand for power from the grid. In the context of weak economic and demographic growth, the recent stabilization of electricity demand in France can be attributed to 'structural' factors, i.e. the continued expansion of the tertiary sector in the economy and the acceleration in energy efficiency gains. This evolution was poorly anticipated by stakeholders in the sector, which contributed to an imbalance between electricity demand and supply in Europe. In the absence of a major disruption, planning for transition in the electrical system should be made assuming relatively stable demand. However, major transformations will change the nature of the requirements placed on the electricity system: the times at which energy is consumed, the ability to manage the demand side of the system, and the geographical location of electricity demand within the network. Five key challenges are identified to anticipate the development of electricity consumption patterns: the role of electricity in satisfying building sector heating requirements, the integration of electric vehicle charging, the evolution of the winter demand peak, the development of demand-side management, and the emergence of an electric system based on local-level balancing. Too often considered an exogenous factor, the development in electricity consumption is in fact central

  15. Growing an emerging energy workforce: forecasting labour demand and gaining access to emerging energy skills

    International Nuclear Information System (INIS)

    Thomsen, V.

    2006-01-01

    This paper discusses the needs of emerging energies sector in terms of growing an emerging energy workforce, forecasting labour demands and gaining access to emerging energy skills. It will require industrial renewal and innovation and not just selling our resources. It will also require educating ourselves to utilise our own finished products. Conservation is a key element in a sustainable energy future. finally, a market for renewable energy has been established in Canada

  16. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, S. (ed.)

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  17. Optimal supply and demand investments in municipal energy systems

    International Nuclear Information System (INIS)

    Rolfsman, Bjoern

    2004-01-01

    In many municipalities, there are district heating networks, which are quite commonly supplied by combined heat and power plants (CHP). A district heating network contains buildings of different types. In this paper, one such municipal energy system is analysed. In order to provide space heating and domestic hot water, investments could be made on the supply side in power plants, or on the demand side in the buildings, for example in the form of extra wall insulation. The electricity from the CHP plants is supplied to the municipality but can also be sold to the electricity market, and electricity can, of course, also be bought from the market. The variation in price on the spot market over any given day is significant. The need for district heat in the building stock also varies, for example due to climatic conditions. The energy system in the case study is analysed with a mixed integer linear programming model. The model has 3 h time steps in order to reflect diurnal variations, and an entire year is analysed. A case study is presented for the city of Linkoeping in Sweden. On the demand side, the options are: extra wall insulation, extra attic insulation and better types of windows. The building stock is divided into nine categories

  18. Holidays in lights: Tracking cultural patterns in demand for energy services

    OpenAIRE

    Rom?n, Miguel O.; Stokes, Eleanor C.

    2015-01-01

    Abstract Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro?level has identified economic activity, power generation and technol...

  19. Long-term outlook of energy demand and supply in Japan. Estimation of energy demand and supply for 'Nuclear Energy Vision 2100' of JAEA

    International Nuclear Information System (INIS)

    Tatematsu, Kenji; Kawasaki, Hirotsugu; Nemoto, Masahiro; Murakami, Masakazu

    2009-06-01

    In this study, we showed an energy demand and supply scenario toward the year 2100 in Japan, which underlies JAEA's 'Nuclear Energy Vision 2100' published in October 2008. This energy demand and supply scenario aimed at the coexistence of the reduction of the carbon dioxide emission and the energy security through reduction of the fossil fuel usage, positive electrification and the nuclear energy usage. We reduced the ratio of the fossil fuel in the primary energy supply to about 1/3 and extend the share of renewable and nuclear energy to 70% from current 15%. As a result, the carbon dioxide emission was reduced to current 10%, and it developed that the half was the contribution of the nuclear energy. (author)

  20. Optimum community energy storage system for demand load shifting

    International Nuclear Information System (INIS)

    Parra, David; Norman, Stuart A.; Walker, Gavin S.; Gillott, Mark

    2016-01-01

    Highlights: • PbA-acid and lithium-ion batteries are optimised up to a 100-home community. • A 4-period real-time pricing and Economy 7 (2-period time-of-use) are compared. • Li-ion batteries perform worse with Economy 7 for small communities and vice versa. • The community approach reduced the levelised cost by 56% compared to a single home. • Heat pumps reduced the levelised cost and increased the profitability of batteries. - Abstract: Community energy storage (CES) is becoming an attractive technological option to facilitate the use of distributed renewable energy generation, manage demand loads and decarbonise the residential sector. There is strong interest in understanding the techno-economic benefits of using CES systems, which energy storage technology is more suitable and the optimum CES size. In this study, the performance including equivalent full cycles and round trip efficiency of lead-acid (PbA) and lithium-ion (Li-ion) batteries performing demand load shifting are quantified as a function of the size of the community using simulation-based optimisation. Two different retail tariffs are compared: a time-of-use tariff (Economy 7) and a real-time-pricing tariff including four periods based on the electricity prices on the wholesale market. Additionally, the economic benefits are quantified when projected to two different years: 2020 and a hypothetical zero carbon year. The findings indicate that the optimum PbA capacity was approximately twice the optimum Li-ion capacity in the case of the real-time-pricing tariff and around 1.6 times for Economy 7 for any community size except a single home. The levelised cost followed a negative logarithmic trend while the internal rate of return followed a positive logarithmic trend as a function of the size of the community. PbA technology reduced the levelised cost down to 0.14 £/kW h when projected to the year 2020 for the retail tariff Economy 7. CES systems were sized according to the demand load and

  1. The impact of small scale cogeneration on the gas demand at distribution level

    International Nuclear Information System (INIS)

    Vandewalle, J.; D’haeseleer, W.

    2014-01-01

    Highlights: • Impact on the gas network of a massive implementation of cogeneration. • Distributed energy resources in a smart grid environment. • Optimisation of cogeneration scheduling. - Abstract: Smart grids are often regarded as an important step towards the future energy system. Combined heat and power (CHP) or cogeneration has several advantages in the context of the smart grid, which include the efficient use of primary energy and the reduction of electrical losses through transmission. However, the role of the gas network is often overlooked in this context. Therefore, this work presents an analysis of the impact of a massive implementation of small scale (micro) cogeneration units on the gas demand at distribution level. This work shows that using generic information in the simulations overestimates the impact of CHP. Furthermore, the importance of the thermal storage tank capacity on the impact on the gas demand is shown. Larger storage tanks lead to lower gas demand peaks and hence a lower impact on the gas distribution network. It is also shown that the use of an economically led controller leads to similar results compared to classical heat led control. Finally, it results that a low sell back tariff for electricity increases the impact of cogeneration on the gas demand peak

  2. Perspective of long term demand and supply of energy and general inspection of energy policy

    International Nuclear Information System (INIS)

    1983-01-01

    Since the oil crisis, Japanese energy policy was promoted to get rid of the excess dependence on petroleum and to attain energy security, but energy situation largely changed during the past ten years, and it has become necessary to make general inspection on the long term demand and supply of energy and the energy policy. After the second oil crisis, the worldwide demand of petroleum decreased drastically due to the rapid price rise, and the base price of crude oil was lowered for the first time. It is necessary to positively endeavor to reduce energy cost with new idea. The points of the general inspection are the correspondence of the energy policy to the large structural change of energy, the most desirable system for attaining the optimum structure of energy demand and supply and the utilization of market mechanism as far as possible. This report is the results of discussion held eight times since April, 1983. The change of energy situation in Japan and abroad and the perspective, the new problems in energy countermeasures and the trend of response, the preferential and effective promotion of general energy countermeasures and so on are reported. This report shows the fundamental direction of energy countermeasures hereafter, and the concrete and special examination must be made on many remaining problems. (Kako, I.)

  3. Free energy option and its relevance to improve domestic energy demands in southern Nigeria

    Directory of Open Access Journals (Sweden)

    Moses Eterigho Emetere

    2016-11-01

    Full Text Available The aim of this paper is to seek an energy option that would benefit the growing energy demands. Domestic energy demands in southern Nigeria had increased greatly due to failing power programs and seasonal migrations. The fossil fuel option is gradually fading away due to environmental pollution and recent dynamic cost. The renewable energy option had been celebrated with little success in the coastal area of southern Nigeria. At the moment, the renewable energy option is very expensive with little guarantee on its efficiency with time. The data set used for this study was obtained from the Davis weather installation in Covenant University. The free energy option was considered. The cost and its environmental implication for domestic use were comparatively discussed alongside other energy options — using the Life cycle cost analysis. It was found out that free energy option is more affordable and efficient for domestic use.

  4. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  5. Hierarchical Energy Management of Microgrids including Storage and Demand Response

    Directory of Open Access Journals (Sweden)

    Songli Fan

    2018-05-01

    Full Text Available Battery energy storage (BES and demand response (DR are considered to be promising technologies to cope with the uncertainty of renewable energy sources (RES and the load in the microgrid (MG. Considering the distinct prediction accuracies of the RES and load at different timescales, it is essential to incorporate the multi-timescale characteristics of BES and DR in MG energy management. Under this background, a hierarchical energy management framework is put forward for an MG including multi-timescale BES and DR to optimize operation with the uncertainty of RES as well as load. This framework comprises three stages of scheduling: day-ahead scheduling (DAS, hour-ahead scheduling (HAS, and real-time scheduling (RTS. In DAS, a scenario-based stochastic optimization model is established to minimize the expected operating cost of MG, while ensuring its safe operation. The HAS is utilized to bridge DAS and RTS. In RTS, a control strategy is proposed to eliminate the imbalanced power owing to the fluctuations of RES and load. Then, a decomposition-based algorithm is adopted to settle the models in DAS and HAS. Simulation results on a seven-bus MG validate the effectiveness of the proposed methodology.

  6. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  7. India Energy Outlook: End Use Demand in India to 2020

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  8. World energy supply and demand and the future of nuclear power

    International Nuclear Information System (INIS)

    Lantzke, U.

    1977-01-01

    The OECD's world energy outlook analyses projected trends in energy damnd and supply for the OECD area and other major global regions to 1985. It provides a brief discussion of trends after 1985. OECD energy consumption is projected to grow more slowly than in the past. Conservation effects will increase efficiency of energy use per unit of economic growth. All domestic energy supplies in the OECD are projected to expand faster than in the past. The relative share of non-fossil energy sources in total production will be almost doubled. Assuming moderate economic growth, existing energy policies and a constnat real price for oil, the outlook's reference case projects OECD oil import at 35 million barrels a day by 1985. This level of import demand, when combined with the import needs of other oil importing areas, could approach the limit of availability of world oil supplies and as a result cause severe disequilibrium in world energy markets. The outlook indicates such severe disruption can be avoided by action to improve the world energy supply and demand balance without impeding economic growth objectives. Strong measures will be required both to conserve energy and to develop new energy supplies. The biggest increment to the OECD's energy supply by 1985 is expected to come from nuclear power. This substantial nuclear contribution will be inevitable and irreplaceable. As a result urgent solutions to problems concerning safety, availability of fuel cycle services, the environment, cost escalation and construction delays will be required

  9. The Impact of Economic Parameter Uncertainty Growth on Regional Energy Demand Assessment

    Directory of Open Access Journals (Sweden)

    Olga Vasilyevna Mazurova

    2017-06-01

    Full Text Available The article deals with the forecasting studies based on the energy demand and prices in the region in terms of the complex interconnections between economy (and energy and the growth of uncertainty of the future development of the country and territories. The authors propose a methodological approach, which combines the assessment of the price elasticity of energy demand with the optimization of energy and fuel regional supply. In this case, the price elasticity of demand is determined taking into account the comparison of cost-effectiveness of using different types of fuel and energy by different consumers. The originality of the proposed approach consists in simulating the behaviour of suppliers’ (energy companies and large customers’ (power plants, boiler rooms, industry, transport, population depending on energy price changes, the existing and new technologies, energy-saving activities and restrictions on fuel supplies. To take into account the uncertainty of future economic and energy conditions, some parameters such as prospective technical and economic parameters, price, technological parameters are set as the intervals of possible values with different probability levels. This approach allows making multivariate studies with different combinations of the expected conditions and receiving as a result the range of the projected values of studied indicators. The multivariate calculations show that the fuel demand has a nonlinear dependence on the consumer characteristics, pricing, projection horizon, and the nature of the future conditions uncertainty. The authors have shown that this effect can be significant and should be considered in the forecasts of the development of fuel and energy sector. The methodological approach and quantitative evaluation can be used to improve the economic and energy development strategies of the country and regions

  10. Order Level Inventory Models for Deteriorating Seasonable/Fashionable Products with Time Dependent Demand and Shortages

    OpenAIRE

    Skouri, K.; Konstantaras, I.

    2009-01-01

    An order level inventory model for seasonable/fashionable products subject to a period of increasing demand followed by a period of level demand and then by a period of decreasing demand rate (three branches ramp type demand rate) is considered. The unsatisfied demand is partially backlogged with a time dependent backlogging rate. In addition, the product deteriorates with a time dependent, namely, Weibull, deterioration rate. The model is studied under the following different replenishment p...

  11. Temperature effects on future energy demand in Sub-Saharan Africa

    Science.gov (United States)

    Shivakumar, Abhishek

    2016-04-01

    Climate change is projected to adversely impact different parts of the world to varying extents. Preliminary studies show that Sub-Saharan Africa is particularly vulnerable to climate change impacts, including changes to precipitation levels and temperatures. This work will analyse the effect of changes in temperature on critical systems such as energy supply and demand. Factors that determine energy demand include income, population, temperature (represented by cooling and heating degree days), and household structures. With many countries in Sub-Saharan Africa projected to experience rapid growth in both income and population levels, this study aims to quantify the amplified effects of these factors - coupled with temperature changes - on energy demand. The temperature effects will be studied across a range of scenarios for each of the factors mentioned above, and identify which of the factors is likely to have the most significant impact on energy demand in Sub-Saharan Africa. Results of this study can help set priorities for decision-makers to enhance the climate resilience of critical infrastructure in Sub-Saharan Africa.

  12. Energy levels of 56Mn

    DEFF Research Database (Denmark)

    Van Assche, P. H. M.; Baader, H. A.; Koch, H. R.

    1971-01-01

    The low-energy spectrum of the 55Mn(n,γ)56 Mn reaction has been studied with a γ-diffraction spectrometer. These data allowed the construction of a level scheme for 56Mn with two previously unobserved doublets. High-energy γ-transitions to the low-energy states have been measured for different...

  13. Energy Needs and Environmental Demand - Seen from a Banker's Perspective

    International Nuclear Information System (INIS)

    Tietmeyer, Hans

    1998-01-01

    This presentation was given by the president of the Deutschen Bundesbank, who is also Chairman of the Board of Trustees of the German Federal Environmental Foundation. He said that the current low oil price had contributed to slow down the worldwide rise in prices at the various levels. The development in Japan is very important for Asia as a whole. Early stabilization of the economic and financial situation in Russia is very important for the world economy. The situation may be difficult in Southeast Asia and in the former Soviet states. But in other areas the world economy is doing well. The crisis countries must put their financial sectors in order, which involves financial restructuring and the creation of viable supervision systems and market economy conditions. Climate and environmental considerations must be borne in mind in the future progress of national and international energy policy. In the long run, more energy must come from renewable energy sources and the total energy consumption must go down. Many petroleum groups and energy suppliers are already investing substantial sums in solar energy. The German Government is sponsoring renewable energy sources by a number of programmes. Energy conservation is the simplest and cheapest way of protecting the climate and conserving resources. The idea that all energy should be renewable is a pipe dream of the future

  14. Optimal Sizing of Hybrid Renewable Energy Systems: An Application for Real Demand in Qatar Remote Area

    Science.gov (United States)

    Alyafei, Nora

    Renewable energy (RE) sources are becoming popular for power generations due to advances in renewable energy technologies and their ability to reduce the problem of global warming. However, their supply varies in availability (as sun and wind) and the required load demand fluctuates. Thus, to overcome the uncertainty issues of RE power sources, they can be combined with storage devices and conventional energy sources in a Hybrid Power Systems (HPS) to satisfy the demand load at any time. Recently, RE systems received high interest to take advantage of their positive benefits such as renewable availability and CO2 emissions reductions. The optimal design of a hybrid renewable energy system is mostly defined by economic criteria, but there are also technical and environmental criteria to be considered to improve decision making. In this study three main renewable sources of the system: photovoltaic arrays (PV), wind turbine generators (WG) and waste boilers (WB) are integrated with diesel generators and batteries to design a hybrid system that supplies the required demand of a remote area in Qatar using heuristic approach. The method utilizes typical year data to calculate hourly output power of PV, WG and WB throughout the year. Then, different combinations of renewable energy sources with battery storage are proposed to match hourly demand during the year. The design which satisfies the desired level of loss of power supply, CO 2 emissions and minimum costs is considered as best design.

  15. Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies

    Directory of Open Access Journals (Sweden)

    Paula M. Esquivias

    2012-07-01

    Full Text Available This work evaluates the potential for the reduction of energy demand in residential buildings by acting on the exterior envelope, both in newly constructed buildings and in the retrofitting of existing stock. It focuses on analysing social housing buildings in Mediterranean areas and on quantifying the scope of that reduction in the application of different envelope design strategies, with the purpose of prioritizing their application based on their energy efficiency. The analyses and quantifications were made by means of the generation of energy models with the TRNSYS tool for simple or combined solutions, identifying possible potentials for reduction of the energy demand from 20% to 25%, basically by acting on the windows. The case study was a newly built social housing building of a closed block type located in Seville (Spain. Its constructive techniques and the insulation level of its envelope are standardized for current buildings widespread across Mediterranean Europe.

  16. Energy Saving by Chopping off Peak Demand Using Day Light

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Maitra

    2011-08-01

    Full Text Available An artificial intelligent technique has been implemented in this research using real time datas to calculate how much energy can be chopped from peak load demand. The results are based on real time data that are taken from power delivering centers. These datas do reflect the present condition of power and a solution to those critical conditions during the peak period. These are done in such a way such that helps in judicious scheduling of load. The time based load scheduling has been done so as to understand the basic criteria for solving power crisis during morning peak and early evening peak. The sunray availability and percentage of load that will use day light saving (DLS technique has been taken into account in this work. The results shows that about 0.5% to 1% of load can be shedded off from the peak load period which otherwise is reduction of power. Thus it otherwise also means that an equivalent amount of energy is saved which amounts to a large saving of national money. This result is obtained on monthly and even daily basis. Thus this paper justifies DLS gives a new renewable technique to save energy.

  17. Urban climate and energy demand interaction in Northern Eurasia

    Science.gov (United States)

    Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.

    2017-11-01

    The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.

  18. Adaptive heat pump and battery storage demand side energy management

    Science.gov (United States)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  19. Energy demand with the flexible double-logarithmic functional form

    International Nuclear Information System (INIS)

    Nan, G.D.; Murry, D.A.

    1992-01-01

    A flexible double-logarithmic function form is developed to meet assumptions of consumer behavior. Then annual residential and commercial data (1970-87) are applied to this functional form to examine demand for petroleum products, electricity, and natural gas in California. The traditional double log-linear functional form has shortcomings of constant elasticities. The regression equations in this study, with varied estimated elasticities, overcome some of these shortcomings. All short-run own-price elasticities are inelastic and all income elasticities are close to unity in this study. According to the short-run time-trend elasticities, consumers' fuel preference in California is electricity. The long-run income elasticities also indicate that the residential consumers will consume more electricity and natural gas as their energy budgets increase in the long run. 14 refs., 5 tabs

  20. Future role of Gulf oil in world energy demand

    International Nuclear Information System (INIS)

    Eltony, M.N.

    1998-01-01

    The view that there will be a growing dependence on oil from the Gulf countries is shared by a great number of oil market analysts. This view is based on the fact that Gulf countries dominate the global oil reserves. Energy analyst argue that as the world demand for oil continues to grow driven largely by the growth in developing countries' consumption coupled with constrained non-OPEC supply, the end result will be that the call on Gulf oil will grow substantially. In summary, this paper has challenged the view of growing dependence on oil from the Gulf using available information in conjunction with reasonable and fairly plausible arguments. The aim was to point out to the GCC member counties the danger of relying on these views in shaping their economic policies and in setting their oil market strategies. They may run the ultimate risk of being left with huge oil reserves that no one wants. (orig.)

  1. Analysis of Final Energy Demand by Sector in Malaysia using MAED Model

    International Nuclear Information System (INIS)

    Kumar, M.; Muhammed Zulfakar Mohd Zolkaffly; Alawiah Musa

    2011-01-01

    Energy supply security is important in ensuring a long term supply to fulfill the growing energy demand. This paper presents the use of IAEA energy planning tool, Model for Analysis of Energy Demand (MAED) to analyze, simulate and compare final energy demand by five different sectors in Malaysia under some assumptions, bounds and restrictions and the outcome can be used for planning of energy supply in future. (author)

  2. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    OpenAIRE

    Syed Aziz Ur Rehman; Yanpeng Cai; Rizwan Fazal; Gordhan Das Walasai; Nayyar Hussain Mirjat

    2017-01-01

    Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fo...

  3. A new campaign on nuclear energy to meet a demand

    International Nuclear Information System (INIS)

    Ronze, Helene

    1997-11-01

    This EDF press report presents the activities related to an advertising campaign initiated in November 1997 in favour of nuclear power development as response to a demand of French public. A TV clip, stressing the advantages of the nuclear power for the country, reminds that the electricity in France, where 75% is of nuclear origin, is present in every daily use of domestic facilities, be it the boiler, toaster, drip coffee appliance, refrigerator, etc., which all induce pleasure and life quality. For the first time an informative discourse is given reminding that the nuclear power ensures part of France's energy independence. It is a highly-valued type of energy on market, important both for households and for competing enterprises. Besides, the EDF has conceived five substantiated press announcements, addressed to the public opinion makers, answering significant questions raised by the public. In favour of nuclear power the following rationales are presented: 1. concerning the impact of the electricity generation upon the planet warming, the fact is reminded that the nuclear and hydroelectric power in France cover 90% of its electricity demands without any gas emission which induces the Greenhouse effect; 2. due to the competition the French nuclear power sector masters the cost of kWh in France; 3. the nuclear power constitutes an positive impetus on the commercial balance as currency saving and electricity exports; 4. the nuclear wastes in France have been reduced three times in the last ten years; 5. nuclear power ensures jobs for more than 100,000 direct employees in France and for almost an equal number of indirect employees

  4. The energy supply and demand outlook in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Fesharaki, F.

    1993-01-01

    The 1980s witnessed spectacular growth rates in the Asia-Pacific region. While the relationship between economic growth and energy consumption is not necessarily one-to-one, energy is a required input for economic activity and trade. Energy demand growth in the Asia-Pacific region has been accordingly rapid. At this point in history, oil and economic growth are so inter-related that changes in one invariably have major repercussions on the other. During the coming decade, continued economic growth is foreseen for the Asia-Pacific region, coupled with the fastest rate of oil demand growth of any region on earth. Pressure will come to bear on the regional oil and gas markets, since demand growth will take place concurrently with a decline in the availability of local, low-sulfur crudes. The region will become even more dependent on imports of Middle Eastern crude, which will result in a higher-sulfur crude slate. Moreover, we anticipate that the existing and planned refinery complexes will lack the capacity and the flexibility to fully satisfy product demand. The consequence will be a higher level of refined product imports. The paper looks in greater detail at the supply and demand situation with respect to oil and natural gas, at regional oil import dependency and refining capacity. (10 figures). (author)

  5. Industrial energy demand - a micro panel data analysis. Phase 1

    International Nuclear Information System (INIS)

    Bue Bjoerner, T.; Togeby, M.; Christensen, J.

    1998-10-01

    The matching of several existing databases - covering seven different years, two different databases from Statistics Denmark and various information from DEA - has been a challenging task. Despite a relatively automatic procedure the result is promising. More than 2,700 companies can be followed for more than three years and this means that the majority (65-85%) of the energy consumption in Danish industry is included. The number of observations that can be used in the analysis is better than expected. The constructed database has a large number of variables. It includes, e.g. energy consumption of eight major energy sources (and several minor fuels), individual prices for electricity and district heating, information about production value, value added, investments, company size and industrial sector. To this we have added general energy prices for other fuels, information on taxes, subsidies given to individual companies and energy agreements between authorities and individual companies. The combination of micro level, the many variables, the panel structure and the number of observations make the database unique compared to previous data (Danish as well as international) used to analyse industrial energy consumption. The database can be used for a variety of analyses. In the next section we will present simple models that can be used in the analyses of the data. These are single equation models of the energy consumption. In the future more general models can be applied, e.g. with representation of energy, labour and capital. (au)

  6. Human behaviour and energy demand : How behavioural science can be used to reduceenergy demand in the residential sector

    OpenAIRE

    Kaczmarek, Haiko

    2015-01-01

    The threat of human induced climate change is imminent. The reason is an everyincreasing demand for energy and products, producing more and more greenhousegas emissions. Everybody needs to take responsibility now. The estimations are thatwith 2% annual energy savings from residential households 12TWh and 3.3 billionmetric tonnes of CO2 can be saved per year. Greenely, a startup from KIC InnoEnergy,wants to engage residential households to change their energy behaviour athome. They combine a s...

  7. Global Energy Trends - 2016 report. Towards a Peak in Energy Demand and CO2 Emissions?

    International Nuclear Information System (INIS)

    2016-06-01

    Celebrating the 20. anniversary of this yearly publication, Enerdata has newly released its annual Global Energy Trends publication for 2016. The full report presents in-depth information on the energy markets as well as upcoming trends for all energies in the G20. With over 400 premium sources, Enerdata analysts highlight major developments in 2015 concerning global demand, supply and key indicators across the globe. The main trends outlined in the report are: - Economic slowdown: the lowest growth since 2002; - Almost no growth in energy consumption; - New decrease of energy intensity; - Stabilization of CO 2 -energy emissions; - INDC targets achievement requires a double breakthrough. The Global Energy Trends Analysis also provides additional graphs about trends by energy: - Coal: most consumed energy source in G20 countries; - Oil: fall in prices to around 40-50 US$/bbl; - Oil production: USA overtake Russia and catch up with Saudi Arabia; - Gas: Stabilisation of gas demand for the 2. consecutive year; - Electricity: Stagnation of electricity consumption; - Wind Power and Solar PV: Asia engine of development. Growth in energy consumption (%/year) for G20 countries: - Second consecutive year of decline: low growth and decrease in energy intensity; - India drives the energy consumption growth; - Near stagnation in China (after a first sharp slowdown in 2014); - Economic recession in Brazil and Russia; - USA: decrease primarily linked to the industrial sector (energy efficiency + less energy-intensive industry); - Rebound in Europe: economic growth + climate effect 2015/2014

  8. Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-06-01

    Full Text Available In this paper, an optimal energy management strategy for a cooperative multi-microgrid system with combined cooling, heat and power (CCHP is proposed and has been verified for a test case of building microgrids (BMGs. Three different demand types of buildings are considered and the BMGs are assumed to be equipped with their own combined heat and power (CHP generators. In addition, the BMGs are also connected to an external energy network (EEN, which contains a large CHP, an adsorption chiller (ADC, a thermal storage tank, and an electric heat pump (EHP. By trading the excess electricity and heat energy with the utility grid and EEN, each BMG can fulfill its energy demands. Seasonal energy demand variations have been evaluated by selecting a representative day for the two extreme seasons (summer and winter of the year, among the real profiles of year-round data on electricity, heating, and cooling usage of all the three selected buildings. Especially, the thermal energy management aspect is emphasized where, bi-lateral heat trading between the energy supplier and the consumers, so-called energy prosumer concept, has been realized. An optimization model based on mixed integer linear programming has been developed for minimizing the daily operation cost of the EEN while fulfilling the energy demands of the BMGs. Simulation results have demonstrated the effectiveness of the proposed strategy.

  9. Distributed generation and demand response dispatch for a virtual power player energy and reserve provision

    DEFF Research Database (Denmark)

    Faria, Pedro; Soares, Tiago; Vale, Zita

    2014-01-01

    Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets’ environment, with deep concerns at the efficiency level. In this context, grid operators, market...... proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources’ participation can be performed in both energy and reserve contexts. This methodology contemplates...

  10. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  11. Update of energy supply and demand 1983-2005

    International Nuclear Information System (INIS)

    1984-01-01

    When a return to economic growth and prosperity occurs there is excellent potential for growth in electrical demand. This electrical growth will mainly come about through increases in total energy usage and through the substitution of electricity for oil, coal and, to a lesser extent, natural gas. The successful introduction of electricity use, either directly or indirectly, into the transportation sector would open up a very large market and make a major contribution to Canada's policy of energy self sufficiency. There are also significant growth areas in the residential and industrial sectors. The major challenge in the next decade will be to maintain a viable Canadian nuclear industry, so as to meet the probable upturn in electrical generating capacity required in the 1990's and beyond and to maintain and improve Canada's share of the nuclear export market. In order to achieve this active support should be given: 1) to building CANDU units in stations primarily devoted to exporting their electrical output to the U.S.A. 2) reactor exports. 3) inititatives to promote increased electrical home heating. 4) electricity substitution in the transportation and industrial fields. Canada has ample uranium resources to cover its own needs and potential exports in the foreseeable future. Because of the great development potential in the CANDU uranium/thorium fuel cycle nuclear energy should be considered as virtually a renewable resource with the best prospects for Canada's long-term energy self sufficiency. Increased productivity, through electric-based process inprovements, and the growth of electric-based high technology industries are both vital to Canada's future economic health. Nuclear produced electricity thus has a vital role to play far into the future

  12. Demand response power system optimization in presence of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Dumbrava Virgil

    2017-07-01

    Full Text Available This paper optimizes the price-based demand response of a large customer in a power system with stochastic production and classical fuel-supplied power plants. The implemented method of optimization, under uncertainty, is helpful to model both the utility functions for the consumers and their technical limitations. The consumers exposed to price-based demand can reduce their cost for electricity procurement by modifying their behavior, possibly shifting their consumption during the day to periods with low electricity prices. The demand is considered elastic to electricity price if the consumer is willing and capable to buy various amounts of energy at different price levels, the demand function being represented as purchasing bidding blocks. The demand response is seen also by the scientific literature as a possible source of the needed flexibility of modern power systems, while the flexibility of conventional generation technologies is restricted by technical constraints, such as ramp rates. This paper shows how wind power generation affects short term operation of the electricity system. Fluctuations in the amount of wind power fed into the grid require, without storage capacities, compensating changes in the output of flexible generators or in the consumers’ behavior. In the presented case study, we show the minimization of the overall costs in presence of stochastic wind power production. For highlighting the variability degree of production from renewable sources, four scenarios of production were formulated, with different probabilities of occurrence. The contribution brought by the paper is represented by the optimization model for demand-response of a large customer in a power system with fossil fueled generators and intermittent renewable energy sources. The consumer can reduce the power system costs by modifying his demand. The demand function is represented as purchasing bidding blocks for the possible price forecasted realizations

  13. Development of world energy requirements and ways of meeting the demand

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1977-01-01

    The development is described of the past and future energy demand and the possibility is discussed of using fossil and non-fossil energy sources in meeting the needs of population. The use of alternative energy sources is recommended to reduce the fossil fuel demand, such as solar energy, water energy, geothermal energy, tidal energy, wind energy, sea wave energy, ocean temperature gradients, photosynthesis, glacier energy and nuclear fission energy. The comparison of the possible use of the respective types of energy sources shows that only geothermal energy, tidal energy and the nuclear energy produced by thermal reactors have undergone the whole developmental stage and are industrially applicable. (Oy)

  14. Analysis of energy demand, and evaluation of energy conservation measures in urban districts

    International Nuclear Information System (INIS)

    Nakamura, H.; Yoshida, N.

    1994-01-01

    Mitsubishi Research Institute has analyzed the energy demand of a typical Japanese city, Yokohama, as well as the distribution of fossil-energy flow, and the final consumption by sectors. It has evaluated the effectiveness of various energy conservation measures, (e.g., cogeneration, electric cars, insulation,...) in countering the global warming trend. This study defines a viable methodology which may be utilized, in the future, in examining the effectiveness of environmental policies. (TEC). 1 tab., 4 figs

  15. Willingness to pay and price elasticities of demand for energy-efficient appliances: Combining the hedonic approach and demand systems

    Energy Technology Data Exchange (ETDEWEB)

    Galarraga, Ibon, E-mail: ibon.galarraga@bc3research.org; Gonzalez-Eguino, Mikel, E-mail: mikel.gonzalez@bc3research.org; Markandya, Anil, E-mail: anil.markandya@bc3research.org

    2011-12-15

    This article proposes a combined approach for estimating willingness to pay for the attributes represented by energy efficiency labels and providing reliable price elasticities of demand (own and cross) for close substitutes (e.g. those with low energy efficiency and those with higher energy efficiency). This is done by using the results of the hedonic approach together with the Quantity Based Demand System (QBDS) model. The elasticity results obtained with the latter are then compared with those simulated using the Linear Almost Ideal Demand System (LA/AIDS). The methodology is applied to the dishwasher market in Spain: it is found that 15.6% of the final price is actually paid for the energy efficiency attribute. This accounts for about Euro 80 of the average market price. The elasticity results confirm that energy efficient appliances are more price elastic than regular ones. - Highlights: > The article shows a combined approach for estimating willingness to pay for energy efficiency labels and price elasticities. > The results of the hedonic approach is used together with the Quantity Based Demand System (QBDS) model. > The elasticity results are compared with those simulated using the Linear Almost Ideal Demand System (LA/AIDS). > The methodology is applied to the dishwasher market in Spain.

  16. China's building energy demand: Long-term implications from a detailed assessment

    International Nuclear Information System (INIS)

    Eom, Jiyong; Clarke, Leon; Kim, Son H.; Kyle, Page; Patel, Pralit

    2012-01-01

    Buildings are an important contributor to China's energy consumption and attendant CO 2 emissions. Measures to address energy consumption and associated emissions from the buildings sector will be an important part of strategy to reduce the country's CO 2 emissions. This study presents a detailed, service-based model of China's building energy demand, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explored long-term pathways of China's building energy demand and identified opportunities to reduce greenhouse gas emissions. A range of different scenarios was also developed to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth: In the reference scenarios, the sector's final energy demand will increase by 110–150% by 2050 and 160–220% by 2095 from its 2005 level. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy. -- Highlights: ► We developed a building energy model for China, nested in an integrated-assessment framework. ► We explore long-term pathways of China's building energy use by implementing a range of scenarios. ► China's building energy consumption will continue to grow and be electrified over the century. ► Improved building energy technology will slow down the growth in building energy consumption. ► Electrification will be accelerated by the implementation of carbon policy.

  17. A review of 'long-term energy supply and demand outlook'

    International Nuclear Information System (INIS)

    Hoshino, Yuko; Hamagata, Sumio; Nagata, Yutaka

    2016-01-01

    In this paper, we reviewed the 'Long-term Energy Supply and Demand Outlook' based on our original Japan's Economy and Energy Outlook toward 2030. 'The Long-term Energy Supply and Demand Outlook' was based on the following three basic policies: (1) Energy self-sufficiency rate in 2030 should be around 25 percent. (2) Electricity Costs in 2030 should be lower than the current level in 2013. (3) Emissions target of GHGs in 2030 should not be lower than that of EU and the US. Moreover, there were many assumptions or constraints, such as assumed economic growth rate consistent to the government's macro-economic policy and the share of renewable energy more than 20 percent. In order to satisfy the above mentioned conditions, an extraordinary energy saving should be implemented in the scenario. The assumed intensity of energy saving is as much as that after the two oil crises. We estimated the cost of that magnitude of energy saving based on our model simulation, which revealed that in order to achieve the energy saving target, the electricity price should be 80% higher than the business as usual case. In addition, we reviewed the long-term energy supply and demand scenarios of major developed countries such as the UK, the US, Italy, Germany and Australia. We found that most of the scenarios depend on a large scale of energy saving in order to achieve the GHG emissions reductions targets. The reality of those energy saving targets should be carefully re-examined under the low oil price environment. (author)

  18. Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Eom, Jiyong; Clarke, Leon E.; Shukla, Priyadarshi R.

    2014-01-01

    With increasing population, income, and urbanization, meeting the energy service demands for the building sector will be a huge challenge for Indian energy policy. Although there is broad consensus that the Indian building sector will grow and evolve over the coming century, there is little understanding of the potential nature of this evolution over the longer term. The present study uses a technologically detailed, service based building energy model nested in the long term, global, integrated assessment framework, GCAM, to produce scenarios of the evolution of the Indian buildings sector up through the end of the century. The results support the idea that as India evolves toward developed country per-capita income levels, its building sector will largely evolve to resemble those of the currently developed countries (heavy reliance on electricity both for increasing cooling loads and a range of emerging appliance and other plug loads), albeit with unique characteristics based on its climate conditions (cooling dominating heating and even more so with climate change), on fuel preferences that may linger from the present (for example, a preference for gas for cooking), and vestiges of its development path (including remnants of rural poor that use substantial quantities of traditional biomass). - Highlights: ► Building sector final energy demand in India will grow to over five times by century end. ► Space cooling and appliance services will grow substantially in the future. ► Energy service demands will be met predominantly by electricity and gas. ► Urban centers will face huge demand for floor space and building energy services. ► Carbon tax policy will have little effect on reducing building energy demands

  19. Future World Energy Demand and Supply: China and India and the Potential Role of Fusion Energy

    International Nuclear Information System (INIS)

    Sheffield, John

    2005-01-01

    Massive increases in energy demand are projected for countries such as China and India over this century e.g., many 100s of megawatts of electricity (MWe) of additional electrical capacity by 2050, with more additions later, are being considered for each of them. All energy sources will be required to meet such a demand. Fortunately, while world energy demand will be increasing, the world is well endowed with a variety of energy resources. However, their distribution does not match the areas of demand and there are many environmental issues.Such geopolitical issues affect China and India and make it important for them to be able to deploy improved technologies. In this regard, South Korea is an interesting example of a country that has developed the capability to do advanced technologies - such as nuclear power plants. International collaborations in developing these technologies, such as the International Thermonuclear Reactor (ITER), may be important in all energy areas. Fusion energy is viewed as an interesting potential option in these three countries

  20. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    Science.gov (United States)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  1. Planning nuclear energy centers under technological and demand uncertainty

    International Nuclear Information System (INIS)

    Meier, P.M.; Palmedo, P.F.

    1976-01-01

    The question considered is whether new nuclear power plants should be located in nuclear energy centers, or ''power parks'' with co-located fabrication and reprocessing facilities. That issue has been addressed in a recent study by the Nuclear Regulatory Commission and remains under investigation at Brookhaven and elsewhere. So far, however, the advisability of this policy has been analyzed primarily within the framework of a single view of the future. Suggestions of the types of questions that should be asked regarding this policy if it is properly to be viewed as an example of decision making under uncertainty are made. It is concluded that ''A consideration of the various uncertainties involved in the question of dispersed vs. remote siting of energy facilities introduces a number of new elements into the analysis. On balance those considerations provide somewhat greater support for the clustered concept. The NEC approach seems to provide somewhat greater flexibility in accomodating possible future electricity generating technologies. Increased regulatory and construction efficiencies possible in an NEC reduces the impact of demand uncertainty as does the lower costs associated with construction acceleration or deceleration.'' It is also noted that, in the final analysis, ''it is the public's perception of the relative costs and benefits of a measure that determine the acceptability or unacceptability of a particular innovation,'' not the engineer's cost/benefit analysis. It is further noted that if the analysis can identify limits on analytical methods and models, it will not make the job of energy decision-making any easier, but it may make the process more responsive to its impact on society

  2. An accelerator-driven reactor for meeting future energy demand

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel

  3. Uruguay Energy Supply Options Study: a Detailed Multi-Sector Integrated Energy Supply and Demand Analysis

    International Nuclear Information System (INIS)

    Conzelmann, G.; Veselka, T.

    1997-01-01

    Uruguay is in the middle of making critical decisions affecting the design of its future energy supply system.Momentum for change is expected to come from several directions including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country s membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay.The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay s energy supply system.The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries.The Government of Uruguay contracted Argonne National Laboratory (ANL) to study several energy development scenario ns with the support of several Uruguayan Institutions.Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios

  4. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings.

    Science.gov (United States)

    Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M

    2017-12-05

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  5. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

    Directory of Open Access Journals (Sweden)

    Chinmaya Mahapatra

    2017-12-01

    Full Text Available Around the globe, innovation with integrating information and communication technologies (ICT with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  6. Simulating residential demand response: Improving socio-technical assumptions in activity-based models of energy demand

    OpenAIRE

    McKenna, E.; Higginson, S.; Grunewald, P.; Darby, S. J.

    2017-01-01

    Demand response is receiving increasing interest as a new form of flexibility within low-carbon power systems. Energy models are an important tool to assess the potential capability of demand side contributions. This paper critically reviews the assumptions in current models and introduces a new conceptual framework to better facilitate such an assessment. We propose three dimensions along which change could occur, namely technology, activities and service expectations. Using this framework, ...

  7. Regional Energy Demand Responses To Climate Change. Methodology And Application To The Commonwealth Of Massachusetts

    International Nuclear Information System (INIS)

    Amato, A.D.; Ruth, M.; Kirshen, P.; Horwitz, J.

    2005-01-01

    Climate is a major determinant of energy demand. Changes in climate may alter energy demand as well as energy demand patterns. This study investigates the implications of climate change for energy demand under the hypothesis that impacts are scale dependent due to region-specific climatic variables, infrastructure, socioeconomic, and energy use profiles. In this analysis we explore regional energy demand responses to climate change by assessing temperature-sensitive energy demand in the Commonwealth of Massachusetts. The study employs a two-step estimation and modeling procedure. The first step evaluates the historic temperature sensitivity of residential and commercial demand for electricity and heating fuels, using a degree-day methodology. We find that when controlling for socioeconomic factors, degree-day variables have significant explanatory power in describing historic changes in residential and commercial energy demands. In the second step, we assess potential future energy demand responses to scenarios of climate change. Model results are based on alternative climate scenarios that were specifically derived for the region on the basis of local climatological data, coupled with regional information from available global climate models. We find notable changes with respect to overall energy consumption by, and energy mix of the residential and commercial sectors in the region. On the basis of our findings, we identify several methodological issues relevant to the development of climate change impact assessments of energy demand

  8. Regional Energy Demand Responses To Climate Change. Methodology And Application To The Commonwealth Of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Amato, A.D.; Ruth, M. [Environmental Policy Program, School of Public Policy, University of Maryland, 3139 Van Munching Hall, College Park, MD (United States); Kirshen, P. [Department of Civil and Environmental Engineering, Tufts University, Anderson Hall, Medford, MA (United States); Horwitz, J. [Climatological Database Consultant, Binary Systems Software, Newton, MA (United States)

    2005-07-01

    Climate is a major determinant of energy demand. Changes in climate may alter energy demand as well as energy demand patterns. This study investigates the implications of climate change for energy demand under the hypothesis that impacts are scale dependent due to region-specific climatic variables, infrastructure, socioeconomic, and energy use profiles. In this analysis we explore regional energy demand responses to climate change by assessing temperature-sensitive energy demand in the Commonwealth of Massachusetts. The study employs a two-step estimation and modeling procedure. The first step evaluates the historic temperature sensitivity of residential and commercial demand for electricity and heating fuels, using a degree-day methodology. We find that when controlling for socioeconomic factors, degree-day variables have significant explanatory power in describing historic changes in residential and commercial energy demands. In the second step, we assess potential future energy demand responses to scenarios of climate change. Model results are based on alternative climate scenarios that were specifically derived for the region on the basis of local climatological data, coupled with regional information from available global climate models. We find notable changes with respect to overall energy consumption by, and energy mix of the residential and commercial sectors in the region. On the basis of our findings, we identify several methodological issues relevant to the development of climate change impact assessments of energy demand.

  9. 75 FR 54063 - Demand Response Compensation in Organized Wholesale Energy Markets; Technical Conference

    Science.gov (United States)

    2010-09-03

    ... FEDERAL ENERGY REGULATORY COMMISSION 18 CFR Part 35 [Docket No. RM10-17-000] Demand Response... for determining when to compensate demand response providers and the allocation of costs associated with demand response. DATES: The technical conference will be held at the Federal Energy Regulatory...

  10. Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region

    International Nuclear Information System (INIS)

    Liu Xiaochen; Sweeney, John

    2012-01-01

    This study aims to investigate the relationship between household space heating energy use and urban form (land use characteristics) for the Greater Dublin Region. The geographical distributions of household energy use are evaluated at the Enumeration Districts (ED) level based on the building thermal balance model. Moreover, it estimates the impact of possible factors on the household space heating consumption. Results illustrate that the distribution profile of dwellings is a significant factor related to overall heating energy demand and individual dwelling energy consumption for space heating. Residents living in compact dwellings with small floor areas consume less energy for space heating than residents living in dwellings with big floor areas. Moreover, domestic heating energy demand per household was also estimated for two extreme urban development scenarios: the compact city scenario and the dispersed scenario. The results illustrate that the compact city scenario is likely to decrease the domestic heating energy consumption per household by 16.2% compared with the dispersed city scenario. Correspondingly, the energy-related CO 2 emissions could be significantly decreased by compact city scenario compared with the dispersed city scenario. - Highlights: ► A method was developed to investigate urban form impacts on energy demand. ► This study estimates impacts of possible factors on the household energy consumption. ► Household heating energy demand is sensitive to dwelling distribution profile. ► The compact case could reduce domestic energy demand compared with the dispersed case.

  11. DEMAND FOR WILD BLUEBERRIES AT FARM AND PROCESSOR LEVELS

    OpenAIRE

    Cheng, Hsiang-Tai; Peavey, Stephanie R.; Kezis, Alan S.

    2000-01-01

    The wild blueberry crop harvested in Maine and eastern Canada has increased considerably in recent years. The purpose of this study is to understand the recent trends in demand for wild blueberries with particular attention to the effects of production and the marketing of wild and cultivated blueberries. A price response model was developed to analyze farm-gate price and the processor price, using annual data from 1978 through 1997. Key explanatory variables in the model include quantity of ...

  12. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  13. GRI baseline projection of U.S. energy supply and demand to 2010. 1992 edition

    International Nuclear Information System (INIS)

    Holtberg, P.D.; Woods, T.J.; Lihn, M.L.; Koklauner, A.B.

    1992-04-01

    The annual GRI baseline projection is the result of a complex modeling effort that seeks to achieve an internally consistent energy supply and demand outlook across all energy sources and end-use demand sectors. The year's projection includes the adoption of a new petroleum refinery methodology, the incorporation of a new approach to determining electric utility generating capacity heat rates, the extensive update of both the residential and commercial databases and methodologies, and the continued update of the GRI Hydrocarbon Model. The report presents a series of summary tables, sectoral breakdowns of energy demand, and the natural gas supply and price trends. The appendices include a discussion of the methodology and assumptions used to prepare the 1992 edition of the projection, an analysis of the potential for higher levels of gas demand, a description of industrial and commercial cogeneration, a description of the independent power producer projection, a comparison of the 1992 edition of the projection with previous GRI projections, and a discussion of additional data used in developing the projection

  14. The energy demand of fast neuronal network oscillations: insights from brain slice preparations

    Directory of Open Access Journals (Sweden)

    Oliver eKann

    2012-01-01

    Full Text Available Fast neuronal network oscillations in the gamma range (30-100 Hz in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.

  15. A multi-scale energy demand model suggests sharing market risks with intelligent energy cooperatives

    NARCIS (Netherlands)

    G. Methenitis (Georgios); M. Kaisers (Michael); J.A. La Poutré (Han)

    2015-01-01

    textabstractIn this paper, we propose a multi-scale model of energy demand that is consistent with observations at a macro scale, in our use-case standard load profiles for (residential) electric loads. We employ the model to study incentives to assume the risk of volatile market prices for

  16. An interim report on the outlook of long-term energy supply and demand

    International Nuclear Information System (INIS)

    1982-01-01

    An interim report was presented by the supply/demand committee in Over-all Energy Council concerning the energy demand and supply outlook for fiscal 1990 as compared with fiscal 1980. The background for deciding the outlook of energy supply and demand and basic ideas for energy policy, and the outlook for energy supply and demand are outlined. The outlook was prepared, assuming yearly economic growth of about 5 % in 1980s and the utmost efforts by people in energy situation. The energy situation both domestic and abroad is largely changing, including energy saving efforts and petroleum price. The aggregate energy demand for fiscal 1990 was put at about 590 million kl in terms of crude oil. Then, concerning nuclear power generation, the power supply by nuclear energy in fiscal 1990 was estimated at 46 million kw accounting for 11.3 % of the total power supply. (Mori, K.)

  17. Estimation of demand response to energy price signals in energy consumption behaviour in Beijing, China

    International Nuclear Information System (INIS)

    He, Y.X.; Liu, Y.Y.; Xia, T.; Zhou, B.

    2014-01-01

    Highlights: • Demand response to energy price signals in energy consumption in Beijing is studied. • The electricity price is of great importance to Beijing’s energy market stability. • Industrial sectors have a large electricity self-elasticity and cross-elasticity. • When consuming electricity, customers pay more attention to natural gas price. • Analysis of demand response to energy price can provide guidance to energy policies. - Abstract: The energy price system in Beijing has not fully exploited customers’ price elasticity, and has a negative impact on achieving the goals of energy saving. This paper analyses the response behaviours of different customers to typical energy prices. As for electricity self-elasticity, the range of the primary, secondary, tertiary industry and residents are −0.026 to −0.033, −0.045 to −0.059, −0.035 to −0.047 and −0.024 to −0.032, respectively. As regards self-elasticity on coal, the range of the primary, secondary, tertiary industry and residents are −0.030 to −0.037, −0.066 to −0.093, −0.055 to −0.072 and −0.034 to −0.051, respectively. The self-elasticities on oil and natural gas are very weak. As for cross-elasticity, when consuming electricity and oil, customers mainly focus on the prices of natural gas, which are 0.185 and 0.112. When consuming coal and natural gas, customers are concerned about the electricity prices, and their cross-elasticities are 0.03 and 0.36, respectively. The estimation of demand response to energy price signals in energy consumption behaviours can provide a decision support for formulating rational energy price policies

  18. An Integrated Decentralized Energy Planning Model considering Demand-Side Management and Environmental Measures

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Kazemi

    2013-01-01

    Full Text Available Decentralized energy planning (DEP is looked upon as an indisputable opportunity for energy planning of villages, isolated islands, and far spots. Nonetheless, at this decentralized planning level, the value of demand-side resources is not fairly examined, despite enjoying great advantages. Therefore, the core task of this study is to integrate demand-side resources, as a competing solution against supply-side alternatives, with decentralized energy planning decisions and demonstrate the rewarding role it plays. Moreover, sustainability indicators (SIs are incorporated into DEP attempts in order to attain sustainable development. It is emphasized that unless these indicators are considered at lower energy planning levels, they will be ignored at higher planning levels as well. Hence, to the best knowledge of the authors, this study for the first time takes into account greenhouse gas (GHG emissions produced by utilization of renewable energies in DEP optimization models. To address the issues mentioned previously, multiobjective linear programming model along with a min-max goal programming approach is employed. Finally, using data taken from the literature, the model is solved, and the obtained results are discussed. The results show that DSM policies have remarkably contributed to significant improvements especially in terms of environmental indicators.

  19. What is the impact of altitude on energy demand? A step towards developing specialized energy policy for mountainous areas

    International Nuclear Information System (INIS)

    Katsoulakos, Nikolas M.; Kaliampakos, Dimitris C.

    2014-01-01

    Specific strategies for the energy sector should be a central part of a sustainable mountain policy. However, there is a lack of research on the energy issues of mountainous areas and specialized energy policy measures cannot be effectively supported. The determination of the energy demand in mountainous areas, which is an essential step in the direction of developing mountain energy policy, is analyzed in this paper. Greece has been selected as a case study. The results show that altitude is the decisive factor affecting degree-days and energy needs, within the geographical range of Greece. It is proved that the thermal, as well as the total energy demand are significantly increased in mountain settlements. The annual energy expenditure of a typical residence lying at an altitude of 1000 m proved to be 85% higher than the corresponding cost at sea level. This makes mountainous populations vulnerable to energy poverty. It is also proved that the subsidy policy for heating oil, in Greece, cannot alleviate energy poverty. The results of the present study can be utilized in the direction of re-designing the present policy and this is a completely necessary step for creating a sustainable policy for mountainous areas, in general. - Highlights: • The altitude’s influence on degree-days and energy needs in Greece was quantified. • Altitude affects heating degree-days 3.5 times more intensely than latitude in Greece. • A typical home has two times more thermal needs at 800 m than at sea-level in Greece. • The subsidy policy for heating oil is inadequate for Greek mountainous territories. • More than 85% of the households located over 800 m are energy poor in Greece

  20. Design of demand side response model in energy internet demonstration park

    Science.gov (United States)

    Zhang, Q.; Liu, D. N.

    2017-08-01

    The implementation of demand side response can bring a lot of benefits to the power system, users and society, but there are still many problems in the actual operation. Firstly, this paper analyses the current situation and problems of demand side response. On this basis, this paper analyses the advantages of implementing demand side response in the energy Internet demonstration park. Finally, the paper designs three kinds of feasible demand side response modes in the energy Internet demonstration park.

  1. The development of sectoral final and basic energy demand in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Reents, H.

    1977-08-01

    The detailed knowledge of the demand structures and their determining factors is an important precondition for estimating the possible developments of future energy demand. In this report the past developments of the final and basic energy demand in the different demand categories private households, commercial sector, industry and transportation will be analyzed. The demonstrated relations are the basis for a final energy demand model. With the help of this model a scenario of the future development of the final energy demand in the different sectors will be built. It is the aim of this scenario to show, how alternative actions (insulation, gas-heat pump) influence the future development of the final energy demand. (orig.) [de

  2. Optimal Guaranteed Service Time and Service Level Decision with Time and Service Level Sensitive Demand

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2014-01-01

    Full Text Available We consider a two-stage supply chain with one supplier and one retailer. The retailer sells a product to customer and the supplier provides a product in a make-to-order mode. In this case, the supplier’s decisions on service time and service level and the retailer’s decision on retail price have effects on customer demand. We develop optimization models to determine the optimal retail price, the optimal guaranteed service time, the optimal service level, and the optimal capacity to maximize the expected profit of the whole supply chain. The results of numerical experiments show that it is more profitable to determine the optimal price, the optimal guaranteed service time, and the optimal service level simultaneously and the proposed model is more profitable in service level sensitive market.

  3. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    Directory of Open Access Journals (Sweden)

    Syed Aziz Ur Rehman

    2017-11-01

    Full Text Available Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fossil fuel resources. In this study, Pakistan’s energy demand forecast for electricity, natural gas, oil, coal and LPG across all the sectors of the economy have been undertaken. Three different energy demand forecasting methodologies, i.e., Autoregressive Integrated Moving Average (ARIMA, Holt-Winter and Long-range Energy Alternate Planning (LEAP model were used. The demand forecast estimates of each of these methods were compared using annual energy demand data. The results of this study suggest that ARIMA is more appropriate for energy demand forecasting for Pakistan compared to Holt-Winter model and LEAP model. It is estimated that industrial sector’s demand shall be highest in the year 2035 followed by transport and domestic sectors. The results further suggest that energy fuel mix will change considerably, such that oil will be the most highly consumed energy form (38.16% followed by natural gas (36.57%, electricity (16.22%, coal (7.52% and LPG (1.52% in 2035. In view of higher demand forecast of fossil fuels consumption, this study recommends that government should take the initiative for harnessing renewable energy resources for meeting future energy demand to not only avert huge import bill but also achieving energy security and sustainability in the long run.

  4. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  5. Determining order-up-to levels under periodic review for compound binomial (intermittent) demand

    NARCIS (Netherlands)

    Teunter, R. H.; Syntetos, A. A.; Babai, M. Z.

    2010-01-01

    We propose a new method for determining order-up-to levels for intermittent demand items in a periodic review system. Contrary to existing methods, we exploit the intermittent character of demand by modelling lead time demand as a compound binomial process. in an extensive numerical study using

  6. An integrated approach to energy supply and demand: The role of nuclear energy in Southern Africa

    International Nuclear Information System (INIS)

    Neethling, D.C.; Bredell, J.H.; Basson, J.A.

    1990-01-01

    The importance of an integrated approach to the development of an electricity strategy for Southern Africa is emphasized in view of the numerous options and initiatives that are available for supply and demand side management. Apart from present uncertainties concerning future electricity demand, other factors such as the availability of coal and uranium and the comparative costs of nuclear and coal-based electricity are regarded as the most important parameters which have as yet not been sufficiently quantified to decide on the timing and extent of nuclear energy in Southern Africa. (author)

  7. An integrated approach to energy supply and demand: The role of nuclear energy in Southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, D C; Bredell, J H; Basson, J A [National Energy Council, Lynnwood Ridge (South Africa)

    1990-06-01

    The importance of an integrated approach to the development of an electricity strategy for Southern Africa is emphasized in view of the numerous options and initiatives that are available for supply and demand side management. Apart from present uncertainties concerning future electricity demand, other factors such as the availability of coal and uranium and the comparative costs of nuclear and coal-based electricity are regarded as the most important parameters which have as yet not been sufficiently quantified to decide on the timing and extent of nuclear energy in Southern Africa. (author)

  8. Managing energy demand through transport policy: What can South Africa learn from Europe?

    International Nuclear Information System (INIS)

    Vanderschuren, Marianne; Lane, T.E.; Korver, W.

    2010-01-01

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and ineffective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context-pros, cons and implementation viability are identified.

  9. Managing energy demand through transport policy. What can South Africa learn from Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschuren, Marianne [Centre for Transport Studies, Faculty of Engineering and the Built Environment, University of Cape Town, Private Bag, 7701 Rondebosch (South Africa); Lane, T.E. [Centre for Transport Studies, University of Cape Town (South Africa); Korver, W. [Goudappel Coffeng BV (Netherlands)

    2010-02-15

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and in effective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context - pros, cons and implementation viability are identified. (author)

  10. Managing energy demand through transport policy: What can South Africa learn from Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschuren, Marianne, E-mail: marianne.vanderschuren@uct.ac.z [Centre for Transport Studies, Faculty of Engineering and the Built Environment, University of Cape Town, Private Bag, 7701 Rondebosch (South Africa); Lane, T.E., E-mail: lane.tanya@gmail.co [Centre for Transport Studies, University of Cape Town (South Africa); Korver, W., E-mail: WKorver@goudappel.n [Goudappel Coffeng BV (Netherlands)

    2010-02-15

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and ineffective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context-pros, cons and implementation viability are identified.

  11. Estimating Household Travel Energy Consumption in Conjunction with a Travel Demand Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Garikapati, Venu M. [Systems Analysis and Integration Section, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401; You, Daehyun [Maricopa Association of Governments, 302 North First Avenue, Suite 300, Phoenix, AZ 85003; Zhang, Wenwen [School of City and Regional Planning, Center for Geographic Information Systems, Georgia Institute of Technology, 760 Spring Street, Suite 230, Atlanta, GA 30308; Pendyala, Ram M. [School of Sustainable Engineering and the Built Environment, Arizona State University, 660 South College Avenue, Tempe, AZ 85281; Guhathakurta, Subhrajit [School of City and Regional Planning, Center for Geographic Information Systems, Georgia Institute of Technology, 760 Spring Street, Suite 230, Atlanta, GA 30308; Brown, Marilyn A. [School of Public Policy, 685 Cherry Street, Georgia Institute of Technology, Atlanta, GA 30332; Dilkina, Bistra [School of Computational Science and Engineering, 266 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332

    2017-01-01

    This paper presents a methodology for the calculation of the consumption of household travel energy at the level of the traffic analysis zone (TAZ) in conjunction with information that is readily available from a standard four-step travel demand model system. This methodology embeds two algorithms. The first provides a means of allocating non-home-based trips to residential zones that are the source of such trips, whereas the second provides a mechanism for incorporating the effects of household vehicle fleet composition on fuel consumption. The methodology is applied to the greater Atlanta, Georgia, metropolitan region in the United States and is found to offer a robust mechanism for calculating the footprint of household travel energy at the level of the individual TAZ; this mechanism makes possible the study of variations in the energy footprint across space. The travel energy footprint is strongly correlated with the density of the built environment, although socioeconomic differences across TAZs also likely contribute to differences in travel energy footprints. The TAZ-level calculator of the footprint of household travel energy can be used to analyze alternative futures and relate differences in the energy footprint to differences in a number of contributing factors and thus enables the design of urban form, formulation of policy interventions, and implementation of awareness campaigns that may produce more-sustainable patterns of energy consumption.

  12. Order Level Inventory Models for Deteriorating Seasonable/Fashionable Products with Time Dependent Demand and Shortages

    Directory of Open Access Journals (Sweden)

    K. Skouri

    2009-01-01

    Full Text Available An order level inventory model for seasonable/fashionable products subject to a period of increasing demand followed by a period of level demand and then by a period of decreasing demand rate (three branches ramp type demand rate is considered. The unsatisfied demand is partially backlogged with a time dependent backlogging rate. In addition, the product deteriorates with a time dependent, namely, Weibull, deterioration rate. The model is studied under the following different replenishment policies: (a starting with no shortages and (b starting with shortages. The optimal replenishment policy for the model is derived for both the above mentioned policies.

  13. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  14. Energy demand futures by global models : Projections of a complex system

    NARCIS (Netherlands)

    Edelenbosch, O.Y.

    2018-01-01

    The energy demand sectors industry, transport and buildings are together directly responsible for around 51 % of the global energy-related CO2 emissions and indirectly drive the emissions in the energy supply sectors. The demand sectors are characterized by many subsectors, technologies,

  15. Machine learning for identifying demand patterns of home energy management systems with dynamic electricity pricing

    NARCIS (Netherlands)

    Koolen, D. (Derck); Sadat-Razavi, N. (Navid); W. Ketter (Wolfgang)

    2017-01-01

    textabstractEnergy management plays a crucial role in providing necessary system flexibility to deal with the ongoing integration of volatile and intermittent energy sources. Demand Response (DR) programs enhance demand flexibility by communicating energy market price volatility to the end-consumer.

  16. Expected Rates of Renewable Energy Sources in Meeting of Energy Demands

    Directory of Open Access Journals (Sweden)

    Ferenc Kovács

    2007-12-01

    Full Text Available Taking the expected growth of the world’s population and the estimated technological development and increase in living standards into account, the paper forecasts energy demands. On the basis of the actual production data of 380-400 EJ.year-1 in 2000 and data in publications, the author assumes the total energy demand to be 750-800 EJ.year-1 for 2030, 600-1,000 EJ.year-1 for 2050 and 900-3,600 EJ.year-1 for 2100. The author analyses the appearance of the different energy types in the history of mankind giving the specific heat content and heating value of the different fuels. The environmental advantages, disadvantages, technical and economic limits of application involved in the use of primary renewable energy sources are also dealt with. The analysis of the data in the different prognoses in publications gives the result that fossil fuels will meet 84-85 % of the total energy demand until 2030 in the foreseeable future. In 2050, the fossil rate may be 50-70 % and the rate of renewables may amount to 20-40 %. In 2100, the maximum fossil rate may be 40-50 % with a 30-60 % maximum rate of renewables. On the basis of the results of investigation, the general conclusion may be that the realistically exploitable amount of renewable energy sources is not so unlimitedly high as many suppose. Therefore, it is an illusion to expect that the replacement or substitution of mineral fuels and nuclear energy can be solved relying solely on renewable energies.

  17. Saving money vs investing money: Do energy ratings influence consumer demand for energy efficient goods?

    International Nuclear Information System (INIS)

    Panzone, Luca A.

    2013-01-01

    The article analyses economic barriers leading to the energy efficiency gap in the market for energy-using products by observing several million transactions in the UK over two years. The empirical exercise estimates AIDS models for refrigerators, washing machines, TVs, and light bulbs. Results indicate that market barriers are crucial in the demand for energy efficient options, and consumer response to changes in appliance prices, total expenditures, and energy prices depends on the possibility of behavioural adjustments in consumption. In contrast with the induced innovation hypothesis, current electricity prices can fail to induce innovation because of their short-term impact on disposable income, while consumers invest in energy efficiency when expecting electricity prices to rise in the future. - Highlights: • The article analyses economic barriers to energy efficiency in the UK. • Data refers to 2-year sales of refrigerators, washing machines, TV, and light bulbs. • Demand parameters by efficiency rating are estimated from four AIDS models. • Future (not present) electricity prices induce investments in energy efficiency. • Behavioural efficiency adjustments explain differences in market response

  18. Three Essays on National Oil Company Efficiency, Energy Demand and Transportation

    Science.gov (United States)

    Eller, Stacy L.

    This dissertation is composed of three separate essays in the field of energy economics. In the first paper, both data envelopment analysis and stochastic production frontier estimation are employed to provide empirical evidence on the revenue efficiency of national oil companies (NOCs) and private international oil companies (IOCs). Using a panel of 80 oil producing firms, the analysis suggests that NOCs are generally less efficient at generating revenue from a given resource base than IOCs, with some exceptions. Due to differing firm objectives, however, structural and institutional features may help explain much of the inefficiency. The second paper analyzes the relationship between economic development and the demand for energy. Energy consumption is modeled using panel data from 1990 to 2004 for 50 countries spanning all levels of development. We find the relationship between energy consumption and economic development corresponds to the structure of aggregate output and the nature of derived demand for electricity and direct-use fuels in each sector. Notably, the evidence of non-constant income elasticity of demand is much greater for electricity demand than for direct-use fuel consumption. In addition, we show that during periods of rapid economic development, one in which the short-term growth rate exceeds the long-run average, an increase in aggregate output is met by less energy-efficient capital. This is a result of capital being fixed in the short-term. As additional, more efficient capital stock is added to the production process, the short-term increase in energy intensity will diminish. In the third essay, we develop a system of equations to estimate a model of motor vehicle fuel consumption, vehicle miles traveled and implied fuel efficiency for the 67 counties of the State of Florida from 2001 to 2008. This procedure allows us to decompose the factors of fuel demand into elasticities of vehicle driving demand and fuel efficiency. Particular

  19. The world energy demand in 2005: confirmed increase in energy consumptions, despite soaring crude oil prices

    International Nuclear Information System (INIS)

    Chateau, Bertrand

    2006-01-01

    The world energy demand growth remains strong: 2004 experienced the highest growth since 19987, and brent prices had moderate impact in 2005: Very strong rise of energy consumptions despite high oil prices, Economic situation still favorable, Evolutions principally due to China. 2005 world energy consumption: 11,4 Gtoe: Asia accounts for 35% of the world energy consumption, China's weight (15%) continues to increase by one point every year (+5 points since 2000). Asia increases its pressure on the world energy growth in 2005: China accounts for almost half of the world energy consumption increase in 2005, the whole Asia accounts for 70%; The European consumption growth represents less than 5% of China's Growth; The American energy consumption decreases for the first time. 2005 world consumption by energy: With an increasing market share by 0,7 points, coal penetration increases; The oil market has lost 0,4 point, with an accelerating relative decrease; The relative weight of gas remains stable, with 21%. Energy efficiency and energy intensity of GDP: Slow-down of the world energy intensity decrease since 2001, whereas the economic growth is faster, due to changes in trends in China (increase in the recent years). Increase less sharp in China in 2005 (price effect). Energy intensity trends of GDP: Fast decrease in CIS since the recovery of the economic growth; Slow-down of the decrease in EU since 2000 and recovery in 2005 whereas the decrease has accelerated in the USA. Since 2000, the energy consumption increases less rapidly than the GDP almost everywhere, except for the Middle East. Projections until 2020: China and India could represent one third of the world energy growth, the whole of Asia more than 50%; Growth prospects for energy demand are low in the EU and CIS; America would account for 20% of the world energy growth (8% USA); In the rest of the world, high growth in Africa and in the Middle East. Gas could cover more than 40% of the world energy

  20. Renewable energy and construction: does offer respond to demand? BIP-Enerpresse debate - april 28, 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This document is a synthesis of a debate between representatives of different actors of the energy sector about the present level of the industrial offer in the construction sector in front of an always increasing demand from professional or private clients to develop their own production of renewable energy, a quite attractive opportunity because of the existence of public incentives and of the perspective of a purchase of a so-produced electricity by EDF. Before answering some questions, the interveners discussed the high level of energy consumption in buildings, the reduction objectives, the high rate development of the photovoltaic market, the administrative problems this sector is still facing, the various approaches of a company acting on public buildings and in corporate buildings, and the point of view of EDF

  1. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution; Promotion COPERNIC Energie et Societe les interrogations sur l'evolution de la demande mondiale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  2. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution; Promotion COPERNIC Energie et Societe les interrogations sur l'evolution de la demande mondiale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-15

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  3. Sectoral energy demand studies: Application of the end-use approach to Asian countries

    International Nuclear Information System (INIS)

    1991-01-01

    Events since August 1990 have shown that the world is still dependent on oil despite efforts to decrease that dependency since the oil crisis of 1973 and 1979. Thirteen countries participated in the REDP (UNDP-funded Regional Energy Development Programme) energy planning activities called ''Sectoral energy demand studies'' in which country teams benefited from training in energy data analysis, sectoral accounting of energy demand, and forecasting with the use of MEDEE-S model. This publication documents the training materials on sectoral energy demand series. It includes eight chapters which were indexed separately. Refs, figs, tabs

  4. Analysis of Energy Demand for Low-Energy Multi-Dwelling Buildings of Different Configuration

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2014-10-01

    Full Text Available To meet the goals established by Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, the topics of energy efficiency in new and old buildings must be solved. Research and development of new energy solutions and technology are necessary for increasing energy performance of buildings. Three low-energy multi-dwelling buildings have been modelled and analyzed in the presented study. All multi-dwelling houses are made of similar single-family house cells. However, multi-dwelling buildings are of different geometry, flat number and height. DesignBuilder software was used for simulating and determining heating, cooling and electricity demand for buildings. Three different materials (silicate, ceramic and clay concrete blocks as bearing constructions of external walls have been analyzed. To decrease cooling demand for buildings, the possibility of mounting internal or external louvers has been considered. Primary energy savings for multi-dwelling buildings using passive solar measures have been determined.

  5. Lot Sizing Based on Stochastic Demand and Service Level Constraint

    Directory of Open Access Journals (Sweden)

    hajar shirneshan

    2012-06-01

    Full Text Available Considering its application, stochastic lot sizing is a significant subject in production planning. Also the concept of service level is more applicable than shortage cost from managers' viewpoint. In this paper, the stochastic multi period multi item capacitated lot sizing problem has been investigated considering service level constraint. First, the single item model has been developed considering service level and with no capacity constraint and then, it has been solved using dynamic programming algorithm and the optimal solution has been derived. Then the model has been generalized to multi item problem with capacity constraint. The stochastic multi period multi item capacitated lot sizing problem is NP-Hard, hence the model could not be solved by exact optimization approaches. Therefore, simulated annealing method has been applied for solving the problem. Finally, in order to evaluate the efficiency of the model, low level criterion has been used .

  6. [Study on elasticity of medical service demand at the township level in China].

    Science.gov (United States)

    Shi, Hong-xing; Lv, Jun; Xie, Yi-ping; Wang, Ying; Jia, Jin-zhong; Chang, Feng-shui; Duan, Lin; Sun, Mei; Wang, Zhi-feng; Hao, Mo

    2010-06-18

    To find out the economic laws regulating medical service demand in accordance with influencing factors at the township level, thus to provide references for further adjusting the medical service demand reasonably in the future. The model of medical service demand was established to measure the elasticity of demand in 49 township health clinics in 1995, 1999, 2003 and 2007. The price elasticity of outpatient and inpatient demand was stable during the four periods, and the average value was -0.029 and -0.132 respectively; the average value of income elasticity was 0.973 and 0.977, registering a downward trend in general. The medical service demand at the township level is price inelastic, indicating that it is a necessity for rural residents. The downward trend of income elasticity under the influence of some health policies illustrates a lightening in economic burden for medical service demand among rural residents in township health clinics.

  7. Storing energy for cooling demand management in tropical climates: A techno-economic comparison between different energy storage technologies

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Carducci, Francesco; Sze, Jia Yin; Balamurugan, Nagarajan; Romagnoli, Alessandro

    2017-01-01

    This paper addresses the role of energy storage in cooling applications. Cold energy storage technologies addressed are: Li-Ion batteries (Li-Ion EES), sensible heat thermal energy storage (SHTES); phase change material (PCM TES), compressed air energy storage (CAES) and liquid air energy storage (LAES). Batteries and CAES are electrical storage systems which run the cooling systems; SHTES and PCM TES are thermal storage systems which directly store cold energy; LAES is assessed as a hybrid storage system which provides both electricity (for cooling) and cold energy. A hybrid quantitative-qualitative comparison is presented. Quantitative comparison was investigated for different sizes of daily cooling energy demand and three different tariff scenarios. A techno-economic analysis was performed to show the suitability of the different storage systems at different scales. Three parameters were used (Pay-back period, Savings-per-energy-unit and levelized-cost-of-energy) to analyze and compare the different scenarios. The qualitative analysis was based on five comparison criteria (Complexity, Technology Readiness Level, Sustainability, Flexibility and Safety). Results showed the importance of weighing the pros and cons of each technology to select a suitable cold energy storage system. Techno-economic analysis highlighted the fundamental role of tariff scenario: a greater difference between peak and off-peak electricity tariff leads to a shorter payback period of each technology. - Highlights: • Techno-economic evaluation of energy storage solutions for cooling applications. • Comparison between five energy storage (EES, SHTES, PCM, CAES, LAES) is performed. • Qualitative and quantitative performance parameters were used for the analysis. • LAES/PCM can be valid alternatives to more established technologies EES, SHTES, CAES. • Tariffs, price arbitrage and investment cost play a key role in energy storage spread.

  8. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  9. Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty

    International Nuclear Information System (INIS)

    Hu, Ming-Che; Lu, Su-Ying; Chen, Yen-Haw

    2016-01-01

    Highlights: • Analyze the impact of a demand response program under uncertainty. • Stochastic Nash–Cournot competition model is formulated. • Case study of the Taiwanese electric power market is conducted. • Demand response decreases power price, generation, and emissions. • Demand uncertainty increases energy price and supply risk in the results. - Abstract: In the electricity market, demand response programs are designed to shift peak demand and enhance system reliability. A demand response program can reduce peak energy demand, power transmission congestion, or high energy-price conditions by changing consumption patterns. The purpose of this research is to analyze the impact of a demand response program in the energy market, under demand uncertainty. A stochastic–multiobjective Nash–Cournot competition model is formulated to simulate demand response in an uncertain energy market. Then, Karush–Kuhn–Tucker optimality conditions and a linear complementarity problem are derived for the stochastic Nash–Cournot model. Accordingly, the linear complementarity problem is solved and its stochastic market equilibrium solution is determined by using a general algebraic modeling system. Additionally, the case of the Taiwanese electric power market is taken up here, and the results show that a demand response program is capable of reducing peak energy consumption, energy price, and carbon dioxide emissions. The results show that demand response program decreases electricity price by 2–10%, total electricity generation by 0.5–2%, and carbon dioxide emissions by 0.5–2.5% in the Taiwanese power market. In the simulation, demand uncertainty leads to an 2–7% increase in energy price and supply risk in the market. Additionally, tradeoffs between cost and carbon dioxide emissions are presented.

  10. Nuclear energy socially acceptable as a possible solution for the Brazilian energy demand

    International Nuclear Information System (INIS)

    Milanez, Jimes Vasco; Almeida, Ricardo Dias; Carmo, Fausto Silva do

    2006-01-01

    In this work we try to investigate the potential, with emphasis on Brazil, of new nuclear power technologies in development related to estimated growth of energy demand in comparison to traditional nuclear power and others alternatives generation, under criteria such as technical and economic viability, respect to the environmental and particularly acceptability of the society. It is demonstrated that fourth generation of nuclear power shows an option to be considered in the medium and long-term for energy generation significantly clean, efficient and safe, should be, therefore, better investigated, mainly focusing on accelerator driven systems

  11. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  12. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of

  13. World energy demand down for the first time in 30 years. Key findings of the world energy demand in 2009 by Enerdata based its global energy database - 8 June 2010

    International Nuclear Information System (INIS)

    2010-01-01

    Key findings of the world energy demand in 2009 by Enerdata based its global energy database: World energy demand down for the first time in 30 years. The first 2009 world energy industry data, now available in the Enerdata Yearbook, confirms trends identified in May 2010 by Enerdata analysts. The economic and financial crisis resulted in a reduction of world energy demand in 2009 by 1% or 130 Mtoe. It is the first demand decrease in 30 years, and the first decrease in electricity demand since World War II. (authors)

  14. The best-mix of power demand and supply. Energy system integration

    International Nuclear Information System (INIS)

    Ogimoto, Kazuhiko

    2012-01-01

    In September 2012 after nationwide discussions, Energy and Environmental Council decided 'Innovative Strategy for Energy and the Environment': (1) Realization of a society not dependent on nuclear power, (2) Realization of green energy revolution, (3) For ensuring stable supply of energy, (4) Bold implementation of reform of electricity power systems and (5) Steady implementation of global warming countermeasures. Energy problem should be considered as supply and demand of whole energy. However, long-term energy problem such as in 2050 should assume global limits of fossil fuel supply and carbon dioxide emission and then in order to realize sustainable demand and supply of energy, maximum deployment of renewable energy power in primary energy and most practicable electrification of final demand for energy conservation should be implemented. Best mix of power and energy demand and supply would be significant to some extent. This article outlined analysis of power demand and supply in a long term, future power technologies and demand side management, and problems of power system operation and their solution, and then described energy system integration to realize power and energy/society best mix. (T. Tanaka)

  15. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  16. The long-term forecast of Taiwan's energy supply and demand: LEAP model application

    International Nuclear Information System (INIS)

    Huang, Yophy; Bor, Yunchang Jeffrey; Peng, Chieh-Yu

    2011-01-01

    The long-term forecasting of energy supply and demand is an extremely important topic of fundamental research in Taiwan due to Taiwan's lack of natural resources, dependence on energy imports, and the nation's pursuit of sustainable development. In this article, we provide an overview of energy supply and demand in Taiwan, and a summary of the historical evolution and current status of its energy policies, as background to a description of the preparation and application of a Long-range Energy Alternatives Planning System (LEAP) model of Taiwan's energy sector. The Taiwan LEAP model is used to compare future energy demand and supply patterns, as well as greenhouse gas emissions, for several alternative scenarios of energy policy and energy sector evolution. Results of scenarios featuring 'business-as-usual' policies, aggressive energy-efficiency improvement policies, and on-schedule retirement of Taiwan's three existing nuclear plants are provided and compared, along with sensitivity cases exploring the impacts of lower economic growth assumptions. A concluding section provides an interpretation of the implications of model results for future energy and climate policies in Taiwan. - Research highlights: → The LEAP model is useful for international energy policy comparison. → Nuclear power plants have significant, positive impacts on CO 2 emission. → The most effective energy policy is to adopt demand-side management. → Reasonable energy pricing provides incentives for energy efficiency and conservation. → Financial crisis has less impact on energy demand than aggressive energy policy.

  17. Energy demand and greenhouse gas emissions during the production of a passenger car in China

    International Nuclear Information System (INIS)

    Yan Xiaoyu

    2009-01-01

    Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages-material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO 2 -eq). Primary energy demand, petroleum demand and GHG emissions in China's passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.

  18. Electric energy demand and supply prospects for California

    Science.gov (United States)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  19. Energy efficient demand controlled ventilation in single family houses

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian

    2010-01-01

    This paper presents a strategy for a simple demand controlled ventilation system for single family houses where all sensors and controls are located in the air handling unit. The strategy is based on sensing CO2-concentration and moisture content in the outdoor air and exhaust air. The CO2...

  20. Policy implications of the GRI baseline projection of US energy supply and demand to 2010, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The paper summarizes the 1993 edition of the Gas Research Institute (GRI) Baseline Projection of U.S. Energy Supply and Demand, and presents the implications of the projection that are important for GRI research and development planning and the gas industry. The survey of supply and demand considerations is followed by a breakdown of energy demand by type of fuel, by consumption sector, and by service application. Gas supply and prices are analyzed in terms of two scenarios: a constrained energy demand scenario, and an optimistic scenario. Tables and charts accompany the summary

  1. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  2. Heating and cooling energy demand in underground buildings : potential for saving in various climates and functions

    NARCIS (Netherlands)

    van Dronkelaar, C.; Costola, D.; Mangkuto, R.A.; Hensen, J.L.M.

    2014-01-01

    Underground buildings are pointed out as alternatives to conventional aboveground buildings for reducing total energy requirements, while alleviating land use and location problems. This paper investigates the potential in reducing the heating and cooling energy demand of underground buildings

  3. Interim report on the long-term outlook of energy demands and supplies

    International Nuclear Information System (INIS)

    1982-01-01

    The supply/demand committee on Overall Energy Council has long deliberated on the outlook of energy demands and supplies, and finalized its report, assuming a yearly economic growth of about 5% in 1980s and utmost efforts by both the people and the government: the background and basic ideas to decide the outlook, the outlook of energy demands and supplies, and conclusions. The energy demand for fiscal 1990 is put at 590 million kl (crude oil equivalent) and for fiscal 2000 at 770 million kl with energy saving ratios 15.5% and 25%, respectively. The energy supply by nuclear power for fiscal 1990 is then put at 46,000 MW with 11.3% of the total. In the energy supply outlook for fiscal 1990, the aspects of the economy and stability as well as the quantity of respective energy sources are considered, overall to reduce the reliance on petroleum. (Mori, K.)

  4. Enhancing State Clean Energy Workforce Training to Meet Demand. Issue Brief

    Science.gov (United States)

    Saha, Devashree

    2010-01-01

    Recent state policy and federal funding initiatives are driving the demand for clean energy in both the short and long term. This increased demand has created the need for many more workers trained or retrained in a variety of clean energy jobs. In response, states are utilizing funding under the American Recovery and Reinvestment Act of 2009…

  5. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    International Nuclear Information System (INIS)

    Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M. Schoot

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect future energy demand. This paper critically analyzes these implicit or explicit assumptions and their possible effect on the studies' outcomes. First we analyze the interaction between the socio-economic structure and the temperature dependence pattern (TDP) of energy demand. We find that socio-economic changes may alter the TDP in various ways. Next we investigate how current studies manage these dynamics in socio-economic structure. We find that many studies systematically misrepresent the possible effect of socio-economic changes on the TDP of energy demand. Finally, we assess the consequences of these misrepresentations in an energy demand model based on temperature dependence and climate scenarios. Our model results indicate that expected socio-economic dynamics generally lead to an underestimation of future energy demand in models that misrepresent such dynamics. We conclude that future energy demand models should improve the incorporation of socio-economic dynamics. We propose dynamically modeling several key parameters and using direct meteorological data instead of degree days. (author)

  6. Implementation of a demand elasticity model in the building energy management system

    NARCIS (Netherlands)

    Ożadowicz, A.; Grela, J.; Babar, M.

    2016-01-01

    Nowadays, crucial part of modern Building Automation and Control Systems (BACS) is electric energy management. An active demand side management is very important feature of a Building Energy Management Systems (BEMS) integrated within the BACS. Since demand value changes in time and depends on

  7. Modeling and analysis of long term energy demands in residential sector of pakistan

    International Nuclear Information System (INIS)

    Rashid, T.; Sahir, M.H.

    2015-01-01

    Residential sector is the core among the energy demand sectors in Pakistan. Currently, various techniques are being used worldwide to assess future energy demands including integrated system modeling (ISM). Therefore, the current study is focused on implementation of ISM approach for future energy demand analysis of Pakistan's residential sector in terms of increase in population, rapid urbanization, household size and type, and increase/decrease in GDP. A detailed business-as-usual (BAU) model is formulated in TIMES energy modeling framework using different factors like growth in future energy services, end-use technology characterization, and restricted fuel supplies. Additionally, the developed model is capable to compare the projected energy demand under different scenarios e.g. strong economy, weak economy and energy efficiency. The implementation of ISM proved a viable approach to predict the future energy demands of Pakistan's residential sector. Furthermore, the analysis shows that the energy consumption in the residential sector would be 46.5 Mtoe (Million Ton of Oil Equivalent) in 2040 compared to 23 Mtoe of the base year (2007) along with 600% increase in electricity demands. The study further maps the potential residential energy policies to congregate the future demands. (author)

  8. The energy situation and demand side management in Latvia

    International Nuclear Information System (INIS)

    Zebergs, V.; Zeltins, N.; Stuits, I.; Stripnieks, Yu.

    1994-01-01

    Only 12 per cent of the electric energy consumed in Latvia is produced by local energy resources(hydro-, peat, firewood). The rest (50 per cent) is imported or produced from the imported fuel (gas, heavy fuel). After 1991, when Latvia entered the market economy, the fuel prices began to approach the world prices and the production of electric energy decreased. Therefore it is important to work out a correct concept of Energy Development in Latvia corresponding to the market economy. (author)

  9. The energy supply and demand outlook in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Fesharaki, Fereidun; Yamaguchi, Nancy

    1992-01-01

    The 1980s witnessed spectacular growth rates in the Asia-Pacific region, the rising economic power of Japan, an unprecedented opening of China's economy, the emergence of the ''Four Tigers'' or the ''Little Dragons'' (Singapore, South Korea, Taiwan and Hong Kong), a rapid growth of exports from the region - in short, remarkable economic success and an increase in entrepreneurialism and the free-market philosophy. Even the United States, which historically has been Atlantic-oriented, sat up and took notice. While the relationship between economic growth and energy consumption is not necessarily one-to-one, energy is a required input for economic activity and trade. Energy demand growth in the Asia-Pacific region has been accordingly rapid. At this point in history, oil and economic growth are so interrelated that changes in one invariably have major repercussions on the other. During the coming decade, continued economic growth is foreseen for the Asia-Pacific region, coupled with the fastest rate of oil demand growth of any region on Earth. Pressure will come to bear on the regional oil and gas markets, since demand growth will take place concurrently with a decline in the availability of local, low-sulphur crudes. The region will become even more dependent on imports of Middle Eastern crude, which will result in a higher-sulphur crude slate. Moreover, we anticipate that the existing and planned refinery complexes will lack the capacity and the flexibility to fully satisfy product demand. The consequence will be a higher level of refined product imports. (author)

  10. The energy supply and demand outlook in the Asia-Pacific region

    Energy Technology Data Exchange (ETDEWEB)

    Fesharaki, Fereidun; Yamaguchi, Nancy (East-West Centre, Honolulu, Hawaii (US))

    The 1980s witnessed spectacular growth rates in the Asia-Pacific region, the rising economic power of Japan, an unprecedented opening of China's economy, the emergence of the ''Four Tigers'' or the ''Little Dragons'' (Singapore, South Korea, Taiwan and Hong Kong), a rapid growth of exports from the region - in short, remarkable economic success and an increase in entrepreneurialism and the free-market philosophy. Even the United States, which historically has been Atlantic-oriented, sat up and took notice. While the relationship between economic growth and energy consumption is not necessarily one-to-one, energy is a required input for economic activity and trade. Energy demand growth in the Asia-Pacific region has been accordingly rapid. At this point in history, oil and economic growth are so interrelated that changes in one invariably have major repercussions on the other. During the coming decade, continued economic growth is foreseen for the Asia-Pacific region, coupled with the fastest rate of oil demand growth of any region on Earth. Pressure will come to bear on the regional oil and gas markets, since demand growth will take place concurrently with a decline in the availability of local, low-sulphur crudes. The region will become even more dependent on imports of Middle Eastern crude, which will result in a higher-sulphur crude slate. Moreover, we anticipate that the existing and planned refinery complexes will lack the capacity and the flexibility to fully satisfy product demand. The consequence will be a higher level of refined product imports. (author).

  11. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    Science.gov (United States)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  12. Analysis of reactor strategies to meet world nuclear energy demands

    International Nuclear Information System (INIS)

    Ligon, D.M.; Brogli, R.H.

    1979-07-01

    A number of reactor deployment strategies for long-term nuclear system development are analyzed from a global perspective in terms of resource utilization and economic benefits. Two time frames are chosen: 1975 - 2025 and 1975 - 2050. Uranium demand for various strategies is compared with uranium supply assuming different production capabilities and resource base. The analysis shows that a given reactor deployment strategy could strongly influence the extent of uranium exploration and production. Power systems cost comparisons are made to identify clearly competitive or non-competitive reactors. The sensitivity of power cost to different uranium price projections and nuclear demands is also examined. The results indicate that breeders are necessary to support a long-term nuclear power system. Advanced converter-breeder symbiotic systems, particularly those operating on the Th/U-233 cycle, have clear advantages in terms of resources and economics

  13. The Outlook for Energy Supply and Demand (1/3)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    These lectures will review the challenges facing energy policy, the outlook for different sources of primary energy (fossil and renewable), how energy is used, and prospects for improved energy efficiency. A colloquium ‘Can Future Energy Needs be Met Sustainably?’, that I will be giving on Tuesday 15 September at 16:30, is part of this course – see separate Abstract for a summary. The lectures will provide more details and address topics that will only be mentioned in passing in the colloquium.

  14. Hooked on Coal: Meeting Energy Demands in the Philippines

    Science.gov (United States)

    2011-10-27

    overview/seeking-balance-while-electricity-supply- surges-meet-demand-companies-struggle-find-domestic 10 Lenie Lectura , “Long, Uphill Climb Before...Yet, Says Scientist,” 2 February 2009, accessed 6 October 2017, Proquest. 59 Lenie Lectura , “DOE Chief Favors Nuclear-Power Generation for PHL...139, accessed 6 October 2017, Proquest. 63 Lenie Lectura , “DOE Chief Favors Nuclear-Power Generation for PHL,” Business Mirror, 30 August 2016

  15. Energy demand projection of China using a path-coefficient analysis and PSO–GA approach

    International Nuclear Information System (INIS)

    Yu Shiwei; Zhu Kejun; Zhang Xian

    2012-01-01

    Highlights: ► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid algorithm PSO–GA optimal energy demands estimating model for China. ► China’s energy demand will reach 4.48 billion tce in 2015. ► The proposed method forecast shows its superiority compared with others. - Abstract: Energy demand projection is fundamental to rational energy planning formulation. The present study investigates the direct and indirect effects of five factors, namely GDP, population, proportion of industrial, proportion of urban population and coal percentage of total energy consumption on China’s energy demand, implementing a path-coefficient analysis. On this basis, a hybrid algorithm, Particle Swarm Optimization and Genetic Algorithm optimal Energy Demand Estimating (PSO–GA EDE) model, is proposed for China. The coefficients of the three forms of the model (linear, exponential and quadratic model) are optimized by proposed PSO–GA. To obtain a combinational prediction of three forms, a departure coefficient method is applied to get the combinational weights. The results show that the China’s energy demand will be 4.48 billion tce in 2015. Furthermore; the proposed method forecast shows its superiority compared with other single optimization method such as GA, PSO or ACO and multiple linear regressions.

  16. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  17. Energy demand evolution in Romania between 1995 - 2020 in accordance with the socio-economic adjustment

    International Nuclear Information System (INIS)

    Popescu, A.; Popovici, D.; Popescu, M.; Valcereanu, Gh.; Oprea, G.; Velcescu, O.

    1996-01-01

    Economic and social development of Romania can not be achieved without an increasing energy consumption (in fuels, electricity and thermal energy). The energy supply assessment requires the knowledge of economic, technological, demographic and social development forecasting in accordance with the political transformations in Romania. This paper presents energy demand forecast in accordance with different scenarios of the country's macro-economical development. The future evolution of energy demand is emphasized considering the energy efficiency improvement and the energy conservation policies.(author). 6 figs., 2 tabs., 4 refs

  18. Analysis of Japanese energy demand structure based on the interindustry-relations table

    International Nuclear Information System (INIS)

    Kanai, Akira; Kashihara, Toshinori

    1990-01-01

    Matching of energy-supply system and demand system is very important in dealing with the energy problem. Especially the energy-demand system is important for determing the quantity and quality of the energy demand. The energy demand is created by activities of industry and human life. The best materials which describe these activity conditions is the interindustry-relations table. Authors rely on this table as the basic data for assuming the energy demand analysis of energy system. The defect of this table is that an industrial classification differs in publishing years. So the table is lacking in the time sequential consistency. Therefore we discuss the method to improve the defect in consistency. In addition, this report analyses the energy demand structure in Japan according to the improved method. The research is done by the following procedure, 1. The unified common sector data is made so that an industrial classification in the interindustry-relations tables become common. 2. The quantity of input energy in each section is extracted from the tables. 3. The input energy is converted into the characteristic indicator and the calorific indicator. 4. The section is united using the common sector data. 5. The result is shown in table or graph. 6. The energy demand structure is analyzed based on the tables and the graphs. This interindustry-relations table is offered by request in the form of the magnetic tape. All the data is processed by computer due to the abundant amount of data. This report shows the idea how to process the fable instead of displaying the details. In addition, the problem in the analysis of the table is pointed out as results of the analysis. This report describes the feature of 23-sections classification in analysis of the energy demand structure. This report offers a basic data to make energy scenario to the energy system analysists. (J.P.N.)

  19. Energy demand in China: Comparison of characteristics between the US and China in rapid urbanization stage

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    Highlights: • Energy demand characteristics of the US and China were compared. • Major factors affecting energy demand were examined based on the panel data and the cointegration models. • China’s energy demand would reach 5498.13 Mtce in 2020 and 6493.07 Mtce in 2030. • Urbanization can be an opportunity for low-carbon development in China. - Abstract: China’s energy demand has shown characteristics of rigid growth in the current urbanization stage. This paper applied the panel data model and the cointegration model to examine the determinants of energy demand in China, and then forecasts China’s energy demand based on the scenario analysis. Results demonstrate an inverted U-shaped relationship between energy demand and economic growth in the long term. In business as usual scenario, China’s energy consumption will reach 6493.07 million tons of coal equivalent in 2030. The conclusions can be drawn on the basis of the comparison of characteristics between the US and China. First, energy demand has rigid growth characteristics in the rapid urbanization stage. Second, coal-dominated energy structure of China will lead to the severe problems of CO 2 emissions. Third, rapid economic growth requires that energy prices should not rise substantially, so that energy conservation will be the major strategy for China’s low-carbon transition. Major policy implications are: first, urbanization can be used as an opportunity for low-carbon development; second, energy price reform is crucial for China’s energy sustainability

  20. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  1. Long term trends in world energy demand and supply

    International Nuclear Information System (INIS)

    Frisch, J.

    1992-01-01

    In this address, the author discusses projected changes in fuel use, shifts in energy consumption and projected increases in carbon dioxide emissions. He expects these energy issues to cause geopolitical uncertainties that will complicate attempts to reduce greenhouse gases. There is great concern for the poverty-stricken areas of Asia and Africa. Thirty-five to forty-five percent of their energy needs will be supplied by scarce fuelwood and poor animal and vegetal residues by the year 2020. International cooperation will be needed to alleviate the tensions caused by these inequities of energy supplies

  2. Energy demand and energy-related CO2 emissions in Greek manufacturing. Assessing the impact of a carbon tax

    International Nuclear Information System (INIS)

    Floros, Nikolaos; Vlachou, Andriana

    2005-01-01

    The purpose of this paper is to study the demand for energy in two-digit manufacturing sectors of Greece and to evaluate the impact of a carbon tax on energy-related CO 2 emissions. The theoretical model utilized in the analysis is the two-stage translog cost function. The model is estimated using time series data over the period 1982-1998. The results indicate substitutability between electricity and liquid fuels (diesel and mazout), and substitutability between capital, energy and labor. A carbon tax of $50 per tonne of carbon results in a considerable reduction in direct and indirect CO 2 emissions from their 1998 level. This implies that a carbon tax on Greek manufacturing is an environmentally effective policy for mitigating global warming, although a costly one

  3. Considering supply and demand of electric energy in life cycle assessments - a review of current methodologies

    International Nuclear Information System (INIS)

    Rehberger, M.; Hiete, M.

    2015-01-01

    A stable power grid requires a balance between electricity supply and demand. To compensate for changes in the demand the network operator puts on or takes off power plants from the net. Peak load plants operate only at times of high electricity demand. As levels for air pollutants emissions are typically lower for peak load plants for reasons of cost-effectiveness, one could argue that a unit of electric energy consumed during peak load has always been associated with a higher environmental impact than at other times. Furthermore, renewable energy technologies, smart approaches for improving the matching between electricity consumption and supply and new products such as electric vehicles or net zero emission buildings gain in importance. In life cycle assessment (LCA) environmental impacts associated with the production and possibly transmission of electricity are most often assessed based on temporally averaged national electricity mixes as electricity flows cannot be traced back to their origin. Neither fluctuations in the supply structure nor the composition of energy supply at a certain moment or regional differences are accounted for. A literature review of approaches for handling electricity in LCA is carried out to compare strengths and weaknesses of the approaches. A better understanding and knowledge about the source of electricity at a given time and place might be valuable information for further reducing environmental impacts, e.g. by shifting electricity consumption to times with ample supply of renewables. Integrating such information into LCA will allow a fairer assessment of a variety of new products which accept a lower energy efficiency to achieve a better integration of renewables into the grid. (authors)

  4. Energy Consumption and Freight Transport Demand in Denmark

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Bonilla, David

    2008-01-01

    Considering the externalities of freight transport activity (energy use, accidents, congestion, its related GHG emissions, and lost oil revenues) this article reviews trends from 1990-2005 in truck freight fuel intensity (energy use per tonne-km moved), on road truck fuel economy (L/ 100 km driven......). We review changes in decoupling truck freight activity from GDP. We examine separately five manufacturing sectors using data from Statistics Denmark on vehicle performance for 1980-2006. Our four major findings are: (1) truck freight energy intensity (mj/tonne-km) continues to grow as well as CO2...... emissions; (2) decoupling has not been large enough to reduce overall energy use of truck; (3) because of the absence of fuel economy regulations, a low average vehicle load, increased hauling distance, overall energy use of truck freight will continue to expand; (4) results show that standard freight...

  5. Demands for energy policy by industry and the economy

    International Nuclear Information System (INIS)

    Thumann, J.R.

    2007-01-01

    'The Use of Nuclear Power for Peaceful Purposes' is a key topic in energy policy which produces a split of opinions in Germany, and which the policy of the Grand Coalition seeks to bypass. The Federation of German Industries (BDI) wants to achieve a sensible way of handling this source of energy because, after all, we are facing the challenge of having to secure economic development and prosperity and, at the same time, reduce global CO 2 emissions. If this is to be achieved, industry and politics together must build a bridge into a future with less CO 2 . That bridge would be supported on 4 pillars: - a global strategy of CO 2 reduction, - energy efficiency, - a broad energy mix, - energy research and development. In these efforts, industry and the BDI consider nuclear power an indispensable part of a viable climate and energy policy. Next to lignite, nuclear power offers electricity generation at the lowest cost, and promotes climate protection through CO 2 -free generation. As far as energy efficiency and a broad energy mix are concerned, the potentials for technical development play an important role. This is an area in which German industry can develop future markets for itself by being a leader in technology. Energy research should advance the development of existing technologies and open up new options. In this way, energy research contributes to high technologies in Germany. For nuclear power, it must be ensured that German scientists are able to participate in promising developments of new reactors in the same way in which this is the case in the development and construction of ITER, the international fusion reactor, in France. (orig.)

  6. Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment

    Science.gov (United States)

    Adika, Christopher Otieno

    The advancement of renewable energy technologies and the deregulation of the electricity market have seen the emergence of Demand response (DR) programs. Demand response is a cost-effective load management strategy which enables the electricity suppliers to maintain the integrity of the power grid during high peak periods, when the customers' electrical load is high. DR programs are designed to influence electricity users to alter their normal consumption patterns by offering them financial incentives. A well designed incentive-based DR scheme that offer competitive electricity pricing structure can result in numerous benefits to all the players in the electricity market. Lower power consumption during peak periods will significantly enhance the robustness of constrained networks by reducing the level of power of generation and transmission infrastructure needed to provide electric service. Therefore, this will ease the pressure of building new power networks as we avoiding costly energy procurements thereby translating into huge financial savings for the power suppliers. Peak load reduction will also reduce the inconveniences suffered by end users as a result of brownouts or blackouts. Demand response will also drastically lower the price peaks associated with wholesale markets. This will in turn reduce the electricity costs and risks for all the players in the energy market. Additionally, DR is environmentally friendly since it enhances the flexibility of the power grid through accommodation of renewable energy resources. Despite its many benefits, DR has not been embraced by most electricity networks. This can be attributed to the fact that the existing programs do not provide enough incentives to the end users and, therefore, most electricity users are not willing to participate in them. To overcome these challenges, most utilities are coming up with innovative strategies that will be more attractive to their customers. Thus, this dissertation presents various

  7. Conceptual Demand of Science Curricula: A Study at the Middle School Level

    Science.gov (United States)

    Calado, Sílvia; Neves, Isabel P.; Morais, Ana M.

    2013-01-01

    This article addresses the issue of the level of conceptual demand of science curricula by analysing the case of the current Portuguese Natural Sciences curriculum for middle school. Conceptual demand is seen in terms of the complexity of cognitive skills, the complexity of scientific knowledge and the intra-disciplinary relations between distinct…

  8. An MILP approximation for ordering perishable products with non-stationary demand and service level constraints

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.

    2014-01-01

    We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at

  9. Inventory control for a perishable product with non-stationary demand and service level constraints

    NARCIS (Netherlands)

    Pauls-Worm, K.G.J.; Hendrix, E.M.T.; Haijema, R.; Vorst, van der J.G.A.J.

    2013-01-01

    We study the practical production planning problem of a food producer facing a non-stationary erratic demand for a perishable product with a fixed life time. In meeting the uncertain demand, the food producer uses a FIFO issuing policy. The food producer aims at meeting a certain service level at

  10. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    Science.gov (United States)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  11. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  12. Demand for Clean Energies Efficient Development in Buildings Technologies

    International Nuclear Information System (INIS)

    Mustafa Omer, Abdeen

    2017-01-01

    Aims/Purpose: The increased availability of reliable and efficient energy services stimulates new development alternatives. This article discusses the potential for such integrated systems in the stationary and portable power market in response to the critical need for a cleaner energy technology. Throughout the theme several issues relating to renewable energies, environment, and sustainable development are examined from both current and future perspectives. It is concluded that green energies like wind, solar, ground source heat pumps, and biomass must be promoted, implemented, and demonstrated from the economic and/or environmental point view. Biogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of biomass as an industrial feedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. Study design: Anticipated patterns of future energy use and consequent environmental impacts (acid precipitation, ozone depletion and the greenhouse effect or global warming) are comprehensively discussed in this article. Place and Duration of Study: National Centre for Research, Energy Research Institute (ERI), between January 2014 and July 2015. (author)

  13. Matching renewable energy supply and demand in green datacenters

    OpenAIRE

    Goiri, Iñigo; Haque, Md E.; Le, Kien; Beauchea, Ryan; Nguyen, Thu D.; Guitart Fernández, Jordi; Torres Viñals, Jordi; Bianchini, Ricardo

    2015-01-01

    In this paper, we propose GreenSlot, a scheduler for parallel batch jobs in a datacenter powered by a photovoltaic solar array and the electrical grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meeting the jobs' deadlines. If grid energy must be used to avoid deadline violations, the scheduler selects times when it is cheap. Evaluation results show that GreenS...

  14. Future demand in electrical power and meeting this demand, in particular with the aid of nuclear energy

    International Nuclear Information System (INIS)

    1976-07-01

    As a part of the research program in question, the study deals with meeting the electrical power demand in the FRG until the year 2000 in the best possible way with regard to costs, and evaluating the long-term technical, ecological, and economical effects resulting thereof. With the aid of a model, the construction of additional plants and the use of the FRG's power plant network, always applying economical criteria, are investigated while allowing for adequate assurance of supply. It becomes obvious that the power plants and fuels available influence a 25-year planning period. In the year 2000, nuclear energy will play a dominating role in meeting the demand, the conventional thermal power plants will be used more for coping with the above-average medium laods, while peak loads will be met, above all, by pump storage stations. (UA) [de

  15. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  16. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study

    International Nuclear Information System (INIS)

    Abeykoon, Chamil; Kelly, Adrian L.; Brown, Elaine C.; Vera-Sorroche, Javier; Coates, Phil D.; Harkin-Jones, Eileen; Howell, Ken B.; Deng, Jing; Li, Kang; Price, Mark

    2014-01-01

    Highlights: • Energy consumption and losses in polymer extrusion are discussed. • This compares energy consumption in polymer extrusion at different conditions. • The role of power factor on energy efficiency in polymer extrusion is explored. • Empirical models on extruder energy consumption are provided. • Computer modelling of energy consumption of polymer extrusion is performed. - Abstract: Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the

  17. For a simultaneous mastery of the energy demand and offer; Pour une maitrise simultanee de la demande et de l'offre d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    This document is a 'white book' written by the French energy-environment technical association (ATEE) in the framework of the national debate on energies. Its aim is to provide arguments, ways of reflexion and proposals of measures and actions in the domain of competence of the ATEE, i.e. energy mastery, renewable energies and cogeneration in the industry sector, the public and private tertiary sector, the collective dwelling and the local organizations. The recommendations of ATEE are based on a balance and sustainable mastery of both the energy demand and the energy offer: 1 - reduction of the demand and improvement of the energy efficiency (reduction of the French energy intensity, consumer information about energy saving and abatement of CO{sub 2} emissions, abatement of energy consumptions in government buildings, allocation of sufficient budgetary means to the French agency of environment and energy mastery (Ademe), implementation of energy mastery programs by energy suppliers, generalization of 'result contracts' by energy service companies and progressive integration of CO{sub 2} emissions, appointment of energy responsible persons in administrations and energy consuming companies, creation of a domestic emission credit market for non-eligible companies, integration of the indirect emissions due to the transports, implementation of the technology procurement purchase method to improve the energy efficiency of common appliances). 2 - mastery of the offer: encouraging cogeneration, revalorization of the repurchase tariffs of the electricity produced from renewable energies, flattening of the administrative, regulatory and contractual obstacles, promotion of the use of renewable heat. The contributions of the 'cogeneration', 'biogas' and 'wood-fuel' associations are given in appendixes. (J.S.)

  18. The demand for environmental quality in driving transitions to low-polluting energy sources

    International Nuclear Information System (INIS)

    Fouquet, Roger

    2012-01-01

    The purpose of this paper is to understand the long run demand for energy-related environmental quality, its influence on legislation and on transitions to low polluting energy sources. It presents a series of episodes in British history where a demand for improvements in energy-related environmental quality existed. These episodes helped to identify a few cases where markets partially drove transitions to low polluting energy sources, in specific economic conditions. More generally, they showed that, when pushed, governments will introduce environmental legislation, although it tends to be weak and poorly enforced. In the case of air pollution, strong and binding legislation occurred roughly one hundred years later than was socially optimal. Based on this evidence, for a transition to a low carbon economy, governments will probably need to introduce focussed and binding legislation, and this cannot be expected without strong and sustained demand for climate stability. This demand will need to be spearheaded by pressure groups to introduce legislation, to enforce it and to avoid it being over-turned by future governments. - Highlights: ► Reviews demand for improvements in environmental quality in British history. ► In special cases, demand may drive transitions through markets. ► Demand will probably have to drive transitions to low polluting energy through legislation. ► Need for strong and sustained demand spearheaded through pressure groups.

  19. GRI baseline projection of U.S. energy supply and demand to 2010. An occasional publication of Gas Research Institute on topics of current interest. December 1989

    International Nuclear Information System (INIS)

    Holtberg, P.D.; Woods, T.J.; Lihn, M.L.; McCabe, N.C.

    1989-12-01

    The report summarizes the 1989 GRI Baseline Projection of U.S. Energy Supply and Demand, which was adopted as a major input to the planning cycle leading to the development of GRI's 1991 R and D program. Summary tables, sectoral breakdowns of energy demand, and the natural gas supply and price trends are presented. Appendixes include a discussion of the methodology and assumptions used to prepare the 1989 projection, and analysis of the potential for higher levels of gas demand, a description of industrial and commercial cogeneration energy supply and demand, a comparison of the 1989 projection with previous GRI projections, and a discussion of additional data used in developing the projection

  20. China's energy demand and its characteristics in the industrialization and urbanization process

    International Nuclear Information System (INIS)

    Jiang Zhujun; Lin Boqiang

    2012-01-01

    China is currently in the process of industrialization and urbanization, which is the key stage of transition from a low-income country to a middle-income country and requires large amount of energy. The process will not end until 2020, so China's primary energy demand will keep high growth in the mid-term. Although each country is unique considering its particular history and background, all countries are sharing some common rules in energy demand for economic development. Based on the comparison with developed countries, here, we report some rules in the process of industrialization and urbanization as follows: (1) urbanization always goes along with industrialization; (2) the higher economic growth is, the higher energy demand is; (3) economic globalization makes it possible to shorten the time of industrialization, but the shorter the transition phase is, the faster energy demand grows; (4) the change of energy intensity presents as an “inverted U” curve, but whose shape can be changed for different energy policy. The above rules are very important for the Chinese government in framing its energy policy. - Highlights: ► China's energy demand will maintain high growth in mid-term. ► Urbanization always goes along with industrialization. ► Higher economic growth needs more energy. ► The energy intensity presents as an “inverted U” curve.

  1. Energy Systems Scenario Modelling and Long Term Forecasting of Hourly Electricity Demand

    DEFF Research Database (Denmark)

    Alberg Østergaard, Poul; Møller Andersen, Frits; Kwon, Pil Seok

    2015-01-01

    . The results show that even with a limited short term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrate wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant...... or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model...... effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps...

  2. The Integration of Energy Efficiency, Renewable Energy, DemandResponse and Climate Change: Challenges and Opportunities for Evaluatorsand Planners

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Edward

    2007-05-29

    This paper explores the feasibility of integrating energyefficiency program evaluation with the emerging need for the evaluationof programs from different "energy cultures" (demand response, renewableenergy, and climate change). The paper reviews key features andinformation needs of the energy cultures and critically reviews theopportunities and challenges associated with integrating these withenergy efficiency program evaluation. There is a need to integrate thedifferent policy arenas where energy efficiency, demand response, andclimate change programs are developed, and there are positive signs thatthis integration is starting to occur.

  3. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system

    International Nuclear Information System (INIS)

    Jiang, Yibo; Xu, Jian; Sun, Yuanzhang; Wei, Congying; Wang, Jing; Ke, Deping; Li, Xiong; Yang, Jun; Peng, Xiaotao; Tang, Bowen

    2017-01-01

    Highlights: • Improving the utilization of wind power by the demand response of residential hybrid energy system. • An optimal scheduling of home energy management system integrating micro-CHP. • The scattered response capability of consumers is aggregated by demand bidding curve. • A stochastic day-ahead economic dispatch model considering demand response and wind power. - Abstract: As the installed capacity of wind power is growing, the stochastic variability of wind power leads to the mismatch of demand and generated power. Employing the regulating capability of demand to improve the utilization of wind power has become a new research direction. Meanwhile, the micro combined heat and power (micro-CHP) allows residential consumers to choose whether generating electricity by themselves or purchasing from the utility company, which forms a residential hybrid energy system. However, the impact of the demand response with hybrid energy system contained micro-CHP on the large-scale wind power utilization has not been analyzed quantitatively. This paper proposes an operation optimization model of the residential hybrid energy system based on price response, integrating micro-CHP and smart appliances intelligently. Moreover, a novel load aggregation method is adopted to centralize scattered response capability of residential load. At the power grid level, a day-ahead stochastic economic dispatch model considering demand response and wind power is constructed. Furthermore, simulation is conducted respectively on the modified 6-bus system and IEEE 118-bus system. The results show that with the method proposed, the wind power curtailment of the system decreases by 78% in 6-bus system. In the meantime, the energy costs of residential consumers and the operating costs of the power system reduced by 10.7% and 11.7% in 118-bus system, respectively.

  4. Demand and Supply Side Management Strategies for Zero Energy Buildings

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Hajizadeh, Amin; Aliakbar Golkar, Masoud

    2017-01-01

    operational scenarios. Afterwards, the SSM strategy based on adaptive fuzzy control is proposed to control of power flow between hybrid renewable sources and PEVs of the main building for a short time interval. Moreover, an fuzzy sliding power control strategy for the controlling of battery energy storage...... is introduced to keep the balance between the requested power from building, PEV and output power of hybrid power generation resources. Simulation and experimental results are presented to validate the capability of the proposed power and energy flow control strategy....

  5. A New Approach to Site Demand-Based Level Inventory Optimization

    Science.gov (United States)

    2016-06-01

    Note: If probability distributions are estimated based on mean and variance , use ˆ qix  and 2ˆ( )qi to generate these. q in , number of...TO SITE DEMAND-BASED LEVEL INVENTORY OPTIMIZATION by Tacettin Ersoz June 2016 Thesis Advisor: Javier Salmeron Second Reader: Emily...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE A NEW APPROACH TO SITE DEMAND-BASED LEVEL INVENTORY OPTIMIZATION 5. FUNDING NUMBERS 6

  6. The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings

    International Nuclear Information System (INIS)

    Stephan, André; Crawford, Robert H.

    2016-01-01

    House size has significantly increased over the recent decades in many countries. Larger houses often have a higher life cycle energy demand due to their increased use of materials and larger area to heat, cool and light. Yet, most energy efficiency regulations for buildings fail to adequately include requirements for addressing the energy demand associated with house size. This study quantifies the effect of house size on life cycle energy demand in order to inform future regulations. It uses a parametric model of a typical detached house in Melbourne, Australia and varies its floor area from 100 to 392 m"2 for four different household sizes. Both initial and recurrent embodied energy requirements are quantified using input-output-based hybrid analysis and operational energy is calculated in primary energy terms over 50 years. Results show that the life cycle energy demand increases at a slower rate compared to house size. Expressing energy efficiency per m"2 therefore favours large houses while these require more energy. Also, embodied energy represents 26–50% across all variations. Building energy efficiency regulations should incorporate embodied energy, correct energy intensity thresholds for house size and use multiple functional units to measure efficiency. These measures may help achieve greater net energy reductions. - Highlights: • The life cycle energy demand (LCE) is calculated for 90 house sizes and 4 household sizes. • The LCE is sublinearly correlated with house size. • Larger houses appear to be more energy efficient per m"2 while they use more energy overall. • Embodied energy (EE) represents up to 52% of the LCE over 50 years. • Building energy efficiency regulations need to consider house size and EE.

  7. Energy demand, poverty and the urban environment in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Probert, S.D.

    2001-01-01

    This paper presents some insights into the prime problems of energy and related environmental issues as well as urbanisation in Jordan. The country has very limited natural resources: water is scarce; arable land is limited; and fossil-fuel sources are few. Moreover, the population is increasing rapidly. Hence, problems are arising. During the last 30 years, the country has experienced vast changes in its infrastructure with respect to the housing, urbanisation, commerce, agriculture and industry. Such developments have led to increasing demographic stresses: unemployment has increased and poverty is experienced by more than half of the population. The pressures have resulted in a high percentage of the population moving from rural to urban areas and so society is becoming less self-sufficient. At present, energy consumption in the residential sector accounts for about one quarter of the kingdom's fuel consumption. Kerosene, bottled LPG, diesel fuel and electricity are the main forms of energy used by households, but kerosene is still the dominant fuel because about 83% of households depend on it for space and water heating. The use of open fires and/or portable stoves has led to an increasing number of people being killed each year by suffocation or suffering health problems due to the inhalation of fumes and gaseous pollutants. Thus a national plan to achieve energy thrift and protect the environment, as well as accomplish the more rational utilisation of the limited natural resources available, is urgently needed and should be enacted soon. (author)

  8. Energy demand for materials in an international context

    NARCIS (Netherlands)

    Worrell, Ernst; Carreon, Jesus Rosales

    2017-01-01

    Materials are everywhere and have determined society. The rapid increase in consumption of materials has led to an increase in the use of energy and release of greenhouse gas (GHG) emissions. Reducing emissions in material-producing industries is a key challenge. If all of industry switched to

  9. Energy demand modelling and GHG emission reduction: case study Croatia

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Novosel, Tomislav

    2013-01-01

    In the light of new European energy-climate package and its measures for increasing security of supply, decreasing the impact on environment and stimulating sustainable development with special emphasis on job creation and regional growth, Croatia as a future EU member state, needs to reconsider ...

  10. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  11. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, A. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Hutson, N. [Cambridge Systematics Inc., Cambridge, MA (United States); Lamm, C. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Pei, Y. L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Winebrake, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  12. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. A comprehensive assessment of the life cycle energy demand of passive houses

    International Nuclear Information System (INIS)

    Stephan, André; Crawford, Robert H.; Myttenaere, Kristel de

    2013-01-01

    Highlights: • The life cycle energy demand of a passive house (PH) is measured over 100 years. • Embodied, operational and user transport energy demand are considered. • Embodied energy represents the highest energy consumption in all variations. • A PH might not save energy compared to a standard house. • A poorly insulated city apartment can use less energy than a best case suburban PH. - Abstract: Certifications such as the Passive House aim to reduce the final space heating energy demand of residential buildings. The latter are responsible for a significant share of final energy consumption in Europe of which nearly 70% is associated with space conditioning, notably heating. The improvement of the energy efficiency of residential buildings, in terms of space heating, can therefore reduce their total energy demand. However, most certifications totally overlook other energy requirements associated with residential buildings. Studies on passive houses do not take into consideration the embodied energy required to manufacture the building materials, especially the large amount of insulation required to achieve high operational efficiencies. At an urban scale, most passive houses are single family detached houses located in low density suburbs with a high car usage, resulting in considerable transport related energy demand. This paper analyses the total life cycle energy demand of a typical Belgian passive house, comprising embodied, operational and transport energy. It relies on a comprehensive technique developed by Stephan et al. [1] and conducts a parametric analysis as well as a comparison to alternative building types. Results show that current building energy efficiency certifications might not ensure a lower energy demand and can, paradoxically result in an increased energy consumption because of their limited scope. More comprehensive system boundaries should be used to make sure that net energy savings do occur. The embodied energy of passive

  14. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    Science.gov (United States)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  15. Energy-environment policy goals and instruments and electricity demand response. A framework for the analysis

    International Nuclear Information System (INIS)

    Rio, Pablo del; Hernandez, F.

    2004-01-01

    The environment and energy realms have traditionally been two major focus of attention of EU and Member State (MS) policy. This attention has intensified in recent years as a response to, both, internal and external events and strategies (i.e., the Kyoto Protocol). In this context, the EU and its MS have set ambitious goals in the environmental and energy contexts and are already implementing packages of policies and measures. Both policies interact. Although there might be conflicts between both, there are also mutually reinforcing effects with significant policy implications. Actually, as stated in the Amsterdam Treaty, environmental protection is one of the major goals of energy policy (together with 'security of supply' and 'competitive energy systems'). On the other hand, the energy sector is instrumental in the success of environmental policy. In this context, a wide array of measures are currently being implemented in the EU and its MS which have a more or less direct impact on the electricity market. Particularly, Demand Side Management (DSM) activities, promotion of electricity from renewable energy sources (RES-E) and measures aimed at the mitigation of Greenhouse Gas (GHG) emissions are arguably three major instruments which have the potential to contribute to energy and environmental goals. The effectiveness and impact of there measures depends to a large extent on the demand response in the electricity market. Some of there measures affect the electricity demand curve, while others do not have a direct impact on the demand curve but affect the quantity of electricity demand by displacing the electricity supply curve. In turn, the effectiveness of energy and environmental policies may be different when electricity demand response varies (i.e., different elasticity demand). This paper entails an initial effort to provide a theoretical framework for the analysis of the interactions between electricity demand response and the above mentioned energy

  16. Forecasting household transport energy demand in South African cities

    CSIR Research Space (South Africa)

    Mokonyama, Mathetha T

    2009-11-01

    Full Text Available in South Africa have over the recent past increased at a rate more than any other household expenditure item (StasSA, 2008). Transport energy from fuel, forms a large component of the transport costs for both private car and public transport trips... by the Constitution to plan and manage the provision of services to communities in a sustainable manner. The services include water, sanitation, electricity and transport. Some of the management instruments used by local government include Integrated Development...

  17. Energy demand analysis of Port-Harcourt refinery, Nigeria and its policy implications

    International Nuclear Information System (INIS)

    Jesuleye, O.A.; Siyanbola, W.O.; Sanni, S.A.; Ilori, M.O.

    2007-01-01

    This paper analyses energy demand of Port-Harcourt refinery, Nigeria, based on information obtained from its annual publications, backed-up by spot interviews. The analytical approach adopted for the study involves the calculation of energy intensities to determine the refinery's annual energy demand for various energy types considered from 1989 to 2004. The results showed that the actual energy demand per year for processing crude oil into refined products, exceeded, in varying degrees the stipulated refinery standard of 4 barrels of oil equivalent (BOE) per 100 BOE. It varied from 4.28-8.58 BOE per 100 BOE. In terms of energy demand efficiency, this implies very poor performance of the refinery during the 16-year period under investigation. The excess demand which translates to an average daily wastage of about 2005 BOE is estimated to be $56,196 (US Dollars) based on the 2003 OPEC basket price of $28.0213 per barrel. Lack of optimal fuel utilization-mix and non-compliance with the Turn-Around-Maintenance schedules were attributed to the refinery's inefficient energy demand pattern

  18. Provincial panel: addressing emerging energy constraints and new strategies to meet future generation demand

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    This paper addresses emerging energy constraints and new strategies to meet future generation demand in the Province of Manitoba. The focus is to reduce reliance on energy sources that emit greenhouse gases such as petroleum, natural gas and coal, and increase clean and green electricity. The current plan is to double hydro generation, achieve 1000 MW wind power and utilize bio energy

  19. Modelling energy demand of developing countries: Are the specific features adequately captured?

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.; Timilsina, Govinda R.

    2010-01-01

    This paper critically reviews existing energy demand forecasting methodologies highlighting the methodological diversities and developments over the past four decades in order to investigate whether the existing energy demand models are appropriate for capturing the specific features of developing countries. The study finds that two types of approaches, econometric and end-use accounting, are commonly used in the existing energy demand models. Although energy demand models have greatly evolved since the early seventies, key issues such as the poor-rich and urban-rural divides, traditional energy resources and differentiation between commercial and non-commercial energy commodities are often poorly reflected in these models. While the end-use energy accounting models with detailed sectoral representations produce more realistic projections as compared to the econometric models, they still suffer from huge data deficiencies especially in developing countries. Development and maintenance of more detailed energy databases, further development of models to better reflect developing country context and institutionalizing the modelling capacity in developing countries are the key requirements for energy demand modelling to deliver richer and more reliable input to policy formulation in developing countries.

  20. China’s primary energy demands in 2020: Predictions from an MPSO–RBF estimation model

    International Nuclear Information System (INIS)

    Yu Shiwei; Wei Yiming; Wang Ke

    2012-01-01

    Highlights: ► A Mix-encoding PSO and RBF network-based energy demand forecasting model is proposed. ► The proposed model has simpler structure and smaller estimated errors than other ANN models. ► China’s energy demand could reach 6.25 billion, 4.16 billion, and 5.29 billion tons tce. ► China’s energy efficiency in 2020 will increase by more than 30% compared with 2009. - Abstract: In the present study, a Mix-encoding Particle Swarm Optimization and Radial Basis Function (MPSO–RBF) network-based energy demand forecasting model is proposed and applied to forecast China’s energy consumption until 2020. The energy demand is analyzed for the period from 1980 to 2009 based on GDP, population, proportion of industry in GDP, urbanization rate, and share of coal energy. The results reveal that the proposed MPSO–RBF based model has fewer hidden nodes and smaller estimated errors compared with other ANN-based estimation models. The average annual growth of China’s energy demand will be 6.70%, 2.81%, and 5.08% for the period between 2010 and 2020 in three scenarios and could reach 6.25 billion, 4.16 billion, and 5.29 billion tons coal equivalent in 2020. Regardless of future scenarios, China’s energy efficiency in 2020 will increase by more than 30% compared with 2009.

  1. Modelling energy demand of developing countries: Are the specific features adequately captured?

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Subhes C. [CEPMLP, University of Dundee, Dundee DD1 4HN (United Kingdom); Timilsina, Govinda R. [Development Research Group, The World Bank, Washington DC (United States)

    2010-04-15

    This paper critically reviews existing energy demand forecasting methodologies highlighting the methodological diversities and developments over the past four decades in order to investigate whether the existing energy demand models are appropriate for capturing the specific features of developing countries. The study finds that two types of approaches, econometric and end-use accounting, are commonly used in the existing energy demand models. Although energy demand models have greatly evolved since the early seventies, key issues such as the poor-rich and urban-rural divides, traditional energy resources and differentiation between commercial and non-commercial energy commodities are often poorly reflected in these models. While the end-use energy accounting models with detailed sectoral representations produce more realistic projections as compared to the econometric models, they still suffer from huge data deficiencies especially in developing countries. Development and maintenance of more detailed energy databases, further development of models to better reflect developing country context and institutionalizing the modelling capacity in developing countries are the key requirements for energy demand modelling to deliver richer and more reliable input to policy formulation in developing countries. (author)

  2. Asheville, North Carolina: Reducing Electricity Demand through Building Programs & Policies (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "Asheville, North Carolina: Reducing Electricity Demand through Building Programs & Policies" explains how the City of Asheville used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  3. Economic and energy supply and demand outlook towards FY 2014 of Japan. Japan was in a crucial moment

    International Nuclear Information System (INIS)

    Yanagisawa, Akira; Yoshioka, Takayuki; Suzuki, Hidenori; Choi, Jongwon; Ikarii, Ryohei; Iwata, Sohei; Shibata, Yoshiaki; Ito, Kokichi

    2014-01-01

    This outlook showed prospects of economy and energy supply and demand (S and D) towards FY2014 of Japan taking account of Japanese economy recovery thanks to 'Abenomics', unclear power S and D balance, restarts of NPPs and increase in renewables dominated by solar PV. Impacts of restart of NPPs were so great and hoped prompt procedures after finishing the highest-level safety assessment. Fast expansion of renewables generating 7% of power generation and their increased burden on consumers (Feed-In-Tariff) required system improvements for adequate and sustainable introduction of renewables. Impacts of removing customs by the TPP increased energy demand due to the economic expansion by 0.9%. Primary energy supply turned to increase due to the expansion of the economic activities while electricity savings and energy conservation exerted downward pressure on demand. As for Macro economy, GDP growth slowed due to retroaction decrease by the last-minute demand of tax raise. Energy consumption decreased in two years due to slowing recovery and both natural gas and coal consumption hit new high. Steady growth of city gas, slight increase of electricity and sharp drop of fuel oil would be for energy sales. CO 2 emissions decreased in FY2014 after hit the historical high in FY2013. (T. Tanaka)

  4. A stochastic security approach to energy and spinning reserve scheduling considering demand response program

    International Nuclear Information System (INIS)

    Partovi, Farzad; Nikzad, Mehdi; Mozafari, Babak; Ranjbar, Ali Mohamad

    2011-01-01

    In this paper a new algorithm for allocating energy and determining the optimum amount of network active power reserve capacity and the share of generating units and demand side contribution in providing reserve capacity requirements for day-ahead market is presented. In the proposed method, the optimum amount of reserve requirement is determined based on network security set by operator. In this regard, Expected Load Not Supplied (ELNS) is used to evaluate system security in each hour. The proposed method has been implemented over the IEEE 24-bus test system and the results are compared with a deterministic security approach, which considers certain and fixed amount of reserve capacity in each hour. This comparison is done from economic and technical points of view. The promising results show the effectiveness of the proposed model which is formulated as mixed integer linear programming (MILP) and solved by GAMS software. -- Highlights: → Determination of optimal spinning reserve capacity requirement in order to satisfy desired security level set by system operator based on stochastic approach. → Scheduling energy and spinning reserve markets simultaneously. → Comparing the stochastic approach with deterministic approach to determine the advantages and disadvantages of each. → Examine the effect of demand response participation in reserve market to provide spinning reserve.

  5. Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage

    NARCIS (Netherlands)

    Korkas, C; Baldi, S.; Michailidis, I; Kosmatopoulos, EB

    2016-01-01

    Integration of renewable energy sources in microgrids can be achieved via demand response programs, which change the electric usage in response to changes in the availability and price of electricity over time. This paper presents a novel control algorithm for joint demand response management and

  6. Towards more eclectic understandings of energy demand and change

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise; Quitzau, Maj-Britt

    2017-01-01

    the strategic work carried out in a particular case of energy renovation seems to have involved: 1) acknowledgment of the need for reconfiguring bundles of practices, 2) actively enrolling different actors in the reconfiguring of bundles of practices, and 3) basing new practice arrangements......, we explore theoretical understandings of practices and translations as a means to illustrate how certain engagements with strategic work aimed at reconfiguring bundles of practices enable a different approach to establishing momentum for change through planning interventions. We illustrate how......’ performance....

  7. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D.P.

    2007-01-01

    This paper focuses on the potential upcoming impacts of climate change in the 21st century on electricity demand at regional/national levels for regions where topography and location result in large differences in local climate. To address this issue, a regional climate model, PRECIS, has been used to predict future climatic conditions under different emissions scenarios (namely A2 and B2 of the IPCC special report on emissions scenarios (SRES)) as an input to a multiple regression model of the sensitivity of electricity demand in the Greek interconnected power system to climate and socio-economic factors. The economic development input to the multiple regression model follows the same storylines of the SRES scenarios upto 2100 and includes sub-scenarios to cover larger and smaller economic development rates. The results of the analysis indicate an increase of the annual electricity demand attributable solely to climate change of 3.6-5.5% under all scenarios examined, most of which results from increased annual variability with substantial increases during the summer period that outweighs moderate declines estimated for the winter period. This becomes more pronounced if inter-annual variability, especially of summer months, is taken into consideration. It was also found that in the long run, economic development will have a strong effect on future electricity demand, thus increasing substantially the total amount of energy consumed for cooling and heating purposes. This substantial increase in energy demand with strong annual variability will lead to the need for inordinate increases of installed capacity, a large percentage of which will be under utilized. Thus, appropriate adaptation strategies (e.g. new investments, interconnections with other power systems, energy saving programmes, etc.) need to be developed at the state level in order to ensure the security of energy supply. (author)

  8. Projection of energy demand for the period 2004-2035 in Argentina using the model 'MAED'

    International Nuclear Information System (INIS)

    Jensen Mariani, Santiago N.; Cañadas, Valeria

    2009-01-01

    The tool used in CNEA to study projection of energy demand in Argentina, is the Model for Energy Demand Analysis 'MAED', supplied by the International Atomic Energy Agency (IAEA), launched by the project 'Strengthening capacity to develop sustainable energy systems' RLA/0/029, organized by that agency and OLADE. This is resumed by the Prospective and Energy Planning Division, as a comprehensive analysis of the energy chain in the country, conducted over many years in the CNEA and that was reduced at just supply analysis in recent years. For the modeling of the national energy demand, there were found a series of assumptions about population growth, changes in the economy and other variables, in order to determine the final energy demand for the study period 2004 -2035; in a total of three scenarios will be detailed in the relevant sections. As shown, the results reveal the high dependence on fossil fuels, even in a scenario with efficient energy use, and as in this context, an increasing involvement of nuclear energy in the energy matrix could offset this dependence by diversifying and strengthening the supply of electricity. (author)

  9. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    Science.gov (United States)

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  10. A PSO–GA optimal model to estimate primary energy demand of China

    International Nuclear Information System (INIS)

    Yu Shiwei; Wei Yiming; Wang Ke

    2012-01-01

    To improve estimation efficiency for future projections, the present study has proposed a hybrid algorithm, Particle Swarm Optimization and Genetic Algorithm optimal Energy Demand Estimating (PSO–GA EDE) model, for China. The coefficients of the three forms of the model (linear, exponential, and quadratic) are optimized by PSO–GA using factors, such as GDP, population, economic structure, urbanization rate, and energy consumption structure, that affect demand. Based on 20-year historical data between 1990 and 2009, the simulation results of the proposed model have greater accuracy and reliability than other single optimization methods. Moreover, it can be used with optimal coefficients for the energy demand projections of China. The departure coefficient method is applied to get the weights of the three forms of the model to obtain a combinational prediction. The energy demand of China is going to be 4.79, 4.04, and 4.48 billion tce in 2015, and 6.91, 5.03, and 6.11 billion tce (“standard” tons coal equivalent) in 2020 under three different scenarios. Further, the projection results are compared with other estimating methods. - Highlights: ► A hybrid algorithm PSO–GA optimal energy demands estimating model for China. ► Energy demand of China is estimated by 2020 in three different scenarios. ► The projection results are compared with other estimating methods.

  11. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate

    Science.gov (United States)

    Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.

    2017-01-01

    This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.

  12. Structural change of the economy, technological progress and long-term energy demand

    International Nuclear Information System (INIS)

    Klinge Jacobsen, H.

    2000-01-01

    The material included in the report is a collection of papers dealing with different issues related to the topics included in the title. Some of these papers have already either been published or presented at various conferences. Together with a general introduction, they constitute the author's PhD dissertation. The dissertation includes six papers and two shorter notes on different aspects of structural change of the economy and energy demand. Three different issues related to long-term energy demand are discussed: (1) the importance of technological change and its representation in energy-economy modelling, (2) an integration of two different modelling approaches, and (3) the effect on energy demand of structural changes exemplified by changes in the energy supply sector and in Danish trade patterns. The report highlights a few aspects of the interaction between structural economic changes and energy demand, but it does not intend to cover a wide range of issues related to these topics. In the introductory chapter some discussions and thoughts about issues not covered by the articles are brought forward. The introductory chapter includes an overview of possible relations between longterm energy demand and the economy, technical progress demography, social conditions and politics. The first two papers discuss the importance for projections of long-term energy demand of the way in which technological progress is modelled. These papers focus on energy-economy modelling. A paper dealing with two different approaches to energy demand modelling and the possible integration of these approaches in the Danish case follows next. The integrated Danish model, is then used for analysing different revenue recycling principles in relation to a CO 2 tax. The effect of subsidising biomass use is compared with recycling through corporate tax rates. Then a paper follows describing the structural change of a specific sector, namely the energy supply sector, and the implications for

  13. Energy demand projections based on an uncertain dynamic system modeling approach

    International Nuclear Information System (INIS)

    Dong, S.

    2000-01-01

    Today, China has become the world's second largest pollution source of CO 2 . Owing to coal-based energy consumption, it is estimated that 85--90% of the SO 2 and CO 2 emission of China results from coal use. With high economic growth and increasing environmental concerns, China's energy consumption in the next few decades has become an issue of active concern. Forecasting of energy demand over long periods, however, is getting more complex and uncertain. It is believed that the economic and energy systems are chaotic and nonlinear. Traditional linear system modeling, used mostly in energy demand forecasts, therefore, is not a useful approach. In view of uncertainty and imperfect information about future economic growth and energy development, an uncertain dynamic system model, which has the ability to incorporate and absorb the nature of an uncertain system with imperfect or incomplete information, is developed. Using the model, the forecasting of energy demand in the next 25 years is provided. The model predicts that China's energy demand in 2020 will be about 2,700--3,000 Mtce, coal demand 3,500 Mt, increasing by 128% and 154%, respectively, compared with that of 1995

  14. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    2017-04-01

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of the proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.

  15. Interactive energy demand analysis: The MAED-BI model application in the Shanxi province, PRC

    International Nuclear Information System (INIS)

    Vallance, B.; Weigkricht, E.

    1990-12-01

    Within the framework of collaboration between IIASA's Advanced Computer Applications project (ACA) and the State Science and Technology Commission of the People's Republic of China (SSTCC), ACA has developed an integrated set of information and decision support systems for development planning in China. The system is implemented for a case study of Shanxi, a province in north central China, which is very rich in coal and several mineral resources, but is still at an early stage of development, lacking, for example, a well developed infrastructure, or sufficient water. The decision support system combines several data bases, simulation, and optimization models, and AI components, in an easy-to-use expert system framework. A graphical and largely symbolic user interface, relying exclusively on menu techniques and providing extensive help and explain functions, makes access to the system's functions easy for the planner and decision maker, who might have little or no computer experience. The system is designed to assist the five-year planning process in Shanxi province, which, in the Chinese philosophy of integrated development, includes investment distribution, i.e., primarily economic, but also technological, resource, environmental, and socio-political considerations. The scope of the system, consequently, ranges from the macroeconomic level down to sectoral and more engineering-oriented models. In the Shanxi software system, modeling the energy demand (and also related investment, labor, and water requirements) of planned production schemes, or more generally, the economic and social development, is done with the help of the MAED-BI (Model for Analysis of Energy Demand in Basic Industries). Connection to a relational data base management system for the definition of input scenarios, and an interactive, graphical user interface for the selective display of model results, are important features. The model was developed in collaboration with the International Atomic

  16. The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand

    Science.gov (United States)

    Cooter, Ellen Jean

    The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the

  17. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  18. Promotion COPERNIC Energy and Society the interrogations on the world demand evolution

    International Nuclear Information System (INIS)

    2001-12-01

    In the framework of a prospective reflexion emergence on the energy demand, this document presents an analysis of the prospective approach and of recent studies: challenges, interests, limits, validity of the models and hypothesis and results relevance. With this analysis, the authors aim to identify the main interrogations bond to the world energy demand evolution. They then analyse these interrogations in the framework of a sectoral approach (agriculture, industry, transports, residential) in order to detail the demand and to forecast the evolution. Facing the consumption attitudes, they also suggest some new action avenues to favor a sustainable growth. (A.L.B.)

  19. Supplementing energy demand of rural households in Bangladesh through appropriate biogas technology

    DEFF Research Database (Denmark)

    Ashekuzzaman, S.M.; Badruzzaman, A.B.M.; Rafiqul Hoque, A.T.M.

    2010-01-01

    This paper has sought to show the potential of energy recovery from rurally available agro and household organic wastes and thus, the possible impact on supplementing energy demand, reducing deforestation, and replacing fossil fuel as well as avoided greenhouse gases. Results show that co......-digestion of a wide range of manure, crop residues and household wastes with cow manure was successful to produce increased gas yield than what would be if cow dung is digested separately and the energy value from this can supplement 57–79% of the rural energy demand, depending on the methane yield from organic waste...

  20. CANDU: Meeting the demand for energy self-sufficiency

    International Nuclear Information System (INIS)

    Lawson, D.S.

    1985-01-01

    The success of the CANDU program can been seen quickly by examining the comparison of typical electricity bills in various provinces of Canada. The provinces of Quebec and Manitoba benefit b extensive hydro electric schemes, many of which were constructed years ago at low capital cost. In Ontario, the economic growth has outstripped these low cost sources of hydro power and hence the province has to rely on thermal sources of electricity generation. The success of the CANDU program is shown by the fact that it can contribute over a third of electricity in Ontario while keeping the total electricity rate comparable with that of those provinces that can rely on low cost hydro sources. Energy self-sufficiency encompasses a spectrum of requirements. One consideration would be the reliable supply and control of fuel during the operating life of a power plant: A greater degree of self-sufficiency would be obtained by having an involvement in the building and engineering of the power plant prior to its operation

  1. Neural network controller for Active Demand-Side Management with PV energy in the residential sector

    International Nuclear Information System (INIS)

    Matallanas, E.; Castillo-Cagigal, M.; Gutiérrez, A.; Monasterio-Huelin, F.; Caamaño-Martín, E.; Masa, D.; Jiménez-Leube, J.

    2012-01-01

    Highlights: ► We have developed a neural controller for Active Demand-Side Management. ► The controller consists of Multilayer Perceptrons evolved with a genetic algorithm. ► The architecture of the controller is distributed and modular. ► The simulations show that the electrical local behavior improves. ► Active Demand-Side Management helps users to control his energy behaviour. -- Abstract: In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.

  2. The Demand Side in Economic Models of Energy Markets: The Challenge of Representing Consumer Behavior

    International Nuclear Information System (INIS)

    Krysiak, Frank C.; Weigt, Hannes

    2015-01-01

    Energy models play an increasing role in the ongoing energy transition processes either as tools for forecasting potential developments or for assessments of policy and market design options. In recent years, these models have increased in scope and scale and provide a reasonable representation of the energy supply side, technological aspects and general macroeconomic interactions. However, the representation of the demand side and consumer behavior has remained rather simplistic. The objective of this paper is twofold. First, we review existing large-scale energy model approaches, namely bottom-up and top-down models, with respect to their demand-side representation. Second, we identify gaps in existing approaches and draft potential pathways to account for a more detailed demand-side and behavior representation in energy modeling.

  3. The Demand Side in Economic Models of Energy Markets: The Challenge of Representing Consumer Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Krysiak, Frank C., E-mail: frank.krysiak@unibas.ch; Weigt, Hannes [Department of Business and Economics, University of Basel, Basel (Switzerland)

    2015-05-19

    Energy models play an increasing role in the ongoing energy transition processes either as tools for forecasting potential developments or for assessments of policy and market design options. In recent years, these models have increased in scope and scale and provide a reasonable representation of the energy supply side, technological aspects and general macroeconomic interactions. However, the representation of the demand side and consumer behavior has remained rather simplistic. The objective of this paper is twofold. First, we review existing large-scale energy model approaches, namely bottom-up and top-down models, with respect to their demand-side representation. Second, we identify gaps in existing approaches and draft potential pathways to account for a more detailed demand-side and behavior representation in energy modeling.

  4. The Demand Side in Economic Models of Energy Markets: The Challenge of Representing Consumer Behavior

    Directory of Open Access Journals (Sweden)

    Frank eKrysiak

    2015-05-01

    Full Text Available Energy models play an increasing role in the ongoing energy transition processes either as tools for forecasting potential developments or for assessments of policy and market design options. In recent years these models have increased in scope and scale and provide a reasonable representation of the energy supply side, technological aspects and general macroeconomic interactions. However, the representation of the demand side and consumer behavior has remained rather simplistic. The objective of this paper is twofold. First, we review existing large scale energy model approaches, namely bottom-up and top-down models, with respect to their demand side representation. Second, we identify gaps in existing approaches and draft potential pathways to account for a more detailed demand side and behavior representation in energy modeling.

  5. Supply and Demand Control of Distributed Generators in a Microgrid for New Energy

    Science.gov (United States)

    Shimakage, Toyonari; Sumita, Jiro; Uchiyama, Noriyuki; Kato, Takeyoshi; Suzuoki, Yasuo

    We report the operational results of distributed generators (DGs) in a microgrid and present the effects after incorporating photovoltaic power generation (PV) systems into the microgrid for electric power system. The microgrid was constructed at the EXPO 2005 Aichi site as part of a demonstration promoted by NEDO. A solution is needed to problems where instability in the DGs that utilize natural energy such as solar light and wind force negatively influence existing electric power systems. So, we developed energy control system and controlled DGs output to reduce the fluctuation at the grid connected point caused by PV system's instability output. Our microgrid consists of DGs such as PV systems, fuel cells, and NaS batteries, and these DGs are controlled by an energy control system. We verified practical effectiveness of the installing the microgrid as follows. (1) 99.5% of the power imbalance in the supply and demand over 30 minutes was within a range of ±3% under normal operating conditions, (2) the microgrid contributes to the load leveling, (3) energy control system smoothes the power flow fluctuation of PV system output at the grid connected point, (4) in the future, installing a microgrid will help reduce the additional LFC (Load Frequency Control) capacity.

  6. Residential-energy-demand modeling and the NIECS data base: an evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  7. Rough estimate demand of atomic energy-related budget for fiscal year 1996

    International Nuclear Information System (INIS)

    Kitagishi, Tatsuro

    1996-01-01

    The rough estimate demand of the budget for fiscal year 1996 of eight atomic energy-related ministries and agencies was determined at about 494,879 million yen, which is 2.4% growth as compared with that for the previous year. Concretely, the general account is 204,594 million yen, 2.2% growth, and the special account is 290,285 million yen, 2.6% growth. The budget is 357,060 million yen and 3.7% growth for Science and Technology Agency, 130, 787 million yen and 2% decrease for Ministry of International Trade and Industry, and 7,032 million yen and 29.2% increase for other six ministries and agencies. Emphasis is placed on the research of upgrading LWRs including the disassembling of reactors, the performance test for fuel, the improvement of reactor technology and the verifying test of practical reactor decommissioning facilities, and the research and development of advanced nuclear fuel cycle technology. Also the technical development of waste treatment and disposal including high level radioactive waste is carried out with 40.3 billion yen. Atomic Energy Commission exerts efforts for the development of atomic energy policy for the peaceful utilization, the establishment of coordinative LWR power generation system, the development of nuclear fuel recycling and the strengthening of the basic research on atomic energy. (K.I.)

  8. Prediction of energy demands using neural network with model identification by global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Ryohei; Wakui, Tetsuya; Satake, Ryoichi [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2009-02-15

    To operate energy supply plants properly from the viewpoints of stable energy supply, and energy and cost savings, it is important to predict energy demands accurately as basic conditions. Several methods of predicting energy demands have been proposed, and one of them is to use neural networks. Although local optimization methods such as gradient ones have conventionally been adopted in the back propagation procedure to identify the values of model parameters, they have the significant drawback that they can derive only local optimal solutions. In this paper, a global optimization method called ''Modal Trimming Method'' proposed for non-linear programming problems is adopted to identify the values of model parameters. In addition, the trend and periodic change are first removed from time series data on energy demand, and the converted data is used as the main input to a neural network. Furthermore, predicted values of air temperature and relative humidity are considered as additional inputs to the neural network, and their effect on the prediction of energy demand is investigated. This approach is applied to the prediction of the cooling demand in a building used for a bench mark test of a variety of prediction methods, and its validity and effectiveness are clarified. (author)

  9. Norwegian Residential Energy Demand: Coordinated use of a System Engineering and a Macroeconomic Model

    Directory of Open Access Journals (Sweden)

    Tor A Johnsen

    1996-07-01

    Full Text Available In Norway, the system engineering model MARKAL and the macroeconomic model MSG-EE are both used in studies of national CO2 controlling strategies. MARKAL is a linear programming model that calculates a composite set of technologies necessary to meet demand and environmental constraints at minimised total energy expenditure. MSG-EE is an applied general equilibrium model including the link between economic activity, energy demand and emissions to air. MSG-EE has a theory consistent description of the link between income, prices and energy demand, but the representation of technological improvements is simple. MARKAL has a sophisticated description of future energy technology options, but includes no feedback to the general economy. A project for studying the potential for a coordinated use of these two models was initiated and funded by the Norwegian Research Council (NFR. This paper gives a brief presentation of the two models. Results from independent model calculations show that MARKAL gives a signficant lower residential energy demand than MSG-EE does. This is explained by major differences in modelling approach. A first attempt of coordinating the residential energy demand in the models is reported. This attempt shows that implementing results from MARKAL, in MSG-EE for the residential sector alone gives little impact on the general economy. A further development of an iteration procedure between the models should include all energy using sectors.

  10. Demand for energy in rural and urban centres of Ethiopia; An econometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Asmerom (Addis Ababa Univ. (ET). Dept. of Statistics)

    1991-04-01

    The paper starts by briefly discussing the current energy situation in Ethiopia. The major source of energy in Ethiopia is traditional and the major consumer is the household. A simple model of household utility function where energy consumption is the major variable is developed and a reduced form is derived. To make the model operational a simultaneous equation system describing the demand for and supply of traditional and modern energy sources has been specified. The model is closed by equating the demand for energy with the supply. Data from the national energy survey were used to estimate the model. The major finding of the study is that price of traditional energy plays an important role in the consumption of fuelwood and other traditional energy sources. By manipulating the price variable the government may be able to control the high rate of depletion of forest resources. (author).

  11. The determinants of household energy demand in rural Beijing: Can environmentally friendly technologies be effective?

    International Nuclear Information System (INIS)

    Zhang Jingchao; Kotani, Koji

    2012-01-01

    With the recent rapid economic growth, total energy demand in rural China has increased dramatically, and the energy structure is in the transition from non-commercial to commercial sources. Simultaneously, it is expected that households in rural areas will face energy shortages and additional environmental problems unless they have more access to renewable energy technologies. However, little is known about (i) the transition of energy use patterns and (ii) whether introduced technologies have been effective. To analyze these issues, we estimated the energy demands of rural households by using survey data taken from Beijing's ten suburban districts. The data contain information on both non-commercial and commercial energy use, key characteristics of the households and several renewable energy technologies. Our empirical analysis yielded three main results. First, the per capita income is a key factor in the per capita energy consumption. More specifically, the marginal increase (or marginal change) in per capita coal consumption strongly diminishes (or declines) as per capita income increases. Second, coal and liquefied petroleum gas (LPG) prices do not exhibit substitution effects, but an increase in these prices has strong negative effects on the use of these energy resources. Third, renewable energy technologies are identified to reduce coal consumption and to improve energy efficiency. Overall, these findings suggest a positive perspective: if the Chinese government were to design appropriate policies associated with renewable energy technologies and related energy prices, then coal consumption can be reduced in the near future, and the substitution to cleaner energy use will accelerate. Therefore, a smooth energy transition in rural China could be made in a more environmentally sustainable manner. - Highlights: ► Energy demands of non-commercial/commercial sources are examined in rural Beijing. ► Income and energy prices are key determinants of the energy

  12. World energy resources, demand and supply of energy, and the prospects for the fast breeder reactor

    International Nuclear Information System (INIS)

    Haefele, W.

    1978-01-01

    In the past it was taken for granted that the prime role of fast breeder reactors was to complement light water reactors, mainly because of their similar and compatible fuel cycles. In particular, the plutonium converted in LWRs is most intelligently disposed of and used in FBRs. Evaluation of the time horizon of such reactor strategies generally extended only to the year 2000. It is important to realize, however, that the salient task in the breeder field after 2000 - besides electricity generation - will be to substitute for conventional ''cheap'' oil. Electricity today makes up only 10% to 12% of the total secondary energy, while liquids essentially command up to about 50%. Thus the future application of the FBR technology will have to be geared more to the production of a liquid secondary energy carrier than to electricity. A new yardstick for all these considerations is the strongly rising energy prices. They may double, for example, leading to an oil price of US 24/bbl. Under these circumstances it is prudent to generalize the scope for future fast breeders. The key element of such a new fast breeder strategy would be the production of hydrogen by electrolysis or thermolysis or a combination of both. For example, methanol synthesized from hydrogen and residual fossil fuels would thus become economically attractive. The FBR breeding gain, on the other hand, would be used for the continued supply of LWRs generating electricity. The paper identifies order-of-magnitude considerations most important for such a fast breeder application against a global energy demand scenario for the year 2030. (author)

  13. How to meet the increasing demands of water, food and energy in the future?

    Science.gov (United States)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  14. EVOLUTION OF THE DEMAND AND SUPPLY IN ENERGY RESOURCES

    Directory of Open Access Journals (Sweden)

    Silvestru MAXIMILIAN

    2013-06-01

    Full Text Available Economic, social and political development of human society in recent decades put to the fore the issue of natural resources available to the earth; scientists are asking ever more seriously the question to what extent these resources can support the economic development in the future, can provide food and survival of a growing population and will be able to contribute to the eradication of underdevelopment. The emphasis of major events – the population explosion, the trend of depletion of natural resources, environmental deterioration, underdevelopment etc. – was and it is still discussed with increasing responsibility by specialists, being drafted a large number of forecasts for a variable duration perspective. The trend of depletion of natural resources is another phenomenon of the contemporary world and that will become, certainly, even more pronounced in the near future. Harnessing the increasing exhaustible natural resources with low reserves and a slow recovery of renewable resources raises acutely the issue regarding the conservation of these resources. In recent decades, there is a tendency to waste energy and raw materials in the society. There are produced goods without an absolute utility, being imposed artificially by advertising or fashion swings and many products are designed in such a way that it takes little to compel the buyer to replace them. The "consumption" civilization is characterized as a "society that throws" the population of developed countries (18% of world population dispelling waste form 20 to 25% of the material production of the world. Excessive consumption of raw materials and fuel was favoured by their relatively low prices, maintained under the pressure of interests of transnational companies, prices that disfavoured, however, the developing countries. Consequently, consumption of raw materials and fuel turned to the easily accessible resources that have been heavily exploited, partially abandoning some

  15. Distributed Demand Side Management with Battery Storage for Smart Home Energy Scheduling

    Directory of Open Access Journals (Sweden)

    Omowunmi Mary Longe

    2017-01-01

    Full Text Available The role of Demand Side Management (DSM with Distributed Energy Storage (DES has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.

  16. Global impacts of energy demand on the freshwater resources of nations.

    Science.gov (United States)

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  17. Forecasting of the incorporated energy in the final demand of the brazilian economy in 2005

    International Nuclear Information System (INIS)

    Cunha, Marcelo Pereira da; Pereira, Jose Tomaz Vieira

    2008-01-01

    This work presents the application of a methodology for evaluation of the primary energy incorporated by the productive sectors of a economy at the final demand - using of a income-product mode. A methodology is applied in the evaluation of the energy incorporated to 25 sectors of the brazilian economy, by using the the data available in the national counts (IBGE - 2007), and the National Energy Balance for the year 2005 (EPE - 2007). For each sector, the results are presented in terms of the primary energy incorporated (in petroleum equivalent tons per R$ 1,000), of the participation of renewable energy, and the total primary energy distribution for the offered products by the 25 sectors to be consumption by the final demand. Among some interesting results in terms of final demand, it is highlighted the presence of 96.5% of renewable primary energy for the sector of alcohol, and 5.3% for the sector of petroleum refining products sector. In terms of the total energy distribution,the petroleum refining and coke sector were the most significant contribution to the incorporation of primary energy, presenting 16.1% of the total ahead of foods and beverages which presents 12.1%. Related to the final demand components, families consumption was responsible by the 57.7% of the total, the exports with 25.3%, the gross capital formation (investments and stock variations) with 11.3%, and the govern consumption wit 5.7%

  18. Long term energy demand projection and potential for energy savings of Croatian tourism–catering trade sector

    International Nuclear Information System (INIS)

    Irsag, Bojan; Pukšec, Tomislav; Duić, Neven

    2012-01-01

    Today, tourism represents one of the backbones of Croatian economy and one of the main factors of its growth. Combined with catering trade sector, tourism represents a significant energy consumer that has the tendencies of future growth. Since services sector, which tourism–catering trade sector is a part of, is not yet well described regarding future energy balances it would be very interesting to see how could possible future growth in tourism influence energy consumption of the services sector in Croatia. Through this paper long term energy demand projections of tourism–catering trade sector were studied with special emphasis on future growth of tourism in Croatia as well as different mechanisms that might lead to certain energy savings. Bottom-up approach was chosen as the most suitable one since it allows better quantification of different measures, technological or legal, that would influence future energy demand. Downside of this approach is extensive input data that is required to analyse and model future energy demand which is roughly divided into heating/cooling section and all other consumption. Results show that additional energy savings in the tourism–catering trade sector are possible if careful and rational demand side planning is in place. -- Highlights: ► Future energy demand of Croatian touristm–catering trade sector has been modelled. ► Model is roughly divided into two basic modes (heating/cooling and all other consumption). ► Different factors influencing future energy demand were implemented into the model. ► Possibilities for energy efficiency improvements have been presented.

  19. Split energy level radiation detection

    International Nuclear Information System (INIS)

    Barnes, G.T.

    1986-01-01

    This patent describes an energy discriminating radiation detector comprising: (a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range; (b) a second element comprising a second material different in kind from the first material and of a kind which is preferentially responsive to penetrative radiation of second energy range extending higher than the first energy range. The element is positioned to receive radiation which has penetrated through a portion of the first element; and (c) a filter of penetrative radiation interposed between the first and second elements

  20. Food prices and consumer demand: differences across income levels and ethnic groups.

    Directory of Open Access Journals (Sweden)

    Cliona Ni Mhurchu

    Full Text Available BACKGROUND: Targeted food pricing policies may improve population diets. To assess their effects on inequalities, it is important to determine responsiveness to price changes across income levels and ethnic groups. OBJECTIVE: Our goal was to estimate price elasticity (PE values for major commonly consumed food groups in New Zealand, by income and ethnicity. PE values represent percentage change in demand associated with 1% change in price of that good (own-PE or another good (cross-PE. DESIGN: We used food expenditure data from national household economic surveys in 2007/08 and 2009/10 and Food Price Index data from 2007 and 2010. Adopting an Almost Ideal Demand System approach, own-PE and cross-PE estimates were derived for 24 food categories, household income quintiles, and two ethnic groups (Māori and non-Māori. RESULTS: Own-PE estimates (with two exceptions ranged from -0.44 to -1.78. Cross-PE estimates were generally small; only 31% of absolute values were greater than 0.10. Excluding the outlier 'energy drinks', nine of 23 food groups had significantly stronger own-PEs for the lowest versus highest income quintiles (average regression-based difference across food groups -0.30 (95% CI -0.62 to 0.02. Six own-PEs were significantly stronger among Māori; the average difference for Māori: non-Māori across food groups was -0.26 (95% CI -0.52 to 0.00. CONCLUSIONS: Food pricing policies have potential to improve population diets. The greater sensitivity of low-income households and Māori to price changes suggests the beneficial effects of such policies on health would be greatest for these groups.

  1. Food Prices and Consumer Demand: Differences across Income Levels and Ethnic Groups

    Science.gov (United States)

    Ni Mhurchu, Cliona; Eyles, Helen; Schilling, Chris; Yang, Qing; Kaye-Blake, William; Genç, Murat; Blakely, Tony

    2013-01-01

    Background Targeted food pricing policies may improve population diets. To assess their effects on inequalities, it is important to determine responsiveness to price changes across income levels and ethnic groups. Objective Our goal was to estimate price elasticity (PE) values for major commonly consumed food groups in New Zealand, by income and ethnicity. PE values represent percentage change in demand associated with 1% change in price of that good (own-PE) or another good (cross-PE). Design We used food expenditure data from national household economic surveys in 2007/08 and 2009/10 and Food Price Index data from 2007 and 2010. Adopting an Almost Ideal Demand System approach, own-PE and cross-PE estimates were derived for 24 food categories, household income quintiles, and two ethnic groups (Māori and non-Māori). Results Own-PE estimates (with two exceptions) ranged from −0.44 to −1.78. Cross-PE estimates were generally small; only 31% of absolute values were greater than 0.10. Excluding the outlier ‘energy drinks’, nine of 23 food groups had significantly stronger own-PEs for the lowest versus highest income quintiles (average regression-based difference across food groups −0.30 (95% CI −0.62 to 0.02)). Six own-PEs were significantly stronger among Māori; the average difference for Māori: non-Māori across food groups was −0.26 (95% CI −0.52 to 0.00). Conclusions Food pricing policies have potential to improve population diets. The greater sensitivity of low-income households and Māori to price changes suggests the beneficial effects of such policies on health would be greatest for these groups. PMID:24098408

  2. The impact of residential, commercial, and transport energy demand uncertainties in Asia on climate change mitigation

    International Nuclear Information System (INIS)

    Koljonen, Tiina; Lehtilä, Antti

    2012-01-01

    Energy consumption in residential, commercial and transport sectors have been growing rapidly in the non-OECD Asian countries over the last decades, and the trend is expected to continue over the coming decades as well. However, the per capita projections for energy demand in these particular sectors often seem to be very low compared to the OECD average until 2050, and it is clear that the scenario assessments of final energy demands in these sectors include large uncertainties. In this paper, a sensitivity analysis have been carried out to study the impact of higher rates of energy demand growths in the non-OECD Asia on global mitigation costs. The long term energy and emission scenarios for China, India and South-East Asia have been contributed as a part of Asian Modeling Exercise (AME). The scenarios presented have been modeled by using a global TIMES-VTT energy system model, which is based on the IEA-ETSAP TIMES energy system modeling framework and the global ETSAP-TIAM model. Our scenario results indicate that the impacts of accelerated energy demand in the non-OECD Asia has a relatively small impact on the global marginal costs of greenhouse gas abatement. However, with the accelerated demand projections, the average per capita greenhouse gas emissions in the OECD were decreased while China, India, and South-East Asia increased their per capita greenhouse gas emissions. This indicates that the costs of the greenhouse gas abatement would especially increase in the OECD region, if developing Asian countries increase their final energy consumption more rapidly than expected. - Highlights: ► Scenarios of final energy demands in developing Asia include large uncertainties. ► Impact of accelerated Asian energy demand on global mitigation costs is quite low. ► Accelerated Asian energy consumption increases GHG abatement costs in the OECD. ► 3.7 W/m 3 target is feasible in costs even with accelerated Asian energy demands. ► 2.6 W/m 2 target is beyond

  3. A Novel Prosumer-Based Energy Sharing and Management (PESM) Approach for Cooperative Demand Side Management (DSM) in Smart Grid

    OpenAIRE

    Sohail Razzaq; Rehman Zafar; Naveed Ahmed Khan; Asif Raza Butt; Anzar Mahmood

    2016-01-01

    Increasing population and modern lifestyle have raised energy demands globally. Demand Side Management (DSM) is one important tool used to manage energy demands. It employs an advanced power infrastructure along with bi-directional information flow among utilities and users in order to achieve a balanced load curve and minimize demand-supply mismatch. Traditionally, this involves shifting the electricity demand from peak hours to other times of the day in an optimized manner. Multiple users e...

  4. From demand side management (DSM) to energy efficiency services: A Finnish case study

    International Nuclear Information System (INIS)

    Apajalahti, Eeva-Lotta; Lovio, Raimo; Heiskanen, Eva

    2015-01-01

    Energy conservation is expected to contribute significantly to climate change mitigation and energy security. Traditionally, energy companies have had strong role in providing Demand Side Management (DSM) measures. However, after energy market liberalization in Europe, energy companies' DSM activities declined. In response, the EU issued Directive (2006/32/EC) on energy end-use efficiency and energy services (ESD) to motivate energy companies to promote energy efficiency and conservation, closely followed by Directive (2012/27/EU) on energy efficiency (EED), requiring the setting up energy efficiency obligation schemes. Despite strong political and economic motivation, energy companies struggle to develop energy efficiency services in liberalised energy markets due to conflicting institutional demands, which arise from contradicting policy requirements and customer relations. The main challenges in developing new innovative energy efficiency services, evidenced by an in-depth case study, were (1) the unbundling of energy company operations, which makes it difficult to develop services when the contribution of several business units is required and (2) the distrust among energy end-users, which renders the business logic of energy saving contract models self-contradictory. On the basis of the research, avenues out of these dilemmas are suggested. -- Highlights: •Energy companies struggle to become energy service provides •We explore the development of new energy saving business solutions •Dispersed organisational structure leaves energy saving business as isolated function •Strong consumer scepticism towards energy companies as providers of energy saving •More emphasis on the changing company-customer relationship is needed

  5. Energy demand, substitution and environmental taxation: An econometric analysis of eight subsectors of the Danish economy

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    2017-01-01

    in a more environmental-friendly direction. For eight subsectors of the Danish economy, time series (1966–2011) are modeled by means of partial Cointegrated VARs. Long-run demand relations are identified for all subsectors and robust price elasticities are supported in five cases. The results are used......This research contains an econometric analysis of energy demand in trade and industry which allows for substitution between electricity and other energy carriers when relative prices change. The presence of substitution suggests that taxation can be a means of changing the energy input mix...

  6. The energy markets to 1995 - sector demand forecasts and summary. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J

    1983-01-01

    Energy demand forecasts are often based on assumptions which are uncertain and dependent upon both political and economic factors. However, there is a need for long-term energy forecasting for the benefit of industry and commerce. CIRS (Cambridge Information and Research Services Limited) have tried to fulfill this need, based on forecasts of useful heat demand sector by sector which are then converted to heat energy supply and primary requirements. The first such forecast was produced in 1975. This 1983 updated projection examines coal, oil and gas supplies in the UK to the year 1995.

  7. The impacts of weather variations on energy demand and carbon emissions

    International Nuclear Information System (INIS)

    Considine, T.J.

    2000-01-01

    This paper examines the impacts of climate fluctuations on carbon emissions using monthly models of US energy demand. The econometric analysis estimates price, income, and weather elasticities of short-run energy demand. Our model simulations suggest that warmer climate conditions in the US since 1982 slightly reduced carbon emissions in the US. Lower energy use associated with reduced heating requirements offsets higher fuel consumption to meet increased air-conditioning needs. The analysis also suggests that climate change policies should allow some variance in carbon emissions due to short-term weather variations

  8. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  9. Renewable energy: GIS-based mapping and modelling of potentials and demand

    Science.gov (United States)

    Blaschke, Thomas; Biberacher, Markus; Schardinger, Ingrid.; Gadocha, Sabine; Zocher, Daniela

    2010-05-01

    Worldwide demand of energy is growing and will continue to do so for the next decades to come. IEA has estimated that global primary energy demand will increase by 40 - 50% from 2003 to 2030 (IEA, 2005) depending on the fact whether currently contemplated energy policies directed towards energy-saving and fuel-diversification will be effectuated. The demand for Renewable Energy (RE) is undenied but clear figures and spatially disaggregated potentials for the various energy carriers are very rare. Renewable Energies are expected to reduce pressures on the environment and CO2 production. In several studies in Germany (North-Rhine Westphalia and Lower Saxony) and Austria we studied the current and future pattern of energy production and consumption. In this paper we summarize and benchmark different RE carriers, namely wind, biomass (forest and non-forest, geothermal, solar and hydro power. We demonstrate that GIS-based scalable and flexible information delivery sheds new light on the prevailing metaphor of GIS as a processing engine serving needs of users more on demand rather than through ‘maps on stock'. We compare our finding with those of several energy related EU-FP7 projects in Europe where we have been involved - namely GEOBENE, REACCESS, ENERGEO - and demonstrate that more and more spatial data will become available together with tools that allow experts to do their own analyses and to communicate their results in ways which policy makers and the public can readily understand and use as a basis for their own actions. Geoportals in combination with standardised geoprocessing today supports the older vision of an automated presentation of data on maps, and - if user privileges are given - facilities to interactively manipulate these maps. We conclude that the most critical factor in modelling energy supply and demand remain the economic valuation of goods and services, especially the forecast of future end consumer energy costs.

  10. A meta-analysis on the price elasticity of energy demand

    International Nuclear Information System (INIS)

    Labandeira, Xavier; Labeaga, José M.; López-Otero, Xiral

    2017-01-01

    Price elasticities of energy demand have become increasingly relevant in estimating the socio-economic and environmental effects of energy policies or other events that influence the price of energy goods. Since the 1970s, a large number of academic papers have provided both short and long-term price elasticity estimates for different countries using several models, data and estimation techniques. Yet the literature offers a rather wide range of estimates for the price elasticities of demand for energy. This paper quantitatively summarizes the recent, but sizeable, empirical evidence to facilitate a sounder economic assessment of (in some cases policy-related) energy price changes. It uses meta-analysis to identify the main factors affecting short and long term elasticity results for energy, in general, as well as for specific products, i.e., electricity, natural gas, gasoline, diesel and heating oil. - Highlights: • An updated and wider meta-analysis on price elasticities of energy demand. • Energy goods are shown to be price inelastic both in the short and long-term. • Results are relevant for a proper design and implementation of energy policies. • Our results refer to energy, as a whole, and specific energy goods.

  11. Efficiency snakes and energy ladders: A (meta-)frontier demand analysis of electricity consumption efficiency in Chinese households

    International Nuclear Information System (INIS)

    Broadstock, David C.; Li, Jiajia; Zhang, Dayong

    2016-01-01

    Policy makers presently lack access to quantified estimates – and hence an explicit understanding – of energy consumption efficiency within households, creating a potential gap between true efficiency levels and the necessarily assumed efficiency levels that policy makers adopt in designing and implementing energy policy. This paper attempts to fill this information gap by empirically quantifying electricity consumption efficiency for a sample of more than 7,000 households. Adopting the recently introduced ‘frontier demand function’ due to Filippini and Hunt (2011) but extending it into the metafrontier context – to control for structural heterogeneity arising from location type – it is shown that consumption efficiency is little more than 60% on average. This implies huge potential for energy reduction via the expansion of schemes to promote energy efficiency. City households, which are the wealthiest in the sample, are shown to define the metafrontier demand function (and hence have the potential to be the most efficient households), but at the same time exhibit the largest inefficiencies. These facts together allow for a potential refinement on the household energy ladder concept, suggesting that wealth affords access to the best technologies thereby increasing potential energy efficiency (the ‘traditional view of the household energy ladder), but complementary to this these same households are most inefficient. This has implications for numerous areas of policy, including for example the design of energy assistance schemes, identification of energy education needs/priorities as well more refined setting of subsidies/tax-credit policies. - Highlights: •Frontier demand functions are estimated for a sample of 7102 Chinese households. •Metafrontier methods capture heterogeneity arising from urban form (e.g. cities, towns and villages). •Wealthier houses have higher efficiency potential, but are in fact less efficient in their consumption of

  12. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system

    International Nuclear Information System (INIS)

    Lundström, Lukas; Wallin, Fredrik

    2016-01-01

    Highlights: • Energy savings impact on an low CO 2 emitting district heating system. • Heat profiles of eight building energy conservation measures. • Exhaust air heat pump, heat recovery ventilation, electricity savings etc. • Heat load weather normalisation with segmented multivariable linear regression. - Abstract: This study highlights the forthcoming problem with diminishing environmental benefits from heat demand reducing energy conservation measures (ECM) of buildings within district heating systems (DHS), as the supply side is becoming “greener” and more primary energy efficient. In this study heat demand profiles and annual electricity-to-heat factors of ECMs in buildings are computed and their impact on system efficiency and greenhouse gas emissions of a Swedish biomass fuelled and combined heat and power utilising DHS are assessed. A weather normalising method for the DHS heat load is developed, combining segmented multivariable linear regressions with typical meteorological year weather data to enable the DHS model and the buildings model to work under the same weather conditions. Improving the buildings’ envelope insulation level and thereby levelling out the DHS heat load curve reduces greenhouse gas emissions and improves primary energy efficiency. Reducing household electricity use proves to be highly beneficial, partly because it increases heat demand, allowing for more cogeneration of electricity. However the other ECMs considered may cause increased greenhouse gas emissions, mainly because of their adverse impact on the cogeneration of electricity. If biomass fuels are considered as residuals, and thus assigned low primary energy factors, primary energy efficiency decreases when implementing ECMs that lower heat demand.

  13. Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants

    Directory of Open Access Journals (Sweden)

    Emma Lindkvist

    2017-11-01

    Full Text Available Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1 sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning, (2 unit processes (e.g., heating, mixing, pumping, lighting and (3 a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

  14. Analysis on long-term change of energy system structure in Japan considering CO2 emission and domestic demand

    International Nuclear Information System (INIS)

    Kurokawa, Shingo; Tabe, Yutaka; Chikahisa, Takemi

    2011-01-01

    Long-term change of energy system structure in Japan was analyzed to investigate the effect of the CO 2 emission reduction level on the reduction cost using MARKAL model. The MARKAL is composed of energy resources, energy supply technologies, energy ultimate demand technologies and energy service demands with them connected by energy carriers. This paper presents analyses investigating the CO 2 reduction cost and the energy structure change until 2050. Here, we focused on the domestic investment to reduce CO 2 emission. It was shown that the CO 2 reduction until 40% level promotes the energy conversion from coal to natural gas and it causes the increase in total cost of the imported fuel. The higher CO 2 reduction, however, increases the domestic investment for low-emission vehicles, photovoltaic power generation and so on, and decreases the overseas investment, although the total CO 2 reduction cost is increased. This contributes to the revitalization of Japanese economy, together with the reduction of overseas investment. (author)

  15. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  16. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    CEDREN (Centre for Environmental Design of Renewable Energy) is founded by The Research Council of Norway and energy companies and is one of eight centres that were part of the scheme Centre for Environment-friendly Energy Research (FME) when the scheme was launched in 2009. The main objective of CEDREN is to develop and communicate design solutions for transforming renewable energy sources to the desired energy products, and at the same time address the environmental and societal challenges at local, regional, national and global levels. CEDREN's board initiated in 2011 a pilot project on the topics 'Energy Pay-back Ratio (EPR)', 'Ecosystem services' and 'multi-criteria analysis (MCA)' in order to investigate the possible use of these concepts/indices in the management of regulated river basins and as tools to benchmark strategies for the development of energy projects/resources. The energy indicator part (documented in this report) has aimed at reviewing the applicability of different energy efficiency indicators, as such, in the strategic management and development of energy resources, and to compare and benchmark technologies for production of electricity. The main findings from this pilot study is also reported in a policy memo (in Norwegian), that is available at www.cedren.no. The work carried out in this project will be continued in the succeeding research project EcoManage, which was granted by the Research Council of Norway's RENERGI programme in December 2011. Energy indicators: Several energy indicators for extraction and delivery of an energy product (e.g. transport fuel, heat, electricity etc.) exist today. The main objective of such indicators is to give information about the energy efficiency of the needed extraction and transforming processes throughout the value chain related to the delivered energy product. In this project the indicators Energy Payback Ratio (EPR), Net Energy Ration (NER) and Cumulative

  17. Optimization of annual energy demand in office buildings under the influence of climate change in Chile

    International Nuclear Information System (INIS)

    Rubio-Bellido, Carlos; Pérez-Fargallo, Alexis; Pulido-Arcas, Jesús A.

    2016-01-01

    Numerous studies about climate change have emerged in recent years because of their potential impact on many activities of human life, amongst which, the building sector is no exception. Changes in climate conditions have a direct influence on the external conditions for buildings and, thus, on their energy demand. In this context, computer aided simulation provides handy tools that help in assessing this impact. This paper investigates climate data for future scenarios and the effect on energy demand in office buildings in Chile. This data has been generated in the 9 climatic zones that are representative of the main inhabited areas, for the years 2020, 2050 and 2080. Predictions have been produced for the acknowledged A2 ‘medium-high’ Greenhouse Gases emissions GHG scenario, pursuant the Intergovernmental Panel on Climate Change (IPCC). The effect of climate change on the energy demand for office buildings is optimized by implementing the calculation procedure of ISO-13790:2008, based on iterations of its envelope and form. As a result, this research clarifies how future climate scenarios will affect the energy demand for different types of office buildings in Chile, and how their shape and enclosure can be optimized. - Highlights: • Forecast of 9 Chilean climate zones under Greenhouse Gases Scenario A2. • Influence of envelope and form on future energy demand in office buildings. • Multiple iterations on Form Ratio (FR) and Window-to-Wall Ratio (WWR). • Optimization in early stages of design considering global warming.

  18. Power Scheduling Method for Demand Response based on Home Energy Management System using Stochastic Process

    OpenAIRE

    Moreno, Pablo; García, Marcelo

    2016-01-01

    The increase in energy consumption, especially in residential consumers, means that the electrical system should grow at pair, in infrastructure and installed capacity, the energy prices vary to meet these needs, so this paper uses the methodology of demand response using stochastic methods such as Markov, to optimize energy consumption of residential users. It is necessary to involve customers in the electrical system because in this way it can be verified the actual amount of electric charg...

  19. Energy systems scenario modelling and long term forecasting of hourly electricity demand

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2015-06-01

    Full Text Available The Danish energy system is undergoing a transition from a system based on storable fossil fuels to a system based on fluctuating renewable energy sources. At the same time, more of and more of the energy system is becoming electrified; transportation, heating and fuel usage in industry and elsewhere. This article investigates the development of the Danish energy system in a medium year 2030 situation as well as in a long-term year 2050 situation. The analyses are based on scenario development by the Danish Climate Commission. In the short term, it is investigated what the effects will be of having flexible or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model. The results show that even with a limited short-term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrated wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long-term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps and electric vehicles in the long-term future overshadows any effects of changes in hourly demand curve profiles.

  20. Fuel demand elasticities for energy and environmental policies: Indian sample survey evidence

    International Nuclear Information System (INIS)

    Gundimeda, Haripriya; Koehlin, Gunnar

    2008-01-01

    India has been running large-scale interventions in the energy sector over the last decades. Still, there is a dearth of reliable and readily available price and income elasticities of demand to base these on, especially for domestic use of traditional fuels. This study uses the linear approximate Almost Ideal Demand System (LA-AIDS) using micro data of more than 100,000 households sampled across India. The LA-AIDS model is expanded by specifying the intercept as a linear function of household characteristics. Marshallian and Hicksian price and expenditure elasticities of demand for four main fuels are estimated for both urban and rural areas by different income groups. These can be used to evaluate recent and current energy policies. The results can also be used for energy projections and carbon dioxide simulations given different growth rates for different segments of the Indian population. (author)

  1. Monthly electric energy demand forecasting with neural networks and Fourier series

    International Nuclear Information System (INIS)

    Gonzalez-Romera, E.; Jaramillo-Moran, M.A.; Carmona-Fernandez, D.

    2008-01-01

    Medium-term electric energy demand forecasting is a useful tool for grid maintenance planning and market research of electric energy companies. Several methods, such as ARIMA, regression or artificial intelligence, have been usually used to carry out those predictions. Some approaches include weather or economic variables, which strongly influence electric energy demand. Economic variables usually influence the general series trend, while weather provides a periodic behavior because of its seasonal nature. This work investigates the periodic behavior of the Spanish monthly electric demand series, obtained by rejecting the trend from the consumption series. A novel hybrid approach is proposed: the periodic behavior is forecasted with a Fourier series while the trend is predicted with a neural network. Satisfactory results have been obtained, with a lower than 2% MAPE, which improve those reached when only neural networks or ARIMA were used for the same purpose. (author)

  2. Demand-Side Management and European environmental and energy goals. An optimal complementary approach

    International Nuclear Information System (INIS)

    Bergaentzle, Claire; Clastres, Cedric; Khalfallah, Haikel

    2013-12-01

    Demand side management (DSM) in electricity markets could improve energy efficiency and achieve environmental targets through controlled consumption. For the past 10 years or so DSM programs have registered significant results. However, detailed analysis of its real impact as observed by a large number of pilot studies suggests that such programs need to be fine-tuned to suit clearly identified conditions. This study aims to provide recommendations for the instruments to be used to prompt demand response with a view to maximizing energy and environmental efficiencies of various countries. The present study suggests that different DSM models should be deployed depending on the specific generation mix in any given country. Beside the natural benefits from cross-borders infrastructures, DSM improves the flexibility and reliability of the energy system, absorbing some shock on generation mix. We show efficiency increases with demand response but at a decreasing rate. So, according to rebound and report effects, simple DSM tools could be preferred. (authors)

  3. Demand-side management and European environmental and energy goals: An optimal complementary approach

    International Nuclear Information System (INIS)

    Bergaentzlé, Claire; Clastres, Cédric; Khalfallah, Haikel

    2014-01-01

    Demand side management (DSM) in electricity markets could improve energy efficiency and achieve environmental targets through controlled consumption. For the past 10 years or so DSM programmes have registered significant results. However, detailed analysis of its real impact as observed by a large number of pilot studies suggests that such programmes need to be fine-tuned to suit clearly identified conditions. This study aims to provide recommendations for the instruments to be used to prompt demand response with a view to maximizing energy and environmental efficiencies of various countries. The present study suggests that different DSM models should be deployed depending on the specific generation mix in any given country. Beside the natural benefits from cross-borders infrastructures, DSM improves the flexibility and reliability of the energy system, absorbing some shock on generation mix. We show efficiency increases with demand response but at a decreasing rate. So, according to rebound and report effects, simple DSM tools could be preferred. - Highlights: • Demand side management could improve energy and environmental efficiency. • Several instruments should be used to achieve significant load-shedding. • DSM models should be deployed depending on generation mix. • Efficiency increases with demand response but at a decreasing rate. • Rebound and report effects reduce positive impacts

  4. Reduction potentials of energy demand and GHG emissions in China's road transport sector

    International Nuclear Information System (INIS)

    Yan Xiaoyu; Crookes, Roy J.

    2009-01-01

    Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The 'Business as Usual' scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The 'Best Case' scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the 'Best Case' scenario and the relative reduction potentials of each measure have been estimated

  5. Short- and long-run demand for energy in Mexico: a cointegration approach

    International Nuclear Information System (INIS)

    Galindo, L.M.

    2005-01-01

    The objective of this paper is to estimate the demands for the different types of energy consumption for the Mexican economy over the period 1965-2001. These demands are modeled as a function of output and the own real price. The Johansen (J. Econ. Dynamics Control 12 (1988) 231) procedure and the likelihood ratio tests indicate the existence of long-run and stable relationships between each type of energy demand and income with the exception of the industrial sector where the cointegrating vector also includes the relative prices. The weak exogeneity tests indicate that energy consumption and income do not reject the null hypothesis of weak exogeneity when relative prices are weak exogenous. The final econometric models show that relative prices in the short run are relevant in all cases, with the exception of the residential sector. These results indicate that in Mexico the demand for energy is fundamentally driven by income and that the effect of the relative prices is basically concentrated on the short run with the exception of the industrial sector, which also shows a long-term price impact. The strong dependence of energy consumption with respect to income and the price inelastic response indicates that it is necessary to introduce strong measures to decouple energy consumption from output in order to obtain sustainable economic growth in Mexico

  6. Building stock dynamics and its impacts on materials and energy demand in China

    International Nuclear Information System (INIS)

    Hong, Lixuan; Zhou, Nan; Feng, Wei; Khanna, Nina; Fridley, David; Zhao, Yongqiang; Sandholt, Kaare

    2016-01-01

    China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China. - Highlights: •Growths of China's building floorspace were projected from 2010 to 2050. •A building stock turnover model was built to reflect annual building stock dynamics. •Building related materials and energy demand were projected.

  7. Energy demand and supply in Pakistan and possible role or biotechnologies

    International Nuclear Information System (INIS)

    Mumtaz, A.; Naqvi, F.; Khan, A.M.

    1991-01-01

    In spite of the fact that the traditional fuels meet about one third of the country's energy requirements, Pakistan still remains heavily dependent on imported energy to the extent of one third of its total commercial energy needs. This paper analyses the prospects of energy demand and supply over the next fifteen years and shows that with the expected possible exploitation of indigenous resources of fossil, hydro, nuclear and traditional fuels the country is likely to remain significantly dependent on imported commercial fuels. The possibilities of how bio technologies can help in enhancing the energy self sufficiency of the country by increasing supplies of traditional and commercial fuels, are outlined. (author)

  8. Molecular system bioenergetics: regulation of substrate supply in response to heart energy demands.

    Science.gov (United States)

    Saks, Valdur; Favier, Roland; Guzun, Rita; Schlattner, Uwe; Wallimann, Theo

    2006-12-15

    This review re-evaluates regulatory aspects of substrate supply in heart. In aerobic heart, the preferred substrates are always free fatty acids, and workload-induced increase in their oxidation is observed at unchanged global levels of ATP, phosphocreatine and AMP. Here, we evaluate the mechanisms of regulation of substrate supply for mitochondrial respiration in muscle cells, and show that a system approach is useful also for revealing mechanisms of feedback signalling within the network of substrate oxidation and particularly for explaining the role of malonyl-CoA in regulation of fatty acid oxidation in cardiac muscle. This approach shows that a key regulator of fatty acid oxidation is the energy demand. Alterations in malonyl-CoA would not be the reason for, but rather the consequence of, the increased fatty acid oxidation at elevated workloads, when the level of acetyl-CoA decreases due to shifts in the kinetics of the Krebs cycle. This would make malonyl-CoA a feedback regulator that allows acyl-CoA entry into mitochondrial matrix space only when it is needed. Regulation of malonyl-CoA levels by AMPK does not seem to work as a master on-off switch, but rather as a modulator of fatty acid import.

  9. China could satisfied her energy demand by her domestic resource of renewable and hydrogen energy and with her favorite condition

    International Nuclear Information System (INIS)

    Bao De You

    2006-01-01

    Paper described recent situation and the reason of oils consumed increasing rapidly and the activity for searching oil around the world wide and proposed some suggestion for rapid development and commercialization of hydrogen energy system in China with her domestic resources. China could satisfy the energy demand with her domestic resources of renewable energies and depending on her domestic scientific and technology and personal resources etc. It could Clean up the misunderstanding of other country and worried about the oil price increasing. (author)

  10. Technological progress and long-term energy demand - a survey of recent approaches and a Danish case

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2001-01-01

    This paper discusses di!erent approaches to incorporating technological progress in energy-economy models and the e!ecton long-term energy demand projections. Approaches to modelling based on an exogenous annual change of energy e$ciencyto an endogenous explanation of innovation for energy...... technologies are covered. Technological progress is an important issue for modelling long-term energy demand and is often characterised as the main contributor to the di!erent energy demand forecasts from di!erent models. New economic theoretical developments in the "elds of endogenous growth and industrial...... description, two models of residential energy demand in Denmark are compared. A Danish macroeconometric model is compared to a technological vintage model that is covering electric appliances and residential heating demand. The energy demand projection of the two models diverges, and the underlying...

  11. Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?

    International Nuclear Information System (INIS)

    Webster, Mort; Paltsev, Sergey; Reilly, John

    2008-01-01

    Observations of historical energy consumption, energy prices, and income growth in industrial economies exhibit a trend in improving energy efficiency even when prices are constant or falling. Two alternative explanations of this phenomenon are: a productivity change that uses less energy and a structural change in the economy in response to rising income. It is not possible to distinguish among these from aggregate data, and economic energy models for forecasting emissions simulate one, as an exogenous time trend, or the other, as energy demand elasticity with respect to income, or both processes for projecting energy demand into the future. In this paper, we ask whether and how it matters which process one uses for projecting energy demand and carbon emissions. We compare two versions of the MIT Emissions Prediction and Policy Analysis (EPPA) model, one using a conventional efficiency time trend approach and the other using an income elasticity approach. We demonstrate that while these two versions yield equivalent projections in the near-term, that they diverge in two important ways: long-run projections and under uncertainty in future productivity growth. We suggest that an income dependent approach may be preferable to the exogenous approach

  12. Estimating the Price Elasticity of Demand for Different Levels of Alcohol Consumption among Young Adults

    OpenAIRE

    Vinish Shrestha

    2015-01-01

    Understanding the effect of higher alcohol prices on alcohol demand according to one’s level of alcohol consumption is crucial while evaluating the effectiveness of using alcohol taxes as an alcohol-control medium. In this study, I estimate the differential responses to alcohol prices on alcohol demand for young adults by asking whether heavy drinkers are more responsive to higher alcohol prices than light and moderate drinkers. To conduct the analysis, I use the data from the National Long...

  13. National energy peak leveling program (NEPLP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This three-volume report is responsive to the requirements of Contract E (04-3)-1152 to provide a detailed methodology, to include management, technology, and socio-economic aspects, of a voluntary community program of computer-assisted peak load leveling and energy conservation in commercial community facilities. The demonstration project established proof-of-concept in reducing the kW-demand peak by the unofficial goal of 10%, with concurrent kWh savings. This section of the three volume report is a final report appendix with information on the National Energy Peak Leveling Program (NEPLP).