WorldWideScience

Sample records for energy cycles utilizing

  1. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  2. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Song, Dan

    2012-06-01

    In the context of global energy shortages and climate change, developing biogas plants with links to agricultural system has become an important strategy for cleaner rural energy and renewable agriculture. In this study, a life-cycle energy and environmental assessment was performed for a biogas-digestate utilization system in China. The results suggest that biogas utilization (heating, illumination, and fuel) and comprehensive digestate reuse are of equal importance in the total energy production of the system, and they also play an important role in systemic greenhouse gas mitigation. Improvement can be achieved in both energy production and emissions mitigation when the ratio of the current three biogas utilization pathways is adjusted. Regarding digestate reuse, a tradeoff between energy and environmental performance can be obtained by focusing on the substitution for top-dressing, base fertilizers, and the application to seed soaking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  4. Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan

    International Nuclear Information System (INIS)

    Tabata, Tomohiro; Okuda, Takaaki

    2012-01-01

    This paper discusses the effectiveness of a woody biomass utilization system that would result in increased net energy production through wood pellet production, along with energy recovery processes as they relate to household energy demand. The direct environmental load of the system, including wood pellet production and utilization processes, was evaluated. Furthermore, the indirect load, including the economic impact of converting the existing fossil-fuel-based energy system into a woody biomass-based system, on the entire society was also evaluated. Gifu Prefecture in Japan was selected for a case study, which included a comparative evaluation of the environmental load and costs both with and without coordination with the wood pellet production process and the waste-to-energy of municipal solid waste process, using the life cycle assessment methodology. If the release of greenhouse gases from the combustion of wood pellets is included in calculations, then burning wood pellets results in unfavorable environmental consequences. However, when the reduced indirect environmental load due to the utilization of wood pellets versus petroleum is included in calculations, then favorable environmental consequences result, with a net reduction of greenhouse gases emissions by 14,060 ton-CO 2eq . -- Highlights: ► We evaluate economic and environmental impact of woody biomass utilization in household. ► Wood pellet utilization for house heating is advantageous to reduce greenhouse gas emissions. ► Reduction effect of greenhouse gas will be canceled out if carbon neutrality were considered. ► Net greenhouse gas emissions considering conversion of an ordinal energy system will be minus. ► Wood pellet utilization is advantageous not only in global warming but also for resource conservation.

  5. A combined power cycle utilizing low-temperature waste heat and LNG cold energy

    International Nuclear Information System (INIS)

    Shi Xiaojun; Che Defu

    2009-01-01

    This paper has proposed a combined power system, in which low-temperature waste heat can be efficiently recovered and cold energy of liquefied natural gas (LNG) can be fully utilized as well. This system consists of an ammonia-water mixture Rankine cycle and an LNG power generation cycle, and it is modelled by considering mass, energy and species balances for every component and thermodynamic analyses are conducted. The results show that the proposed combined cycle has good performance, with net electrical efficiency and exergy efficiency of 33% and 48%, respectively, for a typical operating condition. The power output is equal to 1.25 MWh per kg of ammonia-water mixture. About 0.2 MW of electrical power for operating sea water pumps can be saved. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of key factors on the performance of the proposed combined cycle through simulation calculations. Results show that a maximum net electrical efficiency can be obtained as the inlet pressure of ammonia turbine increases and the peak value increases as the ammonia mass fraction increases. Exergy efficiency goes up with the increased ammonia turbine inlet pressure. With the ammonia mass fraction increases, the net electrical efficiency increases, whereas exergy efficiency decreases. For increasing LNG turbine inlet pressure or heat source temperature, there is also a peak of net electrical efficiency and exergy efficiency. With the increase of LNG gas turbine outlet pressure, exergy efficiency increases while net electrical efficiency drops

  6. Passive residual energy utilization system in thermal cycles on water-cooled power reactors

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimaraes, Lamartine N.F.; Santos, Rubens S. dos

    2013-01-01

    This work presents a concept of a residual energy utilization in nuclear plants thermal cycles. After taking notice of the causes of the Fukushima nuclear plant accident, an idea arose to adapt a passive thermal circuit as part of the ECCS (Emergency Core Cooling System). One of the research topics of IEAv (Institute for Advanced Studies), as part of the heat conversion of a space nuclear power system is a passive multi fluid turbine. One of the main characteristics of this device is its passive capability of staying inert and be brought to power at moments notice. During the first experiments and testing of this passive device, it became clear that any small amount of gas flow would generate power. Given that in the first stages of the Fukushima accident and even during the whole event there was plenty availability of steam flow that would be the proper condition to make the proposed system to work. This system starts in case of failure of the ECCS, including loss of site power, loss of diesel generators and loss of the battery power. This system does not requires electricity to run and will work with bleed steam. It will generate enough power to supply the plant safety system avoiding overheating of the reactor core produced by the decay heat. This passive system uses a modified Tesla type turbine. With the tests conducted until now, it is possible to ensure that the operation of this new turbine in a thermal cycle is very satisfactory and it performs as expected. (author)

  7. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  8. Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine

    International Nuclear Information System (INIS)

    He, Sinian; Chang, Huawei; Zhang, Xiaoqing; Shu, Shuiming; Duan, Chen

    2015-01-01

    This study proposed a combined Organic Rankine Cycle (ORC) system utilizing exhaust waste as its heat source and liquid natural gas (LNG) as its heat sink to provide alternative power for an LNG-fired vehicle. This system, consisting of a regenerator and a dual heat source composite heat exchanger, was designed to efficiently recover the engine waste heat (EWH) and to guarantee vaporizing LNG steadily. Five potential applicable organic working fluids are analyzed: C4F10, CF3I, R236EA, R236FA and RC318. Each fluid was analyzed at various evaporation temperatures and condensation temperatures using a thermodynamic model, and a self-made MATLAB program based on the physical properties on REFPROP data was applied to run the simulation. Analytical results showed that fluid R236FA has the highest thermal efficiency η_t_h of 21.6%, and that of the others are also around 21%. Based on a twelve-cylinder four stroke stationary natural gas engine, the simulated calculations show that the selected five working fluids can improve the fuel economy by more than 14.7% compared to that without ORC. - Highlights: • We design an ORC utilizing LNG cold energy and engine waste heat. • Five working fluids are examined at various working conditions. • The maximum thermal efficient of our proposed cycle can reach 20.3%–21.6%. • This system can decrease the brake specific fuel consumption by more than 14.7%.

  9. Annual cycle solar energy utilization with seasonal storage. Part 8. Study on periodic steady state of the annual cycle energy system at a practical operation; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 8

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1997-11-25

    A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.

  10. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working......℃. The exergy efficiency of organic Rankine cycle (ORC) system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting...

  11. Energy utilization in Canada

    International Nuclear Information System (INIS)

    Klassen, J.

    1976-04-01

    The situation of the energy supply of Canada is characterized by its geographic location and by the dispersal of the energy consumers over a wide area. At present, the energy supply leaving the successful CANDU nuclear energy programme out of account, is based mainly on crude oil, natural gas, and electricity as well as on coal imported from the USA. The targets of Canadian enery policies and energy research are stated as follows: a) Reducing and optimizing energy consumption, b) introducing district heating, and c) utilizing the extensive local coal deposits. (GG) [de

  12. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  13. Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system

    International Nuclear Information System (INIS)

    Bao, Junjiang; Lin, Yan; Zhang, Ruixiang; Zhang, Ning; He, Gaohong

    2017-01-01

    Highlights: • A two-stage condensation Rankine cycle (TCRC) system is proposed. • Net power output and thermal efficiency increases by 45.27% and 42.91%. • The effects of the condensation temperatures are analyzed. • 14 working fluids (such as propane, butane etc.) are compared. - Abstract: For the low efficiency of the traditional power generation system with liquefied natural gas (LNG) cold energy utilization, by improving the heat transfer characteristic between the working fluid and LNG, this paper has proposed a two-stage condensation Rankine cycle (TCRC) system. Using propane as working fluid, compared with the combined cycle in the conventional LNG cold energy power generation method, the net power output, thermal efficiency and exergy efficiency of the TCRC system are respectively increased by 45.27%, 42.91% and 52.31%. Meanwhile, the effects of the first-stage and second-stage condensation temperature and LNG vaporization pressure on the performance and cost index of the TCRC system (net power output, thermal efficiency, exergy efficiency and UA) are analyzed. Finally, using the net power output as the objective function, with 14 organic fluids (such as propane, butane etc.) as working fluids, the first-stage and second-stage condensation temperature at different LNG vaporization pressures are optimized. The results show that there exists a first-stage and second-stage condensation temperature making the performance of the TCRC system optimal. When LNG vaporization pressure is supercritical pressure, R116 has the best economy among all the investigated working fluids, and while R150 and R23 are better when the vaporization pressure of LNG is subcritical.

  14. Energy utilities and the Internet

    International Nuclear Information System (INIS)

    2000-01-01

    The chances for energy utilities in the Netherlands to present themselves on the Internet are briefly outlined. It appears that other businesses are ahead of the Dutch utilities in offering electronic services with respect to energy

  15. Hydrogen and energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Renewable electricity generation plays one major role with the biggest share being wind energy. At the end of the year 2009 a wind power plant capacity of around 26 GW was installed in Germany. Several outlooks come to the conclusion that this capacity can be doubled in ten years (compare Figure 1). Additionally the German government has set a target of 26 GW installed off-shore capacity in North and Baltic Sea until 2030. At Vattenfall only a minor percentage of the electricity production comes from wind power today. This share will be increased up to 12% until 2030 following Vattenfall's strategy 'Making Electricity Clean'. This rapid development of wind power offers several opportunities but also means some challenges to Utilities. (orig.)

  16. Scheme of energy utilities

    International Nuclear Information System (INIS)

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  17. Environmental issues: I - Energy utilization

    International Nuclear Information System (INIS)

    Dincer, I.

    2001-01-01

    In this article, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and consequent environmental issues and policies. Overall, the paper also examines several issues related to energy utilization, environment, sustainable development from both current and future perspectives, and energy use and its environmental impacts in the transportation sector. Finally, the conclusions and recommendations are presented in the form to be beneficial to energy scientists, engineers and energy policy makers. (author)

  18. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  19. Solar energy storage and utilization

    Science.gov (United States)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  20. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  1. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  2. New Energy Utility Business Models

    International Nuclear Information System (INIS)

    Potocnik, V.

    2016-01-01

    Recently a lot of big changes happened in the power sector: energy efficiency and renewable energy sources are quickly progressing, distributed or decentralised generation of electricity is expanding, climate change requires reduction of greenhouse gas emissions and price volatility and incertitude of fossil fuel supply is common. Those changes have led to obsolescence of vertically integrated business models which have dominated in energy utility organisations for a hundred years and new business models are being introduced. Those models take into account current changes in the power sector and enable a wider application of energy efficiency and renewable energy sources, especially for consumers, with the decentralisation of electricity generation and complying with the requirements of climate and environment preservation. New business models also solve the questions of financial compensations for utilities because of the reduction of centralised energy generation while contributing to local development and employment.(author).

  3. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  4. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  5. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  6. Direct utilization of geothermal energy

    International Nuclear Information System (INIS)

    Lund, J. W.

    2010-01-01

    The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010) which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005). This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MW th , almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO 2 being released to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity). (author)

  7. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  8. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen; Vasquez, Deb

    2017-01-01

    The Federal Energy Management Program's 'Utility Energy Service Contracts: Enabling Documents' provide legislative information and materials that clarify the authority for federal agencies to enter into utility energy service contracts, or UESCs.

  9. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  10. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  11. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  12. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  13. Energy security externalities and fuel cycle comparisons

    International Nuclear Information System (INIS)

    Bohi, D.; Toman, M.

    1994-01-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons

  14. Energy security externalities and fuel cycle comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Bohi, D; Toman, M

    1994-07-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons.

  15. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  16. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  17. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  18. The utilization of wind energy

    International Nuclear Information System (INIS)

    1976-10-01

    The statistics of the wind energy in the three aerology stations in the Shahbanu Farah Dam region - over a period of eight years - were evaluated and analyzed. The average of maximal velocity calculations indicates a speed of 15 m/s. The yearly physical conversion value of this energy, is 150,000 kW/h which is quite sufficient for a family of five persons. On a larger scale, this power can be used to supply the energy required for the sediment dredging activities of the Shahbanu Farah Dam. (author)

  19. Environmental impacts of energy utilization

    International Nuclear Information System (INIS)

    Prado, C.P.C. do; Orsini, C.M.Q.; Rodrigues, D.; Barolli, E.; Nogueira, F.R.; Bosco, F.A.R.; Tabacniks, M.H.; Artaxo Netto, P.E.

    1981-04-01

    A survey is done of the available data on the physical environmental impacts in Brazil, derived from energetic systems such as: petroleum, hydroelectricity, firewood, coal, ethanol, methanol and hydrogen. A critical evalution of these data is done with respect to the preservation of the environment. The necessity of studying the environmental impact of the utilization of ethanol, nuclear fuels and coal is stressed. (M.A.) [pt

  20. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E. A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  1. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  2. Idiosyncratic Uncertainty, Capacity Utilization and the Business Cycle

    DEFF Research Database (Denmark)

    Fragnart, Jean-Francois; Licandro, Omar; Portier, Franck

    thus hides a diversity of microeconomic situations. The variablity of the capacity utilization allows for a good description of some of the main stylized facts of the busines cycle, propagates and magnifies aggregate technological shocks and generates endogenous persistence (i.e., the output growth...

  3. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  4. Utilization of renewable energy in architectural design

    Institute of Scientific and Technical Information of China (English)

    TIAN Lei; QIN Youguo

    2007-01-01

    Renewable energy does not simply equal to using a photovoltaic (PV) board.In addition to heating,ventilation and air conditioning (HVAC) engineering considerations,the design approaches of architects are crucial to the utilization condition and methods of renewable energy.Through profound comprehension of the relationship between renewable energy utilization and design approaches,we can achieve a dual-standard of building environment performance and esthetics.

  5. Sustainable energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E.

    1996-12-31

    Finland tops the statistics for the industrialised world in the utilisation of bioenergy. In 1995 bioenergy, including peat-fired heat and power, accounted for 20 % of the total energy consumption. The declared goal of the government is to increase the use of bioenergy by not less than 25 % (1.5 million toe by the year 2005). Research and development plays a crucial role in the promotion of the expanded use of bioenergy in Finland. The aim is to identify and develop technologies for establishing and sustaining economically, environmentally and socially viable bioenergy niches in the energy system

  6. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  7. Geothermal energy utilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Svalova, V. [Institute of Environmental Geoscience, RAS, Moscow (Russian Federation)

    2011-07-01

    Geothermal energy use is the way to clean, sustainable energy development for the world. Russia has rich high and low temperature geothermal resources and is making progress using them - mostly with low-temperature geothermal resources and heat pumps This is optimal for many regions of Russia -in the European part, in the Urals and others. Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands There are two possible ways of using geothermal resources, depending on the properties of thermal waters heat/power and mineral extraction. The mineral-extraction direction is basic for geothermal waters, which contain valuable components in industrial quantities The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. These are the minerals of many chemical dements. (author)

  8. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    Science.gov (United States)

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  9. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  10. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  11. Analysis of China's energy utilization for 2007

    International Nuclear Information System (INIS)

    Zhang Ming; Wang Wenwen

    2011-01-01

    China is the world's second-largest energy producer and consumer, so that it is very necessary to analyze China's energy situation for saving energy consumption and reducing GHG emission. Energy flow chart is taken as a useful tool for sorting out and displaying energy statistics data. Energy statistics data is the premise and foundation for analyzing energy situation. However, there exit many differences between China and foreign energy balance. Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. And the purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. We find that: (1) coal is the main energy in China, which accounted for 73.2% of total energy supply in 2007; (2) thermal power accounted for 83.2% of the total electricity supply, and 78.43% thermal power was based on coal; (3) in 2007, the secondary industrial sector consumed about 69.93% of energy; (4) China's energy utilization efficiency was about 33.23% in 2007. - Research highlights: → Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. → The purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. → We find that China's energy utilization efficiency was about 33.23% in 2007.

  12. Wind energy systems. Application to regional utilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This study developed a generic planning process that utilities can use to determine the feasibility of utilizing WECS (Wind Energy Conversion Systems) as part of their future mix of equipment. While this is primarily an economic process, other questions dealing with WECS availability, capacity credit, operating reserve, performance of WECS arrays, etc., had to be addressed. The approach was to establish the worth, or breakeven value, of WECS to the utility and to determine the impact that WECS additions would have on the utilities mix of conventional source.

  13. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  14. Advanced orient cycle, for strategic separation, transmutation and utilization of nuclides in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ozawa, M.; Fujita, R.; Koyama, S.; Suzuki, T.; Fujii, Y.

    2007-01-01

    which enables to directly recover pure Cm as well as pure Am with minimum number of reprocessing separation steps is reported in another paper. The recent experiments indicated that strong adsorption of 1 06Ru and 1 25Sb was observed under the diluted HCl medium, thereby completely 1 06Ru-free feed dissolver solution was obtained. The CEE separation step will follow this IX step for further purification and fabrication of RMFP material for their utilization. Based on those technologies, the Trinitarian Research and Development project (Advanced ORIENT Cycle) on partitioning, transmutation and utilization of actinides and fission products will be developed to realize ultimate reducing long-term radio toxicity in the radioactive wastes. Actinides, LLFP ( 1 35Cs, etc), MLFP ( 9 0Sr, 1 37Cs) and RMFP shall be separated to the level of isotope as well as element. The CEE process will be added for utilization of RMFP. The RMFP, one of the products of Ad. ORIENT Cycle, would be expected to be a 'FP-catalyst' to circulate between nuclear and hydrogen / fuel cell energy systems, and thereby contributing to save the natural precious metal resources

  15. Land use and energy utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.; Nathans, R.; Palmedo, P.F.

    1977-06-01

    Land use plays an important role in structuring the basic patterns in which energy is consumed in many areas of the U.S. Thus, in considering policies at a national or local level, which are aimed at either utilizing energy supplies in a more efficient manner, or in establishing the compatibility of new energy supply, conversion, and end use technologies with our existing social patterns of energy use, it is important to understand the interdependencies between land use and energy. The Land Use-Energy Utilization Project initiated in July 1974 was designed to explore the quantitative relationships between alternative regional land-use patterns and their resultant energy and fuel demands and the impacts of these demands on the regional and national energy supply-distribution systems. The project studies and analyses described briefly in this report provide a framework for delineating the energy system impacts of current and projected regional land-use development; a base of information dealing with the energy intensiveness of assorted land-use activities; models that enable Federal and regional planners to estimate the ranges of potential energy savings that could be derived from employing alternative land-use activity configurations; and a user manual for allowing local land use planners to carry out their own land use-energy impact evaluations. Much remains to be done to elucidate the complicated interdependencies between land use and energy utilization: what is accomplished here is an initial structuring of the problem. On the other hand, the recent increase in interest in establishing new ways for the U.S. to achieve energy conservation suggests that actions will be taken in the near future to tie land-use development to national and local targets for conservation.

  16. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  17. Utilities and energy efficiency Denmark report

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Lyck, N.C.

    1996-11-01

    The report is the Danish contribution to the project `Utilities and Energy Efficiency` produced for the European Commission by IET, Nikkel straat 15, 4823 AE Breda, The Netherlands. Information is given under the headings of existing situation and desired situation. Recommendations are also given under the headings of legislation concerning the objectives of the utilities, of government programs and targets, of organizational structure, required market dependence and internal objectives of the utilities, for regulation and standardization, and of tariff structure. Flow diagrams are presented for the Danish energy system 1990, 1993. The 1993 follow up of the energy plan `Energy 2000` points out that the goals set up at that time, first and foremost the 20% reduction in CO{sub 2} emissions in 2005 compared to the 1988 level, will not be reached without changes in policy, such as an increase in the use of renewable energy, more transparent and consistent tariff systems as a greater incentive for energy conservation, regulations on thermal insulation of houses, increase in public information activities,a new subsidy scheme to stimulate improvements of energy efficiency in buildings and regulations on energy supply to large buildings. (ARW) 55 refs.

  18. Nuclear energy development and Kondratiev cycles

    International Nuclear Information System (INIS)

    Brissaud, I.

    2001-01-01

    Searchers from IIASA (international institute for applied system analysis) have considered the spreading of an idea or an innovation among human societies similar to the evolution of an epidemic. This study shows a correlation between the birth of a major invention and the rise of a new source of energy. The invention of computers and nuclear energy seem to be linked in that way. The time interval between 2 major innovations is about 55 years, this value also corresponds to the length of crisis cycles that were discovered by the soviet economist N.D.Kondratiev in 1926. According to Kondratiev capitalist economies have undergone or will undergo cycles between the following dates: 1830, 1885, 1940, 1995 and 2050. After a period of expansion where jobs, wages and prices increase, a crisis happens where unemployment, social trouble and international conflicts develop. The crisis ends with the surge of innovations that feed the system by creating new markets in a modified social context. We are at the beginning of a new cycle, this cycle will see the expansion of nuclear energy, then its predominance and the emergence of a new source of energy in 50 years. (A.C.)

  19. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  20. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  1. Utilization of atomic energy in Asia and nuclear nonproliferation system

    International Nuclear Information System (INIS)

    Ishii, Makoto

    1995-01-01

    The economical growth in East Asia is conspicuous as it was called East Asian Miracle, and also the demand of energy increased rapidly. The end of Cold War created the condition for the further development in this district. Many countries advanced positively the plan of atomic energy utilization, and it can be said that the smooth progress of atomic energy utilization is the key for the continuous growth in this district in view of the restriction of petroleum resources and its price rise in future and the deterioration of global environment. The nuclear nonproliferation treaty (NPT) has accomplished large role, but also its limitation became clear. At present, there is not the local security system in Asia, but in order that the various countries in Asia make the utilization of atomic energy and the security compatible, it is useful to jointly develop safety technology, execute security measures and form the nuclear fuel cycle as Asia. Energy and environmental problems in Asia are reported. Threat is essentially intention and capability, and the regulation only by capability regardless of intention brings about unrealistic result. The limitation of the NPT is discussed. The international relation of interdependence deepends after Cold War, and the security in Asia after Cold War is considered. As the mechanism of forming the nuclear fuel cycle for whole Asia, it is desirable to realize ASIATOM by accumulating the results of possible cooperation. (K.I.)

  2. Geothermal Energy Utilization for the Homeowner

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1978-12-01

    The purpose of this article is to describe how geothermal energy can be utilized for residential space heating. Background information on the resource introduce this natural source of energy, followed by an explanation of the development of the resource (mainly by drilling wells) and the extraction of the energy. Various types of heat convectors and heat exchangers are described, along with how to estimate energy requirements and the associated costs. Finally, regulations and tax advantages are covered together with additional sources of information and a list of agencies who can provide assistance.

  3. Energy and Nuclear Fuel Cycle in the Asia Pacific

    International Nuclear Information System (INIS)

    Soentono, S.

    1998-01-01

    Asia in the Asia Pacific region will face a scarcity of energy supply and an environmental pollution in the near future. On the other hand, development demands an increasing standard of living for a large number of, and still growing, population. Nuclear energy utilization is to be one of the logical alterative to overcome those problems. From the economical point of view, Asia has been ready to introduce the nuclear energy utilization. Asia should establish the cooperation in all aspects such as in politics, economics and human resources through multilateral agreement between countries to enable the introduction successfully. Although the beginning of the introduction, the selection of the reactor types and the nuclear fuel cycle utilized are limited, but eventually the nuclear fuel cycle chosen should be the one of a better material usage as well as non proliferation proof. The fuel reprocessing and spent fuel storage may become the main technological and political issues. The radioactive waste management technology however should not be a problem for a country starting the nuclear energy utilization, but a sound convincing waste management programme is indispensable to obtained public acceptance. The operating nuclear power countries can play important roles in various aspects such as problem solving in waste management, disseminating nuclear safety experiences, conducting education and training, developing the advanced nuclear fuel cycle for better utilization of nuclear fuels, and enhancing as well as strengthening the non-proliferation. It has to be remembered that cooperation in human resources necessitates the important of maintaining and improving the safety culture, which has been already practiced during the last 4 decades by nuclear community

  4. Utilization of Geothermal Energy in Slovakia

    OpenAIRE

    Gabriel Wittenberger; Ján Pinka

    2005-01-01

    Owing to favourable geological conditions, Slovakia is a country abundant in occurrence of low-enthalpy sources. The Slovakian government sponsors new renewable ecological energy sources, among which belongs the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supp...

  5. Thermodynamic analysis of load-leveling hyper energy converting and utilization system

    International Nuclear Information System (INIS)

    Kiani, Behdad; Akisawa, Atsushi; Kashiwagi, Takao

    2008-01-01

    Load-leveling hyper energy converting and utilization system (LHECUS) is a hybrid cycle which utilizes ammonia-water mixture as the working fluid in a combined power generation and refrigeration cycle. The power generation cycle functions as a Kalina cycle and an absorption refrigeration cycle is combined with it as a bottoming cycle. LHECUS is designed to utilize the waste heat from industry to produce cooling and power simultaneously. The refrigeration effect can be either transported to end-use sectors by means of a solution transportation absorption chiller (STA) as solution concentration difference or stored for demand load leveling. This paper shows a simulation of the LHECUS cycle. A computer model was written to balance the cycle and key parameters for optimizing the cycle were identified

  6. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  7. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  8. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  9. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  10. Thermodynamic basis for effective energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. T.

    1977-10-15

    A major difficulty in a quantitative assessment of effective energy utilization is that energy is always conserved (the First Law of Thermodynamics). However, the Second Law of Thermodynamics shows that, although energy cannot be destroyed, it can be degraded to a state in which it is of no further use for performing tasks. Thus, in considering the present world energy crisis, we are not really concerned with the conservation of energy but with the conservation of its ability to perform useful tasks. A measure of this ability is thermodynamic availability or, a less familiar term, exergy. In a real sense, we are concerned with an entropy-crisis, rather than an energy crisis. Analysis of energy processes on an exergy basis provides significantly different insights into the processes than those obtained from a conventional energy analysis. For example, process steam generation in an industrial boiler may appear quite efficient on the basis of a conventional analysis, but is shown to have very low effective use of energy when analyzed on an exergy basis. Applications of exergy analysis to other systems, such as large fossil and nuclear power stations, are discussed, and the benefits of extraction combined-purpose plants are demonstrated. Other examples of the application of the exergy concept in the industrial and residential energy sectors are also given. The concept is readily adaptable to economic optimization. Examples are given of economic optimization on an availability basis of an industrial heat exchanger and of a combined-purpose nuclear power and heavy-water production plant. Finally, the utility of the concept of exergy in assessing the energy requirements of an industrial society is discussed.

  11. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  12. Energy flow and mineral cycling mechanisms

    International Nuclear Information System (INIS)

    Rogers, L.E.

    1977-01-01

    Analysis of energy flow patterns and mineral cycling mechanisms provides a first step in identifying major transport pathways away from waste management areas. A preliminary food web pattern is described using results from ongoing and completed food habit studies. Biota possessing the greatest potential for introducing radionuclides into food chains leading to man include deer, rabbits, hares, waterfowl, honeybees and upland game birds and are discussed separately

  13. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  14. Energy storage for tokamak reactor cycles

    International Nuclear Information System (INIS)

    Buchanan, C.H.

    1979-01-01

    The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion

  15. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  16. Energy utilization, environmental pollution and renewable energy sources in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K. [Karadeniz Technical University, Trabzon (Turkey). Dept. of Chemistry

    2004-04-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors.

  17. Energy utilization, environmental pollution and renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K.

    2004-01-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors

  18. View of atomic energy utilization in 21st century

    International Nuclear Information System (INIS)

    Kondo, Shunsuke

    1998-01-01

    In five years from 1991 to 1996, the energy consumption in the world increased by the yearly rate of 1.5%, and in 1996, it reached about 8.4 billion t in terms of petroleum. The proportion that nuclear energy takes in it was 7.4%, following 39% of petroleum, 27% of coal and 24% of natural gas. In electric power generation field, nuclear power took 17% in the whole world, and 30% in Japan in 1995. As of the end of 1996, the nuclear power generation facilities in the world were 434 plants of 365 GWe output, and 51 plants of 43 GWe output were in operation in Japan. As the technologies of utilizing nuclear energy, there are the utilization of nuclear fission reaction, nuclear fusion reaction and radio-isotopes. In this report, the utilization of nuclear fission reaction is taken up. Pressurized water reactor, boiling water reactor, heavy water (CANDU) reactor and gas-cooled reactor, and nuclear fuel cycle are briefly explained. As for the performance of nuclear power generation, safety, reliability and economical efficiency are reported. The factors which exert effects to the development of nuclear energy utilization are the acceptance by public, economical efficiency and environmental problems. The range of possible installation capacity and the subjects for hereafter are described. (K.I.)

  19. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  20. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  1. Utilization of geothermal energy in the USSR

    International Nuclear Information System (INIS)

    Kononov, V.I.; Dvorov, I.M.

    1990-01-01

    This paper reports that at present geothermal energy is utilized in the USSR mostly for district heating, and for industrial and agricultural purposes. The populations of 7 towns have district heating that is supplied by thermal waters. The population supplied totals about 125,000 people. The total area of greenhouses is 850,000 m 2 . Electric energy generated at geothermal power stations still remains negligible with the installed capacity of the single Pauzhetka station (Kamchatka) being 11 MW. another station at Mutnovka is currently under construction and is expected to be producing 50 MW by 1992 and 200 MW by 1998. The proven geothermal resources in the USSR provide hope for a significant increase in the utilization of the earth's deep heat in the near future

  2. Energy-, environmental and economic evaluation of energy crops utilization

    International Nuclear Information System (INIS)

    1994-06-01

    This preliminary project is prepared in order to clarify the economic possibilities and rentability of energy crops. Examples of energy crop resource potential, environmental and economic consequences are calculated on the basis of existing data. Utilization of annual and perennial crops is evaluated with regard to the usual following of agricultural areas, and to the traditional power generation in a coal-fueled plant. Two technological options are discussed: one based on energy crop fuels supplementing the conventional coal fuel, and the other based on a separate biomass-fueled boiler, connected to the conventional coal-fueled unit. Implementation of the main project,following the preliminary one will permit to estimate the future prospects and strategies of energy crop utilization as a profitable energy resource. (EG)

  3. Integrated manure utilization system life-cycle value assessment

    Energy Technology Data Exchange (ETDEWEB)

    Row, J.; Neabel, D. [Pembina Inst. for Appropriate Development, Drayton Valley, AB (Canada)

    2005-10-15

    A life-cycle assessment of the Alberta Research Council (ARC) and Highmark Renewables' development of an integrated manure utilization system (IMUS) were presented. The assessment focused on an evaluation of factors of primary importance to government, investors and the livestock industry. IMUS technology uses manure as a resource to produce electricity, heat, bio-based fertilizer and reusable water. Results of the assessment indicated that IMUS plants have the potential to be financially viable if a power purchase of $90 MWh on average can be purchased from a 30,000 head livestock operation. A capital cost of under $11 million is necessary, and an established biofertilizer price of $50 per tonne should be established. An IMUS plant was estimated to reduce life-cycle greenhouse gas emissions by 70 to 80 per cent when compared to land spreading. Reductions are accomplished through displacing electricity from the provincial grid and reducing nitrous oxide (N{sub 2}O) emissions from spreading of manure The IMUS plants lessen environment impacts by reducing the extraction and consumption of non-renewable resources, and by displacing an estimated 11,700 GJ of coal and natural gas per 1000 head of cattle per year. In addition, various pathogens within manure are eliminated. The plants have the potential to eliminate the environmental hazards associated with the disposal of deadstock. The systems reduce manure odour, lessen truck traffic and are expected to contribute to rural economic diversification. Barriers to further implementation of IMUS were discussed, as well as emerging opportunities for IMUS developers. It was concluded that the initial assessments of the IMUS were positive. Further investigation is needed to determine actual life-cycle performance of the operations. 18 refs., 3 tabs., 3 figs.

  4. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  5. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  6. CANDU advanced fuel cycles: key to energy sustainability

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-01-01

    In the fast-growing economies of the Pacific Basin region, sustainability is an important requisite for new energy development. Many countries in this region have seen, and continue to see, very large increases in energy and electricity demand. The investment in any nuclear technology is large. Countries making that investment want to ensure that the technology can be sustained and that it can evolve in an ever-changing environment. Three key aspects in ensuring a sustainable energy future, are technological sustainability, economic sustainability, and environmental sustainability (including resource utilization). The fuel-cycle flexibility of the CANDU reactor provides a ready path to sustainable energy development in both the short and long term. (author)

  7. Utilization of Indonesia's Hot Spring Sources for Electricity using Kalina Cycle and Organic Rankine Cycle

    Science.gov (United States)

    Prabumukti, Grano; Purwanto; Widodo, Wahyu

    2018-02-01

    Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.

  8. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  9. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  10. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  11. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  12. Life cycle assessment of hydrogen energy pattern

    International Nuclear Information System (INIS)

    Aissani, Lynda; Bourgois, Jacques; Rousseaux, Patrick; Jabouille, Florent; Loget, Sebastien; Perier Camby, Laurent; Sessiecq, Philippe

    2007-01-01

    In the last decades transportation sector is a priority for environmental research. Indeed, it is the most impacting sector because it involves greenhouse emissions and fossil resources exhaustion. The Group of 'Ecole des Mines' (GEM), in France, carries out studies concerning clean and renewable energies for this sector with the 'H2-PAC' project. The GEM with four teams performs studies concerning energy systems for transportation sector and more particularly the hydrogen system. The four teams of the GEM work each one on a process of this system. More precisely, the team of Albi studies biomass gasification in order to produce synthesis gas. The team of Nantes studies purification of this gas to obtain pure hydrogen and hydrogen storage on activated carbon. The team of Paris studies fuel cell use and especially Polymer Exchange Membrane Fuel Cell. Finally, the team of St Etienne evaluates this system along its life cycle from an environmental point of view. This paper presents this environmental evaluation witch is realized according to Life Cycle Assessment (LCA) methodology. (authors)

  13. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  15. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  16. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power producing systems. Energy analysis compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. Statically we have applied this method to nuclear power producing sytems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios have been investigated. For comparison purposes fossil fueled and solar power plants have also been analyzed. By static evaluation it has been shown that for all types of power plants the energy investment for construction is shortly after plant startup being repaid by energy output. Static analyses of nuclear and fossil fuels have indicated values of fuel concentrations below which more energy is required for their utilization than can be obtained from the plants they fuel. In a further step these global results were specifically modified to the economic situations of countries with various levels of industrialization. Also the influence of energy imports upon energy analysis has been discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programs have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons but especially for their usefulness in showing the advantages and disadvantages of a specific power program with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance especially because of the today so often cited ''valuable cumulated fossil fuel savings''

  17. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  18. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  19. Kauai Island Utility Cooperative energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu' e, HI); Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce

  20. Aligning Utility Incentives with Investment in Energy Efficiency

    Science.gov (United States)

    Describes the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to more aggressive and sustained utility investment in energy efficiency.

  1. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  2. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  3. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  4. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna [ed.

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland has been

  5. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  6. Indirect Measurement of Energy Density of Soft PZT Ceramic Utilizing Mechanical Stress

    Science.gov (United States)

    Unruan, Muangjai; Unruan, Sujitra; Inkong, Yutthapong; Yimnirun, Rattikorn

    2017-11-01

    This paper reports on an indirect measurement of energy density of soft PZT ceramic utilizing mechanical stress. The method works analogous to the Olsen cycle and allows for a large amount of electro-mechanical energy conversion. A maximum energy density of 350 kJ/m3/cycle was found under 0-312 MPa and 1-20 kV/cm of applied mechanical stress and electric field, respectively. The obtained result is substantially higher than the results reported in previous studies of PZT materials utilizing a direct piezoelectric effect.

  7. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  8. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  9. Back-end fuel cycle efficiencies with respect to improved uranium utilization

    International Nuclear Information System (INIS)

    Kuczera, B.; Hennies, H.H.

    1983-01-01

    The world-wide nuclear power plant (NPP) capacity is at present 160 GW(e). If one adds the power stations under construction and ordered, a plant capacity of approximately 480 GW(e) is obtained for 1990, with the share of LWRs making up more than 80%. A modern LWR consumes in the open fuel cycle about 4400 metric tonnes of natural uranium per GW(e), assuming a lifetime of 30 years and a load factor of 70%. Considering the natural uranium reserves known at present and exploitable under economic conditions, it can be conveniently estimated that, with the present NPP capacity extension perspective, the natural uranium resources may be exhausted in a few decades. This trend can be counteracted in a flexible manner by various approaches in fuel cycle technology and strategy: (i) by steady further development of the established LWR technology the uranium consumption can be reduced by about 15%; (ii) closing the nuclear fuel cycle on the basis of LWRs (i.e. thermal uranium and plutonium recycling) implies up to 40% savings in natural uranium consumption; (iii) more recent considerations include the advanced pressurized water reactor (APWR). The APWR combines the proven PWR technology with a newly developed tight lattice core with greatly improved conversion characteristics (conversion ratio = 0.90 to 0.95). In terms of uranium utilization, the APWR has an efficiency three to five times higher than a PWR; (iv) Commercial introduction of FBR systems results in an optimal utilization of uranium which, at the same time, guarantees the supply of nuclear fuel well beyond the present century. For a corresponding transition period an energy supply system can be conceived which relies essentially on extended back-end fuel cycle capacities. These would facilitate a symbiosis of PWR, APWR and FBR, characterized by high flexibility with respect to long-term developments on the energy market. (author)

  10. Characteristics of utility cyclists in Queensland, Australia: an examination of the associations between individual, social, and environmental factors and utility cycling.

    Science.gov (United States)

    Sahlqvist, Shannon L; Heesch, Kristiann C

    2012-08-01

    Initiatives to promote utility cycling in countries like Australia and the US, which have low rates of utility cycling, may be more effective if they first target recreational cyclists. This study aimed to describe patterns of utility cycling and examine its correlates, among cyclists in Queensland, Australia. An online survey was administered to adult members of a state-based cycling community and advocacy group (n=1813). The survey asked about demographic characteristics and cycling behavior, motivators and constraints. Utility cycling patterns were described, and logistic regression modeling was used to examine associations between utility cycling and other variables. Forty-seven percent of respondents reported utility cycling: most did so to commute (86%). Most journeys (83%) were >5 km. Being male, younger, employed full-time, or university-educated increased the likelihood of utility cycling (P<.05). Perceiving cycling to be a cheap or a convenient form of transport was associated with utility cycling (P<.05). The moderate rate of utility cycling among recreational cyclists highlights a potential to promote utility cycling among this group. To increase utility cycling, strategies should target female and older recreational cyclists and focus on making cycling a cheap and convenient mode of transport.

  11. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  12. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  13. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  14. European Utility Requirements: European nuclear energy

    International Nuclear Information System (INIS)

    Komsi, M.; Patrakka, E.

    1997-01-01

    The work procedure and the content of the European Utility Requirements (EUR) concerning the future LWRs is described in the article. European Utility Requirements, produced by utilities in a number of European countries, is a document specifying the details relating to engineered safety, operating performance, reliability and economics of the reactors to be built by manufacturers for the European market

  15. Nutrient balances in the forest energy cycle

    International Nuclear Information System (INIS)

    Olsson, Bengt

    2006-02-01

    In Sweden, recycling of stabilised wood-ashes to forests is considered to compensate for nutrient removals from whole-tree harvesting (i.e. use of harvest residues - slash - for energy purposes). This study has analysed nutrient fluxes through the complete forest energy cycle and estimated mass balances of nutrients in harvested biomass with those in ashes, to investigate the realism in large-scale nutrient compensation with wood-ash. Expected nutrient fluxes from forests through energy plants were calculated based on nutrient and biomass data of forest stands in the Nordic countries, and from data on nutrient fluxes through CFB-plants. The expected stoichiometric composition of wood-ashes was compared with the composition of CFB-fly ashes from various Swedish energy plants. Nutrient contents for different tree fractions were calculated to express the average nutrient concentrations in slash and stems with bark, respectively. A nutrient budget synthesis of the effects of whole-tree harvesting on base cation turnover in the following stand was presented for two experimental sites. Major conclusions from the study are: In the CFB-scenario, where the bottom ash is deposited and only the fly ash can be applied to forests, the fly ash from the slash do not meet the demands for nutrient compensation for slash harvesting. Stem material (50% wood, 50% bark) must be added at equivalent amounts, as the slash to produce the amounts of fly ash needed for compensation of slash harvesting. In the scenario where more stem material was added (75% of total fuel load), the amounts of fly ashes produced hardly compensated for nutrient removals with both stem and slash harvesting. The level of nutrient compensation was lowest for potassium. The stoichiometric nutrient composition of CFB-fly ashes from Swedish energy plants is not similar with the nutrient composition of tree biomass. The higher Ca/P ratio in ashes is only partly explained by the mixture of fuels (e.g. increasing bark

  16. Impact of alternative energy forms on public utilities

    Science.gov (United States)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  17. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  18. Comparative energy analysis on a new regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Goodarzi, M.

    2016-01-01

    Highlights: • New regenerative Brayton cycle has been introduced. • New cycle has higher thermal efficiency and lower exhausted heat per output power. • Regenerator may remain useful in the new cycle even at high pressure ratio. • New regenerative Brayton cycle is suggested for low pressure ratio operations. - Abstract: Gas turbines are frequently used for power generation. Brayton cycle is the basis for gas turbine operation and developing the alternative cycles. Regenerative Brayton cycle is a developed cycle for basic Brayton cycle with higher thermal efficiency at low to moderate pressure ratios. A new regenerative Brayton cycle has been introduced in the present study. Energy analysis has been conducted on ideal cycles to compare them from the first law of thermodynamics viewpoint. Comparative analyses showed that the new regenerative Brayton cycle has higher thermal efficiency than the original one at the same pressure ratio, and also lower heat absorption and exhausted heat per unite output power. Computed results show that new cycle improves thermal efficiency from 12% to 26% relative to the original regenerative Brayton cycle in the range of studied pressure ratios. Contrary to the original regenerative Brayton cycle, regenerator remains useful in the new regenerative Brayton cycle even at higher pressure ratio.

  19. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  20. Utilizing scalar electromagnetics to tap vacuum energy

    International Nuclear Information System (INIS)

    Sweet, F.; Bearden, T.E.

    1991-01-01

    Based on E.T. Whittaker's previously unnoticed 1903-1904 papers which established a hidden bidirectional EM wave structure in a standing forcefield free scalar potential, a method of directly engineering the ambient potential of the vacuum has been developed and realized experimentally. Adding Whittaker's engineerable hidden variable theory to classical electromagnetic, quantum mechanics, and general relativity produces supersets of each discipline. These supersets are joined by the common Whittaker subset, producing a unified field theory that is engineerable and tested. By treating the nucleus of the atom as a pumped phase conjugate mirror, several working model energy units have been produced which excite and organize the local vacuum, increase the local virtual photon flux between local vacuum and nucleus, establish coherent self-oscillations between the local excited vacuum and the affected nuclei, utilized the self-oscillating standing wave for self-pumping of the nuclei/mirrors, introduce a very tiny signal wave to the mirrors, and output into an external load circuit a powerful, amplified, time-reversed phase conjugate replica wave at 60 Hertz frequency and nominal 120 volt sine wave power. Several models have been built, ranging from 6 watts early on to one of 5 kilowatts. Both closed battery-less systems with damped positive feedback and open loop systems with battery-powered input have been successfully built. Open loop power gains of from 5 x 10 4 to 1.5 x 10 6 have been achieved. Antigravity experiments have also been successfully conducted where the weight of the unit was reduced by 90% in controlled experiments, with a signal wave input of 175 microwatts and an output of 1 kilowatt. The basic theory of the device is briefly explained and experimental results presented

  1. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  2. Development of a methodology for life cycle building energy ratings

    International Nuclear Information System (INIS)

    Hernandez, Patxi; Kenny, Paul

    2011-01-01

    Traditionally the majority of building energy use has been linked to its operation (heating, cooling, lighting, etc.), and much attention has been directed to reduce this energy use through technical innovation, regulatory control and assessed through a wide range of rating methods. However buildings generally employ an increasing amount of materials and systems to reduce the energy use in operation, and energy embodied in these can constitute an important part of the building's life cycle energy use. For buildings with 'zero-energy' use in operation the embodied energy is indeed the only life cycle energy use. This is not addressed by current building energy assessment and rating methods. This paper proposes a methodology to extend building energy assessment and rating methods accounting for embodied energy of building components and systems. The methodology is applied to the EU Building Energy Rating method and, as an illustration, as implemented in Irish domestic buildings. A case study dwelling is used to illustrate the importance of embodied energy on life cycle energy performance, particularly relevant when energy use in operation tends to zero. The use of the Net Energy Ratio as an indicator to select appropriate building improvement measures is also presented and discussed. - Highlights: → The definitions for 'zero energy buildings' and current building energy ratings are examined. → There is a need to integrate a life cycle perspective within building energy ratings. → A life cycle building energy rating method (LC-BER), including embodied energy is presented. → Net Energy Ratio is proposed as an indicator to select building energy improvement options.

  3. Electric utilities strategies in final energy markets

    International Nuclear Information System (INIS)

    Bianchi, A.

    2000-01-01

    In rapidly changing markets, electric utilities pay growing attention to customers and service. They are aware that competition needs strategies capable of transforming and strengthening the privileged position resulting from the knowledge of the market. Moreover, this aspect is the link between different value chains to describe new multi utility approaches [it

  4. Economic and financial aspects of geothermal energy utilization

    International Nuclear Information System (INIS)

    Gazo, F.M.; Datuin, R.

    1990-01-01

    This paper reports on the historical development of geothermal energy in the Philippines, its present status and future possibilities. It also illustrates the average power generation and utilization from primary energy sources (hydro, oil, coal, and geothermal energy) in the country from 1981 to 1988. A comparison is made between electricity generating costs and results of operations from these power sources, showing that geothermal energy utilization is very competitive. Moreover, it also discusses the economic viability of geothermal energy utilization as a result of separate studies conducted by World Bank and an Italian energy consulting firm

  5. Conception for economical energy utilization and supply

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H; Canzler, B

    1977-10-01

    This study was performed to study the factors which determine energy consumption within buildings and how to optimize such energy use. The parameters of the principal energy consumers, i.e., HVAC and lighting systems, were analyzed. Possibilities for obtaining economical energy supplies and for reducing energy consumption were studied with emphasis on adapting the building mechanical equipment and the building design and construction to each other. It was concluded that planning for energy conservation in buildings will decrease the cost of constructing and operating buildings if the architect, building contractor and building operator work together from the initial planning stages.

  6. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  7. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  8. Generic steam generator life cycle management from a utility perspective

    International Nuclear Information System (INIS)

    Baker, R.L.

    1993-01-01

    Steam generator repairs and replacements, which have occurred over the last 10 years, have lead many utilities to evaluate the economics of continued maintenance on existing steam generators against the economics of steam generator replacement. Such an endeavor requires an assessment of the expected rate and types of degradation. In addition, an identification of possible preventative or remedial measures and their potential effectiveness must be made. To arrive at an assessment of the economic impact of various combinations of potential courses of action many utilities have employed in-house developed or customized commercial programs to convert technical assessments into economic impact evaluations. This paper intends to give the reader an introduction to the technical issues and insight into a method of addressing the economic impact of possible management strategies. 52 refs., 17 figs., 2 tabs

  9. Villa Design and Solar Energy Utilization

    OpenAIRE

    Olofsson, Martin

    2013-01-01

    This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the real estate that I have drawn for the thesis work. Solar energy is a renewable source of energy from the Sun's light. Energy can be used to produce both heat and electricity through solar collectors and solar cells. Some of the benefits of solar energy is that it is completely free to extract, environmentally friendly and virtually maintenance-free. Disadvantages are that th...

  10. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  11. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  12. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  13. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  14. Utilization of wind energy in greater Hanover

    International Nuclear Information System (INIS)

    Sahling, U.

    1993-01-01

    Since the beginning of the Eighties, the association of communities of Greater Hanover has dealt intensively with energy and ecopolitical questions in the scope of regional planning. Renewable energy sources play a dominant role in this context. This brochure is the third contribution to the subject ''Energy policy and environmental protection''. Experts as well as possibly interested parties are addressed especially. For all 8 contributions contained, separate entries have been recorded in this database. (BWI) [de

  15. Utility and risk of nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    The present report contains lectures of a seminar that was arranged by the programme group nuclear power and environment of the Kernforschungsanlage Juelich . The items were: 1) Do we need nuclear energy. An attempt at a system analytic answer. 2) Energy production by means of nuclear fission. 3) The nuclear power plants. 4) Nuclear energy and radiation hazard. 5) Safety of nuclear power plants. (RW) [de

  16. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    Directory of Open Access Journals (Sweden)

    Elham Ahmadi Moghaddam

    2016-12-01

    Full Text Available Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME, and ammonia, as fuel or platform chemicals, and combined heat and power (CHP. Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes.

  17. Basic plans of nuclear energy development and utilization for fiscal 1982 (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Prime Minister, concerning the basic plans of nuclear energy development and utilization for fiscal 1982, was presented; the NSC has decided on the plans drawn up by the Prime Minister. Nuclear power generation as the nucleus of petroleum substitutes must be developed steadily. For the purpose, nuclear fuel cycle should be established, including the securing of uranium resources, uranium enrichment, fuel reprocessing, and waste management. The contents are as follows: the strengthening of nuclear safety measures, the promotion of nuclear power generation, the establishment of nuclear fuel cycle, the development of advanced types of reactors, the research on nuclear fusion, the research and development of nuclear powered ships, the promotion of radiation utilization, the strengthening of basis for nuclear energy development and utilization, the promotion of international cooperation, the strengthening of safeguard and nuclear material protection measures, fiscal 1982 budgets related to nuclear energy. (Mori, K.)

  18. Public utility service in energy field

    International Nuclear Information System (INIS)

    Abenante, R.

    2000-01-01

    Under the current legislation, the idea of public utility service is thoroughly expressed and settled within that of public service. Lacking a new definition, not all businesses in the electricity and gas industries are subjected to the authoritative and regulatory opinions of the Authority established by act 481/95 which can only be expressed in matters strictly concerning public services [it

  19. Coupling model of energy consumption with changes in environmental utility

    International Nuclear Information System (INIS)

    He Hongming; Jim, C.Y.

    2012-01-01

    This study explores the relationships between metropolis energy consumption and environmental utility changes by a proposed Environmental Utility of Energy Consumption (EUEC) model. Based on the dynamic equilibrium of input–output economics theory, it considers three simulation scenarios: fixed-technology, technological-innovation, and green-building effect. It is applied to analyse Hong Kong in 1980–2007. Continual increase in energy consumption with rapid economic growth degraded environmental utility. First, energy consumption at fixed-technology was determined by economic outcome. In 1990, it reached a critical balanced state when energy consumption was 22×10 9 kWh. Before 1990 (x 1 9 kWh), rise in energy consumption improved both economic development and environmental utility. After 1990 (x 1 >22×10 9 kWh), expansion of energy consumption facilitated socio-economic development but suppressed environmental benefits. Second, technological-innovation strongly influenced energy demand and improved environmental benefits. The balanced state remained in 1999 when energy consumption reached 32.33×10 9 kWh. Technological-innovation dampened energy consumption by 12.99%, exceeding the fixed-technology condition. Finally, green buildings reduced energy consumption by an average of 17.5% in 1990–2007. They contributed significantly to energy saving, and buffered temperature fluctuations between external and internal environment. The case investigations verified the efficiency of the EUEC model, which can effectively evaluate the interplay of energy consumption and environmental quality. - Highlights: ► We explore relationships between metropolis energy consumption and environmental utility. ► An Environmental Utility of Energy Consumption (EUEC) model is proposed. ► Technological innovation mitigates energy consumption impacts on environmental quality. ► Technological innovation decreases demand of energy consumption more than fixed technology scenario

  20. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  1. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  2. Second International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-24

    This is a collection of essays presented at the above-named conference held at New Port Beach, U.S., from July 24 through 28, 1989. At the utility energy storage session, it is found that the 100kW-capable Na-S battery system of the Kansai Electric Power Company, Inc., works effectively in levelling peakloads at storage efficiency of 70%. A Chino lead-acid battery system is also described. A lead-acid battery system of the BEWAG Corporation of Germany equipped with tubular electrodes is described. For application by the consuming party, system behavior relative to duty cycle control, sudden request for energy storage, power factor, and load adjustment is discussed. Use of a valve-controlled lead-acid battery is introduced, which is to be used as a stand-by system (such as an uninterruptible power supply) or for certain types of cyclic duties. At the 4th session, economic and technical models are exhibited. Computer-aided peakload prediction, battery storage system technology, economic parameters, profitability, etc., are explained for use by the consuming party in a peakload shaving battery system. The Zn/Br battery, redox-flow battery, and other advanced technologies are also presented. (NEDO)

  3. Part I. Alternative fuel-cycle and deployment strategies: their influence on long-term energy supply and resource usage

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Rudolph, R.R.

    1980-01-01

    This report examines the implications of alternative fast breeder fuel cycles and deployment strategies on long-term energy supply and uranium resource utilization. An international-aggregate treatment for nuclear energy demand and resource base assumptions was adopted where specific assumptions were necessary for system analyses, but the primary emphasis was placed on understanding the general relationships between energy demand, uranium resource and breeder deployment option. The fast breeder deployment options studied include the reference Pu/U cycle as well as alternative cycles with varying degrees of thorium utilization

  4. A Study on promotion of utilizing waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Ho [Korea Energy Economics Institute, Euiwang (Korea)

    1999-01-01

    The utilization of waste energy occupying over 80% of alternative energy has been an important issue with the trend of large-sized waste incinerator. The object of this study is to seek the methods for the active application of waste energy, which is produced at the process of waste generation and disposal. It is expected to help energy saving, foreign currency saving and prevent environmental pollution by utilizing alternative energy actively. It should have basic information, related information for examining technical feasibility, and feasibility examination of the surroundings for developing the demand place. Moreover, it should enhance the energy saving by recommending use of waste energy with introducing recommendation system of installing waste energy collection system. It should also consider the support of the introduction of waste energy system as well as the aspect of regional energy policy. In addition, the development and distribution of applied technology for waste energy are needed. (author). 36 refs., 4 figs., 77 tabs.

  5. The strategy of European energy utilities

    International Nuclear Information System (INIS)

    Blakey, S.; Kramer, M.; Sauquet, P.; Sire, D.; Venet, D.; Lenoir, J.

    2007-01-01

    After a relatively quiet period, the concentration movement in the energy sector is growing up again. What will be the limit of this dynamics? What will be tomorrow's European energy actors? Will it be a mix of big groups, medium-size and small companies with a specialized activity like today, or only big groups with multi-energy supply and production activities which will directly supply the end-users? What is the provisions foreseen by such groups to ensure the security of supplies? What are the synergies in terms of size and/or multi-energy offers? Five participants and a journalist have debated these questions at this round table. (J.S.)

  6. Nuclear energy center site survey: fuel cycle studies

    International Nuclear Information System (INIS)

    1976-05-01

    Background information for the Nuclear Regulatory Commission Nuclear Energy Center Site Survey is presented in the following task areas: economics of integrated vs. dispersed nuclear fuel cycle facilities, plutonium fungibility, fuel cycle industry model, production controls and failure contingencies, environmental impact, waste management, emergency response capability, and feasibility evaluations

  7. Comparison of the dielectric electroactive polymer generator energy harvesting cycles

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    The Dielectric ElectroActive Polymer (DEAP) generator energy harvesting cycles have been in the spotlight of the scientific interest for the past few years. Indeed, several articles have demonstrated thorough and comprehensive comparisons of the generator fundamental energy harvesting cycles......, namely Constant Charge (CC), Constant Voltage (CV) and Constant E-field (CE), based on averaged theoretical models. Yet, it has not been possible until present to validate the outcome of those comparisons via respective experimental results. In this paper, all three primary energy harvesting cycles...... are experimentally compared, based upon the coupling of a DEAP generator with a bidirectional non-isolated power electronic converter, by means of energy gain, energy harvesting efficiency and energy conversion efficiency....

  8. GEWEX: The Global Energy and Water Cycle Experiment

    Science.gov (United States)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  9. Thermodynamic calculation of a district energy cycle

    International Nuclear Information System (INIS)

    Hoehlein, B.; Bauer, A.; Kraut, G.; Scherberich, F.D.

    1975-08-01

    This paper presents a calculation model for a nuclear district energy circuit. Such a circuit means the combination of a steam reforming plant with heat supply from a high-temperature nuclear reactor and a methanation plant with heat production for district heating or electricity production. The model comprises thermodynamic calculations for the endothermic methane reforming reaction as well as the exothermic CO-hydrogenation in adiabatic reactors and allows the optimization of the district energy circuit under consideration. (orig.) [de

  10. Utilization of superconductivity in energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, J.T.; Mikkonen, R.; Lahtinen, M.; Paasi, J. [Tampere Univ. of Technology (Finland). Laboratory of Electricity and Magnetism

    1998-12-31

    The technical potential of high temperature superconductors has been demonstrated in energy power applications. The magnetisation coils of the constructed 1.5 kW synchronous motor are made of bismuth-based material, the efficiency of the motor being 82 %. The same material is utilised in a 5 kJ magnetic energy storage in order to compensate for a short-term loss of power. Fast activation time and high efficiency are the benefits compared to traditional UPS systems. The operation temperature of 20-30 K enables the usage of mechanical cooling which is one major advantage compared to conventional liquid helium cooled systems. (orig.)

  11. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  12. Technology assessment of solar energy utilization

    Science.gov (United States)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  13. Utilization of solar energy in South Africa

    CSIR Research Space (South Africa)

    Whillier, A

    1953-04-01

    Full Text Available Design curves based on measurements of solar irradiation in South Africa are presented for two geographic areas, the highveld and the Cape Peninsula, giving data on the amount of thermal energy that can be collected from the sun by use of flat...

  14. Utilization of secondary energy resources of metallurgical ...

    African Journals Online (AJOL)

    ... with a heat output of 4200 kW, a working agent R 600, a source of low-potential heat-circulating water: a 460 kW gas engine. The proposed scheme showed high efficiency of power supply of the town in comparison with the gas boiler. Keywords: heat pump; internal combustion engine metallurgical plant; energy efficiency ...

  15. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  16. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  17. Arguments against the utilization of nuclear energy

    International Nuclear Information System (INIS)

    1982-05-01

    The attempt is made to treat the subject 'nuclear energy' on a large scale. In this brochure, all important problems can only be discussed quite briefly; a great number of footnotes indicating further literature shall guide the reader to thorough study. The text is supposed to serve as a systematic introduction to the problems as well as for looking up individual partial aspects. A lot of space has been given to the presentation of those aspects that concern the risk of nuclear facilities, and the threat to man and environment by their operation. Moreover, fundamental political, scientific-sociological, economic and other social problems are discussed. The objective of this was to give the reader an idea of the social background before which the controversy about the nuclear energy is taking place today and what factors decide its development. (orig./HP) [de

  18. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  19. Annual cycle solar energy utilization with seasonal storage. Part 7. Examination on design and control of the system partially recovering exhaust heat of heat pump; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 7. Bubuntekina hainetsu kaishu wo koryoshita baai no sekkei seigyoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1996-10-27

    The capacity and performance of the existing system that recovers the overall heating and cooling exhaust heat completely into a seasonal storage tank and the system that discharges the exhaust heat slightly to the outside and recovers it partially were compared and investigated. The system uses a central single-duct discharge system as an air-conditioning system. A heat pump and a flat-plate solar collector installed on the roof of a building are used as the heat source. The seasonal storage tank in the ground just under the building is a cylindrical water tank of 5 m deep with the concrete used as body. The upper surface of a storage tank is heat-insulated by a stylo-platform of 200 mm, and the lower side surface by a stylo-platform of 100 mm. Calculation when the difference in temperature used in a seasonal storage tank is set to 35{degree}C and 25{degree}C was performed for the system that has two control methods. The overall exhaust heat recovery system is almost the same in energy performance as the partial exhaust heat recovery system. The partial exhaust heat recovery system is more advantageous on the economic side. 4 refs., 6 figs., 3 tabs.

  20. Public utilities with renewable energy sources. Proceedings; Stadtwerke mit Erneuerbaren Energien. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the Second EUROSOLAR Conference of EUROSOLAR, the European Association for Renewable Energy (Bonn, Federal Republic of Germany) between 15th and 16th May, 2008, at the Waterworks Braunschweig (Federal Republic of Germany), the following lectures were held: (1) The municipal public utility: The paradigm shift from power distribution companies to municipal infrastructure provider (C. Jaenig); (2) Public utilities and their concepts (Z. Meszaros); (3) The BS Energy Group (U.Lehmann-Grube); (4) New ways with energy (T. Westerheide); (5) Public utilities and their concepts (R. Edzards); (6) Public utilities with renewable energy (P. Asmuth); (7) Total concept of the public utility Wolfhagen (M. Ruehl); (8) Municipal energy concepts for the expansion of the combined heat and power generation and renewable energies (J. van Bergen); (9) Storage of renewable energy (T. Blank); (10) Public utility as a confident partner of a renewable regional economy (R. Hemmers); (11) The regenerative combined cycle power plant (M. Meyr); (12) The solar power system of systaic (O. Achilles); (13) The concession contract as an instrument for restructuring (J. Schwarz); (14) EEG 2009, GasNZV and EEWaermeG: The changed legal framework as a chance for a restructured power generation (M. Altrock).

  1. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  2. Electromagnetic projectile acceleration utilizing distributed energy sources

    International Nuclear Information System (INIS)

    Parker, J.V.

    1982-01-01

    Circuit equations are derived for an electromagnetic projectile accelerator (railgun) powered by a large number of capacitive discharge circuits distributed along its length. The circuit equations are put into dimensionless form and the parameters governing the solutions derived. After specializing the equations to constant spacing between circuits, the case of lossless rails and negligible drag is analyzed to show that the electrical to kinetic energy transfer efficiency is equal to sigma/2, where sigma = 2mS/Lq 2 0 and m is the projectile mass, S the distance between discharge circuit, Lthe rail inductance per unit length, and q 0 the charge on the first stage capacitor. For sigma = 2 complete transfer of electrical to kinetic energy is predicted while for sigma>2 the projective-discharge circuit system is unstable. Numerical solutions are presented for both lossless rails and for finite rail resistance. When rail resistance is included, >70% transfer is calculated for accelerators of arbitrary length. The problem of projectile startup is considered and a simple modification of the first two stages is described which provides proper startup. Finally, the results of the numerical solutions are applied to a practical railgun design. A research railgun designed for repeated operation at 50 km/sec is described. It would have an overall length of 77 m, an electrical efficiency of 81%, a stored energy per stage of 105 kJ, and a charge transfer of <50 C per stage. A railgun of this design appears to be practicable with current pulsed power technology

  3. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  4. Is increased energy utilization linked to greater cultural complexity? Energy utilization by Australian Aboriginals and traditional swidden agriculturalists

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [Expertisecentrum Duurzame Ontwikkeling en Instituut voor Biodiversiteit en Ecosysteem Dynamica ECDO/IBED, University of Amsterdam, Amsterdam (Netherlands)

    2006-09-15

    Theories have been proposed that link increases in energy utilization to increases in cultural complexity. Indeed, available estimates of per capita non-food energy utilization by hunter - gatherers and by people practising swidden agriculture in wooded areas, focusing on fuel wood use, are roughly 1 - 2 orders of magnitude lower than for industrial societies. The latter are in the range of 0.8 - 3.4 x 10{sup 5} MJ year{sup -1}. However, apart from the use of fuel wood, the former estimates have not included work performed by burning vegetation. Here quantitative estimates are given of recent energy utilization linked to burning biomass by Australian Aboriginals and people practising traditional swidden agriculture. Per capita energy utilization linked to biomass burning by Australian Aboriginals is estimated at 1.6 x 10{sup 6} to 4.0 x 10{sup 7} MJ year{sup -1}. Estimated per capita energy utilization associated with burning biomass in traditional swidden agriculture in the tropical rainforests of Kalimantan and Venezuela, the dry forest of north-eastern Brazil and the miombo woodland of Zambia is in the range of 1.0 x 10{sup 5} to 6.3 x 10{sup 5} MJ year{sup -1}. The values for non-food energy utilization reported here are at variance with theories that link increases in energy utilization to increases in cultural complexity.

  5. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  6. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  7. Direct utilization of geothermal energy: a technical handbook

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.N; Lund, J.W. (eds.)

    1979-01-01

    This technical handbook includes comprehensive discussions on nature and occurrence of the geothermal resource, its development, utilization, economics, financing, and regulation. Information on pricing parameters for the direct use of geothermal energy is included as an appendix. (MRH)

  8. Solar thermal energy utilization: A bibliography with abstracts

    Science.gov (United States)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  9. Design and process integration of organic Rankine cycle utilizing biomass for power generation

    Science.gov (United States)

    Ependi, S.; Nur, T. B.

    2018-02-01

    Indonesia has high potential biomass energy sources from palm oil mill industry activities. The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used for generating electricity from rejected waste heat to the environment in industrial processes. In this study, the potential of the palm oil empty fruit bunch, and wood chip have been used as fuel for biomass to generate electricity based ORC with combustion processes. The heat from combustion burner was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC unit. Appropriate designs integration from biomass combustion unit to ORC unit have been analyzed and proposed to generate expander shaft-work. Moreover, the effect of recuperator on the total system efficiency has also been investigated. It was observed that the fuel consumption was increased when the ORC unit equipped recuperator operated until certain pressure and decreased when operated at high pressure.

  10. Analysis of energy and utility service demands

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The collection, analysis, and review of existing data on a community's service requirements are documented. The research focused on the analysis of energy-using activities including both micro activities such as space heating, cooking, lighting, and transportation; and macro activities such as providing shelter, health care, education, etc. The technical report describes the analytical framework developed for community description; describes an indexing system by which a catalog of services can be accessed; illustrates the application of the data to an existing community; and provides ancillary information on data availability. A catalog of data is presented which includes several sets of indices which facilitate access of data using various keys. Abstracts of 48 data sources are analyzed. Each abstract includes a description and evaluation of the data, a sampling of that data, an assessment as to how that data may be applied to other analyses, and a reference where the user can secure additional data. (MCW)

  11. Importance of Peaceful Utilization of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    J. Frydryšková

    2009-01-01

    Full Text Available Following the massive destruction of Hiroshima and Nagasaki in the end of Second World War, the atom was generally taken to be the primary symbol of the new era, the so-called ‘atomic age’, a prototypical modern conjuncture forever oscillating between the agonies of mass death and standardized terror, and the euphoria of tremendous economic transformation through the permanent resolution of the ever increasing need for electrical energy at little or no cost. After Hiroshima the symbolic meaning and presence of the atom crossed and recrossed the lines between popular culture, lived experience, political protest, strategic discourse, modern design, industry, medicine, and agriculture, that it truly became ‘atomic age’ whether one was in the US, France, China or anywhere else. 

  12. Thermal energy storage and utilization system

    International Nuclear Information System (INIS)

    1976-01-01

    The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand, excess extraction steam is drawn off to heat excess quantities of boiler feed water. Such boiler feed water can be heated to the maximum extent possible and used to reheat interstage steam before being sent at slightly reduced temperature to the boilers. In this way, maximum use can be made of the thermal energy stored in the low vapor pressure organic material. Alternatively, or simultaneously, the stored hot LVP organic material can be used to raise intermediate pressure steam and this steam can be injected into the steam turbines between appropriate stages or into auxiliary turbines used solely for this purpose

  13. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  14. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  15. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  16. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  17. The development and utilization of biomass energy resources in China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  18. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  19. Basic plan of the development and utilization of atomic energy in 1980

    International Nuclear Information System (INIS)

    1980-01-01

    The Nuclear Safety Commission reported to the prime minister on March 28, 1980, on the basic plan of the development and utilization of atomic energy in 1980 that it was decided as the original draft of the plan. This draft of the basic plan in 1980 was referred to the Nuclear Safety Commission on March 27, 1980. Japan relies the most of primary energy upon imported petroleum, therefore it is important to save oil consumption and to promote the development and utilization of substitute energy to petroleum. The development and utilization of atomic energy must be promoted as the most important subject in energy policy, because it is the most promising substitute energy. The scale of the total nuclear power generation in Japan is 35 plants with about 28 million kW capacity, including those under construction and in preparation. But owing to the difficulty in the location of new plants, the attainment of 1985 target is behind schedule. The development and utilization of atomic energy are in progress in Japan, but more efforts to promote them are necessary. Japan contributes positively to the formation of the new order based on the results of INFCE. As for the basic policy in 1980, the strengthening of the measures to secure safety, the establishment of nuclear fuel cycle, the development of new power reactors, the research and development of nuclear fusion, the promotion of the utilization of radiation and others are discussed. (Kako, I.)

  20. Advance reactor and fuel-cycle systems--potentials and limitations for United States utilities

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Williams, R.F.

    1979-01-01

    This paper reviews the potential benefits and limitations of advance reactor and fuel-cycle systems for United States utilities. The results of the review of advanced technologies show that for the near and midterm, the only advance reactor and fuel-cycle system with significant potential for United States utilities is the current LWR, and evolutionary, not revolutionary, enhancements. For the long term, the liquid-metal breeder reactor continues to be the most promising advance nuclear option. The major factors leading to this conclusion are summarized

  1. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  2. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  3. Energy Resource Planning. Optimal utilization of energy resources

    International Nuclear Information System (INIS)

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  4. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Science.gov (United States)

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  5. Performance of cryogenic thermoelectric generators in LNG cold energy utilization

    International Nuclear Information System (INIS)

    Sun Wei; Hu Peng; Chen Zeshao; Jia Lei

    2005-01-01

    The cold energy of liquefied natural gas (LNG) is generally wasted when the LNG is extracted for utilization. This paper proposes cryogenic thermoelectric generators to recover this cold energy. The theoretical performance of the generator has been analyzed. An analytical method and numerical method of calculation of the optimum parameters of the generator have been demonstrated

  6. Life-Cycle Evaluation of Domestic Energy Systems

    Science.gov (United States)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  7. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  8. Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2010-01-01

    The gas turbine-modular helium reactor (GT-MHR) is currently being developed by an international consortium. In this power plant, circulating helium that has to be compressed in a single or two successive stages cools the reactor core. For thermodynamic reasons, these compression stages require pre-cooling of the helium to about 26 deg. C through the use of intercooler and pre-cooler in which water is used to cool the helium. Considerable thermal energy (∼300 MWth) is thus dissipated in these components. This thermal energy is then rejected to a heat sink. For different designs, the temperature ranges of the helium in the intercooler and pre-cooler could be about 100 and 150 deg. C, respectively. These are ideal energy sources to be used in an organic Rankine cycles for power generation. This study examines the performance of a gas-cooled nuclear power plant with closed Brayton cycle (CBC) combined with two organic Rankine cycles (ORC). More attention was paid to the irreversibilities generated in the combined cycle. Individual models are developed for each component through applications of the first and second laws of thermodynamics. The effects of the turbine inlet temperature, compressor pressure ratio, evaporator temperature and temperature difference in the evaporator on the first- and second-law efficiencies and on the exergy destruction rate of the combined cycle were studied. Finally the combined cycle was optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on identical operating conditions, a comparison between the GT-MHR/ORC and a simple GT-MHR cycle is also made. It was found that both the first- and second-law efficiencies of GT-MHR/ORC cycle are about 3%-points higher than that of the simple GT-MHR cycle. Also, the exergy destruction rate for GT-MHR/ORC cycle is about 5% lower than that of the GT-MHR cycle.

  9. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  10. Wind energy in Denmark and within the Elsam utility area

    International Nuclear Information System (INIS)

    Friis, P.; Grauballe, J.

    1995-01-01

    At the turn of 1994, 3,700 wind turbines, with a total installed capacity of 540 MW were connected to the Danish utility grid. In 1994 these turbines fed 1,118 GWh wind energy into the grid, corresponding to approximately 3.3% of the total electricity consumption. The ELSAM utility area supplies the electric energy consumed by half the Danish population. The area has a large wind energy potential and approx. 75% of the installed wind energy capacity in Denmark is situated here accounting for 400 MW. In 1994 the ELSAM utilities supplied a total of 18,450 GWh with wind power contributing 850 GWh, i.e. 4.6% of the ELSAM sales to the consumers. (Author)

  11. Activities of the research committee on thorium cycle in atomic energy society of Japan

    International Nuclear Information System (INIS)

    Hohki, Shiro

    1985-01-01

    In 1978 the Research Committee on Thorium Cycle was established as one of committees of the Atomic Energy Society of Japan, and the Committee published a report titled 'The Thorium Cycle - Present Status and Future Prospect' in October 1980 as a result of investigations on the status of the thoirum cycle in Japan as well as that in overseas. Based on this investigation, the Committee is intending to evaluate synthetically the thorium utilization in Japan under the prospect for the middle and long term by intensifying the activities of the Committee. Furthermore, from this viewpoint, the author supplements comments on following three points: (1) Reasons why the thorium utilization has not received positive evaluation in Japan; (2) Reasons why Japan has to pay attention to thorium; (3) How the technology on thorium should be developed in Japan. (author)

  12. Development and utilization of new energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Qu Shiyuan (Academia Sinica, Beijing (CN). Energy Research Inst.)

    1990-01-01

    Since the foundation of the People's Republic of China, the Chinese Government has paid great attention to the development and utilization of new energy resources. Besides the development of biomass gas to provide energy for daily life in rural areas, China has also done much research and development in solar, wind, geothermal and marine energy to substitute alternative energy supplies, especially in the remote regions. Although China has abundant conventional energy resources the average energy resource per capita is low due to the large population. In recent years, the gap between energy consumption and supply has become larger and China will have to develop actively new energy industries at the same time as developing conventional energy. (author).

  13. Cycle energy control of magnetorheological dampers on cables

    International Nuclear Information System (INIS)

    Weber, F; Feltrin, G; Motavalli, M; Distl, H

    2009-01-01

    The dissipated cycle energy of magnetorheological (MR) dampers operated at constant current results from controllable hysteretic damping and from almost current independent, small viscous damping. Thus, the emulation of Coulomb friction and linear viscous damping necessitates current modulation during one vibration cycle and therefore current drivers. To avoid this drawback, a cycle energy control (CEC) approach is presented which controls the hysteretic MR damper part such that the total MR damper energy equals the energy of optimal linear viscous damping by constant current during one cycle. The excited higher modes due to the hysteretic damping part are partially damped by the MR damper viscous part. Simulations show that CEC copes better with damper force dynamics and constraints than emulated linear viscous damping due to the slow control force dynamics of CEC which are given by cable amplitude dynamics. It is demonstrated that CEC of MR dampers with viscosity of approximately 4.65% of the optimal modal viscosity performs better than optimal linear viscous damping. The reason is that this damper viscosity represents an optimal compromise between maximum energy spillover to higher modes due to the controllable hysteretic part which produces more cable damping and maximum viscous damping of these higher modes. Damping tests on a cable with an MR damper validate the CEC approach

  14. The use of life-cycle analysis to address energy cycle externality problems

    International Nuclear Information System (INIS)

    Soerensen, B.

    1996-01-01

    Life-cycle analysis is defined and the various impacts from energy systems to be included in such analysis are discussed. A preliminary version of a scenario for a future Danish energy systems based upon a bottom-up energy demand scenario and renewable energy sources. LCAs of wind turbine and Si solar roof-top modules are presented. The various impacts from Danish wind and building-integrated solar power generation are discussed and compared with the impacts from coal-fired power generation. The former electricity generating system looks more favorable. (author). 20 refs, 9 figs

  15. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  16. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2014-01-01

    This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory ini...... legal design and the problems that it causes for the water utilities that want to be resource–efficient and have a low–carbon footprint.......This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory...... initiatives are shortly described. One of the solutions needed is a reduction of energy use in the water utilities by their utilisation of renewable sources – acting as energy–smart water utilities. Such utilities are described in section 3. The policy and law regulating the water utilities are important...

  17. A multivariate-utility approach for selection of energy sources

    International Nuclear Information System (INIS)

    Ahmed, S; Husseiny, A.A.

    1978-01-01

    A deterministic approach is devised to compare the safety features of various energy sources. The approach is based on multiattribute utility theory. The method is used in evaluating the safety aspects of alternative energy sources used for the production of electrical energy. Four alternative energy sources are chosen which could be considered for the production of electricity to meet the national energy demand. These are nuclear, coal, solar, and geothermal energy. For simplicity, a total electrical system is considered in each case. A computer code is developed to evaluate the overall utility function for each alternative from the utility patterns corresponding to 23 energy attributes, mostly related to safety. The model can accommodate other attributes assuming that these are independent. The technique is kept flexible so that virtually any decision problem with various attributes can be attacked and optimal decisions can be reached. The selected data resulted in preference of geothermal and nuclear energy over other sources, and the method is found viable in making decisions on energy uses based on quantified and subjective attributes. (author)

  18. Life Cycle Assessment of a Wave Energy Converter

    OpenAIRE

    Gastelum Zepeda, Leonardo

    2017-01-01

    Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for ass...

  19. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Shiotani, Hiroki

    2008-01-01

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  20. Long-term atomic energy research, development and utilization program

    International Nuclear Information System (INIS)

    1980-01-01

    This is the revised version of the last long-range program (June, 1972), and covers the measures and plans for promoting the research, development and utilization of nuclear power in some in some ten years ahead. The basic policy lines include the assurance of peaceful use of atomic energy, safety assurence and public support, independence and international cooperation and the planned implementation of nuclear research and development projects. The target scale of nuclear power development is estimated at 33 million kilowatts by fiscal 1985 and 60 million kilowatts by fiscal 1990, respectively. The improvement and standardization of light water reactors are to be further carried on till fiscal 1980 and after. Sodium-cooled reactors, which use the oxide fuel based on the mixture of plutonium and uranium, will be developed. A prototype reactor of about 300,000 kilowatt electric capacity will reach criticality in the second half of 1980's. The research and development of the advanced thermal reactors, for which plutonium and depleted uranium are used, will be encouraged. Multipurpose high-temperature gas-cooled reactors are also to be developed. The measures for establishing the nuclear fuel cycle including the procurement of natural and enriched uranium, the reprocessing of spent fuel, the use of plutonium and the treatment and disposal of radioactive wastes are described. Nuclear fusion, nuclear ships, the use of radiation, safety studies, fundamental studies and the training of scientists and technicians are stipulated, respectively. The promotion of nuclear research and development projects is explained in detail. (Okada, K.)

  1. A novel microalgal system for energy production with nitrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, T.; Sawayama, S. [National Institute for Resources and Environment, Tsukuba (Japan)

    1999-08-01

    A microalga, Chlorella vulgaris, could grow in the recovered solution from the low temperature catalytic gasification of itself, by which methane rich fuel gas was obtained. All nitrogen in the microalga was converted to ammonia during the gasification, and the recovered solution, in which ammonia was dissolved, could be used as nitrogen nutrient. The result of the energy evaluation indicated that the novel microalgal system for energy production with nitrogen cycling could be created. 9 refs., 3 tabs.

  2. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  3. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  4. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  5. Energy and exergy utilization in transportation sector of Saudi Arabia

    International Nuclear Information System (INIS)

    Dincer, I.; Hussain, M.M.; Al-Zaharnah, I.

    2004-01-01

    In this paper we present an analysis of energy and exergy utilization in the transportation sector of Saudi Arabia by considering the sectoral energy and exergy flows for the years of 1990-2001. Energy and exergy analyses are conducted for its three subsectors, namely road, air and marine, and hence the energy and exergy efficiencies are obtained for comparison. Road subsector appears to be the most efficient one compared to air and marine subsectors. It is found that the energy efficiencies in air and marine subsectors are found to be equal to the corresponding exergy efficiencies due to the values of exergy grade function. A comparison of the overall energy and exergy efficiencies of Saudi Arabian transportation sector with the Turkish transportation sector is also presented for the year 1993 based on the data available. Although the sectoral coverage is not same for both countries, it is still useful to illustrate the situation on how subsectoral energy and exergy efficiencies vary over the years. Turkish transportation sector appears to be a bit more efficient for that particular year. It is believed that the present technique is practical and useful for analyzing sectoral energy and exergy utilization to determine how efficient energy and exergy are used in transportation sector. It is also be helpful to establish standards, based on exergy, to facilitate applications in industry and in other planning processes such as energy planning

  6. An assessment of the effectiveness of fuel cycle technologies for the national energy security enhancement in the electricity sector

    International Nuclear Information System (INIS)

    Kim, Hyun Jun; Jun, Eunju; Chang, Soon Heung; Kim, Won Joon

    2009-01-01

    Energy security, in the 21st century, draws significant attention in most countries worldwide, because the national security and sustainable development depend largely on energy security. The anticipated fossil energy depletion and the instability of their supply drive many countries to consider nuclear energy as their alternative energy source for the enhancement of their national energy security. In this study, indicators measuring the level of energy security in the electric power sector are developed and applied for the assessment of the effectiveness of four electric power system schemes which deploy different nuclear fuel cycle technologies, with consideration for the diversification of the energy markets and the vulnerability to economic disruption. Results show that the contribution of the closed fuel cycle scheme is larger than the once-through fuel cycle scheme in the perspective of energy security. In addition, the completely closed fuel cycle with the spent fuel recycling enhances the national energy security to the maximum extent compared to all other fuel cycle schemes. Since a completely closed fuel cycle is hardly affected by the uranium price changes, this scheme is found to be the most favorable scheme, ensuring the stable profit of utilities and stabilizing the electricity tariff. In addition, the completely closed fuel cycle scheme provides the best enhancement of national energy security with respect to energy supply, under reasonable price conditions. The indicators developed in this study can be utilized as a useful instrument for the measurement of the level of the energy security, especially by the countries importing energy resources for the generation of electric power.

  7. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  8. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  9. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  10. Community energy systems and the law of public utilities

    Energy Technology Data Exchange (ETDEWEB)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Nebraska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitiled ''Community Energy Systems and the Law of Public Utilities--Volume One: An Overview.'' This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Dynamic life cycle assessment (LCA) of renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, M. [Institut for Energy and Environmental Research, Heidelberg (Germany)

    2006-01-01

    Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are 'imported' into the system due to the 'background system' (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies. Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to 'external' services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation. The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent. (author)

  12. Present status of nuclear energy development and utilization in Japan 1994

    International Nuclear Information System (INIS)

    1994-03-01

    Today, world energy demands continue to increase, and over the middle and long-term, access to petroleum supplies may become difficult. At the same time, such serious environmental problems as global warming and acid rain, which are caused by the burning of fossil fuels, have drawn great public attention, and the international community has urged that solutions to them should be found. Because nuclear power offers an economically efficient, stable supply of energy whose production has little adverse effect on the environment, the world has recognized the necessity of continuing to develop and use it. The changing international political situation, however, has complicated nuclear energy matters. In Japan, particularly the collapse of the former Soviet Union and North Korea's announcement of its intention to withdraw from the Nuclear Weapons Non-Proliferation Treaty have been cause for concern. Under these circumstances, it has become increasingly important for Japan to secure stable sources of energy, since Japan is dependent on imports for its energy supply. To that end, Japan has steadily promoted the development and utilization of nuclear energy. In fiscal 1992, nuclear power accounted for 28.2 % of the total power generated by Japanese electric utilities. Japan has also worked steadily to develop a nuclear fuel cycle, which is important to the long-term stability of the energy supply. This publication describes the present status of nuclear energy development and utilization in Japan. (J.P.N.)

  13. Utilizing waste heat. Energy recovery options for trade and industry

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, W

    1988-08-01

    The article shows options for efficient and low-cost thermal energy recovery. Heat recovery involves a number of problems, e.g. the type of waste heat, the uses of the energy recovered, and the best way of utilizing it. There is no generally applicable way of solving these problems. Some practical examples are presented. Economically efficient solutions require detailed technical knowledge as well as a good portion of creativity and imagination. (BR).

  14. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

  15. Basic program of atomic energy development and utilization for fiscal 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Nuclear power generation is capable of supplying large quantity of energy as the core of petroleum substitutes. Besides its costs are low, it can contribute in number of ways, such as the suppression of price rise and the stabilization of international balance of payments. Its development and utilization are the important aspects of the energy policy of Japan. In the promotion of atomic energy development, securing its safety is the foremost prerequisite. Meanwhile, the nuclear fuel cycle must be established as early as possible, concerning such as the securing of uranium resources, the domestic production of enriched uranium and the establishment of domestic fuel reprocessing. The basic program in fiscal 1981 is described as follows: the strengthening of the safety measures, the promotion of nuclear power generation, the establishment of the nuclear fuel cycle, the research on nuclear fusion, and so on. (J.P.N.)

  16. Energy conservation through utilization of mechanical energy storage

    Science.gov (United States)

    Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.

    Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.

  17. Renewable energy utilization in 3 european cities. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    Energy production based on fossil fuels produces CO2, SO2 and NOx, which are harmful to the environment. It is agreed, both nationally and internationally, that it is necessary to considerably reduce the energy consumption. The difference between different European countries politically, financially, culturally, and socially needs to be acknowledged when energy initiatives are considered for implementation on a local as well as an international scale. This was the basis for the initiation of the project `Renewable Energy Utilization in 3 European Cities`. Three very different cities with different problems and thus different interests got together and joined efforts to develop action plans to increase renewable energy use to reduce the burden on the environment from energy consumption in the urban and regional areas. The work has been undertaken by the working group presented in appendix 3. (EG) ALTENER. 25 refs.

  18. Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2012-01-01

    Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their hig......Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics....... Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP...

  19. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  20. Recent estimates of energy utilization by young dairy calves ...

    African Journals Online (AJOL)

    Recent estimates of energy utilization by young dairy calves. P.T.C. Johnson. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  1. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  2. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  3. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M. [Argonne National Lab., IL (United States); Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N. [National Renewable Energy Lab., Golden, CO (United States); Freeman, S.; Humphreys, K.; Placet, M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  4. Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae on the snow surface.

    Directory of Open Access Journals (Sweden)

    Yukiko Tanabe

    Full Text Available Snow algae inhabit unique environments such as alpine and high latitudes, and can grow and bloom with visualizing on snow or glacier during spring-summer. The chrysophytes Ochromonas smithii and Ochromonas itoi are dominant in yellow-colored snow patches in mountainous heavy snow areas from late May to early June. It is considered to be effective utilizing the xanthophyll cycle and holding sunscreen pigments as protective system for snow algae blooming in the vulnerable environment such as low temperature and nutrients, and strong light, however the study on the photoprotection of chrysophytes snow algae has not been shown. To dissolve how the chrysophytes snow algae can grow and bloom under such an extreme environment, we studied with the object of light which is one point of significance to this problem. We collected the yellow snows and measured photosynthetically active radiation at Mt. Gassan in May 2008 when the bloom occurred, then tried to establish unialgal cultures of O. smithii and O. itoi, and examined their photosynthetic properties by a PAM chlorophyll fluorometer and analyzed the pigment compositions before and after illumination with high-light intensities to investigate the working xanthophyll cycle. This experimental study using unialgal cultures revealed that both O. smithii and O. itoi utilize only the efficient violaxanthin cycle for photoprotection as a dissipation system of surplus energy under prolonged high-light stress, although they possess chlorophyll c with diadinoxanthin.

  5. Effects of degree of approval and message on utility of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2007-01-01

    It is said that the effectiveness of nuclear power generation is the greatest factor contributing to whether or not people support the nuclear power policy. The major objectives of this research are twofold: from among opinions regarding the effectiveness of the nuclear fuel cycle, to clarify what kinds of opinions people support and what kinds of opinions have influenced judgments about the pros and cons of the nuclear fuel cycle; and to measure the extent to which people's awareness of the nuclear fuel cycle is influenced by numerical information that has been added to a nuclear-fuel-cycle-related message that has been created on the basis of results of the survey conducted for the first objective mentioned above. As for the first objective, the survey results revealed that the opinion 'the establishment of a nuclear fuel cycle leads to the effective use of energy resources' did not garner much support from the public. However, it was indicated that people being for or against that opinion may have relatively great effect on their judgment regarding the pros and ons of nuclear fuel cycle establishment. For the second objective, we showed people the messages the nuclear fuel cycle enables effective use of natural uranium' and 'the nuclear fuel cycle enables tens times more effective use of natural uranium' to the latter of which numerical information was added. As a result, we found no difference in people's attitude toward the nuclear fuel cycle even if numerical information was added to a nuclear-fuel-cycle-related message. (author)

  6. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  7. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  8. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  9. Quality of renewable energy utilization in transport in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2015-04-01

    Renewable energy utilization in transportation (RES-T) is a long way behind its utilization in power (RES-E) and heat (RES-H) sectors. International and national environmental policies have recently given a lot of emphasis on this problem. For that reason information is sought on how to implement solutions both politically and technologically. As Sweden is a global leader in this area, it can provide valuable examples. In 2012 Sweden became the first country to reach the binding requirement of the European Union for at least 10 % share for renewable energy in transport energy consumption. But qualitative development has been even stronger than quantitative. Among the success stories behind qualitative progress, most noteworthy are those created by innovative municipal policies. By 2030 Sweden aims to achieve fossil fuel independent road transport system and by 2050 completely carbon neutral transport system in all modes of transport.

  10. Life cycle assessment (LCA) of an energy recovery plant in the olive oil industries

    Energy Technology Data Exchange (ETDEWEB)

    Intini, Francesca; Kuhtz, Silvana [Dep. Engineering and Environmental Physics, Faculty of Engineering, University of Basilicata (Italy); Gianluca Rospi, [Dep. Engineering and Environmental Physics, Faculty of Architecture, University of Basilicata (Italy)

    2012-07-01

    To reduce the GHG emissions in the UE and to increase the produced energy it is important to spread out decentralized technologies for renewable energy production. In this paper a power plant fed with biomass is studied, in particular the biomass considered is the waste of the olive oil industries. This study focuses on the possibility of using the de-oiled pomace and waste wood as fuel. A life cycle assessment (LCA) of a biomass power plant located in the South of Italy was performed. The global warming potential has been calculated and compared with that of a plant for energy production that uses refuse derived fuel (RDF) and that of one that uses coal. The LCA shows the important environmental advantages of biomass utilization in terms of greenhouse gas emissions reduction. An improved impact assessment methodology may better underline the advantages due to the biomass utilization.

  11. Energy expenditure, aerodynamics and medical problems in cycling. An update.

    Science.gov (United States)

    Faria, I E

    1992-07-01

    The cyclist's ability to maintain an extremely high rate of energy expenditure for long durations at a high economy of effort is dependent upon such factors as the individual's anaerobic threshold, muscle fibre type, muscle myoglobin concentration, muscle capillary density and certain anthropometric dimensions. Although laboratory tests have had some success predicting cycling potential, their validity has yet to be established for trained cyclists. Even in analysing the forces producing propulsive torque, cycling effectiveness cannot be based solely on the orientation of applied forces. Innovations of shoe and pedal design continue to have a positive influence on the biomechanics of pedalling. Although muscle involvement during a complete pedal revolution may be similar, economical pedalling rate appears to differ significantly between the novice and racing cyclist. This difference emanates, perhaps, from long term adaptation. Air resistance is by far the greatest retarding force affecting cycling. The aerodynamics of the rider and the bicycle and its components are major contributors to cycling economy. Correct body posture and spacing between riders can significantly enhance speed and efficiency. Acute and chronic responses to cycling and training are complex. To protect the safety and health of the cyclist there must be close monitoring and cooperation between the cyclist, coach, exercise scientist and physician.

  12. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    To accurately represent how conservation and efficiency policies affect energy demand, both direct and indirect impacts need to be included in the accounting. The indirect impacts are defined here as the resource savings that accrue over the fuel production chain, which when added to the energy consumed at the point of use, constitute the full-fuel- cycle (FFC) energy. This paper uses the accounting framework developed in (Coughlin 2012) to calculate FFC energy metrics as time series for the period 2010-2040. The approach is extended to define FFC metrics for the emissions of greenhouse gases (GHGs) and other air-borne pollutants. The primary focus is the types of energy used in buildings and industrial processes, mainly natural gas and electricity. The analysis includes a discussion of the fuel production chain for coal, which is used extensively for electric power generation, and for diesel and fuel oil, which are used in mining, oil and gas operations, and fuel distribution. Estimates of the energy intensity parameters make use of data and projections from the Energy Information Agency’s National Energy Modeling System, with calculations based on information from the Annual Energy Outlook 2012.

  13. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  14. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  15. Large-scale nuclear energy from the thorium cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.; Duret, M.F.; Craig, D.S.; Veeder, J.I.; Bain, A.S.

    1973-02-01

    The thorium fuel cycle in CANDU (Canada Deuterium Uranium) reactors challenges breeders and fusion as the simplest means of meeting the world's large-scale demands for energy for centuries. Thorium oxide fuel allows high power density with excellent neutron economy. The combination of thorium fuel with organic caloporteur promises easy maintenance and high availability of the whole plant. The total fuelling cost including charges on the inventory is estimated to be attractively low. (author) [fr

  16. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  17. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  18. Development of a hybrid energy storage sizing algorithm associated with the evaluation of power management in different driving cycles

    International Nuclear Information System (INIS)

    Masoud, Masih Tehrani; Mohammad Reza, Ha'iri Yazdi; Esfahanian, Vahid; Sagha, Hossein

    2012-01-01

    In this paper, a hybrid energy storage sizing algorithm for electric vehicles is developed to achieve a semi optimum cost effective design. Using the developed algorithm, a driving cycle is divided into its micro-trips and the power and energy demands in each micro trip are determined. The battery size is estimated because the battery fulfills the power demands. Moreover, the ultra capacitor (UC) energy (or the number of UC modules) is assessed because the UC delivers the maximum energy demands of the different micro trips of a driving cycle. Finally, a design factor, which shows the power of the hybrid energy storage control strategy, is utilized to evaluate the newly designed control strategies. Using the developed algorithm, energy saving loss, driver satisfaction criteria, and battery life criteria are calculated using a feed forward dynamic modeling software program and are utilized for comparison among different energy storage candidates. This procedure is applied to the hybrid energy storage sizing of a series hybrid electric city bus in Manhattan and to the Tehran driving cycle. Results show that a higher aggressive driving cycle (Manhattan) requires more expensive energy storage system and more sophisticated energy management strategy

  19. Life cycle inventory analysis of fossil energies in Japan

    International Nuclear Information System (INIS)

    Yoon Sungyee; Yamada, Tatsuya

    1999-01-01

    Given growing concerns over global warming problems in recent years, a matter of great importance has been to grasp GHG emissions from fossil energy use as accurately as possible by figuring out how much GHGs result from a life cycle (production, transportation and consumption) of various fossil energies. The objective of this study is to make a life cycle inventory (LCI) analysis of major fossil energies (coal, oil, LNG, LPG) consumed in Japan pursuant to ISO 14040. On these fossil energies imported to Japan in 1997, LCI analysis results of GHG emissions (specifically carbon dioxide and methane) put CO 2 intensity during their combustion stage (gross heat value basis) at 100:121:138:179 among LNG:LPG:oil:coal. But, in life cycle terms, the ratios turned to be 100:110:120:154. The world average (gross heat value basis) gained from IPCC data, among others, puts the ratios among LNG:LPG:oil:coal at 100:105:110:151. In comparison, our study that focused on Japan found their corresponding figures at 100:110:120:154. COP 3 set forth country-by-country targets. Yet, global warming, that is a worldwide problem, also requires a more comprehensive assessment based on a life cycle analysis (LCA). The estimation results of our study can be of some help in shaping some criteria when considering energy and environmental policies from a global viewpoint. In addition, our study results suggest the importance of the best energy mix that is endorsed by LCI analysis results, if global warming abatement efforts should successfully be in advance. As specific institutional designs of Kyoto Mechanism are currently under examination, the introduction of LCI method deserves to be considered in discussing the baseline issue of joint implementation and clean development mechanism. In the days ahead, by gathering and analysing detailed-ever data, and through fossil-energy LCA by use, we had better consider supply and demand of the right energies in the right uses. (author)

  20. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  1. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  3. Microalgal cultivation and utilization in sustainable energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lakaniemi, A.-M.

    2012-07-01

    Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. However, microalgal biomass cultivation for energy production purposes is still rare in commercial scale. Further research and development is needed to make microalgal derived energy sustainable and economically competitive. This work investigated cultivation of fresh water microalga Chlorella vulgaris and marine microalga Dunaliella tertiolecta and their utilization in production of hydrogen, methane, electricity, butanol and bio-oil after bulk harvesting the biomass. Growth of the two microalgae was studied in five different photobioreactor (PBR) configurations especially concentrating on the quantification and characterization of heterotrophic bacteria in non-axenic microalgal cultivations and microalgal utilization of different nitrogen sources. Anaerobic cultures used for the energy conversion processes were enriched from a mesophilic municipal sewage digester separately for production of H{sub 2}, CH{sub 4} and electricity from the two microalgal species. After culture enrichment, energy conversion yields of microalgal biomass to the different energy carriers were compared. In summary, this study demonstrated that both C. vulgaris and D. tertiolecta can be used for production of Hv(2), CHv(4), electricity, butanol and lipids. Based on this study C. vulgaris is more suitable for bioenergy production than D. tertiolecta. Depending on cellular lipid content, lipid utilization for bio-oil production and anaerobic digestion were the most potent means of converting C. vulgaris biomass to energy. The study also revealed diverse microbial communities in non-axenic microalgal photobioreactor cultures and in anaerobic consortia converting microalgal biomass to energy carriers

  4. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    Science.gov (United States)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  5. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  6. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  7. Near Zero Energy House (NZEH) Design Optimization to Improve Life Cycle Cost Performance Using Genetic Algorithm

    Science.gov (United States)

    Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.

    2018-03-01

    Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.

  8. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  9. Mitigation of climate change via a copper-chlorine hybrid thermochemical water splitting cycle for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, M.F.; Dincer, I.; Rosen, M.A.

    2009-01-01

    Concerns regarding climate change have motivated research on clean energy resources. While many energy resources have limitations, nuclear energy has the potential to supply a significant share of energy supply without contributing to climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another option for the utilization of nuclear thermal energy. This paper describes nuclear-based hydrogen production technologies and discusses the role of the Cu-Cl cycle for thermochemical water decomposition, potentially driven in part by waste heat from a nuclear generating station, in reducing greenhouse gas emissions. (author)

  10. Measures to remove impediments to better utilization. Renewable energy sources

    International Nuclear Information System (INIS)

    Diekmann, J.; Eichelbroenner, M.; Langniss, O.

    1997-01-01

    The utilization of renewable energy sources meets with a number of obstacles created in particular by economic framework conditions, regulatory provisions, lengthy administrative procedures, insufficient information, and to some part also to the reluctance of bankers and utilities. This is why an action programme was put underway by the Forum fuer Zukunftsenergien, together with the Berlin-based DIW (German economic research institute) and the Stuttgart-based DLR (German aerospace research institute), financed from public funds of the Federal Ministry of Economics. Under this programme, almost 900 operators of systems for electricity generation from wind power, hydropower, biomass, ambient heat, solar thermal energy and by photovoltaic conversion have been interviewed. Based on the information obtained, the article reveals the existing impediments and proposed action for overcoming the obstacles. (orig.) [de

  11. On Hybrid Energy Utilization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Tala’t

    2017-11-01

    Full Text Available In a wireless sensor network (WSN, many applications have limited energy resources for data transmission. In order to accomplish a better green communication for WSN, a hybrid energy scheme can supply a more reliable energy source. In this article, hybrid energy utilization—which consists of constant energy source and solar harvested energy—is considered for WSN. To minimize constant energy usage from the hybrid source, a Markov decision process (MDP is designed to find the optimal transmission policy. With a finite packet buffer and a finite battery size, an MDP model is presented to define the states, actions, state transition probabilities, and the cost function including the cost values for all actions. A weighted sum of constant energy source consumption and a packet dropping probability (PDP are adopted as the cost value, enabling us to find the optimal solution for balancing the minimization of the constant energy source utilization and the PDP using a value iteration algorithm. As shown in the simulation results, the performance of optimal solution using MDP achieves a significant improvement compared to solution without its use.

  12. Utilization of Used Nuclear Fuel in a Potential Future US Fuel Cycle Scenario - 13499

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [Oak Ridge National Laboratory, P.O. BOX 2008 MS6172, Oak Ridge, TN, 37831-6172 (United States)

    2013-07-01

    To date, the US reactor fleet has generated approximately 68,000 MTHM of used nuclear fuel (UNF) and even with no new nuclear build in the US, this stockpile will continue to grow at approximately 2,000 MTHM per year for several more decades. In the absence of reprocessing and recycle, this UNF is a liability and needs to be dealt with accordingly. However, with the development of future fuel cycle and reactor technologies in the decades ahead, there is potential for UNF to be used effectively and efficiently within a future US nuclear reactor fleet. Based on the detailed expected operating lifetimes, the future UNF discharges from the existing reactor fleet have been calculated on a yearly basis. Assuming a given electricity demand growth in the US and a corresponding growth demand for nuclear energy via new nuclear build, the future discharges of UNF have also been calculated on a yearly basis. Using realistic assumptions about reprocessing technologies and timescales and which future fuels are likely to be reprocessed, the amount of plutonium that could be separated and stored for future reactor technologies has been determined. With fast reactors (FRs) unlikely to be commercially available until 2050, any new nuclear build prior to then is assumed to be a light water reactor (LWR). If the decision is made for the US to proceed with reprocessing by 2030, the analysis shows that the UNF from future fuels discharged from 2025 onwards from the new and existing fleet of LWRs is sufficient to fuel a realistic future demand from FRs. The UNF arising from the existing LWR fleet prior to 2025 can be disposed of directly with no adverse effect on the potential to deploy a FR fleet from 2050 onwards. Furthermore, only a proportion of the UNF is required to be reprocessed from the existing fleet after 2025. All of the analyses and conclusions are based on realistic deployment timescales for reprocessing and reactor deployment. The impact of the delay in recycling the UNF

  13. Utilization of Used Nuclear Fuel in a Potential Future US Fuel Cycle Scenario - 13499

    International Nuclear Information System (INIS)

    Worrall, Andrew

    2013-01-01

    To date, the US reactor fleet has generated approximately 68,000 MTHM of used nuclear fuel (UNF) and even with no new nuclear build in the US, this stockpile will continue to grow at approximately 2,000 MTHM per year for several more decades. In the absence of reprocessing and recycle, this UNF is a liability and needs to be dealt with accordingly. However, with the development of future fuel cycle and reactor technologies in the decades ahead, there is potential for UNF to be used effectively and efficiently within a future US nuclear reactor fleet. Based on the detailed expected operating lifetimes, the future UNF discharges from the existing reactor fleet have been calculated on a yearly basis. Assuming a given electricity demand growth in the US and a corresponding growth demand for nuclear energy via new nuclear build, the future discharges of UNF have also been calculated on a yearly basis. Using realistic assumptions about reprocessing technologies and timescales and which future fuels are likely to be reprocessed, the amount of plutonium that could be separated and stored for future reactor technologies has been determined. With fast reactors (FRs) unlikely to be commercially available until 2050, any new nuclear build prior to then is assumed to be a light water reactor (LWR). If the decision is made for the US to proceed with reprocessing by 2030, the analysis shows that the UNF from future fuels discharged from 2025 onwards from the new and existing fleet of LWRs is sufficient to fuel a realistic future demand from FRs. The UNF arising from the existing LWR fleet prior to 2025 can be disposed of directly with no adverse effect on the potential to deploy a FR fleet from 2050 onwards. Furthermore, only a proportion of the UNF is required to be reprocessed from the existing fleet after 2025. All of the analyses and conclusions are based on realistic deployment timescales for reprocessing and reactor deployment. The impact of the delay in recycling the UNF

  14. Recent Developments of Wave Energy Utilization in Denmark

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Kramer, Morten

    2006-01-01

    by a more thorough description of three ongoing projects. These are Wave Dragon, Wave Star and Seawave Slot-cone Generator. Common for these projects are that they are being, or will soon be, tested in real sea and have benefited from the Danish Wave Energy Program. The work by the department......This paper aims at giving an overview of the developments researchers at the Department of Civil Engineering, Aalborg University, Denmark (DCE), have been involved in within the field of wave energy utilization in Denmark over the past decade. At first a general introduction is given followed...... on these projects involves substantial laboratory testing, numerical simulations and real sea prototype testing....

  15. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  16. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  17. Perspective of nuclear fuel cycle for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Fukuda, K.; Bonne, A.; Kagramanian, V.

    2001-01-01

    Nuclear power, on a life-cycle basis, emits about the same level of carbon per unit of electricity generated as wind and solar power. Long-term energy demand and supply analysis projects that global nuclear capacities will expand substantially, i.e. from 350 GW today to more than 1,500 GW by 2050. Uranium supply, spent fuel and waste management, and a non-proliferation nuclear fuel cycle are essential factors for sustainable nuclear power growth. An analysis of the uranium supply up to 2050 indicates that there is no real shortage of potential uranium available if based on the IIASA/WEC scenario on medium nuclear energy growth, although its market price may become more volatile. With regard to spent fuel and waste management, the short term prediction foresees that the amount of spent fuel will increase from the present 145,000 tHM to more than 260,000 tHM in 2015. The IPCC scenarios predicted that the spent fuel quantities accumulated by 2050 will vary between 525 000 tHM and 3 210 000 tHM. Even according to the lowest scenario, it is estimated that spent fuel quantity in 2050 will be double the amount accumulated by 2015. Thus, waste minimization in the nuclear fuel cycle is a central tenet of sustainability. The proliferation risk focusing on separated plutonium and resistant technologies is reviewed. Finally, the IAEA Project INPRO is briefly introduced. (author)

  18. Activities of electric utilities in alternative energy projects

    International Nuclear Information System (INIS)

    Silva, D.B. da; Reis Neto, J.L. dos

    1990-01-01

    Since oil crisis, in 1973 and 1979, some electrical utilities in Brazil begun investments in alternative projects for example production of electrolytic hydrogen, peats with energetics goals, steam from electric boiler, and methanol from wood gasification. With oil substitution goals, these projects have not success actually, after attenuated the crisis. However, the results acquired is experience for the development of the brazilian energy patterns. (author)

  19. Practical strategies of wind energy utilization for uninhabited aerial vehicles in loiter flights

    Science.gov (United States)

    Singhania, Hong Yang

    Uninhabited Aerial Vehicle (UAV) is becoming increasingly attractive in missions where human presence is undesirable or impossible. Agile maneuvers and long endurance are among the most desired advantages of UAVs over aircraft that have human pilots onboard. Past studies suggest that the performance of UAVs may be considerably improved by utilizing natural resources, especially wind energy, during flights. The key challenge of exploiting wind energy in practical UAV operations lies in the availability of reliable and timely wind field information in the operational region. This thesis presents a practical onboard strategy that attempts to over-come this challenge, to enable UAVs in utilizing wind energy effectively during flights, and therefore to enhance performance. We propose and explore a strategy that combines wind measurement and optimal trajectory planning onboard UAVs. During a cycle of a loiter flight, a UAV can take measurements of wind velocity components over the flight region, use these measurements to estimate the local wind field through a model-based approach, and then compute a flight trajectory for the next flight cycle with the objective of optimizing fuel. As the UAV follows the planned trajectory, it continues to measure the wind components and repeats the process of updating the wind model with new estimations and planning optimal trajectories for the next flight cycle. Besides presenting an onboard trajectory planning strategy of wind energy exploration, estimation, and utilization, this research also develops a semi-analytical linearized solution to the formulated nonlinear optimal control problem. Simulations and numerical results indicate that the fuel savings of trajectories generated using the proposed scheme depend on wind speed, wind estimation errors, rates of change in wind speed, and the wind model structures. For a given wind field, the magnitude of potential fuel savings is also contingent upon UAVs' performance capabilities.

  20. Utilization of stored elastic energy in leg extensor muscles by men and women.

    Science.gov (United States)

    Komi, P V; Bosco, C

    1978-01-01

    An alternating cycle of eccentric-concentric contractions in locomotion represents a sequence when storage and utilization of elastic energy takes place. It is possible that this storage capacity and its utilization depends on the imposed stretch loads in activated muscles, and that sex differences may be present in these phenomena. To investigate these assumed differences, subjects from both sexes and of good physical condition performed vertical jumps on the force-platform from the following experimental conditions: squatting jump (SJ) from a static starting position; counter-movement jump (CMJ) from a free standing position and with a preparatory counter-movement; drop jumps (DJ) from the various heights (20 to 100 cm) on to the platform followed immediately by a vertical jump. In all subjects the SJ, in which condition no appreciable storage of elastic energy takes place, produced the lowest height of rise of the whole body center of gravity (C.G.). The stretch load (drop height) influenced the performance so that height of rise of C. of G. increased when the drop height increased from 26 up to 62 cm (males) and from 20 to 50 cm (females). In all jumping conditions the men jumped higher than the women. However, examination of the utilization of elastic energy indicated that in CMJ the female subjects were able to utilize most (congruent to 90%) of the energy produced in the prestretching phase. Similarly, in DJ the overall change in positive energy over SJ condition was higher in women as compared to men. Thus the results suggest that although the leg extensor muscles of the men subjects could sustain much higher stretch loads, the females may be able to utilize a greater portion of the stored elastic energy in jumping activities.

  1. Fundamental plan of atomic energy development and utilization in fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The Prime Minister made the fundamental plan of atomic energy development and utilization in fiscal year 1986 based on the decision of Nuclear Safety Commission on March 13, 1986, and the decision of Atomic Energy Commission on March 18, 1986, in conformity with the law concerning Japan Atomic Energy Research Institute, and asked the opinion of Nuclear Safety Commission. After the deliberation, the Nuclear Safety Commission made the report same as the original draft on March 27, 1986. The outline of the measures taken in fiscal year 1986 is as follows. The strengthening of the measures for ensuring safety, the promotion of nuclear power generation, the establishment of nuclear fuel cycle, the development of the reactors of new types, the research on nuclear fusion, the research and development of nuclear-powered ships, the promotion of the utilization of radiation, the strengthening of the base for atomic energy development and utilization, the promotion of international cooperation, and the strengthening of safeguard measures and the countermeasures for the protection of nuclear substances. The total budget related to atomic energy for fiscal year 1986 is 357.3 billion yen. (Kako, I.)

  2. Utility survey on nuclear power plant siting and nuclear energy centers

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development

  3. Life-cycle assessment in the renewable energy sector

    International Nuclear Information System (INIS)

    Goralczyk, M.

    2003-01-01

    The Polish energy industry is facing challenges regarding energetic safety, competitiveness, improvement of domestic companies and environmental protection. Ecological guidelines concern the elimination of detrimental solutions, and effective energy management, which will form the basis for sustainable development. The Polish power industry is required to systematically increase the share of energy taken from renewable sources in the total energy sold to customers. Besides the economic issues, particular importance is assigned to environmental factors associated with the choice of energy source. That is where life-cycle assessment (LCA) is important. The main purpose of LCA is to identify the environmental impacts of goods and services during the whole life cycle of the product or service. Therefore LCA can be applied to assess the impact on the environment of electricity generation and will allow producers to make better decisions pertaining to environmental protection. The renewable energy sources analysed in this paper include the energy from photovoltaics, wind turbines and hydroelectric power. The goal and scope of the analysis comprise the assessment of environmental impacts of production of 1 GJ of energy from the sources mentioned above. The study will cover the construction, operation and waste disposal at each power plant. Analysis will cover the impact categories, where the environmental influence is the most significant, i.e. resource depletion, global warmth potential, acidification and eutrophication. The LCA results will be shown on the basis of European and Australian research. This analysis will be extended with a comparison between environmental impacts of energy from renewable and conventional sources. This report will conclude with an analysis of possibilities of application of the existing research results and LCA rules in the Polish energy industry with a focus on Poland's future accession to the European Union. Definitions of LCA fundamental

  4. Efficient energy utilization and environmental issues applied to power planning

    International Nuclear Information System (INIS)

    Campbell, Hector; Montero, Gisela; Perez, Carlos; Lambert, Alejandro

    2011-01-01

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO 2 to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO 2 . The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO 2 . - Highlights: → We contrast power planning methods for supply electricity for economy development. → Importance of policies for electricity savings and efficient use in power planning. → Systemic planning facilitates decision-making process for electricity optimization. → Supply-side planning will cause climb in prices and loss of energy self-sufficiency. → Power planning should be immersed in an environment of appropriate energy policies.

  5. Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption

    DEFF Research Database (Denmark)

    Pressley, Phillip N.; Aziz, Tarek N.; DeCarolis, Joseph F.

    2014-01-01

    This paper utilizes life cycle assessment (LCA) methodology to evaluate the conversion of U.S. municipal solid waste (MSW) to liquid transportation fuels via gasification and Fischer-Tropsch (FT). The model estimates the cumulative energy demand and global warming potential (GWP) associated...

  6. World situation of atomic energy and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Szili, G.

    1978-01-01

    At the International Conference organized by the IAEA in May 1976, several sections dealt with problems of the production of atomic energy and of the nuclear fuel cycle. However, the whole spectrum of these problems was discussed including problems of economic policy, politics and ethical problems, too. Reports were presented on trends of the development of atomic energy in developed and developing countries. Besides the systems of nuclear power plants and the trends of their development, the Conference attached prominent importance to the supply of nuclear fuels and to the fuel cycle, respectively. Owing to important factors, the reprocessing of the spent nuclear fuel was emphasized. The problem area of the treatment of radioactive wastes, the protection of workers in immediate contact and of environment against radiations, the possibilities of ensuring nuclear safety, the degrees of hazards and the methods of protection of fast breeder reactors and up-to-date equipments were discussed. In contrast to earlier conferences the complex problem of the correlation of atomic energy to public opinion played an important role, too. (P.J.)

  7. Impact of gas on utilities - competitive energy options

    International Nuclear Information System (INIS)

    Coolican, M.

    1997-01-01

    The initiatives taken by Nova Scotia Power to have natural gas as a generating fuel was discussed. Nova Scotia Power customers have indicated to the Utility that along with reduced energy costs, they want choices, better services and innovative products. It was noted that coal is currently Nova Scotia Power's principal fuel, but the utility is working with the Cape Breton Development Corporation, their supplier, to bring the cost of coal down. The utility is also exploring the potential of coal bed methane in Pictou and Cumberland counties of Nova Scotia. However, the most promising competitive energy option for their customers is Sable Offshore natural gas. To bring natural gas as the generating fuel for electricity, the Utility is taking steps to convert its Tufts Cove Thermal Generating Station to natural gas and to pipe natural gas to the Trenton Generating Station by November 1999. Bringing natural gas to these two stations would establish a critical base level of demand for natural gas in the Halifax and New Glasgow-Trenton area. One of the important ingredients of this plan is the cost of piping the gas to market. It was suggested that the 'postage stamp' tolling system (i.e. one price for the gas delivered anywhere along the pipeline) favored by some, would not give Nova Scotians the economic advantages that they deserve. For this reason, Nova Scotia Power favours the 'point to point' tolling system, a system that is considered fair and efficient, and the one that has a better chance of producing competitive energy prices

  8. Modern combined cycle power plant utilizing the GT11N2

    International Nuclear Information System (INIS)

    Goodwin, J.C.

    1992-01-01

    The requirement imposed on modern power plants are increasingly demanding. The limits of: efficiency; environmental sensitivity; reliability and availability; are constantly being pushed. Today's state of the art combined cycle power plants are positioned well to meet these challenges. This paper reports that these objectives can be achieved through the selection of the proper gas turbine generator in an optimized cycle concept. A balanced approach to the plant design is required. It must not sacrifice any one of these requirements, in order to achieve the others. They achieve their fullest potential when firing a clean fuel, natural gas. However, fuel oil, both light (No. 2) and heavy (No. 6), can be utilized but some efficiency and environmental impact will have to be sacrificed

  9. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hori, Hiroaki; Deguchi, Shinguo; Yano, Junya; Sakai, Shinichi

    2010-01-01

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x10 6 t-wet/ yr (0.14x10 6 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  10. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    Science.gov (United States)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  11. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  12. Peaceful utilization of nuclear energy in the FRG

    International Nuclear Information System (INIS)

    1980-01-01

    The present paper gives a summary of the initiatives taken by the Deutscher Bundestag (Federal Assembly) for peaceful utilization of nuclear energy consideration of relevant secondary aspects like area planning, assessment of technology consequences, the introduction of the Verbandsklage (write of associations to enter in public proceedings) etc. It is an extended table of contents of the 7th and 8th election period. Fixed days was the 1rst of Jan, 1980. Apart from this temporary limitation, only the Enquete-Commission's report Future Nuclear Energy Policy was taken into consideration because in this report the discussion about energy policy of the last two election periods is brought to an end. (orig.) [de

  13. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  14. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  15. Exergoeconomic analysis of utilizing the transcritical CO_2 cycle and the ORC for a recompression supercritical CO_2 cycle waste heat recovery: A comparative study

    International Nuclear Information System (INIS)

    Wang, Xurong; Dai, Yiping

    2016-01-01

    Highlights: • An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle. • Performance of the sCO_2/tCO_2 cycle and sCO_2/ORC cycle are presented and compared. • The sCO_2/tCO_2 cycle performs better than the sCO_2/ORC cycle at lower PRc. • The sCO_2/tCO_2 cycle has comparable total product unit cost with the sCO_2/ORC cycle. - Abstract: Two combined cogeneration cycles are examined in which the waste heat from a recompression supercritical CO_2 Brayton cycle (sCO_2) is recovered by either a transcritical CO_2 cycle (tCO_2) or an Organic Rankine Cycle (ORC) for generating electricity. An exergoeconomic analysis is performed for sCO_2/tCO_2 cycle performance and its comparison to the sCO_2/ORC cycle. The following organic fluids are considered as the working fluids in the ORC: R123, R245fa, toluene, isobutane, isopentane and cyclohexane. Thermodynamic and exergoeconomic models are developed for the cycles on the basis of mass and energy conservations, exergy balance and exergy cost equations. Parametric investigations are conducted to evaluate the influence of decision variables on the performance of sCO_2/tCO_2 and sCO_2/ORC cycles. The performance of these cycles is optimized and then compared. The results show that the sCO_2/tCO_2 cycle is preferable and performs better than the sCO_2/ORC cycle at lower PRc. When the sCO_2 cycle operates at a cycle maximum pressure of around 20 MPa (∼2.8 of PRc), the tCO_2 cycle is preferable to be integrated with the recompression sCO_2 cycle considering the off-design conditions. Moreover, contrary to the sCO_2/ORC system, a higher tCO_2 turbine inlet temperature improves exergoeconomic performance of the sCO_2/tCO_2 cycle. The thermodynamic optimization study reveals that the sCO_2/tCO_2 cycle has comparable second law efficiency with the sCO_2/ORC cycle. When the optimization is conducted based on the exergoeconomics, the total product unit cost of the sCO_2/ORC is slightly lower than that of the sCO_2/tCO_2

  16. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  17. Solar and wind energy utilization at Sarawak Southern national parks

    International Nuclear Information System (INIS)

    Abdul Rahman, N.; Kolot, A.

    2006-01-01

    The intentions of renewable energy utilization in Sarawak national parks were to reduce the environmental impacts to the protected surrounding and to overcome fuel transportation problem, as most national parks in Sarawak are not viable for the state electricity grid connection. The study was conducted at three national parks in southern Sarawak; viz. Samusan, Tanjung Datu and Pulau Talang-Talang Besar National Park. The study focused on the effectiveness of the system implementation, energy load and associated problems. Both Samusan and Tanjung Datu National systems are hybrids, which consist of solar photovoltaic panels, wind turbine and diesel generators, whereas, Pulau Talang-Talang Besar National Park is a stand alone system of solar photovoltaic panels only. In addition, the inefficient energy usage was observed at Samusan National Park. The study have identified that lack of local expertise, spare parts availability, transportation and inefficient energy management as the major problems associated to the solar and wind energy system in all national parks studied. Albeit the problems mentioned, the study discovered that the systems were acceptably reliable and satisfactorily supply fraction of the energy requirements to the national parks communities

  18. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  19. The nuclear power cycle; Le cycle de l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  20. Effective energy management by combining gas turbine cycles and forward osmosis desalination process

    International Nuclear Information System (INIS)

    Park, Min Young; Shin, Serin; Kim, Eung Soo

    2015-01-01

    Highlights: • Innovative gas turbine system and FO integrated system was proposed. • The feasibility of the integrated system was analyzed thermodynamically. • GOR of the FO–gas turbine system is 17% higher than those of MED and MSF. • Waste heat utilization of the suggested system is 85.7%. • Water production capacity of the suggested system is 3.5 times higher than the MSF–gas turbine system. - Abstract: In the recent years, attempts to improve the thermal efficiency of the gas turbine cycles have been made. In order to enhance the energy management of the gas turbine cycle, a new integration concept has been proposed; integration of gas turbine cycle and forward osmosis desalination process. The combination of the gas turbine cycle and the forward osmosis (FO) desalination process basically implies the coupling of the waste heat from the gas turbine cycle to the draw solute recovery system in the FO process which is the most energy consuming part of the whole FO process. By doing this, a strong system that is capable of producing water and electricity with very little waste heat can be achieved. The feasibility of this newly proposed system was analyzed using UNISIM program and the OLI property package. For the analysis, the thermolytic draw solutes which has been suggested by other research groups have been selected and studied. Sensitivity analysis was conducted on the integration system in order to understand and identify the key parameters of the integrated system. And the integrated system was further evaluated by comparing the gain output ratio (GOR) values with the conventional desalination technologies such as multi stage flash (MSF) and multi effect distillation (MED). The suggested integrated system was calculated to have a GOR of 14.8, while the MSF and MED when integrated to the gas turbine cycle showed GOR value of 12. It should also be noted that the energy utilization of the suggested integrated system is significantly higher by 27

  1. Utility opinions on energy supply. Praise and reprimand

    International Nuclear Information System (INIS)

    2008-01-01

    This article discusses the opinions expressed by several electricity utilities on the cost-covering remuneration of electricity produced using renewable resources. Positive and negative aspects of the system - in the opinion of the utilities - are listed. Positive issues discussed include the improved economic viability of installations using renewable energy sources, preservation of know-how, increased use of renewables and the minimisation of economic risk for the builders of such installations. Negative issues noted include the general financial burden placed on all electricity consumers, the limits placed by parliament on the remuneration scheme, various hindrances still active in the implementation of such installations and possible competition with other schemes that further the use of electricity from renewable resources.

  2. Impacts of energy utilization in a tropical environment

    International Nuclear Information System (INIS)

    Kleemann, M.; Penner, K.; Seele, U.

    1992-01-01

    The purpose of this paper is to present the approach and the interim results of the Indonesian-German scientific co-operation on environmental impacts of future energy utilization in Indonesia. The aim of the planning study is to provide decision support for Indonesian authorities in order to develop environmentally compatible energy supply strategies. The environmental problems will focus on the island of Java with a population density of more than 800 inhabitants/km 2 which might reach 1200 within the next 25 years. Due to the further economic growth and the population increase the energy consumption of the industry, the traffic, and the household sector will increase significantly. In particular the polluting coal utilization will grow overproportionally because of declining oil reserves. Additionally, the industrial development is concentrated on the island of Java which covers only 8% of the land area of the country. A serious pollution of the sensitive tropical ecosystems in the future would be the consequence of this unbalanced developments if no efforts are made to reduce the pollutant emissions. Even today the air quality has already reached critical levels in many parts of Java. 3 figs., 3 tabs

  3. Alberta Energy and Utilities Board, regulatory highlights for 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This new publication informs readers about what the Alberta Energy and Utilities Board (EUB) did in the past year, including important regulatory issues, trends and initiatives. The EUB is an agency of the provincial government, established to regulate Alberta's energy resource and utility sectors. It is part of the Alberta Ministry of Energy. The four main functions of the Board are regulatory initiatives, license applications, enforcement and information. This publication summarized the EUB's position regarding flaring (both solution gas flaring and well test flaring), and Board activities in the areas of animal health concerns, the gas over bitumen controversy, the deregulation of the electric industry and what it means to the EUB, improvements in data quality as a result of improved industry compliance in reporting, and a variety of issues related to the oil sands and the negotiated settlement process. Also, the Board has been proactive in the area of oilfield waste management guidelines, proliferation policies for gas processing facilities, sulphur recovery guidelines, and the expansion of the orphan well program to include facilities and pipelines. As a measure of the success of the EUB, a recent survey of 19 randomly selected focus groups praised EUB for its impartiality, fair and equitable enforcement and independence. It was also praised for its technically competent and experienced staff, its access to quality information and the clarity of its mandate, regulatory requirements and processes. The Board's efforts in the area of timely stakeholder consultation was highlighted. tabs., figs

  4. Alberta Energy and Utilities Board, regulatory highlights for 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    This new publication informs readers about what the Alberta Energy and Utilities Board (EUB) did in the past year, including important regulatory issues, trends and initiatives. The EUB is an agency of the provincial government, established to regulate Alberta`s energy resource and utility sectors. It is part of the Alberta Ministry of Energy. The four main functions of the Board are regulatory initiatives, license applications, enforcement and information. This publication summarized the EUB`s position regarding flaring (both solution gas flaring and well test flaring), and Board activities in the areas of animal health concerns, the gas over bitumen controversy, the deregulation of the electric industry and what it means to the EUB, improvements in data quality as a result of improved industry compliance in reporting, and a variety of issues related to the oil sands and the negotiated settlement process. Also, the Board has been proactive in the area of oilfield waste management guidelines, proliferation policies for gas processing facilities, sulphur recovery guidelines, and the expansion of the orphan well program to include facilities and pipelines. As a measure of the success of the EUB, a recent survey of 19 randomly selected focus groups praised EUB for its impartiality, fair and equitable enforcement and independence. It was also praised for its technically competent and experienced staff, its access to quality information and the clarity of its mandate, regulatory requirements and processes. The Board`s efforts in the area of timely stakeholder consultation was highlighted. tabs., figs.

  5. Energy balance calculations and assessment of two thermochemical sulfur cycles

    International Nuclear Information System (INIS)

    Leger, D.; Lessart, P.; Manaud, J.P.; Benizri, R.; Courvoisier, P.

    1978-01-01

    Thermochemical cyclic processes which include the highly endothermal decomposition of sulphuric acid are promising for hydrogen production by water-splitting. Our study is directed toward two cycles of this family, each involving the formation and decomposition of sulphuric acid and including other reactions using iron sulphide for the first and oxides and bromides of copper and magnesium for the second. Thermochemical analyses of the two cycles are undertaken. Thermodynamic studies of the reactions are carried out, taking into account possible side-reactions. The concentration of reactants, products and by-products resulting from simultaneous equilibria are calculated, the problems of separation thoroughly studied and the flow-diagrams of the processes drawn up. Using as heat source the helium leaving a 3000 MWth high temperature nuclear reactor and organizing internal heat exchange the enthalpy diagrams are drawn up and the net energy balances evaluated. The overall thermal efficiencies are about 28%, a value corresponding to non-optimized process schemes. Possible improvements aiming at energy-saving and increased efficiency are indicated

  6. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  7. Enhanced understanding of energy ratepayers: Factors influencing perceptions of government energy efficiency subsidies and utility alternative energy use

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Allen, Myria W.

    2014-01-01

    This study explores factors related to energy consumers' perceptions of government subsidies for utility provided energy efficiency (EE) programs and for utility providers' use of more clean/alternative energy sources. Demographic factors, attitudes, planned purchases, and perceptions of utility provider motives in relation to governmental and utility provider EE initiatives (i.e. providing discounts and coupons for CFL bulbs), plus the influence of gain- and loss-framed messages are investigated. Over 2000 respondents completed a 16 item phone survey. Hierarchical regression explained 38% of the variance in reactions regarding government subsidies of the cost of utility provided EE programs and 43% of the variance in perceptions involving whether utility companies should use of more clean or alternative forms of energy. Gender and party differences emerged. Loss-framed messages were more important when the issue was government subsidies. Both gain- and loss-framed messages were important when clean/alternative energy was the issue. - Highlights: • Over 2000 ratepayers were surveyed on their attitudes, planned behaviors and perceptions towards energy efficiency programs. • Almost 40% of how ratepayers feel about government subsidies and utility use of clean/alternative energy was explained. • Loss-framed messages were more effective when the dependent variable was ratepayer perception of government subsidies

  8. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  9. The energy-efficiency business - Energy utility strategies; Geschaeftsfeld Energieeffizienz. Strategien von Energieversorgern

    Energy Technology Data Exchange (ETDEWEB)

    Loebbe, S.

    2009-07-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed.

  10. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  11. Uranium resource utilization improvements in the once-through PWR fuel cycle

    International Nuclear Information System (INIS)

    Matzie, R.A.

    1980-04-01

    In support of the Nonproliferation Alternative Systems Assessment Program (NASAP), Combustion Engineering, Inc. performed a comprehensive analytical study of potential uranium utilization improvement options that can be backfit into existing PWRs operating on the once-through uranium fuel cycle. A large number of potential improvement options were examined as part of a preliminary survey of candidate options. The most attractive of these, from the standpoint of uranium utilization improvement, economic viability, and ease of implementation, were then selected for detailed analysis and were included in a single composite improvement case. This composite case represents an estimate of the total savings in U 3 O 8 consumption that can be achieved in current-design PWRs by implementing improvements which can be developed and demonstrated in the near term. The improvement options which were evaluated in detail and included in the composite case were a new five-batch, extended-burnup fuel management scheme, low-leakage fuel management, modified lattice designs, axial blankets, reinsertion of initial core batches, and end-of-cycle stretchout

  12. Making It Count: Understanding the Value of Energy Efficiency Financing Programs Funded by Utility Customers

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-12-01

    Utility customer-supported financing programs are receiving increased attention as a strategy for achieving energy saving goals. Rationales for using utility customer funds to support financing initiatives

  13. Long-term fuel cycle scenarios for advanced utilization of plutonium from LWRs

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji

    2005-01-01

    The Innovative Water Reactor for Flexible fuel cycle (FLWR) realizes multiple recycling and breeding of Pu, which enables effective utilization of the uranium resource, and is based on well-developed LWR technologies. This reactor offers flexibility for the future nuclear fuel cycle situation. Three scenarios were defined for future deployment of nuclear power generation and fuel cycle systems in Japan and analyzed from the view point of Pu recycle, natural uranium consumption and stock of spent fuels. The LWR with long-term Pu recycle with or without MOX fuel reprocessing needs uranium of about 9 thousands tons per year and accumulated uranium consumption of 1.5 million tons in 2150. If the FLWR with net conversion ratio of 0.89 and 1.04 would be introduced in 2025 and 2050 or 2030, it would suppress ultimate required natural uranium and control the uranium consumption about less than 1.2 million tons in 2150, while the FLWR in 2025 and FBR with breeding ratio of 1.16 in 2050 will at 0.9 million tons after in 2100. (T. Tanaka)

  14. Optimal utilization of waste-to-energy in an LCA perspective.

    Science.gov (United States)

    Fruergaard, T; Astrup, T

    2011-03-01

    Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  16. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  17. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  18. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  19. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Rudolf, Viktor; Papastergiou, Konstantinos D.

    2013-01-01

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  20. Decision modelling tools for utilities in the deregulated energy market

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, S. [Process Vision Oy, Helsinki (Finland)

    2005-07-01

    This thesis examines the impact of the deregulation of the energy market on decision making and optimisation in utilities and demonstrates how decision support applications can solve specific encountered tasks in this context. The themes of the thesis are presented in different frameworks in order to clarify the complex decision making and optimisation environment where new sources of uncertainties arise due to the convergence of energy markets, globalisation of energy business and increasing competition. This thesis reflects the changes in the decision making and planning environment of European energy companies during the period from 1995 to 2004. It also follows the development of computational performance and evolution of energy information systems during the same period. Specifically, this thesis consists of studies at several levels of the decision making hierarchy ranging from top-level strategic decision problems to specific optimisation algorithms. On the other hand, the studies also follow the progress of the liberalised energy market from the monopolistic era to the fully competitive market with new trading instruments and issues like emissions trading. This thesis suggests that there is an increasing need for optimisation and multiple criteria decision making methods, and that new approaches based on the use of operations research are welcome as the deregulation proceeds and uncertainties increase. Technically, the optimisation applications presented are based on Lagrangian relaxation techniques and the dedicated Power Simplex algorithm supplemented with stochastic scenario analysis for decision support, a heuristic method to allocate common benefits and potential losses of coalitions of power companies, and an advanced Branch- and-Bound algorithm to solve efficiently nonconvex optimisation problems. The optimisation problems are part of the operational and tactical decision making process that has become very complex in the recent years. Similarly

  1. Survey of renewable energy utilization and development potential in Oceania

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper reports fiscal 2000 survey of renewable energy utilization and development potential in Oceania. In Australia and New Zealand, renewable energy has already fairly been used. In Australia, it is promoted on the government policy level, with cost reduction and improved reliability in progress. The growth of 2% is set as a target in the year 2010. Promising are biomass and wind, while contributory in the long run are photovoltaic energies. New installations of hydraulic power generation are few, but potential is high for mini hydraulic power generation. Social interest is also comparatively high in renewable energies and greenhouse effect gas. However, further technological development is necessary for a full-scale contribution to global environmental problems. The situation in other south Pacific nations depends on their policy, economic condition and level of industrialization; each country heavily imports diesel oil for power generation, is under-developed industry-wise, and is a low income nation. The countries are desperately in need of foreign investment for the purpose of solving these problems. (NEDO)

  2. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  3. Worldwide satellite communications for the energy utility industry. Final report

    International Nuclear Information System (INIS)

    Skelton, R.L.

    1998-07-01

    Recent and future generations of low earth orbiting (LEO) satellites are promising new possibilities for using space communications to achieve operational improvements and business expansion in energy supply and delivery industries. The ability to reach remote locations with relatively inexpensive devices and infrastructure is a unique property of satellites. Applications include remote monitoring and control of distributed resources and emergency and personal communication. Satellite systems are emerging as a significant opportunity for investment minded utilities. Over a dozen groups are planning to launch a total of 1200 LEOs in the period from 1996 to 2006, at a probable cost of over $20 Billion. This large number of systems can provide a worldwide mix of narrow band and wideband services including data, voice, video and Internet access. This paper examines the two primary factors which have limited applications in the energy industry: cost and propagation delay. The former has so far limited the technology to fixed communications with a few important sites such as remote substations. The latter has rendered the technology unsuitable for applications where critical protection mechanisms are involved. These constraints are effectively countered by the emerging LEO systems. Big LEOs will be used for voice service, little LEOs will be the systems of choice for most utility data applications. The author concludes that there are good technical and business reasons to reconsider future satellite communications as an option for meeting certain strategic business objectives in power system management and customer oriented information services

  4. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  5. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer, E-mail: mchester@cal.berkeley.edu, E-mail: horvath@ce.berkeley.edu, E-mail: madanat@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA 94720 (United States)

    2010-07-15

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO{sub 2}, NO{sub X}, VOC (volatile organic compounds), and PM{sub 10} (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO{sub 2}e by 6-23 g CO{sub 2}e per passenger kilometer traveled. Life-cycle automobile SO{sub 2} and PM{sub 10} emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  6. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  7. Energy policy and externalities: the life cycle analysis approach

    International Nuclear Information System (INIS)

    Virdis, M.R.

    2002-01-01

    In the energy sector, getting the prices right is a prerequisite for market mechanisms to work effectively towards sustainable development. However, energy production and use creates 'costs' external to traditional accounting practices, such as damages to human health and the environment resulting from residual emissions or risks associated with dependence on foreign suppliers. Energy market prices do not fully reflect those external costs. For example, the costs of climate change are not internalized and, therefore, consumers do not get the right price signals leading them to make choices that are optimised from a societal viewpoint. Economic theory has developed approaches to assessing and internalizing external costs that can be applied to the energy sector and, in principle, provide means to quantify and integrate relevant information in a comprehensive framework. The tools developed for addressing these issues are generally aimed at monetary valuation of impacts and damages and integration of the valued 'external costs' in total cost of the product, e.g. electricity. The approach of Life Cycle Analysis (LCA) provides a conceptual framework for a detailed and comprehensive comparative evaluation of energy supply options. This paper offers a summary of the LCA methodology and an overview of some of its limitations. It then illustrates, through a few examples, how the methodology can be used to inform or correct policy making and to orient investment decisions. Difficulties and issues emerging at various stages in the application and use of LCA results are discussed, although in such a short note, it is impossible to address all issues related to LCA. Therefore, as part of the concluding section, some issues are left open - and areas in which further analytical work may be needed are described. (author)

  8. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  9. History of, and recent progress in, wind-energy utilization

    International Nuclear Information System (INIS)

    Soerensen, B.

    1995-01-01

    This review presents the current status of wind turbine technology and recent advances in understanding the long history of wind energy. Reasons for the convergence of technologies solutions towards a horizontal axis concept with two or three blades are discussed, and the advances in materials science are identified as determinants of the change toward increasing optimum turbine size. The modest environmental impacts of wind turbines are illustrated by recent life-cycle analyses, and the economic incentive structure and power buy-back rates in different countries are invoked to explain the variation in wind technology penetration in countries with similar resource potentials. Finally, the possible future role of wind technology is discussed, based on resource estimates, competing land demands, government commitments and technological trends, including the recent offshore wind farm developments. 83 refs., 15 figs., 6 tabs

  10. Fuel utilization improvements in a once-through PWR fuel cycle. Final report on Task 6

    International Nuclear Information System (INIS)

    Dabby, D.

    1979-06-01

    In studying the position of the United States Department of Energy, Non-proliferation Alternative Systems Assessment Program, this report determines the uranium saving associated with various improvement concepts applicable to a once-through fuel cycle of a standard four-loop Westinghouse Pressurized Water Reactor. Increased discharged fuel burnup from 33,000 to 45,000 MWD/MTM could achieve a 12% U 3 O 8 saving by 1990. Improved fuel management schemes combined with coastdown to 60% power, could result in U 3 O 8 savings of 6%

  11. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  12. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  13. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  14. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  15. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  16. Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia

    International Nuclear Information System (INIS)

    Chua, Kein Huat; Lim, Yun Seng; Morris, Stella

    2015-01-01

    Highlights: • Energy storage can replace the peaking plants. • The cost of electricity for the plants with energy storage is as competitive as fossil fuel power plants. • Energy storage can reduce CO_2 emissions and defer the reinforcement of transmissions and distributions infrastructure. • Energy storage can reduce peak demand charge for customers. - Abstract: Under the existing commercial framework of electricity in Malaysia, commercial and industrial customers are required to pay for the peak power demand charge every month. Usually, the peak demand charge can contribute up to 30% to their electricity bills due to the use of open-cycle gas power plants that deliver expensive electricity to the customers. Therefore, alternative means are sought after in order to reduce the peak demand for the customers. Distributed small-scaled energy storage can offer a good option to reduce the peak. This paper aims to identify the financial benefits of the energy storage system for utility companies and customers. An energy dispatch model is developed in HOMER to determine the cost of electricity. The model considers the heat rates of power plants in calculating the costs of electricity under different regulatory frameworks of natural gas with various prices of battery components. Apart from that, the cost-benefit for the customers under various electric tariff structures is evaluated. Four battery storage technologies, namely lead acid, vanadium redox flow, zinc-bromine, and lithium-ion are considered. The simulation results show that the storage system with lead acid batteries is more cost-effective than other battery technologies. The customers can reduce their electricity bills with the payback period of 2.8 years. The generation cost for the power system with energy storage is lower than that without energy storage. Besides, the system with energy storage has lower greenhouse gas emissions than that without energy storage. The deferral of the reinforcement of

  17. Open cycle ocean thermal energy conversion system structure

    Science.gov (United States)

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  18. Policy alternatives in reforming energy utilities in developing countries

    International Nuclear Information System (INIS)

    Gabriele, Alberto

    2004-01-01

    This paper examines the policy alternatives faced by developing countries in their endeavor to preserve and develop their electricity and gas systems, two service-oriented industries which--along with oil--provide the bulk of energy supply both in developed and in developing countries. Even in very poor countries, industrially generated energy is indispensable for carrying out most economic activities. Therefore, governments traditionally recognize that the supply of gas and electricity entails a fundamental public service dimension. The Introduction presents the case for reforming of energy utilities, discusses in general terms the pros and cons of privatization, and attempts to locate the reforms in a broader historical framework in which developing countries' governments faced characterized by increasing financial hardship. Section 2 constitutes the core of the paper. It reviews the main features of gas and power sector reforms in the developing world and analyzes specifically the cases of five semi-industrialized countries in Latin America and Asia. Section 3 (Concluding remarks) briefly evaluates the country experiences reviewed above and indicates a few policy lessons which can be learnt from them. The main conclusion is that, in a long-run development perspective, full-scale privatization of gas and power sectors in developing countries entails significant risks, and therefore a flexible policy approach is preferable to a rigid commitment to extensive liberalization

  19. Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Kim, Kyung Chun

    2014-01-01

    Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction. - Highlights: • Thermodynamic analysis was performed for a combined cycle utilizing LNG cold energy. • Ammonia–water Rankine cycle and LNG Rankine cycle was combined. • A parametric study was conducted to examine the effects of the key parameters. • Characteristics of the exergy efficiency and heat transfer capability were proposed. • The system performance was influenced significantly by the ammonia mass fraction

  20. The effective use of gas turbines and combined cycle technology in heat and electrical energy production

    International Nuclear Information System (INIS)

    Boehm, B.; Stark, E.

    1999-01-01

    The modernization of the energy industry in many countries is a real challenge for both, the policy makers as well as for the power industry. Especially, the efficient satisfaction of the heat and electrical demand of big cities will remain an interesting task for supply companies and hence for today engineers and economists, because the availability of natural gas from Russia and from other deposits owning countries for the decades to come, cogeneration by using modern gas turbines and combined cycle technologies is a key and corner stone of supply, not the least for its very low emission and small environmental loading. It is the intention of this paper, to demonstrate under resource to: 1) the high potential of natural gas-based cogeneration; 2) the high efficiency of gas turbines and combined cycle plants; 3) their flexibility to cover different demands; 4) the operational experience with gas turbines and combined cycle cogeneration plants; 5) the very good environmental behavior of gas turbines. Actually, the highest utilization of primary energy resources is afforded with natural gas and described technology. Future gradual rise of gas prices can bring about a shift from the present main application in high efficiency load plants to mid range load operation of cogeneration plants. (Author)

  1. XEUS: Exploratory Energy Utilization Systemic s for Fission Fusion Hybrid Application

    International Nuclear Information System (INIS)

    Suh, Kune Y.; Jeong, Wi S.; Son, Hyung M.

    2008-01-01

    World energy outlook requires environmental friendliness, sustain ability and improved economic feasibility. The Exploratory Energy Utilization Systemic s (XEUS) is being developed at the Seoul National University (SNU) to satisfy these demands. Generation IV (Gen IV) and fusion reactors are considered as candidates for the primary system. Battery Omnibus Reactor Integral System (BORIS) is a liquid-metal cooled fast reactor which is one of the Gen IV concepts. Fusion Engineering Lifetime Integral Explorer (FELIX) is a fusion demonstration reactor for power generation. These two concepts are considered as dominant options for future nuclear energy source from the environmental, commercial and nonproliferation points of view. XEUS may as well be applied to the fusion-fission hybrid system. The system code is being developed to analyze the steady state and transient behavior of the primary system. Compact and high efficiency heat exchangers are designed in the Loop Energy Exchanger Integral System (LEXIS). Modular Optimized Brayton Integral System (MOBIS) incorporates a Brayton cycle with supercritical fluid to achieve high power conversion ratio. The high volumetric energy density of the Brayton cycle enables designers to reduce the size and eventually the cost of the system when compared with that of the Rankine cycle. MOBIS is home to heat exchangers and turbo machineries. The advanced shell-and-tube or printed circuit heat exchanger is considered as heat transfer components to reduce size of the system. The supercritical fluid driven turbines and compressor are designed to achieve higher component efficiency. Thermo hydrodynamic characteristics of each component in MOBIS are demonstrated utilizing computational fluid dynamics software CFX R . Another key contributor to the reduction of capital costs per unit energy has to do with manufacturing and assembly processes that streamline plant construction by minimizing construction work and time. In a three

  2. Substrate Utilization and Cycling Performance Following Palatinose™ Ingestion: A Randomized, Double-Blind, Controlled Trial

    Directory of Open Access Journals (Sweden)

    Daniel König

    2016-06-01

    Full Text Available (1 Objective: To compare the effects of isomaltulose (Palatinose™, PSE vs. maltodextrin (MDX ingestion on substrate utilization during endurance exercise and subsequent time trial performance; (2 Methods: 20 male athletes performed two experimental trials with ingestion of either 75 g PSE or MDX 45 min before the start of exercise. The exercise protocol consisted of 90 min cycling (60% VO2max followed by a time trial; (3 Results: Time trial finishing time (−2.7%, 90% CI: ±3.0%, 89% likely beneficial; p = 0.147 and power output during the final 5 min (+4.6%, 90% CI: ±4.0%, 93% likely beneficial; p = 0.053 were improved with PSE compared with MDX. The blood glucose profile differed between trials (p = 0.013 with PSE resulting in lower glycemia during rest (95%–99% likelihood and higher blood glucose concentrations during exercise (63%–86% likelihood. In comparison to MDX, fat oxidation was higher (88%–99% likelihood; p = 0.005 and carbohydrate oxidation was lower following PSE intake (85%–96% likelihood; p = 0.002. (4 Conclusion: PSE maintained a more stable blood glucose profile and higher fat oxidation during exercise which resulted in improved cycling performance compared with MDX. These results could be explained by the slower availability and the low-glycemic properties of Palatinose™ allowing a greater reliance on fat oxidation and sparing of glycogen during the initial endurance exercise.

  3. Climatological background for the utilization of energy from the sun

    International Nuclear Information System (INIS)

    Alterio, S.; Barabaro, S.; Coppolino, S.

    1983-01-01

    Information on the main climatological factors characterizing a given place or area is fundamental for the utilization of energy from the Sun and for other applications. This paper collects and analyses the daily, monthly and yearly average climatic data (insolation, sunshine, state of the sky, air temperature and relative humidity) provided by sixty thermopluviometric stations variously distributed in the territory of Sicily. The analysis is here performed both with a purely applicative view and in order to point out the connection between climate and physical environment. It leads to a better knowledge of solar climate and constitutes the basis for equally interesting further developments in the various fields of applied climatology: geomorfology, agriculture, biology, ecology, bioclimatology, etc

  4. Geothermal energy utilized in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schulz, R.

    1990-01-01

    This paper reports on the geothermal resources and reserves that have been estimated for selected aquifers in the Northwest German Basin, the Upper Rhine Graben and the South German Molasse Basin. The highest reserves (31 · 10 18 J) are located in the Malm aquifer in the Molasse Basin. Geothermal energy is utilized in 15 localities using low enthalpy water. The total installed capacity is about 8 MW t . Two small new installations (Waldsee, Weiden) have been realized in the last years. In another project (Bruchsal) the doublet, which is necessary because of the high saline water, is now in a working order. A prefeasibility study for a Hot Dry Rock system has been performed by a German-French group. The HDR test site is located in the Upper Rhine Graben

  5. Energy and resource utilization of deinking sludge pyrolysis

    International Nuclear Information System (INIS)

    Lou, Rui; Wu, Shubin; Lv, Gaojin; Yang, Qing

    2012-01-01

    The thermochemical conversion technique was applied in deinking sludge from the pulp and papermaking industrial to indagate the utilization of sludge biomass to energy, and the pyrolysis characteristics and pyrolytic products of deinking sludge were studied with thermogravimetric analysis (TGA) and pyrolysis coupled with gas chromatograph–mass spectrometer (Py-GC/MS). The static tubular furnace as an applied industrial research was used to study deinking sludge pyrolysis. The solid, gas and liquid of products was characterized by electron probe microanalysis (EPMA), gas chromatograph (GC) and gas chromatograph–mass (GC/MS), respectively. The results revealed that the weight-loss process of deinking sludge was a non-isothermal reaction and composed of four stages, i.e. dewater stage, volatile releasing stage, carbon burnout stage and some calcium carbonate decomposition. Pyrolytic products from deinking sludge in the static tubular furnace were comprised of the gaseous (29.78%), condensed liquid (bio-oil, 24.41%) and solid residues (45.81%). The volatiles from deinking sludge pyrolyzing were almost aromatic hydrocarbons, i.e. styrene, toluene and benzene and few acids and the solid was calcium carbonate (CaCO 3 ) that can be reused as paper filler. Deinking sludge was converted into high-grade fuel and chemicals by means of thermochemical conversion techniques, hence, pyrolysis of paper deinking sludge had a promising development on the comprehensive utilization.

  6. A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization

    International Nuclear Information System (INIS)

    Shu, Gequn; Yu, Guopeng; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    Highlights: • The MA-ES provides comprehensive valuations on ORC used for waste heat utilization. • The MA-ES covers energetic, exergetic and economic evaluations of typical ORCs. • The MA-ES is a general assessing method without restriction to specific ORC condition. • Two ORC cases of ICE waste-heat-recovery are exemplified applying the MA-ES. - Abstract: A Multi-Approach Evaluation System (MA-ES) is established in this paper providing comprehensive evaluations on Organic Rankine Cycles (ORC) used for waste heat utilization. The MA-ES covers three main aspects of typical ORC performance: basic evaluations of energy distribution and system efficiency based on the 1st law of thermodynamics; evaluations of exergy distribution and exergy efficiency based on the 2nd law of thermodynamics; economic evaluations based on calculations of equipment capacity, investment and cost recovery. The MA-ES is reasonably organized aiming at providing a general method of ORC performance assessment, without restrictions to system configurations, operation modes, applications, working fluid types, equipment conditions, process parameters and so on. Two ORC cases of internal combustion engines’ (ICEs) waste-heat-recovery are exemplified to illustrate the applications of the evaluation system. The results clearly revealed the performance comparisons among ORC configurations and working fluids referred. The comparisons will provide credible guidance for ORC design, equipment selection and system construction

  7. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy

    International Nuclear Information System (INIS)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially improve the efficiency with which high and intermediate temperature finite thermal sources are utilized. The OFC's aim is to improve temperature matching and reduce exergy losses during heat addition. A theoretical investigation is conducted using high accuracy equations of state such as BACKONE, Span–Wagner, and REFPROP in a detailed thermodynamic and exergetic analysis. The study examines 10 different aromatic hydrocarbons and siloxanes as potential working fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC), a zeotropic Rankine cycle using a binary ammonia-water mixture, and a transcritical CO 2 cycle. Results showed aromatic hydrocarbons to be the better suited working fluid for the ORC and OFC due to higher power output and less complex turbine designs. Results also showed that the single flash OFC achieves comparable utilization efficiencies to the optimized basic ORC. Although the OFC improved heat addition exergetic efficiency, this advantage was negated by irreversibilities introduced during flash evaporation. A number of potentially significant improvements to the OFC are possible though which includes using a secondary flash stage or replacing the throttling valve with a two-phase expander. -- Highlights: ► The Organic Flash Cycle (OFC) is proposed to improve temperature matching. ► Ten aromatic hydrocarbon and siloxane working fluids are considered. ► Accurate equations of state explicit in Helmholtz energy are used in the analysis. ► The OFC is compared to basic ORCs, zeotropic, and transcritical cycles. ► The OFC achieves comparable power output to the optimized basic ORC.

  8. Green energy criteria and life cycle assessment in assessing environmental competitiveness of energy products

    International Nuclear Information System (INIS)

    Maelkki, H.; Hongisto, M.; Turkulainen, T.; Kuisma, J.; Loikkanen, T.

    1999-01-01

    The liberalisation of energy markets has increased the need to enlarge the information base of fuel chains, to evaluate the environmental quality of energy products transparently and to communicate results in a credible way. The preparedness of energy purchasers, producers and sellers to support energy choices of their customers and to meet the information requirements of various stake holders can be strengthened. The environmental impacts related to energy products are turning into a significant dimension of competitiveness. Possibilities to promote market-driven environmental protection mechanisms and to construct incentives, which cover the whole energy production system exist and can be supported. Knowledge of environmental impacts of various energy products can be increased by means of several supplementary instruments like eco-profiles, environmental labels and life cycle assessments of products. Life cycle assessment forms a systematic basis of information, which supports the environmental communications directed to various stake holders. In this study selected public LCA-studies concerning energy production have been compared, criteria of green energy have been charted and their outlook has been assessed. In addition the development of an LCA- based relative environmental performance indicator system, which supports various transparent comparisons, has been outlined. The mapping of methodological differences of published LCA-studies regarding various energy alternatives proves, that there is differences e.g. in allocation principles, system boundaries, and age of source information and in many other details. These discrepancies should be known, because they also affect the results. That is why the use of available LCA studies as a basis for comparative assertions may be problematic. The renewability of an energy source is a threshold requirement in eco-energy criteria formulated and introduced by Finnish, Swedish and Norwegian nature conservation

  9. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  10. Research and utilization of renewable energy resources in Bangladesh

    International Nuclear Information System (INIS)

    Kaiser, M.S.; Aditya, S.K.; Mazumder, R.K.

    2005-01-01

    Bangladesh is an energy deficit and low-economy country with high population density. Per-capita energy consumption is one of the lowest in the world. The only dependable indigenous gas, which is the major primary energy source in the country, is used mainly for the production of electricity and fertilizer. If it is burnt at an annual 10% growth rate of consumption, may not last more than 15-20 years. Around 30% of the people of the country have connections to the national grid line. In the villages, where 80% of the population live, the situation is worse. Even if it is possible to take the electric grid line to all villages of the country, which will be an extremely difficult and expensive work to do, the majority of the village houses will not be able to have electric connections due to poverty. No nuclear power station exists in the country and the possibility of setting up any in the near future is limited due to non-availability of funds. Hydroelectric resources are also low because of the flat terrain of the country. The fuel import bill also occupies a significant portion of the total amount of export earnings. Conventional resources in Bangladesh are utterly inadequate for supplying the energy needs to bring in a significant improvement in our economy. On the other hand when our gas reserves will be exhausted it will be difficult for us even to maintain the energy supply for the development of our country unless we find alternate sources of energy. Solar energy availability in Bangladesh is high around 5KWH/day per meter square or 2.6 10/sup 11/ MWH/year on the total surface area of the country. This is equivalent to the output of about 30GW capacity utility plant for 100 years assuming 10% efficiency of the solar devices. Large-scale production of electricity from new, renewable energy sources is a great challenge. Wind power is difficult to exploit economically in regions with wind speeds bellow 5 m/s yearly average. Solar thermal power plants come

  11. Tree planting in deserts and utilization of atomic energy

    International Nuclear Information System (INIS)

    Hattori, Sadao; Minato, Akio; Hashizume, Kenichi; Handa, Norihiko.

    1991-01-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km 2 yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.)

  12. Tree planting in deserts and utilization of atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao; Minato, Akio [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Hashizume, Kenichi; Handa, Norihiko

    1991-06-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km{sup 2} yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.).

  13. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.

    Science.gov (United States)

    Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea

    2013-10-10

    The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.

  14. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    Science.gov (United States)

    2013-01-01

    Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710

  15. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  16. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  17. Perspective on the French closed fuel cycle: Open towards energy future and sustainability

    International Nuclear Information System (INIS)

    Tinturier, Bernard; Debes, Michel; Delbecq, Jean-Michel

    2006-01-01

    Energy sustainability and nuclear energy nowadays are far reaching issues with many implications and as a consequence, any long term sustainable strategy needs to be flexible. In France, nuclear energy (427 TWh in 2004, 80% of national electricity production) is a major asset for clean electricity production and for meeting Kyoto protocol objective in France. The decision to build a future EPR reactor in France has been taken. Regarding back end and fuel cycle, the current reprocessing and recycling strategy, with the existing industrial system (Cogema La Hague and Melox), has proven to be reliable and efficient. It enables to meet sustainability requirements, now and in the long run: ensuring a good management of high level waste through vitrification, reducing the amount of nuclear spent fuel in interim storage, recycling valuable nuclear material (Pu), keeping the possibility to use Pu concentrated in MOX spent fuel to start FBR in the future. To maintain this possibility for the far future, EDF considers that the Generation IV program is of major importance in order to develop future fast reactors able to use plutonium and to ensure a full utilization of uranium resource, while optimizing high level waste management. EDF strategy is to keep the nuclear option open in the future, with a two-steps approach for the renewal of the current nuclear fleet: first, around 2020, with the launching of generation III reactors like EPR, and second, depending on the energy demand, launching of Generation IV systems, around 2040 or beyond. To meet this energy prospect, R and D efforts must be devoted to fast breeder reactors (sodium cooled, which benefits already from industrial experience, and gas cooled, under consideration for R and D). Globally, this strategy is open to future progress and optimisation as needed to meet long term energy sustainability. It appears the necessity of a good consistency between all the components of the nuclear system: reactors, fuel cycle

  18. Fundamental plan of atomic energy development and utilization in fiscal year 1986 related to atomic energy safety

    International Nuclear Information System (INIS)

    1986-01-01

    The Nuclear Safety Commission decided to report to the Prime Minister after having determined this matter by assuming the passage of the budget draft for fiscal year 1986 as the prerequisite. As the fundamental policy, in order to cope with the advance of atomic energy development and utilization, such as the promotion of nuclear power generation and the construction of a prototype FBR, a demonstration ATR, a reprocessing plant and other nuclear fuel cycle facilities, it is required to perfect the measures for ensuring the safety of atomic energy. For this purpose, the perfecting of the function of Nuclear Safety Commission and the system for safety examination, inspection and operation management and supervision in Government organs, the improvement of the quality of operators, the safety regulation of radioactive waste treatment and disposal, and the perfecting of the laws related to the regulation of nuclear raw materials, nuclear fuel and nuclear reacters are carried out. The research on the engineering safety of LWRs, the reactors of new types and reprocessing facilities, the research on the prevention of radiation injuries and the research on the safety of radioactive wastes are advanced. The establishment of nuclear fuel cycle, and the research on reactor decommissioning, the development of new type reactors and nuclear fusion are promoted from the viewpoint of safety. (Kako, I.)

  19. Local sharing of cogeneration energy through individually prioritized controls for increased on-site energy utilization

    International Nuclear Information System (INIS)

    Hirvonen, Janne; Kayo, Genku; Hasan, Ala; Sirén, Kai

    2014-01-01

    Highlights: • Sharing of surplus heat and electricity produced by CHP plants in different types of buildings. • Individually prioritized control of CHP plants with direct local sharing and minimal storage capacity. • Energy sharing reduced primary energy consumption by 1–9% with biogas. • Excess energy minimized by thermal tracking. - Abstract: All over the world, including Japan, there are targets to decrease building energy consumption and increase renewable energy utilization. Combined heat and power (CHP) plants increase energy efficiency and are becoming popular in Japan. CHP plants produce both heat and power simultaneously, but there is not always a need for both. A cluster of several different buildings can increase total efficiency and reduce primary energy (PE) consumption by sharing excess heat and electricity between neighboring buildings. If the generated energy comes from renewable sources, energy sharing makes it easier to reach the net zero energy balance. By adjusting CHP sizes and operation patterns, the wasted heat and primary energy consumption can be minimized. Energy sharing has been explored in situations with identical buildings and centrally administered energy systems before, but not with different building types with separate systems. In this study, a cluster of Japanese office and residential buildings were combined to allow heat and electricity sharing based on cogeneration, using individually prioritized control (IPC) systems. TRNSYS simulation was used to match energy generation with pregenerated demand profiles. Absorption cooling was utilized to increase the benefits of local heat generation. Different CHP operation modes and plant sizes were tested. The benefit of surplus energy sharing depends on the CHP capacities and the fuel type. When using biogas, larger CHP plants provided lower total primary energy consumption, in the most extreme case lowering it by 71%, compared to the conventional case. Using natural gas

  20. Anaerobic digestion and related best management practices : utilizing life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Venczel, M.Z. [Clarkson Univ., Potsdam, NY (United States); Powers, S.E. [Clarkson Univ., Potsdam, NY (United States)

    2010-07-01

    This paper reported on a life cycle assessment (LCA) study that compared the environmental impacts of business-as-usual manure management with those of a manure management operation incorporating anaerobic digestion with combined heat and power generation. The case study was based on a medium sized dairy farm in northern New York State. The study identified the benefits resulting from the displacement of fossil fuels, and reduction of related emissions. Although anaerobic digestion of dairy manure with energy recovery through biogas combustion is viewed as a positive environmental approach to increase the use of renewable energy, there are potential negative impacts that can counteract the environmental benefits. The negative impacts are associated with emissions of methane and nitrogen species during digestion and after spreading of digester effluent. The environmental impacts and their causes should be evaluated in order to promote best management practices. Knowledge gained from an LCA was used in this study to assess the benefits associated with various management practices. The study showed that the design and construction of biogas systems must minimize the potential for fugitive emissions of biogas that can readily outweigh the benefits associated fossil fuel displacement. The environmental trade-offs associated with various manure management and energy recovery systems were also described.

  1. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  2. Utilization of tidal power in Russia in overcoming the global energy and ecological crisis

    International Nuclear Information System (INIS)

    Bernshtein, L.B.; Usachev, I.N.

    1997-01-01

    The 30 years of the exploitation of the TPP Rance in France and Kyslogubskaya TPP in Russia had proved the energy expedience economical and ecological effectiveness and a high performance of the tidal energy. The possibility of such utilizing could be proved thanks to the application of the theoretical cycles of Gibrat, of the bulb units and the russian model of the tidal utilizing and application of the floating methods of creating the TPP. The investigations at TPP Kislaya Guba helped to solve the row of problems of marine power building with the high exploitation performance and ecological safety. Thus the TPP of Mezen with a capacity of 17 million kW can transfer to the united power system of Europe 50 TWh/year and the Tugur TPP with a capacity 8 million kW can produce 20 TWh/year of energy for the power system of seaside of Russian and Japan. Penzinskaya TPP with the capacity of 87 million kW can be promoted in 21. century in connection to the advanced in USA proposition of construction of the combining transport-power tunnel across the Bering Strait. (authors)

  3. Basic plans of atomic energy development and utilization for fiscal 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The Government has promoted the development and utilization of atomic energy as one of the most important measures for energy supplies. In Japan, due to the unrest concerning safety of nuclear power, siting of nuclear power plants is difficult, thereby the nuclear power generation program is delayed. Then, in major research and development projects such as those of uranium enrichment, fast breeder reactors, an advanced thermal reactor and nuclear fusion, while the remarkable results are being accumulated, the practical aspects are in need of positive governmental measures. Under this situation, the long range program of atomic energy development and utilization is being revised. For the fiscal year 1978 (from April, 1978 to March, 1979), based on the revision, the basic plans are presented, first, the basic policy, and second, the practical measures: strengthening of the safety measures; establishment of the nuclear fuel cycle; development of the new types of power reactors; promotion of the basic researches; securing of the people's understanding and cooperation. (Mori, K

  4. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2015-01-01

    Despite the prevalence of voluntary and involuntary energy conservation policies, developing countries in Africa continue to struggle to achieve energy efficiency targets. Consequently, energy intensity levels have risen threatening the security of the energy system. This raises the important question: is there an economic state that induces agents to be energy conscious? In this study, we study the case of Algeria's energy intensity from 1971 to 2010. First, the paper argues that there is a certain economic state that economic agents find investing in energy conservation a viable option. Any state different from that would mean not investing in energy conservation. Second, the paper argues that the economy can do better even with an infinitesimal reduction in fuel subsidy, and that the gains in revenue from the policy can compensate for the negative socio-economic and equity impacts associated with such a policy. Third, the paper argues that, so long as, industrial expansion in the country move parallel with investment in technological innovation, long-term sustainable growth and energy conservation targets are jointly feasible. Fourth, the paper shows that income elasticity evolves with the business cycle, and the absorptive capability of the host country affects how FDI (foreign direct inflows) impact energy intensity. - Highlights: • Low income states inhibit fuel substitution and investment in energy conservation. • Income elasticity evolves as we pass through boom and recessionary periods. • The goals of sustainable growth and energy conservation are not mutually exclusive. • Absorptive capability affects the impact of FDI on energy intensity

  5. The role of nuclear energy in reducing the environmental impact of China's energy utilization

    International Nuclear Information System (INIS)

    Wu, Zongxin; Sun, Yuliang

    1998-01-01

    It is presented in this paper the current status of China's energy market and the projections of its future development. China's energy market, currently and in the next decades, is mainly characterized by rapidly increasing demand and dominant role of coal which is directly related to serious environmental pollution. The role of nuclear energy utilization in improving the primary energy infrastructure is addressed. Status and development of nuclear power generation are described. Potential of introducing nuclear energy into heat market is discussed. An overview of the research and development work of water cooled low temperature heating reactors and gas-cooled high temperature gas cooled reactors in China is given and the technical and safety features of these two reactor types are briefly described. (author)

  6. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  7. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  8. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  9. What is the most energy efficient route for biogas utilization: Heat, electricity or transport?

    International Nuclear Information System (INIS)

    Hakawati, Rawan; Smyth, Beatrice M.; McCullough, Geoffrey; De Rosa, Fabio; Rooney, David

    2017-01-01

    Highlights: •The paper developed an assessment tool for analyzing biogas utilization routes. •The LCA methodology was used to allow a uniform assessment of the biogas system. •“% energy efficiency” was used as the functional unit for assessment. •49 biogas-to-energy routes were assessed based on their final useful energy form. •The framework aids policy makers in the decision process for biogas exploitation. -- Abstract: Biogas is a renewable energy source that can be used either directly or through various pathways (e.g. upgrading to bio-methane, use in a fuel cell or conversion to liquid fuels) for heat, electricity generation or mechanical energy for transport. However, although there are various options for biogas utilization, there is limited guidance in the literature on the selection of the optimum route, and comparison between studies is difficult due to the use of different analytical frameworks. The aim of this paper was to fill that knowledge gap and to develop a consistent framework for analysing biogas-to-energy exploitation routes. The paper evaluated 49 biogas-to-energy routes using a consistent life cycle analysis method focusing on energy efficiency as the chosen crtierion. Energy efficiencies varied between 8% and 54% for electricity generation; 16% and 83% for heat; 18% and 90% for electricity and heat; and 4% and 18% for transport. Direct use of biogas has the highest efficiencies, but the use of this fuel is typically limited to sites co-located with the anaerobic digestion facility, limiting available markets and applications. Liquid fuels have the advantage of versatility, but the results show consistently low efficiencies across all routes and applications. The energy efficiency of bio-methane routes competes well with biogas and comes with the advantage that it is more easily transported and used in a wide variety of applications. The results were also compared with fossil fuels and discussed in the context of national

  10. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    Science.gov (United States)

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to

  11. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  12. Utilization of net energy analysis as a method of evaluating energy systems

    International Nuclear Information System (INIS)

    Lee, Gi Won; Cho, Joo Hyun; Hah, Yung Joon

    1994-01-01

    It can be said that the upturn of Korean nuclear power program started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States since the late 70's. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type in U.S., considering the current U.S. trend of construction on the new plants. However, with the depletion of natural resources, it may be desirable to understand the utilization of two competitive utility technologies in terms of invested energy. Presented in this paper is a method of comparing two energy systems in terms of energy investment and a brief result from energy economic analysis of nuclear power plant and coal fired steam power plant to illustrate the methodology. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (lOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. Although NEA does not offer conclusive solution, it can be used as a screening process in decision making

  13. Energy basis of disasters and the cycles of order and disorder

    International Nuclear Information System (INIS)

    Alexander, J.F. Jr.

    1978-01-01

    A quantitative theory of cycles order and disorder was applied to the earth and evaluated to form an energy basis for the global cycles, surges, and disasters. Energy circuit language was used to diagram the world system and show a common pattern in the order--disorder processes. Storms, floods, forest fires, volcanic eruptions, earthquakes, urban fires, and wars were modeled as the catastrophic release of energy previously converged and stored. Released energy disordered and recycled material available to stimulate a new cycle of growth. Cascading of catastrophic processes of disasters was modeled with a world web. The feedback in the global energy web was provided by the control action of disaster pulses. The global model was presented in both diagrammatic and differential equation form with the energy flows and storages evaluated. Order--disorder models of the atmospheric, oceanic, biological, geological, and urban systems of earth were connected to form an energy convergence network. The global energy model was used to calculate energy quality factors (ratio of energy of one type generating energy of another type) for the earth's major energy transformations. The theory provided suggestions for land-use policy. Energy ratios that provide a quantitative basis for disaster planning can be developed for a local environment of pulsing energy. Possibilities were considered that cycles of order and disorder of the earth are synchronized by cycles of sunspots. Energy quality and pulse amplifier ratios of solar flares may be high enough to control many global cycles

  14. Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication.

    Directory of Open Access Journals (Sweden)

    Giuseppe Balistreri

    2016-02-01

    Full Text Available Kaposi's sarcoma herpesvirus (KSHV causes Kaposi's sarcoma and certain lymphoproliferative malignancies. Latent infection is established in the majority of tumor cells, whereas lytic replication is reactivated in a small fraction of cells, which is important for both virus spread and disease progression. A siRNA screen for novel regulators of KSHV reactivation identified the E3 ubiquitin ligase MDM2 as a negative regulator of viral reactivation. Depletion of MDM2, a repressor of p53, favored efficient activation of the viral lytic transcription program and viral reactivation. During lytic replication cells activated a p53 response, accumulated DNA damage and arrested at G2-phase. Depletion of p21, a p53 target gene, restored cell cycle progression and thereby impaired the virus reactivation cascade delaying the onset of virus replication induced cytopathic effect. Herpesviruses are known to reactivate in response to different kinds of stress, and our study now highlights the molecular events in the stressed host cell that KSHV has evolved to utilize to ensure efficient viral lytic replication.

  15. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    Science.gov (United States)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  16. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  17. Report of the workshop Energy Utility and Solar Water Heater 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The title workshop was organized to increase the interest of energy utilities for the Solar Water Heater campaign by providing representatives of the utilities with information about the technical and marketing aspects of solar boilers, and to stimulate knowledge transfer between the energy utilities about the method, the possibilities and bottlenecks of solar water heater projects

  18. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Science.gov (United States)

    2010-04-01

    ... (of the type affected by the energy conservation measure) after implementation of the energy...) Utility benchmarking. HUD will pursue benchmarking utility consumption at the project level as part of the... convene a meeting with representation of appropriate stakeholders to review utility benchmarking options...

  19. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  20. [Energy related studies utilizing K-feldspar thermochronology

    International Nuclear Information System (INIS)

    1992-01-01

    In our second year of current funding cycle, we have investigated the Ar diffusion properties and microstructures of K-feldspars and the application of domain theory to natural K-feldspars. We completed a combined TEM and argon diffusion study of the effect of laboratory heat treatment on the microstructure and kinetic properties of K-feldspar. We conclude in companion papers that, with one minor exception, no observable change in the diffusion behavior occurs during laboratory extraction procedures until significant fusion occurs at about 1100 degrees C. The effect that is observed involves a correlation between the homogenization of cryptoperthite lamelle and the apparent increase in retentivity of about 5% of the argon in the K-feldspar under study. We can explain this effect of both as an artifact of the experiment or the loss of a diffusion boundary. Experiments are being considered to resolve this question. Refinements have been made to our experimental protocol that appears that greatly enhance the retrieval of multi-activation energies from K-feldspars. We have applied the multi-domain model to a variety of natural environments (Valles Caldera, Red River fault, Appalachian basin) with some surprising results. Detailed 40 Ar/ 39 Ar coverage of the Red River shear zone, thought to be responsible for the accommodation of a significant fraction of the Indo-Asian convergence, strongly suggests that our technique can precisely date both the termination of ductile strike-slip motion and the initiation of normal faulting. Work has continued on improving our numerical codes for calculating thermal histories and the development of computer based graphing tools has significantly increased our productivity

  1. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Science.gov (United States)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  2. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Kobayashi, Hiroaki; Kinoshita, Kensuke

    2009-01-01

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  3. Innovative utilization of renewable energy sources to combat climate change

    Energy Technology Data Exchange (ETDEWEB)

    Harju-Jeantly, T.; Nuortio, K.; Hotta, A.; Coda-Zabetta, E.; Palonen, J.; Kokki, S. (Foster Wheeler Energia Oy, Varkaus (Finland)), Email: kalle.nuortimo@fwfin.com, Email: arto.hotta@fwfin.com, Email: juha.palonen@fwfin.com, Email: sami.kokki@fwfin.com

    2009-07-01

    Global warming has become a difficult challenge for both legislators and technologists. The need to reduce atmospheric CO{sub 2} has resulted in several new global and local agreements (the Kyoto protocol, Bali agreement etc., EU-emission trading directive) all driving tightening environmental legislation. /1/ Foster Wheeler as a global supplier of power equipment, has taken the challenge to respond to these environmental, social and political challenges. Products such as state-of-the-art boilers and gasifiers for heat and electricity generation from biomass are offered and further developed. Generally, biomass is considered to be a clean renewable energy source. Emissions are lower when firing biomass instead of fossil fuel, and the amount of SO{sub 2} released to the atmosphere is minimal due to the low sulfur content of the fuel. Life-cycle CO{sub 2} emissions are zero. /2/ Even though biomass can locally have a fairly large contribution in energy production, it will not be a global solution alone to mitigate the climate problem. Biomass currently accounts for about 10 % of world primary energy use, two thirds of which is used for small scale cooking and heating in developing countries. Biomass production is subject to a range of sustainability constraints, such deforestation etc. Coal will remain an important source for energy also in the future. Therefore it is important to develop clean coal solutions. The first, already existing solutions is to burn coal in high efficiency large Circulating Fluidized Bed (CFB) boilers and cofire biomass. This way the biomass can be burned with much better efficiency than in small biomass fired plants. The co-firing of biomass in CCS (Carbon Capture and Storage) power plant will even enable a carbon negative solution for coal firing. The future solution will be CCS. A possible future solution to combat global warming and ensure sustainable power production can be large power plants fuelled by algae combined with CCS. Algae

  4. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  5. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  6. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China

    Directory of Open Access Journals (Sweden)

    Hansi Liu

    2017-10-01

    Full Text Available In this paper, we used the life-cycle analysis (LCA method to evaluate the energy consumption and greenhouse gas (GHG emissions of natural gas (NG distributed generation (DG projects in China. We took the China Resources Snow Breweries (CRSB NG DG project in Sichuan province of China as a base scenario and compared its life cycle energy consumption and GHG emissions performance against five further scenarios. We found the CRSB DG project (all energy input is NG can reduce GHG emissions by 22%, but increase energy consumption by 12% relative to the scenario, using coal combined with grid electricity as an energy input. The LCA also indicated that the CRSB project can save 24% of energy and reduce GHG emissions by 48% relative to the all-coal scenario. The studied NG-based DG project presents major GHG emissions reduction advantages over the traditional centralized energy system. Moreover, this reduction of energy consumption and GHG emissions can be expanded if the extra electricity from the DG project can be supplied to the public grid. The action of combining renewable energy into the NG DG system can also strengthen the dual merit of energy conservation and GHG emissions reduction. The marginal CO2 abatement cost of the studied project is about 51 USD/ton CO2 equivalent, which is relatively low. Policymakers are recommended to support NG DG technology development and application in China and globally to boost NG utilization and control GHG emissions.

  7. Symbiotic energy demand and supply system based on collaboration between rare-earth and thorium utilization

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progressive economic growth as well as prodigious consumption of energy are expected among Asian countries. Nuclear power has myriad advantages, among them particularly being its status as a low carbon technology and therefore nuclear power would make a significant contribution to curtailing CO 2 emissions. However, the prospects for nuclear power are hindered by some unresolved problems: perceived adverse safety, environmental, and health effects; potential security risks stemming from proliferation; and unresolved challenges in long-term management of nuclear wastes. Thorium utilization as a nuclear fuel will serve as a cornerstone of circumventing such problems, because thorium produces less radioactive waste (i.e. less plutonium) and thus safety, which is of paramount concern, will be enhanced. The deployment of electric vehicles (EVs) as an alternative to supplant gasoline engine cars in the transportation network, will significantly contribute in the reduction of global CO 2 emissions. Rare-earth materials such as neodymium and dysprosium will be essential as a new material for electric automobiles. Thorium is often obtained as a by-product of rare-earth metals, but it is still not utilized as a nuclear fuel currently due to the lack of its own fissionable isotopes and as such, it cannot be employed in the production of nuclear weapons. Recent trends of nuclear disarmament and accumulation of plutonium from uranium fuel cycle can propel the deployment of thorium. The implementation capacity of thorium nuclear power is estimated to be about 392 GWe at 2050. The utilization of thorium will both help to provide clean energy and to supply rare-earth materials for clean automobiles. In order for us to effect the commercial deployment of thorium resources, establishment of an international framework to supply resources from developing countries as well as to supply technology from developed countries is indeed imperative. Herein, the author propose 'The Bank

  8. Multi utility - a successful conception for energy supply companies?; Multi-Utility - Erfolgskonzept fuer Energieversorger? Zusammenwachsen der Maerkte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, C. [LBD-Beratungsgesellschaft mbH, Berlin (Germany)

    2003-06-02

    Multi-utility is seen as the most promising marketing strategy for energy companies. In the future, experts say, only the combined supply of electricity, natural gas, water, waste management and services will allow companies to grow. But are today's multi-utility-products answering the needs of the customers? The author goes further into this question and finds the answer: Multi-utility needs to be further developed. Only products from growth and competition markets can generate additional margins. (orig.) [German] Multi-Utility gilt als die Marketingstrategie fuer Energieversorger. Nur wer zukuenftig Strom, Gas, Wasser, Entsorgung und Service aus einer Hand anbietet, heisst es in der Branche, kann im Markt wachsen. Doch inwieweit entspricht das heutige Multi-Utility-Angebot wirklich dem Kundenbeduerfnis? Die Verfasserin geht dieser Frage nach und kommt zu dem Schluss: Die Multi-Utility-Palette muss weiterentwickelt werden. Nur mit Produkten aus Wachstums- und Wettbewerbsmaerkten kann zusaetzliche Marge generiert werden. (orig.)

  9. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  10. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full

  11. Energy utilization of light and heavy weaned piglets subjected to different dietary energy levels

    Directory of Open Access Journals (Sweden)

    Andréa Machado Leal Ribeiro

    Full Text Available ABSTRACT This study was conducted to evaluate the effects of dietary metabolisable energy (ME: 3.25, 3.40, 3.55, or 3.70 Mcal kg−1 and weaning weight (WW: light 4.0±0.7 kg, and heavy: 6.3±0.6 kg on productive response and energy utilization of weaned piglets. Sixty-four male piglets were housed in 32 metabolic cages (two animals per cage during the first 14 d postweaning. At day 15, only one animal per cage was kept until day 28. Body composition, energy, and nutrient deposition rates and energy utilization efficiency were measured through a comparative slaughter procedure. Piglets with light WW had a poorer feed conversion ratio and lower weight gain and feed intake when expressed per live weight. Increased ME led to greater daily fat deposition in the empty bodies (defined as weighted mean of the carcass + organs + blood, no intestinal content, while light WW piglets had a reduced protein deposition. Light WW piglets increased heat production with increased ME, but no effect was seen for the heavy WW piglets. By contrast, heavy WW piglets increased empty body gross energy as ME increased, while no influence was observed on light WW piglets. Increasing dietary energy levels did not contribute to the subsequent growth performance of piglets that were lighter at weaning. The lack of interaction between weaning weight and dietary ME content on growth performance does not support the hypothesis that light piglets at weaning do not exhibit compensatory growth because of limitations in energy intake.

  12. Energy saving potential of energy services - experimentation on the life cycle of energy conversion equipment

    International Nuclear Information System (INIS)

    Dupont, M.

    2006-12-01

    Energy efficiency services are growing in Europe but their role is still limited. In order to evaluate the potential, we focused first of all on policy, economical and environmental mechanisms that support their development. European natural gas and electricity markets, that are now almost wholly de-regulated, are analysed and compared to their historical structure. By introducing uncertainty on energy prices, this new deal translates better the real energy costs. Energy performance contracts (EPC) limit the impact of these uncertainties on the customer energy bills by guaranteeing a financial result. As a result of the modelling of these contracts, namely operation and maintenance ones, we prove that they transfer technical and financial risks from building owners to energy service companies (ESCO) making energy saving measures easier and less expensive at the same time. These contracts are relatively widespread for heating or compressed-air processes but remain marginal for air-conditioning systems. So new methods were needed to guarantee on the long terms the efficiency of air-conditioning systems demand (1) to master the process and its performances and (2) to be able to determine precisely the energy saving potential and its realisation costs. A detailed energy audit is thus necessary for which we propose a guidance. Conclusions of audits carried out prove that energy saving potential is mainly located in equipment management and control. These optimizations are not always carried out because of a lack of contractual incentive and due to the weaknesses of audit methods. Through the involvement of an independent expert, the mandatory and regular inspection of air-conditioning systems may allow to verify and guide such practices. A three-step analysis procedure has been developed in order to maximize the inspection potential and to get higher benefits from service contracts. (author)

  13. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  14. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  15. U.S. utilities' experiences with the implementation of energy efficiency programs

    Science.gov (United States)

    Goss, Courtney

    In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities' experiences with DSM programs and compares the programs' annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.

  16. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  17. Can energy utilities play a role in local political energy savings programs?

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    2012-01-01

    Danish municipalities are putting climate change high on the agenda with action plans and targets to cut greenhouse gas (GHG) emissions. To reach these targets the municipalities need to engage citizens and the local business sector. In order to find new routes on how to engage and motivate local...... businesses to achieve GHG reductions, seven Danish municipalities (Copenhagen, Albertslund, Allerød, Ballerup, Herning, Kolding and Næstved) have joined forces in an EU LIFE project “Carbon 20”. A key element in the Carbon 20 project is to offer an energy screening free of charge for the participating...... the screening to small companies since the savings are rather limited in absolute terms. This article will focus on the appropriateness of using energy utilities (or consultants working on their behalf) in a local political context of engaging the local business sector in achieving energy savings and GHG...

  18. Dealing with the paradox of energy efficiency promotion by electric utilities

    International Nuclear Information System (INIS)

    Sousa, José Luís; Martins, António Gomes; Jorge, Humberto

    2013-01-01

    Utility-based Demand-Side Management (DSM) programmes started after the oil crises of the 70's and were adopted by utilities as a standard practice. However, deregulation of the electricity industry threatened DSM. More recent concerns regarding energy dependence and environmental impact of energy use caused renewed attention on the utilities role in energy efficiency fostering. EE is presently a cross-cutting issue, influencing energy policy definition and regulatory activity worldwide. Some instruments for influencing the behaviour of electric utilities in the market are used by regulators, corresponding to both impositions and stimuli, such as defining savings targets or decoupling profits from energy sales. The paper addresses categories of regulatory instruments and refers to examples of countries and regions using these identified categories of instruments. Although some cases show voluntary involvement of utilities in EE promotion on the grounds of customer retention strategies, there is a clear prevalence of regulatory constrained markets where utilities rationally engage in energy efficiency promotion

  19. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  20. A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale

    International Nuclear Information System (INIS)

    Mori, Yasuhumi; Kikegawa, Yukihiro; Uchida, Hiroyuki

    2007-01-01

    There is growing interest in the utilization of unused, but possible, energy sources to reduce carbon-dioxide emissions and fossil-energy consumption, and especially to comply with the Kyoto Protocol which came into effect in 2005. Detailed considerations of plant location, land use and life cycle analysis, however, have not yet been fully estimated with a view to confirming the advantages of the new energy-source usage. A model for heat energy from river water and treated sewage water, and waste-heat energy from municipal solid-waste incineration plants was built and applied to the Tokyo urban area in Japan, considering the spatial and time-related distribution of demands and supplies, the shapes of buildings in the demand area, and life-cycle analysis. The model selected areas were those which should use these energies without prejudice, and sometimes the areas were far from the energy-source point. The reduction of carbon-dioxide emissions resulting from new energy-sources was about 8% of the reduction target for Tokyo in 1990. The model was able to precisely evaluate the new energy-usage, using data from both supply and demand sides. (author)

  1. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback

    Directory of Open Access Journals (Sweden)

    Veronica Arthurson

    2009-04-01

    Full Text Available Anaerobic digestion is an optimal way to treat organic waste matter, resulting in biogas and residue. Utilization of the residue as a crop fertilizer should enhance crop yield and soil fertility, promoting closure of the global energy and nutrient cycles. Consequently, the requirement for production of inorganic fertilizers will decrease, in turn saving significant amounts of energy, reducing greenhouse gas emissions to the atmosphere, and indirectly leading to global economic benefits. However, application of this residue to agricultural land requires careful monitoring to detect amendments in soil quality at the early stages.

  2. The use of gas based energy conversion cycles for sodium fast reactors

    International Nuclear Information System (INIS)

    Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.

    2008-01-01

    In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)

  3. EASETECH Energy: Life Cycle Assessment of current and future Danish power systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Damgaard, Anders; Bisinella, Valentina

    A new life cycle assessment (LCA) model software has been developed by DTU Environment, to facilitate detailed LCA of energy technologies. The model, EASETECH Energy, is dedicated to the specific technologies needed to assess energy production and energy systems and provides an unprecedented...

  4. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  5. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  6. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    Science.gov (United States)

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br 2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H 2 O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1 -ferrocenylmethyl-N 1 ,N 1 ,N 2 ,N 2 ,N 2 -pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H 2 O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm 2 . Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm 2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm 2 . These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  7. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  8. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    Science.gov (United States)

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  9. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  10. Atomic energy policy of Japan, especially plutonium utilization policy

    International Nuclear Information System (INIS)

    Moriguchi, Y.

    1993-01-01

    The necessity of plutonium use in Japan is discussed. Basic policy regarding plutonium use and future plutonium utilization programme is described including such an aspect as management of plutonium from dismantled nuclear weapons

  11. The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings

    International Nuclear Information System (INIS)

    Stephan, André; Crawford, Robert H.

    2016-01-01

    House size has significantly increased over the recent decades in many countries. Larger houses often have a higher life cycle energy demand due to their increased use of materials and larger area to heat, cool and light. Yet, most energy efficiency regulations for buildings fail to adequately include requirements for addressing the energy demand associated with house size. This study quantifies the effect of house size on life cycle energy demand in order to inform future regulations. It uses a parametric model of a typical detached house in Melbourne, Australia and varies its floor area from 100 to 392 m"2 for four different household sizes. Both initial and recurrent embodied energy requirements are quantified using input-output-based hybrid analysis and operational energy is calculated in primary energy terms over 50 years. Results show that the life cycle energy demand increases at a slower rate compared to house size. Expressing energy efficiency per m"2 therefore favours large houses while these require more energy. Also, embodied energy represents 26–50% across all variations. Building energy efficiency regulations should incorporate embodied energy, correct energy intensity thresholds for house size and use multiple functional units to measure efficiency. These measures may help achieve greater net energy reductions. - Highlights: • The life cycle energy demand (LCE) is calculated for 90 house sizes and 4 household sizes. • The LCE is sublinearly correlated with house size. • Larger houses appear to be more energy efficient per m"2 while they use more energy overall. • Embodied energy (EE) represents up to 52% of the LCE over 50 years. • Building energy efficiency regulations need to consider house size and EE.

  12. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  13. A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2017-12-01

    Full Text Available The development of the wind energy industry is seriously restricted by grid connection issues and wind energy generation rejections introduced by the intermittent nature of wind energy sources. As a solution of these problems, a wind power system integrating with a thermal energy storage (TES system for district heating (DH is designed to make best use of the wind power in the present work. The operation and control of the system are described in detail. A one-dimensional system model of the system is developed based on a generic model library using the object-oriented language Modelica for system modeling. Validations of the main components of the TES module are conducted against experimental results and indicate that the models can be used to simulate the operation of the system. The daily performance of the integrated system is analyzed based on a seven-day operation. And the influences of system configurations on the performance of the integrated system are analyzed. The numerical results show that the integrated system can effectively improve the utilization of total wind energy under great wind power rejection.

  14. The state of energy storage in electric utility systems and its effect on renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Rau, N S

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  15. Plasma generator utilizing dielectric member for carrying microwave energy

    International Nuclear Information System (INIS)

    Aklufi, M.E.; Brock, D.W.

    1991-01-01

    This patent describes a system in which electromagnetic energy is used to generate a plasma from a gas. It comprises a reaction chamber which is evacuated to less than ambient pressure and into which the gas is introduced; and a nonconductive member for carrying the electromagnetic energy and for emitting the electromagnetic energy so that a plasma is formed from the gas

  16. Theoretical potential and utilization of renewable energy in Afghanistan

    Directory of Open Access Journals (Sweden)

    Gul Ahmad Ludin

    2016-12-01

    Full Text Available Nowadays, renewable energy is gaining more attention than other resources for electricity generation in the world. For Afghanistan that has limited domestic production of electric power and is more dependent on the unstable imported power from neighboring countries which pave the way to raise the cost of energy and increased different technical and economic problems. The employment of renewable energy would not only contribute to the independence of energy supply but also can achieve the socio-economic benefits for the country which is trying to rebuild its energy sector with a focus on sustainable energy for its population. From a theoretical point of view, there is a considerable potential of renewable energies such as solar energy, wind power, hydropower, biomass and geothermal energy available in the country. However, despite the presence of widespread non-agricultural and non-residential lands, these resources have not been deployed efficiently. This paper assesses the theoretical potential of the aforementioned types of renewable energies in the country. The study indicates that deployment of renewable energies can not only supplement the power demand but also will create other opportunities and will enable a sustainable energy base in Afghanistan.

  17. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    Rosenberg, N.

    1992-01-01

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  18. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  19. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas

    International Nuclear Information System (INIS)

    Brady, John; O’Mahony, Margaret

    2016-01-01

    Highlights: • Development of a driving cycle to evaluate energy economy of electric vehicles. • Improves on existing driving cycles by using real world data from electric vehicles. • Driving data from different road types and traffic conditions included. - Abstract: Understanding real-world driving conditions in the form of driving cycles is instrumental in the design of efficient powertrains and energy storage systems for electric vehicles. In addition, driving cycles serve as a standardised measurement procedure for the certification of a vehicle’s fuel economy and driving range. They also facilitate the evaluation of the economic and lifecycle costs of emerging vehicular technologies. However, discrepancies between existing driving cycles and real-world driving conditions exist due to a number of factors such as insufficient data, inadequate driving cycle development methodologies and methods to assess the representativeness of developed driving cycles. The novel aspect of the work presented here is the use of real-world data from electric vehicles, over a six month period, to derive a driving cycle appropriate for their assessment. A stochastic and statistical methodology is used to develop and assess the representativeness of the driving cycle against a separate set of real world electric vehicle driving data and the developed cycle performs well in that comparison. Although direct comparisons with internal combustion engine driving cycles are not that informative or relevant due to the marked differences between how they and electric vehicles operate, some discussion around how the developed electric vehicle cycle relates to them is also included.

  20. Energy and Environment Guide to Action - Chapter 7.0: Electric Utility Policies

    Science.gov (United States)

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  1. Energy and Environment Guide to Action - Chapter 7: Electric Utility Policies

    Science.gov (United States)

    Focuses on the authorites that state legislatures have granted to PUCs to regulate electricity and reliability, as these authorities directly affect utilities' and customers' investments in energy efficiency, renewable energy, and CHP.

  2. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  3. Problems associated with nuclear energy utilization in developing countries

    International Nuclear Information System (INIS)

    Aybers, N.

    1975-01-01

    The special problems of integrating nuclear power into the overall national power system of a developing country are reviewed. Topics such as optimal size selection, policy for nuclear fuel cycle, and choice of reactor type are examined. The results of these analyses as applied to Turkey are presented. The impact of safety and regulatory matters are discussed

  4. The rodent estrous cycle: Characterization of vaginal cytology and its utility in toxicological studies

    Science.gov (United States)

    An evaluation of the estrous cycle in laboratory rodents can be a useful measure of the integrity of the hypothalamic-pituitary-ovarian reproductive axis. It can also serve as a way of insuring that animals exhibiting abnormal cycling patterns are disincluded from a study prior t...

  5. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  6. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.R.; Yamaguchi, H.; Uneno, D. [Department of Mechanical Engineering, Doshisha University, Kyoto 630-0321 (Japan); Fujima, K. [Mayekawa MFG Co., Ltd., 2000 Tatsuzawa Moriya-city, Ibaraki-Pref. 302-0118 (Japan); Enomoto, M. [Showa Denko K. K., 1-480, Inuzuka, Oyama-city, Tochigi 323-8679 (Japan); Sawada, N. [Showa Tansan Co., Ltd., 7-1, Ogimachi, Kawasaki-Ku, Kawasaki-city, Kanagawa 210-0867 (Japan)

    2006-10-15

    Theoretical analysis of a solar energy-powered Rankine thermodynamic cycle utilizing an innovative new concept, which uses supercritical carbon dioxide as a working fluid, is presented. In this system, a truly 'natural' working fluid, carbon dioxide, is utilized to generate firstly electricity power and secondly high-grade heat power and low-grade heat power. The uniqueness of the system is in the way in which both solar energy and carbon dioxide, available in abundant quantities in all parts of the world, are simultaneously used to build up a thermodynamic cycle and has the potential to reduce energy shortage and greatly reduce carbon dioxide emissions and global warming, offering environmental and personal safety simultaneously. The system consists of an evacuated solar collector system, a power-generating turbine, a high-grade heat recovery system, a low-grade heat recovery system and a feed pump. The performances of this CO{sub 2}-based Rankine cycle were theoretically investigated and the effects of various design conditions, namely, solar radiation, solar collector area and CO{sub 2} flow rate, were studied. Numerical simulations show that the proposed system may have electricity power efficiency and heat power efficiency as high as 11.4% and 36.2%, respectively. It is also found that the cycle performances strongly depend on climate conditions. Also the electricity power and heat power outputs increase with the collector area and CO{sub 2} flow rate. The estimated COP{sub power} and COP{sub heat} increase with the CO{sub 2} flow rate, but decrease with the collector area. The CO{sub 2}-based cycle can be optimized to provide maximum power, maximum heat recovery or a combination of both. The results suggest the potential of this new concept for applications to electricity power and heat power generation. (author)

  7. Legal-institutional arrangements facilitating offshore wind energy conversion systems (WECS) utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, L.H.

    1977-09-01

    Concern for the continuing sufficiency of energy supplies in the U.S. has tended to direct increasing attention to unconventional sources of supply, including wind energy. Some of the more striking proposals for the utilization of wind energy relate to offshore configurations. The legal-institutional arrangements for facilitating the utilization of offshore wind energy conversion systems (WECS) are examined by positioning three program alternatives and analyzing the institutional support required for the implementation of each.

  8. Hybrid compression/absorption type heat utilization system (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Karimata, T.; Susami, S.; Ogawa, Y. [Research and Development Dept., EBARA Corp., Kanagawa pref. (Japan)

    1999-07-01

    This research is intended to develop a 'hybrid compression/absorption type heat utilization system' by combining an absorption process with a compression process in one circulation cycle. This system can produce chilling heat for ice thermal storage by utilizing low-temperature waste heat (lower than 100 C) which is impossible to treat with a conventional absorption chiller. It means that this system will be able to solve the problem of a timing mismatch between waste heat and heat demand. The working fluid used in this proposed system should be suitable for producing ice, be safe, and not damage the ozone layer. In this project, new working fluids were searched as substitutes for the existing H{sub 2}O/LiBr or NH{sub 3}/H{sub 2}O. The interim results of this project in 1997, a testing unit using NH{sub 3}/H{sub 2}O was built for demonstration of the system and evaluation of its characteristics, and R134a/E181 was found to be one of the good working fluid for this system. The COP (ratio of energy of ice produced to electric power provided) of this system using R134a/E181 is expected to achieve 5.5 by computer simulation. The testing unit with this working fluid was built recently and prepared for the tests to confirm the result of the simulation. (orig.)

  9. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Oh, Seungjin; Ang, Li; Shahzad, Muhammad Wakil; Ismail, Azhar Bin

    2015-01-01

    -driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent

  10. Energy economics: impacts on electric utilities' future decisions

    International Nuclear Information System (INIS)

    Smith, S.H.

    1983-01-01

    Despite financial and regulatory pressures that have led electric utilities to slow construction and minimize capital expenditures, Carolina Power and Light Company is proceeding with two new nuclear and two new coal facilities because it believes the commitment to expand must be made in the 1980s. The economic slowdown has given utilities a breathing period, but not enough to allow a complete stop in expansion if the utilities are to be ready for the expected economic growth of the 1990s. Financing this expansion is a slower process for regulated industries and leads to strained relations between customers and suppliers. The two can work together to promote conservation and load management, but higher rates must finance new construction to avoid a shortfall later. The costs of environmentally sound coal combustion and nuclear plant construction must both be reduced to help keep the recovery from being inflationary

  11. Implementing Workload Postponing In Cloudsim to Maximize Renewable Energy Utilization

    OpenAIRE

    Enida Sheme; Neki Frashëri

    2016-01-01

    Green datacenters has become a major research area among researchers in academy and industry. One of the recent approaches getting higher attention is supplying datacenters with renewable sources of energy, leading to cleaner and more sustainable datacenters. However, this path poses new challenges. The main problem with existing renewable energy technologies is high variability, which means high fluctuation of available energy during different time periods on a day, month or year...

  12. Environmental impacts of of energy exploitation and utilization in Nigeria

    International Nuclear Information System (INIS)

    Adewoye, R. O.

    1999-01-01

    This is the lead paper of the conference and presented by the Permanent Secretary, Federal Ministry of the Environment. It highlights the significant role of energy in the affairs of mankind, present available energy resources and their contributions to global energy supply. The particular case of Nigeria with its high dependence on fossil fuel, whose development and usage has proved to have significant environmental consequences necessitating the development of adequate strategies for mitigating environmental impacts

  13. Heavier tax burden on energy utilities in the Netherlands

    International Nuclear Information System (INIS)

    Oostenrijk, A.J.; Van Peer, A.J.M.; Thomas, B.A.J.

    1997-01-01

    In order for the energy market to develop into a market with business economical starting points, competition and free access the Dutch Electric Power Law is revised. Part of the Energy Distribution Law (WED, abbreviated in Dutch) came into effect February 1, 1997. The WED also has far-going fiscal consequences for the energy market and people working in that market. The companies have to pay corporation taxes, are not allowed to activate goodwill and to deduct environmental investments anymore. 2 figs

  14. Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, L.S; Thybo, C.; Stoustrup, Jakob

    2003-01-01

    The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....

  15. Environmental task for energy utilities. Reporting and supervision

    International Nuclear Information System (INIS)

    1999-01-01

    According to the Dutch Energy Distribution Law one of the tasks of energy distribution companies is to stimulate the efficient and environment-friendly use of energy. In order to be able to carry out this legal environmental task energy distribution companies can make use of a specific percentage of the energy tariff. The conditions are formulated in the so-called Environmental Action Plan (MAP, abbreviated in Dutch). The General Auditor in the Netherlands carried out an investigation into the public reporting activities of energy distribution companies with respect to the fore-mentioned legal task and supervision of the Dutch Ministry of Economic Affairs in 1997. It is concluded that the supervision of the Ministry shows several inadequacies and that other interested parties would benefit from an improved reporting by the energy distribution companies. The first recommendation (to improve the supervision) is adopted by the Ministry. There is disagreement between the General Auditor and the Association of Energy Distribution Companies (EnergieNed) on the second recommendation. 9 refs

  16. Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cory, Karlynn S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Swezey, Blair G. [Applied Materials, Santa Clara, CA (United States)

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  17. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  18. Profiles in Renewable Energy: Case Studies of Successful Utility-Sector

    Science.gov (United States)

    increasingly interested in acquiring hands-on experience with renewable energy technologies in order to plan establish contracts to purchase QFs' power output at "avoided cost," or the cost that the utility state utility regulations. Utility power purchase contracts, which many projects received under the

  19. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  20. The Legal Conditions for Water Utilities Eco-Innovation as Energy Smart Water Utilities

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2013-01-01

    Welfare and green growth rest havely on an appropriate supply of safe water, the provision of adequate sewage, and on energy services. These services are interdependent, as water is an integral part of electric-power generation. Energy is also an integrated part of water services, as satisfying w...

  1. A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2017-01-01

    Full Text Available The recent success of emerging wireless sensor networks technology has encouraged researchers to develop new energy-efficient duty cycle design algorithm in this field. The energy-efficient duty cycle design problem is a typical NP-hard combinatorial optimization problem. In this paper, we investigate an improved elite immune evolutionary algorithm (IEIEA strategy to optimize energy-efficient duty cycle design scheme and monitored area jointly to enhance the network lifetimes. Simulation results show that the network lifetime of the proposed IEIEA method increased compared to the other two methods, which means that the proposed method improves the full coverage constraints.

  2. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    Science.gov (United States)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  3. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, Janet M. [Wichita State Univ., KS (United States)

    2010-03-01

    The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has

  4. Industrial energy utilization patterns in a developing country: a case study of selected industries in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Wolde-Ghiorgis, W. (Addis Ababa Univ. (Ethiopia))

    1991-01-01

    Energy utilization patterns in three factories involved in cement production, textile manufacturing, and food processing in Ethiopia are discussed. The study uses data of energy consumption and products to obtain specific energy consumption figures for two of the factories. Results show areas of apparent energy losses and corresponding conservation possibilities. (author).

  5. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  6. Optimal benefits of utilizing renewable energy technologies in ...

    African Journals Online (AJOL)

    With rapid population growth and increase in industrial activities, more energy is consumed, resulting in environmental pollution and economic difficulties, ttherefore, the need for utilising renewable energy resources has emerged globally and it is possible that China, India, Brazil and South Africa (CIBS) would develop ...

  7. The energy issue. Demand and potentials, utilization, risks, costs

    International Nuclear Information System (INIS)

    Heinloth, K.

    1997-01-01

    Will the demand for energy be growing or decreasing in future? How are prosperity and energy consumption linked up? How can the CO 2 reduction target announced at the Earth Summit in Rio de Janeiro be achieved? What is the price for ''''benign'''' energy as compared to ''''malignant'''' energy? What is the future contribution to energy supplies that can be expected from renewable energy sources? What are the good and the evil aspects of nuclear energy? These are questions that will sooner or later concern us all, and in any case when it comes to paying the bill for our present squandering. The author Klaus Heinloth, a renown expert in this field, presents with this book a scientifically well-founded and unbiased analysis and source of information that may serve politicians as a basis for objective debates about the future energy policy. Provided with a generous grant by the Heraeus foundation, the author was free to pursue his studies and inquiries independent of industry and relevant associations, and collect, evaluate and analyse the required information. (orig./CB) [de

  8. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    To meet the rising demand for energy and to address environmental concerns, a conversion from conventional energy systems to renewable resources is essential. For the sustainability of human civilization, an environmentally techno – economically feasible waste treatment method is very important to treat waste. Several ...

  9. Valuable technical advice in sale of energy utility

    International Nuclear Information System (INIS)

    Roggen, M.

    2005-01-01

    The buying and merging of energy companies is a dynamic market. Merging companies is a complex process. The expertise of the Dutch research institute for the electric power industry KEMA can be used to support potential buyers of energy companies [nl

  10. Fusion utilization projections in the United States energy economy

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.

    1979-11-01

    The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications

  11. assessment of household energy utilized for cooking in ikeja, lagos

    African Journals Online (AJOL)

    EYERE

    ... of employment affects the choice of fuel used for cooking and the type preferred. ... In India, use of biomass. Nigerian Journal of ... of poverty in Nigeria which has favoured the choice of firewood energy ... The analytical tools employed for the study were descriptive ... cooking energy and the value of men or women's time.

  12. Pressure cycling monitoring helps ensure the integrity of energy pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peter; Lawrence, Doug; Keane, Sean; Ironside, Scott; Sutton, Aaron [Enbridge Pipelines Inc., Edmonton, AB (Canada)

    2010-07-01

    Enbridge Pipelines Inc. undertook a pressure cycling monitoring (PCM) program to see how pressure cycling severity (PCS) changes during line operations. The main purpose of this program is to make sure the integrity assessment interval is valid and to identify changes in operations that cause fatigue damage. The estimated fatigue life is obtained through fatigue analysis, which is based on Paris Law and uses certain data such as the operating pressure data from Enbridge's SCADA system. It serves as a measure of the PCS. When applied in an integrity management program, PCM helps maintain the integrity of pipelines by pinpointing segments whose operations have changed significantly. Among useful conclusions, it was found that a comparison between crack threat susceptibility indicators and PCS fluctuations help identify a change to crack threat susceptibility; also, the program helps identify notable changes to PCS that are caused by certain operational practices.

  13. Biotechnological storage and utilization of entrapped solar energy.

    Science.gov (United States)

    Bhattacharya, Sumana; Schiavone, Marc; Nayak, Amiya; Bhattacharya, Sanjoy K

    2005-03-01

    Our laboratory has recently developed a device employing immobilized F0F1 adenosine triphosphatase (ATPase) that allows synthesis of adenosine triphosphate (ATP) from adenosine 5'-diphosphate and inorganic phosphate using solar energy. We present estimates of total solar energy received by Earth's land area and demonstrate that its efficient capture may allow conversion of solar energy and storage into bonds of biochemicals using devices harboring either immobilized ATPase or NADH dehydrogenase. Capture and storage of solar energy into biochemicals may also enable fixation of CO2 emanating from polluting units. The cofactors ATP and NADH synthesized using solar energy could be used for regeneration of acceptor D-ribulose-1,5-bisphosphate from 3-phosphoglycerate formed during CO2 fixation.

  14. Nuclear energy and its fuel cycle, prospects to 2025

    International Nuclear Information System (INIS)

    1987-01-01

    Nuclear power will supply an increasing share of the world's electricity but will expand more slowly than had been expected, and no shortages of uranium or other fuel cycle services are foreseen before the end of the century. While exploration for new uranium deposits should continue to ensure long-term supplies, advances in reactor design and enrichment and reprocessing techniques could achieve reductions in uranium demand

  15. Towards real energy economics: Energy policy driven by life-cycle carbon emission

    International Nuclear Information System (INIS)

    Kenny, R.; Law, C.; Pearce, J.M.

    2010-01-01

    Alternative energy technologies (AETs) have emerged as a solution to the challenge of simultaneously meeting rising electricity demand while reducing carbon emissions. However, as all AETs are responsible for some greenhouse gas (GHG) emissions during their construction, carbon emission 'Ponzi Schemes' are currently possible, wherein an AET industry expands so quickly that the GHG emissions prevented by a given technology are negated to fabricate the next wave of AET deployment. In an era where there are physical constraints to the GHG emissions the climate can sustain in the short term this may be unacceptable. To provide quantitative solutions to this problem, this paper introduces the concept of dynamic carbon life-cycle analyses, which generate carbon-neutral growth rates. These conceptual tools become increasingly important as the world transitions to a low-carbon economy by reducing fossil fuel combustion. In choosing this method of evaluation it was possible to focus uniquely on reducing carbon emissions to the recommended levels by outlining the most carbon-effective approach to climate change mitigation. The results of using dynamic life-cycle analysis provide policy makers with standardized information that will drive the optimization of electricity generation for effective climate change mitigation.

  16. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    Science.gov (United States)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  17. Potential utilization of renewable energy sources and the related problems

    International Nuclear Information System (INIS)

    Roos, I.; Selg, V.

    1996-01-01

    Estonia's most promising resource of renewable energy is the natural biomass. In 1994 the use of wood and waste wood formed about 4.9% of the primary energy supply, the available resource will provide for a much higher share of biomass in the future primary energy supply, reaching 9-14%. Along with the biomass, wind energy can be considered the largest resource. On the western and northern coast of Estonia, in particular, on the islands, over several years, the average wind speed has been 5 m/s. Based on the assumption that the wind speed exceeds 6 m/s in the area that forms ca 1.5% of the Estonian territory (the total area of Estonia is about 45,000 km 2 ) and is 5 - 6 m/s on about 15% of the total area, using 0.5 MW/km 2 for the installation density, very approximate estimates permit to state that the maximum hypothetical installed capacity could be 3750 MW. It might be useful to make use of the current maximum 50 MW, which could enable the generation of approximately 70 - 100 GW h of energy per year. Although the solar energy currently has no practical use in Estonia and the resource of hydro power is also insignificant (only ca 1% of the electricity consumption), these two resources of renewable energy hold future promise in view of the use of local resources and that of environmental protection. It is not reasonable to regard renewable energy sources as a substitute for the traditional oil shale-based power engineering in Estonia. But, to some extent, local energy demand can be covered by renewable energy sources. Thus, they can contribute to the reduction of the greenhouse gases emissions in Estonia

  18. Automatic optimization of core loading patterns to maximize cycle energy production within operational constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine the core loading pattern which minimizes fuel cycle costs for a pressurized water reactor. Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern which maximizes core reactivity at end-of-cycle while satisfying the power peaking constraint throughout the cycle and region average discharge burnup limit. The method utilizes a two-dimensional, coarse mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern as a function of cycle burnup. First order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, and end-of-cycle burnup

  19. Life cycle assessment of the wave energy converter: Wave Dragon

    DEFF Research Database (Denmark)

    Hans Chr., Sørensen; Stefan, Naef; Stefan, Anderberg

    Any power production technology should be able to demonstrate that it's able to comply with current and future environmental regulation and that it demonstrates a considerable surplus in the energy balance being a part of the entire power system. This means that the energy used throughout all the...

  20. Designing renewable energy systems a life cycle assessment approach

    CERN Document Server

    Gerber, Leda

    2014-01-01

    The book discusses a multi-objective optimization approach in LCA that allows the flexible construction of comprehensive Pareto fronts to help understand the weightings and relative importance of its elements. The methodology is applied to the pertinent topics of thermochemical wood conversion, deep geothermal energy, and regional energy planning.

  1. Assessment of the external costs of the coal fuel cycle and the wind energy cycle in Spain

    International Nuclear Information System (INIS)

    Linares, P.; Montes, J.; Saez, R.M.

    1995-09-01

    This study is part of the ExternE Project, a joint effort of the European Commission and the US Dept. of Energy to assess the externalities of different fuel cycles, and quantify them in monetary terms, as kWh price adders. For Spain, this assessment has been carried out for a coal plant hypothetically sited in Valdecaballeros, in Southwestern Spain, and for an existing farm in Cabo Villano, in the Northwestern corner. In this first stage, only environmental externalities have been assessed. The first section contains a description of the methodology used in the European project, based mostly on a damage function approach, and its adaptation to Spanish conditions. In the last section, this methodology has been applied to the fuel cycles mentioned. The impacts assessed have been, for the coal fuel cycle, health effects, agricultural and forest production losses, and global warming. For wind energy, the main impacts considered have been noise, loss of visual amenity, accidents and global warning. The results obtained can only be considered as underestimates, as there are still impacts that have not been assessed or quantified, specially for the coal fuel cycle. Thus, further research is needed for a complete assessment

  2. Utilization of secondary energy - major uses in the fermentation and beverage industries

    Energy Technology Data Exchange (ETDEWEB)

    Koch, H J

    1986-01-01

    With 18,5% the fermentation and beverage industry (not including liquors, wine and champagne) has the highest share of energy consumption within the food industry. At the same time, these two branches dispose of high secondary energy potentials which remain to be exploited yet. Secondary energy utilization primarily consists in the economic cooling of wort providing for the utilization of process water (80-82/sup 0/C), utilization of air-containing or air-void water vapors from wort boiling processes for technological heating processes, utilization of refrigerator super-heat enthalpies, the use of energy, conserving high-short heaters for larger units, in particular, and utilization of flue gas enthalpies with gaseous energy sources as the most efficient ones.

  3. Assessment of the Turkish utility sector through energy and exergy analyses

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2007-01-01

    The present study deals with evaluating the utility sector in terms of energetic and exergetic aspects. In this regard, energy and exergy utilization efficiencies in the Turkish utility sector over a wide range of period from 1990 to 2004 are assessed in this study. Energy and exergy analyses are performed for eight power plant modes, while they are based on the actual data over the period studied. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each power plants throughout the years, and overall energy and exergy efficiencies are compared for these power plants. The energy utilization efficiencies for the overall Turkish utility sector range from 32.64% to 45.69%, while the exergy utilization efficiencies vary from 32.20% to 46.81% in the analyzed years. Exergetic improvement potential for this sector are also determined to be 332 PJ in 2004. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies

  4. An overview of biomass energy utilization in Vojvodina

    Energy Technology Data Exchange (ETDEWEB)

    Dodic, Sinisa N. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Vojvodina (RS); Faculty of Entrepreneurial Management, Modene 2, 21000 Novi Sad, Vojvodina (RS); Popov, Stevan D.; Dodic, Jelena M.; Rankovic, Jovana A.; Zavargo, Zoltan Z. [Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Vojvodina (RS); Golusin, Mirjana T. [Faculty of Entrepreneurial Management, Modene 2, 21000 Novi Sad, Vojvodina (RS)

    2010-01-15

    The Autonomous Province of Vojvodina is an autonomous province in Serbia. It is located in the northern part of the country, in the Pannonia plain. Vojvodina is an energy-deficient province. Energy plays a pivotal role in socio-economic development by raising the standard of living. Biomass has been used by mankind as an energy source for thousands of years. Traditional fuels like firewood, dung and crop residues currently contribute a major share in meeting the everyday energy requirements of rural and low-income urban households in Vojvodina. Contribution of the renewable energy sources in the total consumption of energy in Vojvidina is less than 1%, i.e. it amounts to 280 KWh/year. Production of biodiesel in the year 2008 was 0.07 million tons, what is for 133% higher with respect to the production in the year 2007 (0.03 million tons). In Vojvodina, as the raw materials for bioethanol production are seen primarily sugar beet, corn, wheat surpluses, potato surpluses and waste potato, as well as the raw materials intended for these purposes grown on the uncultivated soils, such as hybrid broomcorn, Jerusalem artichoke and triticale. With introduction of new technologies for cultivation and collecting of biomass production of the electrical energy could be raised to 6.4 GWh/m{sup 2} year, what, with retention of the contemporary consumption, would represent the significant 9% of the total consumption in the province. According to programme of realisation of energy strategy of Vojvodina/Serbia in the field of the renewable energy sources for to period till the year 2010 and its completion, till the year 2015, in Vojvodina could be created conditions for the employment of about 24,000 workers, i.e. 4000 employed for maintenance of the newly constructed plants, 17,000 employed on designing and manufacturing of plants and 3000 employed in auxiliary activities. (author)

  5. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  6. Information-to-free-energy conversion: Utilizing thermal fluctuations.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Maxwell's demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon's operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell's demon of Szilard's engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle's free energy.

  7. Energy utilization in surface mining project : with case study illustration

    International Nuclear Information System (INIS)

    Sinha, D.K.; De, Amitosh

    1992-01-01

    The importance of reducing energy consumption per tonne of output in the mining projects needs an innovative approach and style to change the behaviour and postures of the technical characteristics. The need for suitable energy policy can not be overlooked with the addition of new large size surface mining projects having a lot of technological development. But the immediate prescription to the problem is to pinpoint specific high energy consuming areas prefixed by thorough diagnosis and followed by deep scientific thought into it. To that extent this paper makes a primary attempt to characterise the various problems. (author). 7 tabs

  8. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  9. Energy life-cycle analysis modeling and decision support tool

    Energy Technology Data Exchange (ETDEWEB)

    Hoza, M.; White, M.E.

    1993-06-01

    As one of DOE`s five multi-program national laboratories, Pacific Northwest Laboratory (PNL) develops and deploys technology for national missions in energy and the environment. The Energy Information Systems Group, within the Laboratory`s Computer Sciences Department, focuses on the development of the computational and data communications infrastructure and automated tools for the Transmission and Distribution energy sector and for advanced process engineering applications. The energy industry is being forced to operate in new ways and under new constraints. It is in a reactive mode, reacting to policies and politics, and to economics and environmental pressures. The transmission and distribution sectors are being forced to find new ways to maximize the use of their existing infrastructure, increase energy efficiency, and minimize environmental impacts, while continuing to meet the demands of an ever increasing population. The creation of a sustainable energy future will be a challenge for both the soft and hard sciences. It will require that we as creators of our future be bold in the way we think about our energy future and aggressive in its development. The development of tools to help bring about a sustainable future will not be simple either. The development of ELCAM, for example, represents a stretch for the computational sciences as well as for each of the domain sciences such as economics, which will have to be team members.

  10. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  11. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  12. Utilization of Wastes as an Alternative Energy Source for ...

    African Journals Online (AJOL)

    MBI

    2013-04-19

    Apr 19, 2013 ... converting solid waste to energy source, ranging from very simple systems of ... defined by modern systems of waste management, notably: -. Municipal Waste; Household Waste,. Commercial Waste and Demolition Waste.

  13. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-04-06

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  14. Utilization of geothermal energy for drying fish products

    International Nuclear Information System (INIS)

    Arason, S.; Arnason, H.

    1992-01-01

    This paper is about industrial uses of geothermal energy for drying of fish products. Drying is an ancient method for preservation of foods, the main purpose of which is to increase the preservation time. For drying, an external source of energy is needed to extract water. In this paper an emphasis is placed on drying fish and associated processes, and how geothermal energy can be used to substitute oil or electricity. The Icelandic Fisheries Laboratories have been experimenting with different methods of drying, and several drying stations have been designed for indoor drying of fish products. Today there are more than a dozen companies in this country which are drying fish indoors using for that purpose electricity and/or geothermal energy. Further possibilities are available when fish processing plants are located in geothermal areas

  15. Energy efficient scheme for cognitive radios utilizing soft sensing

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    In this paper we propose an energy efficient cognitive radio system. Our design considers an underlaying resource allocation combined with soft sensing information to achieve a sub-optimum energy efficient system. The sub-optimality is achieved by optimizing over a channel inversion power policy instead of considering a water-filling power policy. We consider an Energy per Goodbit (EPG) metric to express the energy efficient objective function of the system and as an evaluation metric to our system performance. Since our optimization problem is not a known convex problem, we prove its convexity to guarantee its feasibility. We evaluate the proposed scheme comparing to a benchmark system through both analytical and numerical results.

  16. Environmental accounting and reporting of energy utility companies. Research notes

    International Nuclear Information System (INIS)

    Heiskanen, E.; Heininen, M.; Heurlin, E.; Lovio, R.; Paenkaelaeinen, M.

    1997-09-01

    The research note consists of articles written by a number of authors. The aim of the articles is to describe general development trends of environmental accounting and reporting from the point of view of the energy sector

  17. Utilization of HTGR on active carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukitaka, E-mail: yukitaka@nr.titech.ac.jp

    2014-05-01

    A new energy transformation concept based on carbon recycling, called as active carbon recycling energy system, ACRES, was proposed for a zero carbon dioxide emission process. The ACRES is driven availably by carbon dioxide free primary energy. High temperature gas cooled reactor (HTGR) is a candidate of the energy sources for ACRES. A smart ironmaking system with ACRES (iACRES) is one of application examples. The contribution of HTGR on iACRES was discussed thermodynamically in this study. A carbon material is re-used cyclically as energy carrier media in ACRES. Carbon monoxide (CO) had higher energy densities than hydrogen and was compatible with conventional process. Thus, CO was suitable recycling media for ACRES. Efficient regeneration of CO was a key technology for ACRES. A combined system of hydrogen production by water electrolysis and CO{sub 2} hydrogen reduction was candidate. CO{sub 2} direct electrolysis was also one of the candidates. HTGR was appropriate heat source for both water and CO{sub 2} electrolysises, and CO{sub 2} hydrogen reduction. Thermodynamic energy balances were calculated for both systems with HTGR for an ironmaking system. The direct system showed relatively advantage to the combined system in the stand point of enthalpy efficiency and simplicity of the process. One or two plants of HTGR are corresponding with ACRES system for one unit of conventional blast furnace. The proposed ACRES system with HTGR was expected to form the basis of a new energy industrial process that had low CO{sub 2} emission.

  18. Inverter for interfacing advanced energy sources to a utility grid

    Science.gov (United States)

    Steigerwald, Robert L.

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  19. Life Cycle Cost Optimization of a BOLIG+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private...... building owners’ approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  20. Life Cycle Cost Optimization of a Bolig+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codesand international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building...... owners’ approach to it. For thisparticular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took theperspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that isbalanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  1. Status report: conceptual fuel cycle studies for the Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Merrill, E.T.; Fleischman, R.M.

    1975-07-01

    A summary is presented of the current status of studies to determine the logistics of onsite plutonium recycle and the timing involved in introducing the associated reprocessing and fabrication fuel cycle facilities at the Hanford Nuclear Energy Center

  2. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  3. Business cycles and the behavior of energy prices

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, A.; Hulleman, V. [Univ. of Calgary, Alberta (Canada)

    1994-12-31

    This paper tests the theory of storage - the hypothesis that the marginal convenience yield on inventory falls at a decreasing rate as inventory increases in energy markets (crude oil, heating oil, and unleaded gas markets). We use the Fama and French (1988) indirect test, based on the relative variation in spot and futures prices. The results suggest that the theory holds for the energy markets. 11 refs., 4 tabs.

  4. Business cycles and the behavior of energy prices

    OpenAIRE

    Serletis, Apostolos; Hulleman, Vaughn

    1994-01-01

    This paper tests the theory of storage--the hypothesis that the marginal convenience yield on inventory falls at a decreasing rate as inventory increases in energy markets (crude oil, heating oil, and unleaded gas markets). We use the Fama and French (1988) indirect test, based on the relative variation in spot and futures prices. The results suggest that the theory holds for the energy markets.

  5. Life-cycle energy implications of different residential settings: Recognizing buildings, travel, and public infrastructure

    International Nuclear Information System (INIS)

    Nichols, Brice G.; Kockelman, Kara M.

    2014-01-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied energy consumption of four different neighborhoods in Austin, Texas, to examine how built environment variations influence various sources of urban energy consumption. A microsimulation combines models for petroleum use (from driving) and residential and commercial power and natural gas use with rigorously measured building stock and infrastructure materials quantities (to arrive at embodied energy). Results indicate that the more suburban neighborhoods, with mostly detached single-family homes, consume up to 320% more embodied energy, 150% more operational energy, and about 160% more total life-cycle energy (per capita) than a densely developed neighborhood with mostly low-rise-apartments and duplexes. Across all neighborhoods, operational energy use comprised 83 to 92% of total energy use, and transportation sources (including personal vehicles and transit, plus street, parking structure, and sidewalk infrastructure) made up 44 to 47% of the life-cycle energy demands tallied. Energy elasticity calculations across the neighborhoods suggest that increased population density and reduced residential unit size offer greatest life-cycle energy savings per capita, by reducing both operational demands from driving and home energy use, and from less embodied energy from construction. These results provide measurable metrics for comparing different neighborhood styles and develop a framework to anticipate energy-savings from changes in the built environment versus household energy efficiency. - Highlights: • Total energy demands (operational and embodied) of 5 Austin settings were studied here. • Suburban settings consume much more energy than densely developed neighborhoods. • Transportation sources make up 44 to 47% of the total energy

  6. GEWEX - The Global Energy and Water Cycle Experiment

    Science.gov (United States)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  7. Life cycle assessment of energy consumption and GHG emissions of olefins production from alternative resources in China

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Li, Xiuxi; Qian, Yu

    2015-01-01

    Highlights: • Conduct a life cycle energy use and GHG emissions of olefins production processes. • Analyse effects of carbon capture and efficiency on alternative olefins production. • Analyse life cycle performance of Chinese olefins industry in three key periods. • Present the advantages and challenges of alternative olefins routes. - Abstract: Olefins are important platform chemicals widely used in industry. In terms of the short supply of oil resources, natural gas and coal are two significant alternative feedstocks. In this paper, energy consumption and GHG emissions of olefins production are analysed with life cycle assessment methods. Results showed the energy consumption and GHG emissions of natural gas-to-olefins are roughly equivalent to those of oil-to-olefins, while coal-to-olefins suffers from higher energy consumption and serious GHG emissions, including 5793 kg eq. CO 2 /t olefins of direct emissions and 5714 kg eq. CO 2 /t olefins of indirect emissions. To address the problem, the effect of carbon capture on coal-to-olefins is investigated. In comprehensive consideration of energy utilization, environmental impact, and economic benefit, the coal-to-olefins with 80% CO 2 capture of the direct emissions is found to be an appropriate choice. With this carbon capture configuration, the direct emissions of the coal-to-olefins are reduced to 1161 kg eq. CO 2 /t olefins. However, the indirect emissions are still not captured, which should be strictly monitored and significantly reduced. Finally, a scenario analysis is conducted to estimate resource utilization and GHG emissions of olefins production of China in 2020. Several suggestions are also proposed for policy making on the sustainable development of olefins industry

  8. Methods of determining incremental energy costs for economic dispatch and inter-utility interchange in Canadian utilities

    International Nuclear Information System (INIS)

    El-Hawary, M.E.; El-Hawary, F.; Mbamalu, G.A.N.

    1991-01-01

    A questionnaire was mailed to ten Canadian utilities to determine the methods the utilities use in determining the incremental cost of delivering energy at any time. The questionnaire was divided into three parts: generation, transmission and general. The generation section dealt with heat rates, fuel, operation and maintenance, startup and shutdown, and method of prioritizing and economic evaluation of interchange transactions. Transmission dealt with inclusion of transmission system incremental maintenance costs, and transmission losses determination. The general section dealt with incremental costs aspects, and various other economic considerations. A summary is presented of responses to the questionnaire

  9. Life Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social Sustainability

    OpenAIRE

    Sakellariou, Nikolaos

    2015-01-01

    AbstractLife Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social SustainabilitybyNikolaos SakellariouDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Alastair T. Iles, ChairThis dissertation investigates the historical and normative bases of what contemporary engineers consider to be the embodiment of sustainability: Life Cycle Assessment (LCA). It explores the interplay among technology ethics, energy syst...

  10. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  11. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of

  12. Trends and prospects for the energy industry and electric utilities

    International Nuclear Information System (INIS)

    Bupp, I.C. Jr.

    1982-01-01

    Dr. Bupp notes that income redistribution is the major issue in the energy problem, with energy producers the current winners and consumers the big losers as money in the US flows from the northeast to the south and southwest. Also, the relative political success of allocating gas and oil income is offset by disappointment in the synthetic-fuels, nuclear, and fossil-fuels industries. He feels that some compromise is needed between the free-market advocates and the regulators so that cooperation between the private and public sectors can replace the current stalemate that is creating unacceptable financial burdens. Finally, he observes that serious thought and planning is particularly called for to overcome the inertia in nuclear power policy and to reorder energy budget priorities

  13. Choice of Locations for Wind Energy Utilization With GIS Tools

    Directory of Open Access Journals (Sweden)

    Štefan Kuzevič

    2007-06-01

    Full Text Available Using of renewable energy sources, among which we can classify, wind energy, meet the requirements of environmental acceptable. The renewable energy sources have significant role in meeting the targets of Kyoto Protocol and they have very important role in the field of local and regional development and employment. Potential builder of wind plant have to take to consideration many different factors. Power of wind is one of these factors. Wind power can be estimate from measured data at the climatologically stations and airports. Choice of potential locality is by influenced many others factor, such as quantity and parameters obstacles, elevation, accessibility location for building machines, distance from connection of high voltage, etc. For examination locality we can use the GIS tools.

  14. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    Science.gov (United States)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  15. Future nuclear energy utilization in view of the Swiss economy

    International Nuclear Information System (INIS)

    Kuendig, M.

    1990-01-01

    The tried and proven system of dividing duties between government and business should be continued. A double 'no', preserving the legal basis for the future use of nuclear energy, should therefore be the answer to the two bills aimed against it in Switzerland. Conservation, research and substitution efforts of private industry can be rewarded by providing the necessary framework. The creation of indirect incentives should further support these efforts, without federal intervention. For this reason and with the same resoluteness, the 'energy article' has to be rejected. (author)

  16. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  17. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    International Nuclear Information System (INIS)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-01-01

    This project's mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS)

  18. How energy derivatives can add value for municipal electrical utilities

    International Nuclear Information System (INIS)

    Tamplen, B.

    1998-01-01

    The challenges that municipal electric utilities (MEUs) face in the new deregulated power market in North America were discussed. This presentation also highlighted the factors that affected the risk that companies in the U.S. Mid-West were exposed to in June 1998. During that time, MEUs had to deal with financial fallouts and price spikes as a result of very high temperatures, generation outages, and transmission line relief. The focus is on price risk and credit risk and how a strong risk management team can be instrumental in avoiding price spikes like those that occurred in June 1998

  19. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    Science.gov (United States)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  20. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  1. Solar energy utilization by solar cells and superblack absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D; Selders, M

    1975-10-31

    A review is presented of the physical principles responsible for the characteristics of solar cells, with particular reference to Si homojunction and CdS--Cu/sub 2/S thin film devices. Electric power generation from solar cells still appears uncompetitive economically except in special circumstances, but heating from solar energy using selective absorbers with low reemission is more promising.

  2. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  3. Utilization of low-energy electron accelerators in Korea

    International Nuclear Information System (INIS)

    Lee, Byung Cheol

    2003-01-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  4. Efficient energy management measures in steel industry for economic utilization

    Directory of Open Access Journals (Sweden)

    Gurinderbir Singh Grewal

    2016-11-01

    Full Text Available The application of energy efficient Induction Machines (IM is explained in reference to power consumption savings. In energy efficient IM, losses for various Horse Power (HP ratings are summarized for bringing effective changes in design. Emphasis is laid on how load factor, speed & power quality affect machine’s efficiency. Replacement of conventional IM of higher power rating is done with required energy efficient Doubly Fed Induction Machine (DFIM to enhance the performance at variable speeds near rated power outputs. Results of the proposed approach will give substantial savings in energy & loss reduction. The field data of Jindal Steel Rolling Mill (JSRM at Hisar, Haryana (India is taken into consideration. This paper proposes a non-intrusive air gap torque method for efficiency estimation of in-service IMs. This approach gives results considering stray-load and friction-windage loss according to IEC standard and IEEE112-B standard. The proposed method is validated experimentally whose effectiveness is witnessed using MATLAB/SIMULINK.

  5. Geothermal Energy: Resource and Utilization. A Teaching Module.

    Science.gov (United States)

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  6. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  7. Economics of nuclear energy production systems: reactors and fuel cycle

    International Nuclear Information System (INIS)

    Bouchard, J.; Proust, E.; Gautrot, J.J.; Tinturier, B.

    2003-01-01

    The present paper relies on the main European economic studies on the comparative costs of electricity generation, published over the last six years, to show that nuclear power meets the challenge and is an economically competitive choice in the European electricity market. Indeed, although these studies were made for different purposes, by different actors and based on different methods, they all converge to show that the total base-load generation cost for new nuclear plants build in Europe is projected to be in the range of 22 to 32 euros/MWh, a total generation cost that may be 20% cheaper than the cost for combined cycle gas turbine (CCGT) units. Moreover, the prospects of internalization of the greenhouse gas emission cost in the total generation cost will boost even further the competitiveness of nuclear against gas-fired plants in Europe. All this is confirmed by the most recent French detailed study (DIDEME 2003), essentially performed from an investor standpoint, which concludes, for base-load generation units starting operation around 2015, that nuclear power, with a levelled generation cost of 28,4 euros/MWh, is more competitive than CCGTs (35 euros/MWh). This study also shows an overnight investment cost for nuclear power, based on the considered scenario (a series of 10 EPR units including a ''demonstrator''), of less than 1300 euros/kWe. The other major challenge, waste management obviously also includes an economic dimension. This issue is addressed in the present paper which provides a synthesis of relevant detailed French and OECD economic studies on the cost assessment of the fuel cycle back-end. (author)

  8. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yue [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Hu, Weiqiang [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Ou Congjie [College of Information Science and Engineering, Huaqiao University, Quanzhou 362021 (China); Chen Jincan [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China)], E-mail: jcchen@xmu.edu.cn

    2009-06-15

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions.

  9. A unified model of combined energy systems with different cycle modes and its optimum performance characteristics

    International Nuclear Information System (INIS)

    Zhang Yue; Hu, Weiqiang; Ou Congjie; Chen Jincan

    2009-01-01

    A unified model is presented for a class of combined energy systems, in which the systems mainly consist of a heat engine, a combustor and a counter-flow heat exchanger and the heat engine in the systems may have different thermodynamic cycle modes such as the Brayton cycle, Carnot cycle, Stirling cycle, Ericsson cycle, and so on. Not only the irreversibilities of the heat leak and finite-rate heat transfer but also the different cycle modes of the heat engine are considered in the model. On the basis of Newton's law, expressions for the overall efficiency and power output of the combined energy system with an irreversible Brayton cycle are derived. The maximum overall efficiency and power output and other relevant parameters are calculated. The general characteristic curves of the system are presented for some given parameters. Several interesting cases are discussed in detail. The results obtained here are very general and significant and can be used to discuss the optimal performance characteristics of a class of combined energy systems with different cycle modes. Moreover, it is significant to point out that not only the important conclusions obtained in Bejan's first combustor model and Peterson's general combustion driven model but also the optimal performance of a class of solar-driven heat engine systems can be directly derived from the present paper under some limit conditions

  10. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building

    International Nuclear Information System (INIS)

    Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A.

    2016-01-01

    Highlights: • Genetic Algorithm is used for tri-objective design of hybrid energy system. • The objective is minimizing the Life Cycle Cost, CO_2 emissions and dump energy. • Small split diesel generators are used in place of big single diesel generator. • The split diesel generators are aggregable based on certain set of rules. • The proposed algorithm achieves the set objectives (LCC, CO_2 emission and dump). - Abstract: In this paper, a Genetic Algorithm (GA) is utilized to implement a tri-objective design of a grid independent PV/Wind/Split-diesel/Battery hybrid energy system for a typical residential building with the objective of minimizing the Life Cycle Cost (LCC), CO_2 emissions and dump energy. To achieve some of these objectives, small split Diesel generators are used in place of single big Diesel generator and are aggregable based on certain set of rules depending on available renewable energy resources and state of charge of the battery. The algorithm was utilized to study five scenarios (PV/Battery, Wind/Battery, Single big Diesel generator, aggregable 3-split Diesel generators, PV/Wind/Split-diesel/Battery) for a typical load profile of a residential house using typical wind and solar radiation data. The results obtained revealed that the PV/Wind/Split-diesel/Battery is the most attractive scenario (optimal) having LCC of $11,273, COE of 0.13 ($/kW h), net dump energy of 3 MW h, and net CO_2 emission of 13,273 kg. It offers 46%, 28%, 82% and 94% reduction in LCC, COE, CO_2 emission and dump energy respectively when compared to a single big Diesel generator scenario.

  11. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  12. Life cycle impacts of forest management and wood utilization on carbon mitigation : knowns and unknowns

    Science.gov (United States)

    Bruce Lippke; Elaine Oneil; Rob Harrison; Kenneth Skog; Leif Gustavsson; Roger Sathre

    2011-01-01

    This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our...

  13. The Family Life Cycle and Critical Transitions: Utilizing Cinematherapy to Facilitate Understanding and Increase Communication

    Science.gov (United States)

    Ballard, Mary B.

    2012-01-01

    Transitioning successfully from one stage of development to the next in the family life cycle requires the accomplishment of certain developmental tasks. Couples and families who fail to accomplish these tasks often become "stuck" and unable to move forward. This impasse frequently leads to heightened stress reactions and crippled channels of…

  14. Rational energy use and the gas utility. An economic analysis of energy efficiency strategies on the space heating market

    International Nuclear Information System (INIS)

    Helle, C.

    1994-01-01

    Apart from the political authorities, also the supply utilities may contribute to a more widespread rational energy use. This investigtion focuses on the gas utilities, which have a wide range of options for higher energy efficiency, especially on the space heating market. These options are analyzed in the framework of the process of company straategy planning. Particular interest is taken in the product-political strategy of forward integration. (orig.) [de

  15. Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies

    Science.gov (United States)

    2011-01-01

    the Army should be considered. Reduced Adverse Impacts on the Environment Reduce harmful emissions and discharges from energy and fuel use. Conduct...NOTE: “Facilities” consist of cogenerators , other industrial generators, and qualifying facilities that are selling energy to industrial or...acceptable mission and environmental impacts ,6 favorable utility rates, and favor- able renewable energy credits and incentives. Fort Carson partnered

  16. Needs versus bottlenecks in utilization of wind energy in Egypt

    International Nuclear Information System (INIS)

    El Semery, M.M.

    1991-01-01

    The company AOI Engine Factory in Cairo, Egypt, is involved in the production of renewable energy systems. It is shown, that with respect to wind, Egypt has a good potential. However, along the river Nile wind speed is moderate (<4,4 m/s). The three main wind energy developments in Egypt are discussed. Four 100 kW machines for grid connection have been imported from Denmark. These machines have been adapted for local production and operation circumstances. After a testing period the first batch of 100 turbines is now being manufactured. For water pumping in isolated areas, a 15 kW wind generator with two submergible electric pumps have been tested. For small wind generators a considerable market exists, but a design, suitable for local production and adapted to the local wind regime, is not available yet

  17. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal......–airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  18. Trends in energy 2005. Utility value chain optimisation

    International Nuclear Information System (INIS)

    Fens, T.; IJsbrandy, C.; Van Druten, A.; De Rooij, S.; Van de Rhee, R.; Rookmaaker, J.; Spaans, P.; Pulles, L.

    2005-01-01

    Trends in Energy 2005 has been written around a number of events that were observed in research that was carried out in 2004: the full market opening mid 2004, the likely unbundling of distribution networks in some form, security of supply issues, fuel mix in the