WorldWideScience

Sample records for energy cross sections

  1. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  2. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  3. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  4. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  5. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  6. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  7. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  8. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  9. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  10. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  11. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  12. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  13. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  14. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  15. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  16. Modelling interaction cross sections for intermediate and low energy ions

    International Nuclear Information System (INIS)

    Toburen, L.H.; Shinpaugh, J.L.; Justiniano, E.L.B.

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes than can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured electron energy spectra. (author)

  17. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  18. Double differential cross sections for methane molecules at intermediate energies

    International Nuclear Information System (INIS)

    Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Dogan, Mevlut; Okumus, Nimet; Sahlaoui, Mohammed; Benmansour, Houda; Bouamoud, Mammar

    2014-01-01

    Double differential cross sections (DDCS) can be obtained by the measurements of energy and angular distributions of one of the two outgoing electrons by a detector. In this pespective, we used methane molecule as a target that is reasonable to expect to understand ionization mechanisms of polyatomic molecular systems.

  19. Inclusive cross sections in AA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-01-01

    Inclusive cross sections in AA collisions at high energies are considered in the Glauber multiple scattering theory taking into account many-nucleon collisions. Correspondence is found between the AA amplitude and the effective action of the two-dimensional quantum field theory with exponential interaction. The tree and one-loop contributions are calculated in this formalism. The rules are derived, which relate the absorption part of the AA-collision amplitudes associated with various inclusive cross sections to the absorption parts of NN amplitudes. These rules generalize the well-known Agranowsky-Gribov-Kanchelli rules for hh and hA collisions. Formulas are written for single and double inclusive cross sections in AA collisions

  20. Uranium, thorium and bismuth photofission cross sections at high energies

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1973-01-01

    The U 238 , Th 232 and Bi 209 photofission using nuclear emulsion technique for fission fragments detection is presented. The photofission cross sections were measured using Bremsstrahlung photon which were produced irradiating thin tungsten radiators with electrons accelerated at the energy range from 1,0 to 5,5 GeV in the ''Deutsches Elektronen Synchrotron'' (Hamburg), and aluminium radiator with electrons accelarated at 16,0 GeV in Stanford Linear Accelerator Center. A special revelation technique for nuclear emulsion pellicles loaded with uranium and thorium, allowed the discrimination between alpha particles tracks and fission fragments tracks. The results show a decrease in the cross sections, which is in good agreement, within experimental errors, with the conclusions of other authors. The estimations from the two-step mechanism for high energy nuclear reactions (intranuclear cascade followed by fission-evaporation competition) show that, the primary interaction according to the photomesonic model and the quasi-deuteron photon interaction are sufficient to explain the general behavior exhibited by photofission cross sections for investigated nuclei. The calculations show a resonant structure around 300 MeV, with a width at half maximum of 200 MeV, and another not so pronounced, near to 700 MeV. (Author) [pt

  1. Two-electron photoionization cross sections at high energies

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Krivec, R.; Mandelzweig, V.B.

    2003-01-01

    Double and single electron photoionization cross sections and their ratios at high and ultra-relativistic energies are calculated for H - , He and helium-like ions in ground and excited states including triplet states. The ratios contain shake-off and quasi-free terms. A high precision non-variational wave function is used. The quasi-free mechanism increases the ratios impressively: for He we get 0.0762 instead of 0.0164 in the non-relativistic case. Ratios are inversely proportional to Z 2 , with a factor increasing from 0.094 in the nonrelativistic to 0.595 in the ultra-relativistic limit. (author)

  2. Higher energy dissociative electron attachment cross sections in sulfur dioxide

    International Nuclear Information System (INIS)

    Kurepa, M.; Pejcev, V.; Cadez, I.

    2000-01-01

    Experimental results of total electron attachment cross sections are presented with, for comparison, two additional sets of data, those of Orient and Srivastava and of Spyrou et al.. Both were normalized to present values of the first attachment peak at 4,6 eV, in order to show more clearly differences in cross section curve shapes. In fact, data of Orient and Srivastava are larger that the present ones for a factor of 2,82; while those of Spyrou et al. are higher only for 3,70 %. Both these sets of data, as well as those by Cadez et al., cover an incident electron energy range 3,40 - 9,40 eV. Electron attachment processes at energies higher that 9,40 eV have been in fact detected and measured in the same set of experiments that led to former publication of lower energy attachment processes by Cadez et al.. At that time in none of experiments, that could distinguished ionic species formed in dissociation attachment processes, was a sign of ions at incident electron energies exceeding 9,40 eV. That caused our ignorance toward processes detected and measured at higher incident electron energies, mainly since they were at least one order of magnitude lower that the two peaks at 4,6 eV and 7,3 eV, respectively. Without additional experiments, that include mass analysis of ionic species formed in dissociative electron attachment processes, it is not possible to give any sound explanation to causes of peaks at energies higher that 8,0 eV

  3. Partial cross sections of helium satellites at medium photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Wehlitz, R.; Sellin, I.A. [Univ. of Tennessee, Knoxville, TN (United States); Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  4. Partial cross sections of helium satellites at medium photon energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-01-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He + nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al

  5. Low energy total cross section of 36Ar

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Magurno, B.A.

    1975-01-01

    To compare the predictions of the valence model with measured partial radiative widths of 36 Ar an accurate knowledge of the bound-level parameters is required. This is achieved by carrying out a Breit-Wigner parameter fit to the total cross section of 36 Ar measured by Chrien et al and renormalized to the recommended values of the thermal capture and scattering cross sections. (1 figure, 1 table) (U.S.)

  6. Energy and angle differential cross sections for the electron-impact double ionization of helium

    International Nuclear Information System (INIS)

    Colgan, James P.; Pindzola, M.S.; Robicheaux, F.

    2008-01-01

    Energy and angle differential cross sections for the electron-impact double ionization of helium are calculated using a non-perturbative time-dependent close-coupling method. Collision probabilities are found by projection of a time evolved nine dimensional coordinate space wave function onto fully antisymmetric products of spatial and spin functions representing three outgoing Coulomb waves. At an incident energy of 106 eV, we present double energy differential cross sections and pentuple energy and angle differential cross sections. The pentuple energy and angle differential cross sections are found to be in relative agreement with the shapes observed in recent (e,3e) reaction microscope experiments. Integration of the differential cross sections over all energies and angles yields a total ionization cross section that is also in reasonable agreement with absolute crossed-beams experiments.

  7. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  8. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  9. Energy-balance check for continuous energy cross section library CENACE-1.0

    International Nuclear Information System (INIS)

    Zhao Qiujuan; Wu Haicheng; Ge Zhigang

    2014-01-01

    In order to verify the reliability of the multiple-temperature continuous energy cross section library CENACE-1.0 when used for calculating nuclear heating in reactor core, NJOY99/HEATR module and auxiliary code chkACEheat developed locally were used to perform energy-balance check for all materials in the library. The test results show that the pass rate of KERMA factors and heat production cross sections of the CENACE-1.0 library is better than that of the other ACE libraries used as comparison. However, unreasonable KERMA factors still exist in various evaluation libraries, and methods to directly revise the calculation results of KERMA factors need to be developed. (authors)

  10. Cross section for electronic energy transfer between mercury isotopes

    International Nuclear Information System (INIS)

    Lagushenko, R.; Grossman, M.W.; Maya, J.

    1984-01-01

    Previous estimates of the cross section (sigma) for the process 1 Hg(6 3 P 1 )+ /sup J/ Hg(6 1 S /sub o/ )→ 1 Hg(6 1 S /sub o/ )+ /sup J/ Hg(6 3 P 1 ), where i and j are any one of the six stable Hg isotopes, are no better than a factor of ten. We have recently measured the hyperfine structure of the 253.7nm Hg resonance line in low pressure Hg-Ar discharge for natural Hg as well as Hg enriched in 196 Hg by 2-4%, as a function of temperature. Using our previously developed resonance radiation transport model in a low pressure Hg+Ar plasma we calculated the exact shape of the hyperfine structure and found a high degree of sensitivity to the value of (sigma). By varying (sigma) we were able to obtain a best fit to the measured hyperfine structure as a function of temperature. This fit determined the value of (sigma). We believe the accuracy of this determination is about 30%

  11. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  12. Reaction and total cross sections for low energy π+ and π- on isospin zero nuclei

    International Nuclear Information System (INIS)

    Saunders, A.; Ho/ibraten, S.; Kraushaar, J.J.; Kriss, B.J.; Peterson, R.J.; Ristinen, R.A.; Brack, J.T.; Hofman, G.; Gibson, E.F.; Morris, C.L.

    1996-01-01

    Reaction and total cross sections for π + and π - on targets of 2 H, 6 Li, C, Al, Si, S, and Ca have been measured for beam energies from 42 to 65 MeV. The cross sections are proportional to the target mass at 50 MeV, consistent with transparency to these projectiles. The cross sections are compared to theoretical calculations. copyright 1996 The American Physical Society

  13. Integral high energy nuclon-nucleus cross sections for mathematical experiments with electronuclear facilities

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Gudowski, W.; Polanski, A.

    1999-01-01

    A parametrization of the integral cross sections σ nonel , σ tl , σ tot for the elastic nonelastic and total proton- and neutron-nucleus interactions is considered at medium and high energies. On the basis of this parametrization a code is created for the interpolational calculations of the integral cross sections for arbitrary target nuclei at proton energies E=1 MeV - 1 TeV and neutron energies E=12.5 MeV - 1 TeV

  14. Application of Energy Window Concept in Doppler Broadening of {sup 238}U Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Khassnov, Azamat; Choi, Soo Young; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for {sup 2}38U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of {sup 238}U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K.

  15. Total cross section for hadron production by e+e- annihilation at PETRA energies

    International Nuclear Information System (INIS)

    Bartel, W.; Canzler, T.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Godermann, E.; Haidt, D.; Kawabata, S.; Krehbiel, H.

    1979-10-01

    The cross section for the process e + e - → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross-section in units of the point-like e + e - → μ + μ - cross-section) to be 2.9 +- 0.7, 4.0 +- 0.5, 4.6 +- 0.4 and 4.2 +- 0.6 at √s of 22, 27.7, 30 and 31.6 GeV respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy. (orig.)

  16. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  17. Total, partial and differential ionization cross sections in proton-hydrogen collisions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shiyang [Graduate University for Advanced Studies, School of Mathematical and Physical Science, Toki, Gifu (Japan); Pichl, Lukas [University of Aizu, Foundation of Computer Science Laboratory, Aizuwakamatsu, Fukushima (Japan); Kimura, Mineo [Yamaguchi Univ., Graduate School of Science and Engineering, Ube, Yamaguchi (Japan); Kato, Takako [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-01-01

    Single-differential, partial and total ionization cross sections for the proton-hydrogen collision system at low energy range (0.1-10 keV/amu) are determined by using the electron translation factor corrected molecular-orbital close-coupling method. Full convergence of ionization cross sections as a function of H{sub 2}{sup +} molecular basis size is achieved by including up to 10 bound states, and 11 continuum partial waves. The present cross sections are in an excellent agreement with the recent experiments of Shah et al., but decrease more rapidly than the cross sections measured by Pieksma et al. with decreasing energy. The calculated cross section data are included in this report. (author)

  18. Behaviour of cross-sections for exclusive and inclusive processes at high energies

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.; Petrov, V.A.

    1976-11-01

    The character of the functional dependence of the cross-sections for inclusive and exclusive reactions on the energy of colliding particles has been established on the basis of the principles of casuality, spectrality and unitarity

  19. Proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications

    International Nuclear Information System (INIS)

    Wagner, M.; Vonach, H.

    1990-01-01

    These proceedings of a specialists' meeting on neutron activation cross sections for fission and fusion energy applications are divided into 4 sessions bearing on: - data needs: 4 conferences - experimental work: 11 conferences - theoretical work: 4 conferences - evaluation work: 5 conferences

  20. Determination of extra-push energies for fusion from differential fission cross-section measurements

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Kapoor, S.S.

    1993-01-01

    Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies

  1. On total cross sections and slopes at superhigh energies

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Zhamkochyan, V.M.

    1985-01-01

    A comparative analysis of hadron-hadron interactions in theories with critical and supercritical pomerons is carried out. The main characteristics of binary interactions in both theories are shown practically to coincide to each other in the whole range of accessible energies. Also an analysis of characteristics of hadron-nuclei interactions is given in the framework of Reggeon field theory with critical and supercritical pomerons and multiple scattering theory. The results obtained agree with available experimental data on proton-nuclei interactions at superhigh energies

  2. Unified description of neutron-, proton- and photon-induced fission cross sections in intermediate energy region

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi

    2003-01-01

    For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)

  3. Factorization of standard model cross sections at ultrahigh energy

    Science.gov (United States)

    Chien, Yang-Ting; Li, Hsiang-nan

    2018-03-01

    The factorization theorem for organizing multiple electroweak boson emissions at future colliders with energy far above the electroweak scale is formulated. Taking the inclusive muon-pair production in electron-positron collisions as an example, we argue that the summation over isospins is demanded for constructing the universal distributions of leptons and gauge bosons in an electron. These parton distributions are shown to have the same infrared structure in the phases of broken and unbroken electroweak symmetry, an observation consistent with the Goldstone equivalence theorem. The electroweak factorization of processes involving protons is sketched, with an emphasis on the subtlety of the scalar distributions. This formalism, in which electroweak shower effects are handled from the viewpoint of factorization theorem for the first time, is an adequate framework for collider physics at ultra high energy.

  4. An intercomparison of medium energy cross-section codes

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1988-05-01

    Five medium energy proton reaction cases are selected for benchmarking nuclear model codes. The quantities calculated are isotopic activation yields for 180 MeV protons on Al and 40-200 MeV protons on Co, and double differential neutron emission spectra from Al, Zr-90 and Pb-208 for 35, 80, 160, 318, and 800 presented consist of three types: a closed form preequilibrium plus evaporation model, an intranuclear-cascade and evaporation model, and a model relying on nuclear systematics. The characteristics of each code are described. There are orders of magnitude differences in the time for each type of code to calculate neutron emission spectra, with codes using systematics, preequilibrium and intranuclear-cascade models requiring seconds, minutes and hours, respectively. Calculations are not compared with experiment in this initial study. For double differential neutron emission spectra, there is good overall agreement in magnitude among the different types of codes at forward angles. Differences where they occur at forward angles are greatest for the mid-energy neutrons emitted. At back angles the incident energy at which the best overall agreement is obtained is 160 MeV and the material for which the best overall agreement is obtained is Al. 4 refs., 7 tabs

  5. High-energy behaviour of e--H scattering cross section

    International Nuclear Information System (INIS)

    Saha, B.C.; Chaudhuri, J.; Ghosh, A.S.

    1976-01-01

    An integral form of the close coupling equation has been employed to investigate the high energy behaviour of the elastic and 2s excitation cross sections of hydrogen atom by electron impact retaining the 1s and 2s states. The results, with and without exchange, for both the total and the differential cross sections are presented. The effects of exchange as well as of couplings to the 1s-2s states on the elastic cross section have been studied. The FBA results for the elastic cross section differ from the present results appreciably in the energy range 100 to 200 eV where FBA is considered to be valid. On the other hand, the present 1s-2s excitation results are very close to the corresponding FBA results in the said energy region. (auth.)

  6. Endpoint behavior of high-energy scattering cross sections

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2010-01-01

    In high-energy processes near the endpoint, there emerge new contributions associated with spectator interactions. Away from the endpoint region, these new contributions are suppressed compared to the leading contribution, but the leading contribution becomes suppressed as we approach the endpoint and the new contributions become comparable. We present how the new contributions scale as we reach the endpoint and show that they are comparable to the suppressed leading contributions in deep inelastic scattering by employing a power-counting analysis. The hadronic tensor in deep inelastic scattering is shown to factorize including the spectator interactions, and it can be expressed in terms of the light cone distribution amplitudes of initial hadrons. We also consider the contribution of the spectator contributions in Drell-Yan processes. Here the spectator interactions are suppressed compared to double parton annihilation according to the power counting.

  7. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  8. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters.

    Science.gov (United States)

    Demarco, John J; Wallace, Robert E; Boedeker, Kirsten

    2002-04-21

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  9. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  10. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  11. Neutron cross section standards for the energy region above 20 MeV

    International Nuclear Information System (INIS)

    1991-01-01

    These proceedings of a specialists' meeting on Neutron cross section standards for the energy region above 20 MeV are divided into 6 sessions bearing on: - session 1: status of the date base for (n-p) scattering (2 conferences) - session 2: status of nucleon-nucleon phase shift calculations (1 conference) - session 3: recent and planned experimental work on n-p cross section measurements and facilities (7 conferences) - session 4: Instruments for utilizing the H (n.n) standard for neutron fluence measurement (4 conferences) - session 5: proposal for other neutron cross-section standards (4 conferences) - session 6: monitor reactions for radiation dosimetry (3 conferences)

  12. MCNP6 Fission Cross Section Calculations at Intermediate and High Energies

    OpenAIRE

    Mashnik, Stepan G.; Sierk, Arnold J.; Prael, Richard E.

    2013-01-01

    MCNP6 has been Validated and Verified (V&V) against intermediate- and high-energy fission cross-section experimental data. An error in the calculation of fission cross sections of 181Ta and a few nearby target nuclei by the CEM03.03 event generator in MCNP6 and a "bug: in the calculation of fission cross sections with the GENXS option of MCNP6 while using the LAQGSM03.03 event generator were detected during our V&V work. After fixing both problems, we find that MCNP6 using CEM03.03 and LAQGSM...

  13. Hadronic multiplicity and total cross-section: a new scaling in wide energy range

    International Nuclear Information System (INIS)

    Kobylinsky, N.A.; Martynov, E.S.; Shelest, V.P.

    1983-01-01

    The ratio of mean multiplicity to total cross-section is shown to be the same for all the Regge models and to rise with energy as lns which is confirmed by experimental data. Hence, a power of multiplicity growth is unambiguously connected with that of total cross-section. As regards the observed growth, approximately ln 2 s, it tells about a dipole character of pomeron singularity

  14. Total cross sections of hadron interactions at high energies in low constituents number model

    International Nuclear Information System (INIS)

    Abramovskij, V.A.; Radchenko, N.V.

    2009-01-01

    We consider QCD hadrons interaction model in which gluons density is low in initial state wave function in rapidity space and real hadrons are produced from color strings decay. In this model behavior of total cross sections of pp, pp bar, π ± p, K ± p, γp, and γγ interactions is well described. The value of proton-proton total cross section at LHC energy is predicted

  15. Measurement of the antiproton-nucleus annihilation cross-section at low energy

    Science.gov (United States)

    Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; Vallazza, E.; Venturelli, L.; Yamada, H.

    2018-02-01

    Systematic measurements of the annihilation cross sections of low energy antinucleons were performed at CERN in the 80's and 90's. However the antiproton data on medium-heavy and heavy nuclear targets are scarce. The ASACUSA Collaboration at CERN has measured the antiproton annihilation cross section on carbon at 5.3 MeV: the value is (1.73 ± 0.25) barn. The result is compared with the antineutron experimental data and with the theoretical previsions.

  16. Isoelectronic sequence fits to configuration-averaged photoionization cross sections and ionization energies

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Cowan, R.D.; Bobrowicz, F.W.

    1986-01-01

    Hartree--Fock wave functions have been used to calculate configuration -averaged photoionization cross sections and ionization energies for orbitals 1s< or =nl< or =5g in He-like through Al-like isoelectroni csequences. The photoionization cross sections have been fitted as a function of the nuclear charge, Z, and photon energy, X, in threshold units, with average error of less than 10%. The ionization energies have been fitted as a function of Z with errors of less than 0.5%

  17. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  18. The rise of the proton-(anti)proton total cross section at tevatron energies and beyond

    International Nuclear Information System (INIS)

    Kluit, P.M.; Timmermans, J.

    1987-12-01

    A dispersion relation analysis of the UA4 result on the real part of the panti p elastic scattering amplitude is presented. The interpretation is twofold. Assuming that the pp and panti p cross sections are asymptotically identical, a steep rise is deduced of the total cross section in the 1-4 TeV domain. In case the pp and panti p cross sections are asymptotically different, it is deduced that there is a crossing of the total cross section of pp and panti p between ISR and Spanti pS energies followed by a steep rise of the difference of the pp and panti p total cross sections. It is shown that in both cases this rise can be accounted for if we add an additional term with an energy cut-off to the usual Amaldi parametrisation of the total cross section: ln 2 (s/s cut ) in the first case, or ln(s/s cuto ) in the second case, where √s cut lies around 500 GeV and √s cuto around 63 GeV. Both quantities can be interpreted as a threshold of a new process. For the first case, a continuous parametrisation without a threshold is also proposed with an extra term of the form ln 2 (1+ s/s 1 ), where √s 1 equals 700 GeV. 12 refs.; 5 figs.; 3 tabs

  19. POLIDENT: A Module for Generating Continuous-Energy Cross Sections from ENDF Resonance Data

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.; Greene, N.M.

    2000-12-01

    POLIDENT (Point Libraries of Data from ENDF/B Tapes) is an AMPX module that accesses the resonance parameters from File 2 of an ENDF/B library and constructs the continuous-energy cross sections in the resonance energy region. The cross sections in the resonance range are subsequently combined with the File 3 background data to construct the cross-section representation over the complete energy range. POLIDENT has the capability to process all resonance reactions that are identified in File 2 of the ENDF/B library. In addition, the code has the capability to process the single- and multi-level Breit-Wigner, Reich-Moore and Adler-Adler resonance formalisms that are identified in File 2. POLIDENT uses a robust energy-mesh-generation scheme that determines the minimum, maximum and points of inflection in the cross-section function in the resolved-resonance region. Furthermore, POLIDENT processes all continuous-energy cross-section reactions that are identified in File 3 of the ENDF/B library and outputs all reactions in an ENDF/B TAB1 format that can be accessed by other AMPX modules.

  20. Possible explanation of the interaction cross-section growth at high energies

    International Nuclear Information System (INIS)

    Belyakov, V.A.; Strel'tsov, V.N.

    1992-01-01

    On the basis of the relativized Yukawa potential it is shown that the mowing hadron transverse size grows with increasing its energy ∼(lnγ) 0.8 (γ is the Lorentz factor). The opinion is expressed that the known growth of the interaction cross section at high energies is due to the indicated reason. 9 refs.; 1 tab

  1. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    International Nuclear Information System (INIS)

    Ray, M.; Mukherjee, A.; Pradhan, M. K.; Kshetri, Ritesh; Sarkar, M. Saha; Dasmahapatra, B.; Palit, R.; Majumdar, I.; Joshi, P. K.; Jain, H. C.

    2008-01-01

    Measurement of fusion cross sections for the 6,7 Li + 24 Mg reactions by the characteristic γ-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these γ-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The relatively large difference between total cross sections and measured fusion cross sections at higher energies is consistent with the fact that other channels, in particular breakup, open up with an increase of bombarding energy. The breakup channel, however, appears not to have any influence on fusion cross sections. The critical angular momenta (l cr ) deduced from the fusion cross sections are found to have an energy dependence similar to other Li-induced reactions

  2. Measurement of the thorium absorption cross section shape near thermal energy (LWBR development program)

    International Nuclear Information System (INIS)

    Green, L.

    1976-11-01

    The shape of the thorium absorption cross section near thermal energies was investigated. This shape is dominated by one or more negative energy resonances whose parameters are not directly known, but must be inferred from higher energy data. Since the integral quantity most conveniently describing the thermal cross section shape is the Westcottg-factor, effort was directed toward establishing this quantity to high precision. Three nearly independent g-factor estimates were obtained from measurements on a variety of foils in three different neutron spectra provided by polyethylene-moderated neutrons from a 252 Cf source and from irradiations in the National Bureau of Standards ''Standard Thermal Neutron Density.'' The weighted average of the three measurements was 0.993 +- 0.004. This is in good agreement with two recent evaluations and supports the adequacy of the current cross section descriptions

  3. Valence shell photoionization energies and cross-sections of NF sub 3 and PF sub 3

    CERN Document Server

    Jürgensen, A

    2003-01-01

    Relative outer valence shell ionization potentials and cross-sections were determined for the isostructural, Group 15, trifluorides NF sub 3 and PF sub 3 in the gas phase using synchrotron radiation. Excitation photon energies ranged from 70 to 160 eV. The experimental spectra were assigned and cross-sections analyzed with the aid of both MS-X alpha and ab initio calculations. Spectral differences in peak energies and relative intensities are related to structural and electronic differences between these two fluoride molecules. Valence shell ionization potentials were compared to calculated values obtained by several different methods. The partial photoionization cross-sections for each orbital were obtained as a function of excitation energy and compared to theoretical results obtained with the X alpha method.

  4. Probability tables and gauss quadrature: application to neutron cross-sections in the unresolved energy range

    International Nuclear Information System (INIS)

    Ribon, P.; Maillard, J.M.

    1986-09-01

    The idea of describing neutron cross-section fluctuations by sets of discrete values, called ''probability tables'', was formulated some 15 years ago. We propose to define the probability tables from moments by equating the moments of the actual cross-section distribution in a given energy range to the moments of the table. This definition introduces PADE approximants, orthogonal polynomials and GAUSS quadrature. This mathematical basis applies very well to the total cross-section. Some difficulties appear when partial cross-sections are taken into account, linked to the ambiguity of the definition of multivariate PADE approximants. Nevertheless we propose solutions and choices which appear to be satisfactory. Comparisons are made with other definitions of probability tables and an example of the calculation of a mixture of nuclei is given. 18 refs

  5. Probability tables and gauss quadrature: application to neutron cross-sections in the unresolved energy range

    International Nuclear Information System (INIS)

    Ribon, P.; Maillard, J.M.

    1986-01-01

    The idea of describing neutron cross-section fluctuations by sets of discrete values, called probability tables, was formulated some 15 years ago. The authors propose to define the probability tables from moments by equating the moments of the actual cross-section distribution in a given energy range to the moments of the table. This definition introduces PADE approximants, orthogonal polynomials and GAUSS quadrature. This mathematical basis applies very well to the total cross-section. Some difficulties appear when partial cross-sections are taken into account, linked to the ambiguity of the definition of multivariate PADE approximants. Nevertheless the authors propose solutions and choices which appear to be satisfactory. Comparisons are made with other definition of probability tables and an example of the calculation of a mixture of nuclei is given

  6. Energy meshing techniques for processing ENDF/B-VI cross sections using the AMPX code system

    International Nuclear Information System (INIS)

    Dunn, M.E.; Greene, N.M.; Leal, L.C.

    1999-01-01

    Modern techniques for the establishment of criticality safety for fissile systems invariably require the use of neutronic transport codes with applicable cross-section data. Accurate cross-section data are essential for solving the Boltzmann Transport Equation for fissile systems. In the absence of applicable critical experimental data, the use of independent calculational methods is crucial for the establishment of subcritical limits. Moreover, there are various independent modern transport codes available to the criticality safety analyst (e.g., KENO V.a., MCNP, and MONK). In contrast, there is currently only one complete software package that processes data from the Version 6 format of the Evaluated Nuclear Data File (ENDF) to a format useable by criticality safety codes. To facilitate independent cross-section processing, Oak Ridge National Laboratory (ORNL) is upgrading the AMPX code system to enable independent processing of Version 6 formats using state-of-the-art procedures. The AMPX code system has been in continuous use at ORNL since the early 1970s and is the premier processor for providing multigroup cross sections for criticality safety analysis codes. Within the AMPX system, the module POLIDENT is used to access the resonance parameters in File 2 of an ENDF/B library, generate point cross-section data, and combine the cross sections with File 3 point data. At the heart of any point cross-section processing code is the generation of a suitable energy mesh for representing the data. The purpose of this work is to facilitate the AMPX upgrade through the development of a new and innovative energy meshing technique for processing point cross-section data

  7. Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S [Paul-Scherrer-Institute Wuerenlingen and Villigen, Villigen (Switzerland); Arbuzov, A [Joint Institute for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Balossini, G [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Pavia [IT; and others

    2009-12-15

    We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e{sup +}e{sup -} colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on {tau} decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and {tau} decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. (orig.)

  8. Differential cross sections for the elastic scattering of intermediate energy electrons from sodium

    International Nuclear Information System (INIS)

    Teubner, P.J.O.; Buckner, S.J.; Noble, C.J.

    1977-11-01

    Differential cross sections for the elastic scattering of electrons from sodium have been measured with high angular resolution for incident energies of 54.4, 75, 100 and 150 eV and over an angular range of 12 0 to 140 0 . The experimental data are compared with calculations based on the First Born approximation, the Glauber approximation and a close coupling impact parameter calculation. Calculations have been carried out for an optical model using the prescription of Vanderpoorten for localizing the absorptive part of the potential. Of the theoretical calculations the optical model is found to best reproduce the general features of the cross section at all energies. (Author)

  9. Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

    International Nuclear Information System (INIS)

    Actis, S.; Arbuzov, A.

    2009-12-01

    We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e + e - colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on τ decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and τ decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. (orig.)

  10. The demagnetizing energies of a uniformly magnetized cylinder with an elliptic cross-section

    International Nuclear Information System (INIS)

    Goode, D.A.; Rowlands, G.

    2003-01-01

    Analytic expressions for the demagnetizing energies are obtained in the form of partial series, for long elliptic cylinders and for squat ones where the ellipticity of the cross-section is unrestrained. This leaves just a small range where the demagnetizing energies are not well defined. It is found that by replacing the elliptic cylinders with rectangular blocks, a good approximation to the demagnetizing energy may be made in this small range

  11. Low-energy behavior of the 3He(α,γ)7Be cross section

    International Nuclear Information System (INIS)

    Osborne, J.L.; Barnes, C.A.; Kavanagh, R.W.; Kremer, R.M.; Mathews, G.J.; Zyskind, J.L.; Parker, P.D.; California Inst. of Tech., Pasadena; Howard, A.J.; California Inst. of Tech., Pasadena

    1984-01-01

    Cross sections for the 3 He(α,γ) 7 Be reaction have been measured at several energies from Esub(c.m.)=165 to 1169 keV by counting prompt γ-rays from a windowless, differentially pumped, recirculating, 3 He gas target. The cross-section factor S 34 (Esub(c.m.)) and branching ratio γ 1 /γ 0 were determined at each energy. Cross sections were also measured at Esub(c.m.)=947 and 1255 keV by counting the γ-rays from the 7 Be produced in a 3 He gas cell with a Ni entrance foil. Combining the results of these two independent experiments yields a zero-energy intercept for the cross-section factor of S 34 (O) = 0.53+-0.03 keV x b. The relationship between these measurements and serveral theoretical calculations, and the import of the extrapolated cross section for the solar-neutrino problem are discussed. (orig.)

  12. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  13. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  14. The calculation of nucleus-nucleus interaction cross sections at high energy in the Glauber approach

    International Nuclear Information System (INIS)

    Gal'perin, A.G.; Uzhinskij, V.V.

    1994-01-01

    Total, inelastic and elastic cross sections of nucleus-nucleus (AA)-interactions at high energy (HE) are calculated on the base of Glauber approach. The calculation scheme is realized as a set of routines. The statistical average method is used in calculations. Program runs in an interactive regime. User is prompted about charge and mass numbers of nuclei and NN-interaction characters at the energy he is interested in: total cross section, the slope parameter of differential cross section of elastic scattering and ratio of real part to imaginary part of elastic scattering amplitude at zero momentum transfer. These data can be extracted from proper compilations. Results of calculations are displayed and are written on user defined output file. The program runs on PC. 21 refs., 1 tab

  15. Measurement of neutron-production double-differential cross sections for intermediate energy pion incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Shigyo, Nobuhiro; Satoh, Daiki

    2002-01-01

    Neutron-production double-differential cross sections for 870-MeV π + and π - and 2.1-GeV π + mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120 and 150deg. The typical flight path length was 15 m. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the JAM code. The double differential cross sections calculated by the JAM code disagree with experimental data at neutron energies below about 30 MeV. JAM overestimates π + -incident neutron-production cross sections in forward angles at neutron energies of 100 to 500 MeV. (author)

  16. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  17. On unambiguous parametrization of neutron cross-sections in the low-energy region

    International Nuclear Information System (INIS)

    Novoselov, G.M.; Kolomiets, V.M.

    1982-08-01

    One of the most important aims of analysis in the resonance region is the evaluation of neutron resonance parameters on the basis of a given formalism of the theory of nuclear reactions. However, the task of finding resonance parameters from experimental data on the energy dependence of cross-sections is subject to a number of difficulties. These difficulties are not only of a theoretical character associated with the selection of one version or another of the theory taking into account the effects necessary (interference between resonances, Doppler effect etc.), but also involve problems of principle. Whether the set of parameters found is the only possible one within the context of a single formalism used remains open. The specific features of processing the experimental data are such that even with good resolution a number of overlapping resonances (occurring as a result of the fluctuation in inter-level distances or the Doppler effect) may be classified as an isolated resonance. Moreover, even given a very weak inter-level interference and Doppler effect, unambiguous parametrization of the cross-sections is not always possible. In the present paper these questions (the choice of the approximation needed for describing experimentally observed cross-sections, allowance for inter-level interference and the Doppler effect and the possibility of ambiguous reproduction of the resonance structure of cross-sections) are examined with reference to the parametrization of the total cross-sections for non-fissionable nuclei in the low-neutron-energy region

  18. Comprehensive neutron cross-section and secondary energy distribution uncertainty analysis for a fusion reactor

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; LaBauve, R.J.; Young, P.G.

    1980-05-01

    On the example of General Atomic's well-documented Power Generating Fusion Reactor (PGFR) design, this report exercises a comprehensive neutron cross-section and secondary energy distribution (SED) uncertainty analysis. The LASL sensitivity and uncertainty analysis code SENSIT is used to calculate reaction cross-section sensitivity profiles and integral SED sensitivity coefficients. These are then folded with covariance matrices and integral SED uncertainties to obtain the resulting uncertainties of three calculated neutronics design parameters: two critical radiation damage rates and a nuclear heating rate. The report documents the first sensitivity-based data uncertainty analysis, which incorporates a quantitative treatment of the effects of SED uncertainties. The results demonstrate quantitatively that the ENDF/B-V cross-section data files for C, H, and O, including their SED data, are fully adequate for this design application, while the data for Fe and Ni are at best marginally adequate because they give rise to response uncertainties up to 25%. Much higher response uncertainties are caused by cross-section and SED data uncertainties in Cu (26 to 45%), tungsten (24 to 54%), and Cr (up to 98%). Specific recommendations are given for re-evaluations of certain reaction cross-sections, secondary energy distributions, and uncertainty estimates

  19. Neutron cross sections for defect production by high-energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1983-08-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects

  20. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  1. Neutron cross sections for defect production by high energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1984-01-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after short-term annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after short-term annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects. (orig.)

  2. Investigation of the 93Nb neutron cross-sections in resonance energy range

    International Nuclear Information System (INIS)

    Grigoriev, Yu.V.; Kitaev, V.Ya.; Zhuravlev, B.V.; Sinitsa, V.V.; Borzakov, S.B.; Faikov-Stanchik, H.; Ilchev, G.; Mezentseva, Zh.V.; Panteleev, Ts.Ts.; Kim, G.N.

    2002-01-01

    The results of gamma-ray multiplicity spectra and transmission measurements for 93 Nb in energy range 21.5 eV-100 keV are presented. Gamma spectra from 1 to 7 multiplicity were measured on the 501 m and 121 m flight paths of the IBR-30 using a 16-section scintillation detector with a NaI(Tl) crystals of a total volume of 36 l and a 16-section liquid scintillation detector of a total volume of 80 l for metallic samples of 50, 80 mm in diameter and 1, 1.5 mm thickness with 100% 93 Nb. Besides, the total and scattering cross-section of 93 Nb were measured by means batteries of B-10 and He-3 counters on the 124 m, 504 m and 1006 m flight paths of the IBR-30. Spectra of multiplicity distribution were obtained for resolved resonances in the energy region E=30-6000 eV and for energy groups in the energy region E=21.5 eV- 100 keV. They were used for determination of the average multiplicity, resonance parameters and capture cross-section in energy groups and for low-laying resonances of 93 Nb. Standard capture cross-sections of 238 U and experimental gamma-ray multiplicity spectra were also used for determination of capture cross section 93 Nb in energy groups. Similar values were calculated using the ENDF/B-6 and JENDL-3 evaluated data libraries with the help of the GRUKON computer program. Within the limits of experimental errors there is observed an agreement between the experiment and calculation, but in some groups the experimental values differ from the calculated ones. (author)

  3. Assessment of the ''thermal normalization technique'' for measurement of neutron cross sections vs energy

    International Nuclear Information System (INIS)

    Peelle, R.W.; de Sassure, G.

    1977-01-01

    Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,α) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the 235 U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the 235 U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error

  4. Parameterization of pion production and reaction cross sections at LAMPF energies

    International Nuclear Information System (INIS)

    Burman, R.L.; Smith, E.S.

    1989-05-01

    A parameterization of pion production and reaction cross sections is developed for eventual use in modeling neutrino production by protons in a beam stop. Emphasis is placed upon smooth parameterizations for proton energies up to 800 MeV, for all pion energies and angles, and for a wide range of materials. The resulting representations of the data are well-behaved and can be used for extrapolation to regions where there are no measurements. 22 refs., 16 figs., 2 tabs

  5. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  6. Measurements of neutron-induced fission cross sections of Pb and Bi at intermediate energies

    International Nuclear Information System (INIS)

    Ryzhov, Igor; Tutin, Gennady; Eismont, Vilen; Mitryukhin, Andrey; Oplavin, Valery; Soloviev, Sergey; Conde, Henri; Olsson, Nils; Renberg, Per-Ulf

    2002-01-01

    Neutron-induced fission cross sections of nat Pb and 209 Bi have been measured relative to the 238 U(n.f) cross section at energies 96 MeV for lead and 133 MeV for bismuth. The measurements were performed at the quasi-mono-energetic neutron beam facility of The Svedberg Laboratory in Uppsala using Frisch-gridded ionization chamber. The results obtained are compared with other experimental data. The present state of the Bi standard recommended by IAEA is discussed. (author)

  7. Integral cross sections for π+p interactions at low energies

    International Nuclear Information System (INIS)

    Friedman, E.; Goldring, A.; Wagner, G.J.; Altman, A.; Johnson, R.R.; Meirav, O.; Jennings, B.K.

    1990-02-01

    Integral cross sections for the elastic scattering of π + by protons into angles greater than 20 degrees or 30 degrees (lab.) have been measured by the beam-attenuation technique over the energy range of 45 to 126 MeV. The measurements are aimed at providing independent checks on the absolute normalization of differential cross sections, where discrepancies exist between different data sets. Comparisons with predictions made with existing phase shifts show very good agreement with the dispersion-relation constrained phase shifts of the Karlsruhe group. (Author) 19 refs., 3 tabs., 3 figs

  8. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  9. The measurement of anomalous neutron inelastic cross-sections at electronvolt energy transfers

    International Nuclear Information System (INIS)

    Mayers, J; Abdul-Redah, T

    2004-01-01

    It has been proposed that short-lived quantum entanglement of protons in condensed matter systems would result in anomalous inelastic scattering cross-sections at electronvolt energy transfers. This proposal seems to be confirmed by neutron measurements on the VESUVIO spectrometer at ISIS and by measurements using other techniques. However, there have been a number of published suggestions of ways in which the observed effects on VESUVIO could be introduced by assumptions used in the data analysis. In this paper it is shown using experimental data and Monte Carlo simulations that these suggestions cannot explain the observed cross-section anomalies. The other assumptions of the data analysis are also examined. It is shown that the assumption of a Gaussian peak shape for the neutron Compton profile can introduce significant errors into the determination of cross-section ratios, but also cannot explain the observed anomalies

  10. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  11. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  12. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  13. Method of measurement of cross sections of heavy nuclei fission induced by intermediate energy protons

    International Nuclear Information System (INIS)

    Kotov, Alexander; Chtchetkovski, Alexander; Fedorov, Oleg; Gavrikov, Yuri; Chestnov, Yuri; Poliakov, Vladimir; Vaishnene, Larissa; Vovchenko, Vil; Fukahori, Tokio

    2003-01-01

    The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, nat Pb, 209 Bi, 232 Th, 233 U, 235 U, 238 U, 237 Np and 239 Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for nat Pb, 209 Bi, 235 U and 238 U are reported. (author)

  14. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  15. Investigation of the sup 9 sup 3 Nb neutron cross-sections in resonance energy range

    CERN Document Server

    Grigoriev, Y V; Faikov-Stanchik, H; Ilchev, G; Kim, G N; Kitaev, V Ya; Mezentseva, Z V; Panteleev, T; Sinitsa, V V; Zhuravlev, B V

    2001-01-01

    The results of gamma-ray multiplicity spectra and transmission measurements for sup 9 sup 3 Nb in energy range 21.5 eV-100 keV are presented. Gamma spectra from 1 to 7 multiplicity were measured on the 501 m and 121 m flight paths of the IBR-30 using a 16-section scintillation detector with a NaI(Tl) crystals of a total volume of 36 l and a 16-section liquid scintillation detector of a total volume of 80 l for metallic samples of 50, 80 mm in diameter and 1, 1.5 mm thickness with 100% sup 9 sup 3 Nb. Besides, the total and scattering cross-section of sup 9 sup 3 Nb were measured by means batteries of B-10 and He-3 counters on the 124 m, 504 m and 1006 m flight paths of the IBR-30. Spectra of multiplicity distribution were obtained for resolved resonances in the energy region E=30-6000 eV and for energy groups in the energy region E=21.5 eV- 100 keV. They were used for determination of the average multiplicity, resonance parameters and capture cross-section in energy groups and for low-laying resonances of sup...

  16. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    Energy Technology Data Exchange (ETDEWEB)

    Do, T. P. T. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); School of Education, Can Tho University, Campus II, 3/2 Street, Xuan Khanh, Ninh Kieu, Can Tho City (Viet Nam); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Konovalov, D. A.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville (Australia); Brunger, M. J., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jones, D. B., E-mail: michael.brunger@flinders.edu.au, E-mail: darryl.jones@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  17. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    International Nuclear Information System (INIS)

    OH, S.Y.; CHANG, J.; MUGHABGHAB, S.

    2000-01-01

    Neutron cross section evaluations of the fission-product isotopes, 95 Mo, 99 Tc, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, 141 Nd, 147 Sm, 149 Sm, 150 Sm, 151 Sm, 152 Sm, 153 Eu, 155 Gd, and 157 Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of 155 Gd and 157 Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations

  18. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    Energy Technology Data Exchange (ETDEWEB)

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  19. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  20. Modeling and Analysis of a Piezoelectric Energy Harvester with Varying Cross-Sectional Area

    Directory of Open Access Journals (Sweden)

    Maiara Rosa

    2014-01-01

    Full Text Available This paper reports on the modeling and on the experimental verification of electromechanically coupled beams with varying cross-sectional area for piezoelectric energy harvesting. The governing equations are formulated using the Rayleigh-Ritz method and Euler-Bernoulli assumptions. A load resistance is considered in the electrical domain for the estimate of the electric power output of each geometric configuration. The model is first verified against the analytical results for a rectangular bimorph with tip mass reported in the literature. The experimental verification of the model is also reported for a tapered bimorph cantilever with tip mass. The effects of varying cross-sectional area and tip mass on the electromechanical behavior of piezoelectric energy harvesters are also discussed. An issue related to the estimation of the optimal load resistance (that gives the maximum power output on beam shape optimization problems is also discussed.

  1. 3He(α, γ7Be cross section in a wide energy range

    Directory of Open Access Journals (Sweden)

    Szücs Tamás

    2017-01-01

    Full Text Available The reaction rate of the 3He(α,γ7 Be reaction is important both in the Big Bang Nucleosynthesis (BBN and in the Solar hydrogen burning. There have been a lot of experimental and theoretical efforts to determine this reaction rate with high precision. Some long standing issues have been solved by the more precise investigations, like the different S(0 values predicted by the activation and in-beam measurement. However, the recent, more detailed astrophysical model predictions require the reaction rate with even higher precision to unravel new issues like the Solar composition. One way to increase the precision is to provide a comprehensive dataset in a wide energy range, extending the experimental cross section database of this reaction. This paper presents a new cross section measurement between Ecm = 2.5 − 4.4 MeV, in an energy range which extends above the 7Be proton separation threshold.

  2. Heavy flavour production cross-sections from fixed target to collider energies

    CERN Document Server

    Wöhri, H K

    2004-01-01

    We review the hadro-production data presently available on charm and beauty absolute production cross-sections, collected by experiments at CERN, DESY and Fermilab. After correcting the published values, in particular for the 'time evolution' of the branching ratios, the measurements are compared to LO pQCD calculations performed with Pythia. as a function of the collision energy, using the latest parametrizations of the parton distribution functions. We then estimate, including nuclear effects on the parton densities, the charm and beauty production cross-sections relevant for future measurements at SPS, RHIC and LHC energies, in proton-proton and nucleus-nucleus collisions. We also compare some indirect charm measurements, done using leptonic decays, to the others and we briefly address the importance of beauty production as a feed-down mechanism of J/ psi production. (34 refs).

  3. Absolute total and one and two electron transfer cross sections for Ar8+ on Ar as a function of energy

    International Nuclear Information System (INIS)

    Vancura, J.; Kostroun, V.O.

    1992-01-01

    The absolute total and one and two electron transfer cross sections for Ar 8+ on Ar were measured as a function of projectile laboratory energy from 0.090 to 0.550 keV/amu. The effective one electron transfer cross section dominates above 0.32 keV/amu, while below this energy, the effective two electron transfer starts to become appreciable. The total cross section varies by a factor over the energy range explored. The overall error in the cross section measurement is estimated to be ± 15%

  4. Fusion cross sections for 6,7Li + 24Mg at energies around the barrier

    International Nuclear Information System (INIS)

    Ray, Maitreyi; Pradhan, M.K.; Kshetri, R.; Mukherjee, A.; Saha Sarkar, M.; Biswas, M.; Roy, S.; Basu, P.; Majumdar, H.; Dasmahapatra, B.; Sinha, M.; Palit, R.; Mazumdar, I.; Joshi, P.K.; Jain, H.C.

    2006-01-01

    The 6,7 Li + 24 Mg reactions in the energy interval E lab = 11-32 MeV using 6,7 Li beams have been investigated from the 14 UD BARC-TIFR Pelletron accelerator at TIFR, Mumbai. The γ-ray cross sections were measured using a Compton suppressed clover detector, placed at 55 deg with respect to the beam direction

  5. Measurement of the elastic, total and diffraction cross sections at tevatron energies

    International Nuclear Information System (INIS)

    Belforte, S.

    1993-11-01

    The CDF collaboration has measured the differential elastic cross section dσ el /dt, the single diffraction dissociation double differential cross section d 2 σ sd /dM 2 dt and the total inelastic cross section for antiproton-proton collisions at center of mass energies √s = 546 and 1,800 GeV. Data for this measurement have been collected in short dedicated runs during the 1988--1989 data taking period of CDF. The elastic scattering slope is 15.28 ± 0.58 (16.98 ± 0.25) GeV -2 at √s = 546 (1,800) GeV. Using the luminosity independent method (1 + ρ 2 )σ T is measured to be 62.64 ± 0.95 (81.83 ± 2.29) mb at √s = 546 (1,800) GeV. Assuming ρ = 0.15 the elastic, total and single diffraction cross sections are σ el = 12.87 ± 0.30, σ T = 61.26 ± 0.93 and σ sd = 7.89 ± 0.33 mb (σ el = 19.70 ± 0.85, σ T = 80.03 ± 2.24 and σ sd = 9.46 ± 0.44 mb) at √s = 546 (1,800) GeV

  6. Measurement of the fission cross-section ratio for 237Np/235U around 14 MeV neutron energies

    International Nuclear Information System (INIS)

    Desdin, L.; Szegedy, S.; Csikai, J.

    1989-01-01

    Fission cross-section ratio was determined for 237 Np/ 235 U around 14 MeV neutron energies with a back-to-back ionization chamber. Neutrons were produced by a 180 KV accelerator using T(d,n) 4 He reaction. No significant energy dependence was found in the cross section ratio

  7. The cross section of 3He(3He,2p)4He measured at solar energies

    International Nuclear Information System (INIS)

    Junker, M.; Arpesella, C.; Bellotti, E.; Broggini, C.; Corvisiero, P.; D'Alessandro, A.; Fiorentini, G.; Fubini, A.; Gervino, G.; Greife, U.; Gustavino, C.; Lambert, J.; Prati, P.; Rodney, W.S.; Rolfs, C.; Trautvetter, H.P.; Zavatarelli, S.

    1999-01-01

    We report on the status of the 3 He( 3 He,2p) 4 He experiment at the underground accelerator facility LUNA (Gran Sasso). The lowest projectile energies for the measured cross section correspond already to energies below the center of the solar Gamow peak (E 0 =22 keV). The data provide no evidence for the existence of a hypothetical resonance in the energy range investigated. Although no extrapolation is needed anymore (except for energies at the low-energy tail of the Gamow peak), the data must be corrected for the effects of electron screening, clearly observed the first time for the 3 He( 3 He,2p) 4 He reaction. The effects are however larger than expected and not understood, leading presently to the largest uncertainty on the quoted S(0) value for bare nuclides (= 5.40 MeVb)

  8. Investigation of the 232Th neutron cross-sections in resonance energy range

    International Nuclear Information System (INIS)

    Grigoriev, Yu.V.; Kitaev, V.Ya.; Sinitsa, V.V.; Zhuravlev, B.V.; Borzakov, S.B.; Faikov-Stanchik, H.; Ilchev, G.L.; Panteleev, Ts.Ts.; Kim, G.N.

    2001-01-01

    The alternative path in the development of atomic energy is the uranium-thorium cycle. In connection with this, the measurements of the 232 Th neutron capture and total cross-sections and its resonance self-shielding coefficients in resonance energy range are necessary because of their low accuracy. In this work, the results of the investigations of the thorium-232 neutron cross-sections are presented. The measurements have been carried out on the gamma-ray multisection liquid detector and neutron detector as a battery of boron counters on the 120 m flight path of the pulsed fast reactor IBR-30. As the filter samples were used the metallic disks of various thickness and diameter of 45 mm. Two plates from metallic thorium with thickness of 0.2 mm and with the square of 4.5x4.5 cm 2 were used as the radiator samples. The group neutron total and capture cross-sections within the accuracy of 2-7% in the energy range of (10 eV-10 keV) were obtained from the transmissions and the sum spectra of g-rays from the fourth multiplicity to the seventh one. The neutron capture group cross-sections of 238 U were used as the standard for obtaining of thorium ones. Analogous values were calculated on the GRUCON code with the ENDF/B-6, JENDL-3 evaluated data libraries. Within the limits of experimental errors an agreement between the experiment and calculation is observed, but in some groups the experimental values are larger than the calculated ones. (author)

  9. Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry

    Science.gov (United States)

    Accurate estimation of energy expenditure (EE) in children and adolescents is required for a better understanding of physiological, behavioral, and environmental factors affecting energy balance. Cross-sectional time series (CSTS) models, which account for correlation structure of repeated observati...

  10. Absolute cross sections measurement for the 12C + 12C system at astrophysically relevant energies

    International Nuclear Information System (INIS)

    Barron-Palos, L.; Aguilera, E.F.; Aspiazu, J.; Huerta, A.; Martinez-Quiroz, E.; Monroy, R.; Moreno, E.; Murillo, G.; Ortiz, M.E.; Policroniades, R.; Varela, A.; Chavez, E.

    2006-01-01

    The 12 C + 12 C fusion reaction has been studied in the center-of-mass energy range of 2.25 to 6.01 MeV. Through the detection of gamma rays from the first excited states of the residual nuclei 20 Ne, 23 Na and 23 Mg, absolute cross sections for the 12 C( 12 C,-bar α), 12 C( 12 C,-bar p) and 12 C( 12 C,-bar n) reactions have been obtained. In this new measurement, the energy dependence of the S-factor is found to increase as the energy decreases below 3 MeV in the center of mass. This tendency was observed in previous measurements by Mazarakis et al., and has since then become a subject of controversy. In this work, where the cross sections are measured at even lower energies, we confirm the rise in the S-factor toward the energy region relevant for star evolution and nucleosynthesis calculations (E c.m. =1-3 MeV)

  11. Fully differential cross sections for low to intermediate energy perpendicular plane ionization of xenon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: ghanshyam.purohit@spsu.ac.in; Singh, P.; Patidar, V.

    2014-12-15

    Highlights: • We present triply differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms. • The TDCS has been calculated in the modified distorted wave Born approximation formalism. • The effects of target polarization and post collision interaction have also been included. • The polarization potential, higher order effects and PCI has been found to be useful in the description of TDCS. - Abstract: Triple differential cross section (TDCS) results are reported for the perpendicular plane ionization of Xe (5p) at incident electron energies 5 eV, 10 eV, 20 eV, and 40 eV above ionization potential. The modified distorted wave Born approximation formalism with first as well as the second order Born terms has been used to calculate the TDCS. Effects of target polarization and post collision interaction have also been included. We compare the (e, 2e) TDCS results of our calculation with the recent available experimental data and theoretical results and discuss the process contributing to structure seen in the differential cross section. It has been observed from the present study that the second order effect and target polarization make significant contribution in description of collision dynamics of xenon at the low and intermediate energy for the perpendicular emission of electrons.

  12. Fully differential cross sections for low to intermediate energy perpendicular plane ionization of xenon atoms

    International Nuclear Information System (INIS)

    Purohit, G.; Singh, P.; Patidar, V.

    2014-01-01

    Highlights: • We present triply differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms. • The TDCS has been calculated in the modified distorted wave Born approximation formalism. • The effects of target polarization and post collision interaction have also been included. • The polarization potential, higher order effects and PCI has been found to be useful in the description of TDCS. - Abstract: Triple differential cross section (TDCS) results are reported for the perpendicular plane ionization of Xe (5p) at incident electron energies 5 eV, 10 eV, 20 eV, and 40 eV above ionization potential. The modified distorted wave Born approximation formalism with first as well as the second order Born terms has been used to calculate the TDCS. Effects of target polarization and post collision interaction have also been included. We compare the (e, 2e) TDCS results of our calculation with the recent available experimental data and theoretical results and discuss the process contributing to structure seen in the differential cross section. It has been observed from the present study that the second order effect and target polarization make significant contribution in description of collision dynamics of xenon at the low and intermediate energy for the perpendicular emission of electrons

  13. Excitation energies, photoionization cross sections, and asymmetry parameters of the methyl and silyl radicals.

    Science.gov (United States)

    Velasco, A M; Lavín, C; Dolgounitcheva, O; Ortiz, J V

    2014-08-21

    Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3(+) and SiH3(+). Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10-11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.

  14. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  15. 3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy

    Science.gov (United States)

    Kolb, N. R.; Feldman, G.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.; Hackett, E. D.; Quraan, M. A.; Rodning, N. L.

    1996-11-01

    Cross sections have been measured for the 3He(γ,pp)n reaction with tagged photons in the range Eγ =161-208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40°-140° and azimuthal angles of 0°-360° with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data.

  16. 3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy

    International Nuclear Information System (INIS)

    Kolb, N.R.; Feldman, G.; ORielly, G.V.; Pywell, R.E.; Skopik, D.M.; Hackett, E.D.; Quraan, M.A.; Rodning, N.L.

    1996-01-01

    Cross sections have been measured for the 3 He(γ,pp)n reaction with tagged photons in the range E γ =161 endash 208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40 degree endash 140 degree and azimuthal angles of 0 degree endash 360 degree with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data. copyright 1996 The American Physical Society

  17. High-energy behavior of the charge-transfer cross section in the eikonal approximation

    International Nuclear Information System (INIS)

    Dewangan, D.P.

    1982-01-01

    In the now popular version of the eikonal theory of charge transfer, the eikonal wave function does not satisfy the proper boundary conditions and the charge-transfer amplitude is uncertain by an undefined phase factor. The inclusion of the internuclear potential in a consistent way, in the eikonal theory overcomes theses difficulties. However, it also changes the high-energy asymptotic form of proton-hydrogen charge-transfer cross section from sigma/sub eik/ approx.(23/48) sigma/sub BK/ by a small amount to sigma/sub G/approx.(20.109/48)sigma/sub BK/ where sigma/sub BK/ is the Brinkman-Kramers cross section

  18. Proton-induced fission cross sections on "2"0"8Pb at high kinetic energies

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J.L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Alvarez-Pol, H.; Cortina-Gil, D.; Pietras, B.; Ramos, D.; Vargas, J.; Taieb, J.; Chatillon, A.; Belier, G.; Boutoux, G.; Gorbinet, T.; Laurent, B.; Martin, J.F.; Pellereau, E.; Casarejos, E.; Rodriguez-Tajes, C.

    2014-01-01

    Total fission cross sections of "2"0"8Pb induced by protons have been determined at 370 A, 500 A, and 650 A MeV. The experiment was performed at GSI Darmstadt where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to determine these cross sections with an uncertainty below 6%. This result was achieved by an accurate beam selection and registration of both fission fragments in coincidence which were also clearly distinguished from other reaction channels. These data solve existing discrepancies between previous measurements, providing new values for the Prokofiev systematics. The data also allow us to investigate the fission process at high excitation energies and small deformations. In particular, some fundamental questions about fission dynamics have been addressed, which are related to dissipative and transient time effects. (authors)

  19. Evaluation of the neutron cross sections of 235U in the thermal energy region. Final report

    International Nuclear Information System (INIS)

    Leonard, B.R. Jr.; Kottwitz, D.A.; Thompson, J.K.

    1976-02-01

    The objective of this work has been to improve the knowledge of the thermal cross sections of the fissile nuclei as a step toward providing a standard data base for the nuclear industry. The methodology uses a form of the Adler-Adler multilevel-fission theory and Breit-Wigner multilevel-scattering theory. It incorporates these theories in a general nonlinear least-squares (LSQ) fitting program SIGLEARNThe analysis methodology in this work was applied to the thermal data on 235 U. A reference data file has been developed which includes most of the known data of interest. The first important result of this work is the assessment of the shape uncertainties of the partial cross sections. The results of our studies lead to the following values and error estimates for 235 U g factors in a thermal (20.44 0 C) energy spectrum: g/sub f/ = 0.97751 (+-0.11%); g/sub γ/ = 0.98230 (+-0.14%). A second important result of this study is the development of a recommended set of 2200 m/s (0.0253 eV) values of the parameters and the probable range of further adjustment which might be made. The analysis also provides the result of a common interpretation of energy-dependent absolute cross-section data of different measurements to yield a consistent set of experimental 0.0253 eV values with rigorous error estimates. It also provides normalization factors for relative fission and capture cross sections on a common basis with rigorous error estimates. The results of these analyses provide a basis for deciding what new measurements would be most beneficial. The most important of these would be improved direct capture data in the thermal region

  20. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  1. From eV to EeV: Neutrino cross sections across energy scales

    Energy Technology Data Exchange (ETDEWEB)

    Formaggio, J. A.; Zeller, G. P.

    2012-09-01

    Since its original postulation by Wolfgang Pauli in 1930, the neutrino has played a prominent role in our understanding of nuclear and particle physics. In the intervening 80 years, scientists have detected and measured neutrinos from a variety of sources, both man-made and natural. Underlying all of these observations, and any inferences we may have made from them, is an understanding of how neutrinos interact with matter. Knowledge of neutrino interaction cross sections is an important and necessary ingredient in any neutrino measurement. With the advent of new precision experiments, the demands on our understanding of neutrino interactions is becoming even greater. The purpose of this article is to survey our current knowledge of neutrino cross sections across all known energy scales: from the very lowest energies to the highest that we hope to observe. The article covers a wide range of neutrino interactions including coherent scattering, neutrino capture, inverse beta decay, low energy nuclear interactions, quasi-elastic scattering, resonant pion production, kaon production, deep inelastic scattering and ultra-high energy interactions. Strong emphasis is placed on experimental data whenever such measurements are available.

  2. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  3. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  4. Binding energy and photoionization cross-section of hydrogen-like impurity in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimifard, A.

    2010-01-01

    The effect of the donor impurity position and the form of confining potential on the binding energy and the photoionization cross-section if a semiconductor quantum well with Poschl-Teller potential is investigated. An analytical expression for the photoionization cross-section is obtained for the case when the polarization vector of light wave is directed along the direction of size quantization. It is shown that the photoionization cross-section has a threshold behavior

  5. Performance of JEF2.2 based continuous energy cross sections in predicting the multiplication factor of critical systems

    International Nuclear Information System (INIS)

    John, T.M.; de Leege, P.F.A.; Hoogenboom, J.E.

    1996-01-01

    The continuous energy representation of cross sections for neutronics calculations avoids the requirement of resonance self shielding and the assumptions about the neutron spectrum used for weighing cross sections, required in the preparation of a multigroup cross sections library. The cross sections library prepared for a particular temperature of the nuclide is valid irrespective of the environment of the nuclide and can be used in calculations for many types of reactors. It is comparatively easier to incorporate them in Monte Carlo simulation of neutron transport. The Monte Carlo code MCNP is capable of using a continuous energy representation of nuclear cross sections in simulation of neutron or photon transport. The ACER module of NJOY is able to generate the continuous energy cross section of any nuclide in a format that can be used by MCNP, from any evaluated data file in ENDF/B format. Continuous energy cross sections prepared from the evaluated data file JEF2.2 was used to analyse some standard critical benchmarks and also the critical configuration of the HOR, a 2 MW research reactor at Delft, the Netherlands. Results show that continuous energy cross sections prepared from JEF2.2 evaluated file predicts the multiplication factor of critical systems very close to unity. (author). 6 refs., 2 tabs., 1 fig

  6. Energy Dependent Removal Cross-Sections in Fast Neutron Shielding Theory

    International Nuclear Information System (INIS)

    Groenroos, Henrik

    1965-05-01

    The analytical approximations behind the energy dependent removal cross-section concept of Spinney is investigated and its predictions compared with exact values calculated by Case's singular integral method. The exact values are obtained in plane infinite geometry for the two absorption ratios Σ a /Σ t = 0. 1 and Σ a /Σ t = 0.7 over a range of 20 mfp and for varying degrees of forward anisotrophy in the elastic scattering. The latter is characterized by choosing a suitable general scattering function. It is shown that Spinney's original definition follows if Grosjean's formalism, i. e. the matching of moments, is applied. The prediction of the neutron flux is remarkably accurate, and mostly within 50 % for the spatial range and cases investigated. A definition of the removal cross-sections based on matching the exact asymptotic solution to the exponential part of the approximate solution is found to give less accurate flux values than Spinney's model. A third way to define a removal cross-section independent of the spatial coordinates is the variational method. The possible uses of this technique is briefly commented upon

  7. Energy Dependent Removal Cross-Sections in Fast Neutron Shielding Theory

    Energy Technology Data Exchange (ETDEWEB)

    Groenroos, Henrik

    1965-05-15

    The analytical approximations behind the energy dependent removal cross-section concept of Spinney is investigated and its predictions compared with exact values calculated by Case's singular integral method. The exact values are obtained in plane infinite geometry for the two absorption ratios {sigma}{sub a}/{sigma}{sub t} = 0. 1 and {sigma}{sub a}/{sigma}{sub t} = 0.7 over a range of 20 mfp and for varying degrees of forward anisotrophy in the elastic scattering. The latter is characterized by choosing a suitable general scattering function. It is shown that Spinney's original definition follows if Grosjean's formalism, i. e. the matching of moments, is applied. The prediction of the neutron flux is remarkably accurate, and mostly within 50 % for the spatial range and cases investigated. A definition of the removal cross-sections based on matching the exact asymptotic solution to the exponential part of the approximate solution is found to give less accurate flux values than Spinney's model. A third way to define a removal cross-section independent of the spatial coordinates is the variational method. The possible uses of this technique is briefly commented upon.

  8. Behaviour of cross sections of exclusive and inclusive processes at high energies

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.; Petrov, V.A.

    1977-01-01

    The character of the functional dependence of the cross sections of exclusive and inclusive processes on the energy of colliding particles is established according to the basic theoretical principles of causality, spectrality and unitarity. The Jost-Lehmann-Dyson representation for multiparticle amplitudes and distribution functions (DF) of an inclusive process is deduced. The asymptotic behaviour of the multiparticle amplitudes and DF at high energies is established on the basis of the higly general assumptions concerning the singularity character of the Jost-Lehmann-Dyson spectral functions. The restrictions on the possible increase of the amplitudes and DF are imposed. The asymptotic formulae for the DF are discussed in connection with the hypotheses of the limiting fragmentation and scale invariance. The method developed for obtaining the amlitude asymptotics at high energies is applied to the amplitude of a binary process

  9. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    International Nuclear Information System (INIS)

    Duque, H. V.; Chiari, L.; Jones, D. B.; Pettifer, Z.; Silva, G. B. da; Limão-Vieira, P.; Blanco, F.; García, G.; White, R. D.; Lopes, M. C. A.; Brunger, M. J.

    2014-01-01

    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results

  10. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Chiari, L.; Jones, D. B.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); White, R. D. [School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia)

    2014-06-07

    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.

  11. Experimental measurement of the 12C+16O fusion cross sections at astrophysical energies

    Science.gov (United States)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2018-05-01

    The total cross sections of the 12C+16O fusion have been experimentally determined at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam was produced by the 5MV pelletron accelerator at the University of Notre Dame impinging on a thick ultra-pure graphite target. Protons and γ-rays were measured simultaneously in the center-of-mass energy range from 3.64 to 5.01 MeV, using strip silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. A new broad resonance-like structure is observed for the 12C+16O reaction, and a decreasing trend of its S-factor towards low energies is found.

  12. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-05-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.

  13. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    International Nuclear Information System (INIS)

    Chiang, Min-Han; Wang, Jui-Yu; Sheu, Rong-Jiun; Liu, Yen-Wan Hsueh

    2014-01-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects

  14. Universal law for the increase of hadronic cross sections at high energies

    International Nuclear Information System (INIS)

    Barut, A.O.; Boukraa, S.

    1987-01-01

    We show that all known total cross sections can be well described by a simple universal formula σ/sub tot/ = σ 0 +A/s/sup 1/2/+0.388 ln 2 (s/44.44) mb (s in GeV 2 ). The constant σ 0 is the same for the reactions ab and a-barb. A number of further predictions are given, and a dynamical model for the high-energy logarithmic increase is suggested. The second term is due to exchange processes

  15. Single electron capture differential cross section in H+ + He collisions at intermediate and high collision energies

    International Nuclear Information System (INIS)

    Abufager, P N; Fainstein, P D; MartInez, A E; Rivarola, R D

    2005-01-01

    The generalized continuum distorted wave-eikonal initial state (CDW-EIS II) approximation is employed to study differential cross sections (DCS) for single electron capture in H + + He collisions at intermediate and high energies. Present results are compared with theoretical calculations obtained using the previous CDW-EIS formulation in order to show the importance of the description of the bound and continuum target states in the entrance and exit channels, respectively. Both DCS are also shown together with other theoretical results and with experimental data

  16. Sub-LET Threshold SEE Cross Section Dependency with Ion Energy

    CERN Document Server

    Garcia Alia, Ruben; Brandenburg, Sytze; Brugger, Markus; Daly, Eamonn; Ferlet-Cavrois, Veronique; Gaillard, Remi; Hoeffgen, Stefan; Menicucci, Alessandra; Metzger, Stefan; Zadeh, Ali; Muschitiello, Michele; Noordeh, Emil; Santin, Giovanni; CERN. Geneva. ATS Department

    2015-01-01

    This study focuses on the ion species and energy dependence of the heavy ion SEE cross section in the sub-let threshold region through a set of experimental data. In addition, a Monte Carlo based model is introduced and applied, showing a good agreement with the data in the several hundred MeV/n range while evidencing large discrepancies with the measurements in the 10-30 MeV/n interval, notably for the NE ion. Such discrepancies are carefully analysed and discussed.

  17. Measure of the e+e-→bb Cross Section at the LEP Energies

    International Nuclear Information System (INIS)

    Arce Dubois, P.

    1992-01-01

    In the present work I analyse the data collected during 1990 by the L3 detector, situated in the electron-positron collider LEP. After selecting the events e''+e''-→ bb through their semileptonic decays into muons, I calculate the cross section for the process e''+e''- → bb at different energy points around the mass of the vectorial boson Z, and I measure some parameters of the Standard Model, namely, the Br(b→μ ),Γ z n-→bb/Γ z n→had and Γ z n→bbΓ z n→e''+e''-. (Author) 26 refs

  18. Measure of the e+e-→ bb-bar cross section at the LEP energies

    International Nuclear Information System (INIS)

    Arce Dubois, P.

    1992-01-01

    In the present work I analyse the data collected during 1990 by the L3 detector, situated in the electron-positron collider LEP. After selecting the events e + e - → bb-bar through their semileptonic decays into muons, I calculate the cross section for the process e + e - → bb-bar at different energy points around the mass of the vectorial Z 0 , and I measure some parameters of the Standard Model, namely the Br(b→μ),γ Z degree celsius →bb/γ Z degree celsius → had and γ Z degree celsius → bb γ Z degree celsius → e + e -

  19. The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy

    International Nuclear Information System (INIS)

    Rashdan, M.; Farhan, A.M.; Hassib, E.; Kareem, W. Abdel

    2006-01-01

    The isospin dependence of the nucleus-nucleus inelastic cross-section at high energy is investigated within the multiple scattering theory. The multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. Calculations are performed for 14-23 N, 16-24 O and 18-26 F isotopes colliding with carbon target around 1 GeV. It is found that rms radii and the density distributions show a halo structure of 22 N, 23 O and 24 F

  20. Differential cross sections for inelastic scattering of electrons on Kr and Xe atoms at intermediate energies

    International Nuclear Information System (INIS)

    Filipovic, D.M.

    1989-01-01

    Electron-impact excitation of the larger- number noble-gas atoms is a way of understanding excitation mechanisms in atomic collisional processes. Krypton and xenon have the largest atomic number of all the stable noble gases. Therefore, effects dependent on the size of a target atom, such as alignment and orientation of the atomic outer shell charge cloud after collisional excitation, are best observed by studying these atoms. Normalized, absolute differential cross sections (DCS's) for the lowest electronic states of Kr and Xe atoms, at intermediate energies, are the subject of this report

  1. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  2. Neutron-capture-activation cross sections of 9496Zr and 98100Mo at thermal and 30 keV energy

    International Nuclear Information System (INIS)

    Wyrick, J.M.; Poenitz, W.P.

    1982-01-01

    Neutron-capture cross sections of 94 96 Zr and 98 100 Mo were measured relative to the standard-capture cross section of gold at thermal and 30 keV neutron energies using the activation technique. The reported values are based upon available decay-scheme information

  3. Determination of the potential scattering parameter and parameterization of neutron cross-sections in the low-energy region

    International Nuclear Information System (INIS)

    Novoselov, G.M.; Litvinskij, L.L

    2001-01-01

    Different cross-section parameterization methods in the low-energy region are considered. It is shown that the potential scattering parameter value derived from analysis of experimental cross-section data is dependent essentially on the method used to take account of the nearest resonances. A formula describing this dependence is obtained. The results are verified by numerical model calculations. (author)

  4. Neutron-photon multigroup cross sections for neutron energies up to 400 MeV: HILO86R

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Nakane, Yoshihiro; Hasegawa, Akira; Tanaka, Shun-ichi

    1993-02-01

    A macroscopic multigroup cross section library of 66 neutron and 22 photon groups for neutron energies up to 400 MeV: HILO86R is prepared for 10 typical shielding materials; water, concrete, iron, air, graphite, polyethylene, heavy concrete, lead, aluminum and soil. The library is a revision of the DLC-119/HILO86, in which only the cross sections below 19.6 MeV have been exchanged with a group cross section processed from the JENDL-3 microscopic cross section library. In the HILO86R library, self shielding factors are used to produce effective cross sections for neutrons less than 19.6 MeV considering rather coarse energy meshes. Energy spectra and dose attenuation in water, concrete and iron have been compared among the HILO, HILO86 and HILO86R libraries for different energy neutron sources. Significant discrepancy has been observed in the energy spectra less than a couple of MeV energy in iron among the libraries, resulting large difference in the dose attenuation. The difference was attributed to the effect of self-shielding factor, namely to the difference between infinite dilution and effective cross sections. Even for 400 MeV neutron source the influence of the self-shielding factor is significant, nevertheless only the cross sections below 19.6 MeV are exchanged. (author)

  5. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-02-01

    Multigroup cross sections (66 neutron groups and 22 photon groups) are described for neutron energies from thermal to 400 MeV. The elements considered are hydrogen, 10 B, 11 B, carbon, nitrogen, oxygen, sodium, magnesium, aluminum, silicon, sulfur, potassium, calcium, chromium, iron, nickel, tungsten, and lead. The cross section data presented are a revision of similar data presented previously. In the case of iron, transport calculations using the earlier and the revised cross sections are presented and compared, and significant differences are found. The revised cross sections are available from the Radiation Shielding information Center of the Oak Ridge National Laboratory. 32 refs., 5 figs., 3 tabs

  6. pbarp, pbarD, pbar sup 4 He annihilation cross sections at low energy

    CERN Document Server

    Tessaro, S; Capponi, M; Cereda, B; De Castro, S; Ferretti, A; Galli, D; Giacobbe, B; Marconi, U; Piccinini, M; Semprini-Cesari, N; Spighi, R; Vecchi, S; Vezzani, A; Vigotti, F; Villa, M; Vitale, A; Zoccoli, A; Belli, G; Corradini, M; Donzella, A; Lodi-Rizzini, E; Venturelli, L; Zenoni, A; Cicalò, C; Masoni, A; Puddu, G; Serci, S; Temnikov, P P; Usai, G L; Ableev, V G; Denisov, O Yu; Gorchakov, O E; Prakhov, S N; Rozhdestvensky, A M; Sapozhnikov, M G; Tretyak, V I; Poli, M; Gianotti, P; Guaraldo, C; Lanaro, A; Lucherini, V; Nichitiu, F; Petrascu, C; Rosca, A; Cavion, C; Gastaldi, Ugo; Lombardi, M; Vannucci, Luigi; Vedovato, G; Andrighetto, A; Morando, M; Ricci, R A; Bendiscioli, G; Filippini, V; Fontana, A; Montagna, P; Rotondi, A; Saino, A; Salvini, P; Filippi, A; Balestra, F; Botta, E; Bressani, Tullio; Bussa, M P; Busso, L; Calvo, D; Cerello, P G; Costa, S; D'Isep, F; Fava, L; Feliciello, A; Ferrero, L; Garfagnini, R; Grasso, A; Maggiora, A; Marcello, S; Mirfakhraee, N; Panzieri, D; Parena, D; Rossetto, E; Tosello, F; Zosi, G; Agnello, M; Iazzi, F; Minetti, B; Pauli, G; Tessaro, S; Santi, L

    1999-01-01

    New measurements of the pbarp annihilation cross section have been performed with the OBELIX apparatus between 37 and 70 MeV/c. From previous samples of data it was already clear that the 1/p behaviour for the annihilation cross section is drastically modified at very low momenta, due to the Coulomb interaction. However, at the lowest measured momentum (43.6 MeV/c), the annihilation cross section was unexpectedly high; this evidence suggested a more accurate investigation of this region. Furthermore, measurements of annihilation cross section have been performed with pbar impinging on D sub 2 and sup 4 He targets.

  7. Test of the universal rise of hadronic total cross sections at super-high energies

    International Nuclear Information System (INIS)

    Ishida, Muneyuki; Igi, Keiji

    2007-01-01

    The increase of the total cross sections at very high energies described by log 2 (s/s 0 ) appears to be confirmed. In the analysis of the COMPETE collaboration in the Particle Data Group (2006), the Blog 2 (s/s 0 ) was assumed to extend the universal rise of all the total hadronic cross sections to reduce the number of adjustable parameters. We test if the assumption on the universality of B is justified, through investigation of the values of B for π ± p(K ± p) and pp,pp scatterings. We search for the simultaneous best fit to the σ tot and ρ ratios, using a constraint from the FESR of the P' type for π -+ p scatterings and constraints that are free from the unphysical regions for the pp, pp and K ± p scatterings. By including rich information of the low-energy scattering data owing to the use of FESR, the errors of the B parameters decrease especially for πp. The resulting value of B pp is consistent with B πp within two standard deviations, which appears to support the universality hypothesis. (orig.)

  8. Pion production differential cross section of heavy-ion collisions at subthreshold energies

    International Nuclear Information System (INIS)

    Abumurad, K.M.

    1987-01-01

    A revised model for pion production in heavy-ion peripheral collisions at subthreshold energies is presented. The pion-production mechanism investigated here is a two step process involving the formation and subsequent decay of an isobar resonance in the projectile nucleus. The independent-particle shell model with harmonic oscillator states is used to approximate the internal structure of the nucleus. The pion production cross section shows a definite angular distribution characteristic of coherent production. It also gives an indication of the quantum signature of the emitted pions. The results show the disappearance of the quantum signature from the energy spectra because of the inclusion of higher order multipoles. The theory is compared to recent experimental data. The comparison reveals that the general trend is reproduced, which is encouraging

  9. Determination of the total neutron cross section using average energy shift method for filtered neutron beam

    Directory of Open Access Journals (Sweden)

    О. О. Gritzay

    2016-12-01

    Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.

  10. QCD-motivated Pomeron and diffractive hadronic cross sections at high energies

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Dakhno, L.G.; Nikonov, V.A.

    1996-01-01

    The cross sections for soft diffractive processes in pp (or p-barp) and πp collisions are calculated by using the QCD-motivated Pomeron. Unitarization of the s-channel amplitude is performed in the eikonal approximation. Color screening is taken into account in the quark structure of hadrons. The resulting description of diffractive processes leads to the parameters of the bare Pomeron P that are close to the corresponding parameters of the Lipatov Pomeron. The parameters of the bare Pomeron and three-reggeon block PGG (G is a reggeized gluon) are fixed by fitting data at moderately high energies. Predictions for ultrahigh energies are made. The intercept for the bare Pomeron is obtained. It is consistent with data on deep-inelastic scattering at small x

  11. Measurement of the energy dependence of the total photon-proton cross section at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. Coll. London (United Kingdom); Krakow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    The energy dependence of the photon-proton total cross section, {sigma}{sub tot}{sup {gamma}}{sup p}, was determined from e{sup +}p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the {gamma}p system in the range 194

  12. Charge-state dependence of binary-encounter-electron cross sections and peak energies

    International Nuclear Information System (INIS)

    Hidmi, H.I.; Richard, P.; Sanders, J.M.; Schoene, H.; Giese, J.P.; Lee, D.H.; Zouros, T.J.M.; Varghese, S.L.

    1993-01-01

    The charge-state dependence of the binary-encounter-electron (BEE) double-differential cross section (DDCS) at 0 degree with respect to the beam direction resulting from collisions of 1 MeV/amu H + , C q+ , N q+ , O q+ , F q+ , Si q+ , and Cl q+ , and 0.5 MeV/amu Cu q+ with H 2 is reported. The data show an enhancement in the BEE DDCS as the charge state of the projectile is decreased, in agreement with the data reported by Richard et al. [J. Phys. B 23, L213 (1990)]. The DDCS enhancement ratios observed for the three-electron isoelectronic sequence C 3+ :C 6+ , N 4+ :N 7+ , O 5+ :O 8+ , and F 6+ :F 9+ are about 1.35, whereas a DDCS enhancement of 3.5 was observed for Cu 4+ . The BEE enhancement with increasing electrons on the projectile has been shown by several authors to be due to the non-Coulomb static potential of the projectile and additionally to the e-e exchange interaction. An impulse-approximation (IA) model fits the shape of the BEE DDCS and predicts a Z p 2 dependence for the bare-ion cross sections. The IA also predicts a binary peak energy that is independent of q and Z p and below the classical value of 4t, where t is the energy of electrons traveling with the projectile velocity. We observed a BEE energy shift ΔE (ΔE=4t-E peak , where E peak is the measured energy at the peak of the binary encounter electrons) that is approximately independent of q for the low-Z p ions, whereas the measured ΔE values for Si, Cl, and Cu were found to be q dependent

  13. Parametrization of the cross sections for complete disintegration of nuclei at relativistic energies

    International Nuclear Information System (INIS)

    Bogdanov, V.G.; Plyushchev, V.A.; Solov'eva, Z.I.

    1988-01-01

    A phenomenological analysis of observations of the complete disintegration of target nuclei in emulsions in relativistic heavy-ion reactions is given. On the basis of the probability of complete disintegration obtained from the observations it is possible to determine the value of the disintegration cross sections. A parametrizatio of these inelastic cross sections is formulated

  14. Total neutron cross sections at energies around 20 MeV

    International Nuclear Information System (INIS)

    Morales, J.R.; Romero, J.L.; Martens, P.

    1990-09-01

    The results for measurements of total cross sections on C, Al, Mg, Cu, Ge and Pb at 17.6 and 19.8 MeV are reported. A detailed comparison is presented with previous data and with the global optical model by the Ohio group. We also discuss plans for total non elastic cross section measurements. 31 refs, 12 figs, 2 tabs

  15. Quantifying uncertainties in the high-energy neutrino cross-section

    Indian Academy of Sciences (India)

    2012-11-10

    Nov 10, 2012 ... Corresponding author. E-mail: s.sarkar@physics.ox.ac.uk .... i.e. cross-sections in the present case, modern PDF sets provide not only the best-fit PDF, but also .... However, any power-law rise in the cross-section will eventu-.

  16. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  17. Photodouble ionization differential cross sections for D2 with various electron energy sharing conditions

    International Nuclear Information System (INIS)

    Seccombe, D.P.; Collins, S.A.; Reddish, T.J.; Selles, P.; Malegat, L.; Huetz, A.; Kazansky, A.K.

    2002-01-01

    The mutual angular distributions of the two ejected electrons following direct photodouble ionization have been measured for D 2 at an excess energy (E) of 25 eV using linearly polarized light. These (γ, 2e) 'triple' differential cross sections (TDCSs) were obtained for asymmetric electron energy conditions with energy sharing ratios (R=E 2 /E 1 ) of R=24, 11.5, 4 and 2.57. In all cases the 'reference' electron (energy = E 1 ) was oriented along the direction of the electric field vector (ε) and detected in coincidence with a second electron (energy = E 2 ) coplanar with ε and the photon beam direction (kγ). For comparison, helium TDCSs were obtained for the same E and R values under nearly identical spectrometer conditions. These show very good agreement with the results of hyperspherical-R-matrix with semi-classical outgoing waves calculations, thus providing even more confidence in the D 2 TDCSs where there is as yet no accurate ab initio theory. The similarities and differences between the experimental results associated with the two targets are qualitatively discussed in terms of Feagin's model (Feagin J M 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L729). (author)

  18. Measurement of the e+e- → π+π-π+π- cross section in the rho'(1600) energy region

    International Nuclear Information System (INIS)

    Bacci, C.; De Zorzi, G.; Penso, G.; Stella, B.; Baldini-Celio, R.; Battistoni, G.; Capon, G.; Del Fabbro, R.; Iarocci, E.; Murtas, G.P.

    1980-01-01

    The cross section for the reaction e + e - → π + π - π + π - has been measured at the e + e - storage ring Adone, in the total c.m. energy range 1.42-2.20 GeV. The peak and the following descent of the rho'(1600) resonance is observed. Using also lower energy data, and assuming that only one resonant amplitude contributes to the observed cross section, the parameters of the rho'(1600) are deduced. (orig.)

  19. Electron transport in furfural: dependence of the electron ranges on the cross sections and the energy loss distribution functions

    Science.gov (United States)

    Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.

    2016-09-01

    Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.

  20. EVALPLOT2007, ENDF Plots Cross Section, Angular Distribution and Energy Distribution

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: EVALPLOT is designed to plot evaluated cross sections in the ENDF/B format. The program plots cross sections, angular distributions, energy distributions and other parameters. IAEA1322/16: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: Evalplot Vers. 2007-1 (Jan. 2007): - checked against all ENDF/B-VII; - increased page size from 600,000 to 2,400,000; - increased the number of energies vs. legendre coefficients from 20,000 to 80,000 (must be 1/30 page size); - added (n,remainder) to first plot. 2 - Method of solution: In the case of processing neutron and photon cross sections (MF=3 or 23) and parameters (MF=1 or 27), all data in a file (MF) is read, grouped together by type, and plotted. All reactions of a data type appear on the same plot. The data types for MF=1 and 3 (neutrons) are: (1) total, elastic, capture, fission and total inelastic; (2) (n,2n), (n,3n) and (n,n' charged particle); (3) (n,charged particle); (4) particle production (proton, deuteron, etc.) and damage; (5) total, first, second, etc. chance fission; (6) total inelastic, inelastic discrete levels and continuum; (7) (n,p) total and levels (only if levels are given); (8) (n,d) total and levels (only if levels are given); (9) (n,t) total and levels (only if levels are given); (10) (n, 3 He) total and levels (only if levels are given); (11) (n, 4 He) total and levels (only if levels are given); (12) parameters mu-bar, xi and gamma; (13) nu-bar - total, prompt an delayed. The data types for MF=23 and 27 (photons) are: (14) total, coherent

  1. A statistical method to estimate low-energy hadronic cross sections

    Science.gov (United States)

    Balassa, Gábor; Kovács, Péter; Wolf, György

    2018-02-01

    In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s. energy. The method is based on the idea, when two particles collide a so-called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton-antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.

  2. Measured energy dependence of L-shell photoelectric cross sections of lead in the energy region 17-50 keV

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1980-08-28

    The energy dependence of L-shell photoelectric cross sections for lead in the energy region 17-50 keV has been investigated. The method utilises external conversion x-rays as the source of photons and it yields relative rather than absolute cross sections, but is simpler and more accurate. The results show fairly good agreement with theory.

  3. Program TOTELA calculating basic cross sections in intermediate energy region by using systematics

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Niita, Koji

    2000-01-01

    Program TOTELA can calculate neutron- and proton-induced total, elastic scattering and reaction cross sections and angular distribution of elastic scattering in the intermediate energy region from 20 MeV to 3 GeV. The TOTELA adopts the systematics modified from that by Pearlstein to reproduce the experimental data and LA150 evaluation better. The calculated results compared with experimental data and LA150 evaluation are shown in figures. The TOTELA results can reproduce those data almost well. The TOTELA was developed to fill the lack of experimental data of above quantities in the intermediate energy region and to use for production of JENDL High Energy File. In the case that there is no experimental data of above quantities, the optical model parameters can be fitted by using TOTELA results. From this point of view, it is also useful to compare the optical model calculation by using RIPL with TOTELA results, in order to verify the parameter quality. Input data of TOTELA is only atomic and mass numbers of incident particle and target nuclide and input/output file names. The output of TOTELA calculation is in ENDF-6 format used in the intermediate energy nuclear data files. It is easy to modify the main routine by users. Details are written in each subroutine and main routine

  4. (e, 2e) triple differential cross sections of Ca atoms at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G; Patidar, Vinod; Sud, K K [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)], E-mail: g_vpurohit@yahoo.com, E-mail: ghanshyam.purohit@spsu.ac.in

    2009-12-15

    Recently, several theoretical studies (Hitawala et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035205; Khajuria and Deshmukh 2008 Phys. Rev. A 78 024702; Chauhan et al 2005 Phys. Rev. A 71 032708) have been reported to analyze the measurements of triple differential cross section (TDCS) for (e, 2e) processes on Ca (4s{sup 2}) atom in coplanar geometry (Murray 2005 Phys. Rev. A 72 062711). In this paper, the (e, 2e) TDCS of the Ca atom has been revisited with the inclusion of correlation-polarization potential and post-collision interaction in the distorted wave Born approximation formalism. We note that the present attempt significantly improves the understanding of (e, 2e) processes at low energies on Ca atom. Still there are several discrepancies between the experimental and theoretical results that require more theoretical attempts to explain them properly.

  5. Observational constraints on dark matter-dark energy scattering cross section

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suresh [BITS Pilani, Department of Mathematics, Rajasthan (India); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-11-15

    In this letter, we report precise and robust observational constraints on the dark matter-dark energy scattering cross section, using the latest data from cosmic microwave background (CMB) Planck temperature and polarization, baryon acoustic oscillations (BAO) measurements and weak gravitational lensing data from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). The scattering scenario consists of a pure momentum exchange between the dark components, and we find σ{sub d} < 10{sup -29} cm{sup 2} (m{sub dm}c{sup 2}/GeV) at 95% CL from the joint analysis (CMB + BAO + CFHTLenS), where m{sub dm} is a typical dark matter particle mass. We notice that the scattering among the dark components may influence the growth of large scale structure in the Universe, leaving the background cosmology unaltered. (orig.)

  6. Review of magnetic fusion energy neutron cross section needs: neutronics viewpoint

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Muir, D.W.

    1977-01-01

    In the overall context of fusion nucleonic analysis, most cross section deficiencies lie in the energy range 14 MeV and below. This review deals not only with new data requirements generated by current interest in d-Li sources but also with the needs of conventional nucleonic studies (i.e., 14-MeV source calculations). The many compilations of requirements are referenced, and the current assessment of high-priority needs is succinctly summarized. Then typical methodology and results (sensitivity and uncertainty analysis) are given for quantitative data assessments of the Tokamak Fusion Test Reactor and a fusion Experimental Power Reactor. Finally, a summary is presented of some probings into data above 14 MeV, which have potential applications for d-Li irradiation facilities, d-Be medical therapy sources, and electronuclear fuel production facilities. 2 figures, 9 tables

  7. Systematics of intermediate-energy single-nucleon removal cross sections

    Science.gov (United States)

    Tostevin, J. A.; Gade, A.

    2014-11-01

    There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.

  8. Search for structure in the low-energy anti p-p annihilation cross section

    International Nuclear Information System (INIS)

    Jastrzembski, E.; Haik, N.; McFarlane, W.K.; Mandelkern, M.A.; Schultz, D.C.; Amsler, C.; Hermann, C.C.; Wolfe, D.M.

    1980-01-01

    The relative cross section for annihilation of antiprotons on hydrogen into one or more charged pions was measured. Incident beam momentum was 600 MeV/c. Numbers of observed events (relative) were compared with those expected from the sensitivity of the apparatus. A phase-space model was used for p-barp annihilation. Relative cross sections are plotted vs invariant mass. Upper limits on cross sections for the formation of narrow resonances in the S region are given; previously reported structures are not confirmed. 2 figures, 1 table

  9. The total cross section as a function of energy for elastic scattering of noble gas atoms

    International Nuclear Information System (INIS)

    Linse, C.A.

    1978-01-01

    Precise relative measurements of the total cross-sections as a function of velocity is presented for the systems Ar-Ar, Ar-Kr, Kr-Ar, Ar-Xe, Ne-Ar, Ne-Kr, and Ne-Xe, the primary beam particle being mentioned first. A discription of the apparatus is given. Then the method for extracting total cross-sections from the measured beam attenuation is analyzed. A comparison is made with total cross-sections calculated from various potentials that have been proposed in the literature

  10. The momentum transfer cross section and transport coefficients for low energy electrons in mercury

    International Nuclear Information System (INIS)

    McEachran, R P; Elford, M T

    2003-01-01

    The momentum transfer cross section for electrons incident on mercury atoms has been determined from the solution of Dirac-Fock scattering equations which included both static and dynamic multipole polarization potentials as well as full anti-symmetrization to incorporate exchange effects. This cross section is in excellent agreement between 0.2 and 3.0 eV with the cross section derived from the most recent experimental measurements. The discrepancy below 0.2 eV has been investigated using two-term transport theory

  11. Development and benchmark of high energy continuous-energy neutron cross Section library HENDL-ADS/MC

    International Nuclear Information System (INIS)

    Chen Chong; Wang Minghuang; Zou Jun; Xu Dezheng; Zeng Qin

    2012-01-01

    The ADS (accelerator driven sub-critical system) has great energy spans, complex energy spectrum structures and strong physical effects. Hence, the existing nuclear data libraries can't fully meet the needs of nuclear analysis in ADS. In order to do nuclear analysis for ADS system, a point-wise data library HENDL-ADS/MC (hybrid evaluated nuclear data library) was produced by FDS team. Meanwhile, to test the availability and reliability of the HENDL-ADS/MC data library, a series of shielding and critical safety benchmarks were performed. To validate and qualify the reliability of the high-energy cross section for HENDL-ADS/MC library further, a series of high neutronics integral experiments have been performed. The testing results confirm the accuracy and reliability of HENDL-ADS/MC. (authors)

  12. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  13. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  14. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  15. A comparative study of cross sections at few energy groups for thermal reactors fuel cells

    International Nuclear Information System (INIS)

    Claro, L.H.; Prati, A.

    1992-01-01

    A comparative study of nuclear constant calculated with LEOPARD and WIMSD-4 codes using a typical PWR cell was done. Few groups macroscopic cross section, spectral index burnup and power distribution were analyzed. (author)

  16. Extracting integrated and differential cross sections in low energy heavy-ion reactions from backscattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, V. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Yerevan State University, 0025 Yerevan (Armenia); Adamian, G. G., E-mail: adamian@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Antonenko, N. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Mathematical Physics Department, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Diaz-Torres, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas, I-38123 Villazzano, Trento (Italy); Gomes, P. R. S. [de Fisica, Universidade Federal Fluminense, Av. Litorânea, s/n, Niterói, R.J. 24210-340 (Brazil); Lenske, H. [Institut für Theoretische Physik der Justus–Liebig–Universität, D–35392 Giessen (Germany)

    2016-07-07

    We suggest new methods to extract elastic (quasi-elastic) scattering angular distribution and reaction (capture) cross sections from the experimental elastic (quasi-elastic) backscattering excitation function taken at a single angle.

  17. Total cross-sections for reactions of high energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol. b

    International Nuclear Information System (INIS)

    Schopper, H.; Moorhead, W.G.; Morrison, D.R.O.

    1988-01-01

    The aim of this report is to present a compilation of cross-sections (i.e. reaction rates) of elementary particles at high energy. The data are presented in the form of tables, plots and some fits, which should be easy for the reader to use and may enable him to estimate cross-sections for presently unmeasured energies. We have analyzed all the data published in the major Journals and Reviews for momenta of the incoming particles larger than ≅ 50 MeV/c, since the early days of elementary particle physics and, for each reaction, we have selected the best cross-section data available. We have restricted our attention to integrated cross-sections, such as total cross-sections, exclusive and inclusive cross-sections etc., at various incident beam energies. We have disregarded data affected by geometrical and/or kinematical cuts which would make them not directly comparable to other data at different energies. Also, in the case of exclusive reactions, we have left out data where not all of the particles in the final state were unambiguously identified. This work contains reactions induced by neutrinos, gammas, charged pions, kaons, nucleons, antinucleons and hyperons. (orig./HSI)

  18. Bibliography of low energy electron and photon cross section data (through December 1974). Final report

    International Nuclear Information System (INIS)

    Kieffer, L.J.

    1976-03-01

    A bibliography of original reports of measurements or calculations of electron, positron and photon cross sections and their ions is presented. A detailed index to the bibliography allows retrieval of cross section data for specific processes and atomic or molecular species. A comprehensive author index is included. The bibliography covers the period 1921 through calendar year 1974, but some references late in 1974 may not have been found and included. No references were found prior to 1921

  19. Bibliography of low energy electron and photon cross section data. Report for Jan 1975-Dec 1977

    International Nuclear Information System (INIS)

    Gallagher, J.W.; Rumble, J.R. Jr; Beaty, E.C.

    1979-06-01

    A bibliography of original reports of measurements or calculations of electron, positron, and photon cross sections for atoms, small molecules, and their ions is presented. A detailed index to the bibliography facilitates retrieval of cross section data for specific processes and associated atomic or molecular species. A comprehensive author index is included. The bibliography covers the calendar years 1975-1977. This work supplements a previous bibliography which covered the literature through 1974

  20. Differential elastic electron scattering cross sections for CCl4 by 1.5-100 eV energy electron impact

    Science.gov (United States)

    Limão-Vieira, P.; Horie, M.; Kato, H.; Hoshino, M.; Blanco, F.; García, G.; Buckman, S. J.; Tanaka, H.

    2011-12-01

    We report absolute elastic differential, integral and momentum transfer cross sections for electron interactions with CCl4. The incident electron energy range is 1.5-100 eV, and the scattered electron angular range for the differential measurements varies from 15°-130°. The absolute scale of the differential cross section was set using the relative flow technique with helium as the reference species. Comparison with previous total cross sections shows good agreement. Atomic-like behaviour in this scattering system is shown here for the first time, and is further investigated by comparing the CCl4 elastic cross sections to recent results on the halomethanes and atomic chlorine at higher impact energies [H. Kato, T. Asahina, H. Masui, M. Hoshino, H. Tanaka, H. Cho, O. Ingólfsson, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Chem. Phys. 132, 074309 (2010)], 10.1063/1.3319761.

  1. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    Science.gov (United States)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  2. Investigation of the 10B(n,t) reaction cross-section in the subthreshold energy region

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Balitskij, A.V.; Baryba, V.Ya.; Druzhnin, V.I.; Kagalenko, A.B.; Kharitonov, A.K.

    1991-01-01

    The 10 B(n,t) reaction cross-section has been measured at incident neutron energies of 0.025 eV, 420 KeV and 5 MeV. A detailed description of the experimental technique and the Monte Carlo simulation is given. It was confirmed that the cross-section of this reaction in the subthreshold region is non-zero. The recommended value of the 10 B(n,t) reaction cross-section at thermal is 8.5±2.0 mb. (author). 16 refs, 3 figs

  3. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  4. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  5. The averaged cross sections of natural carbon in the energy region 90-160 keV

    International Nuclear Information System (INIS)

    Gritzay, O.O.; Volkovetskyi, S.P.; Libman, V.A.

    2012-01-01

    This paper presents the results of measurements of the total cross-section of carbon in the energy region 90 - 160 keV. These results were obtained using a method of the modified filtered beams, developed in the Neutron Physics Department and implemented in the horizontal experimental channel HEC-9 at the Kyiv research reactor. The experiment was carried out using 5 modified filters. Ten values of the averaged cross-sections of carbon were obtained

  6. Measurement of pair production cross sections in Ge for the 1. 238-3. 548 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R K; Singh, K; Sahota, H S

    1985-02-28

    Pair production cross sections have been determined for the 1.238-3.548 MeV energy range in germanium (Z = 32) using a Ge(Li) gamma ray detector. The experimental results have been compared with the theoretical cross sections of previous workers. The results of the present measurements agree with the Bethe-Heitler results down to 1.771 MeV. However, at 1.238 MeV the experimental results are higher than all the theories.

  7. Neutron emission cross sections on 93Nb at 20 MeV incident energy

    International Nuclear Information System (INIS)

    Marcinkowski, A.; Kielan, D.

    1991-01-01

    Over the last years fully quantum-mechanical theories of nuclear reactions have been developed that provide, at least in principle, parameter-free methods of calculating double-differential continuum cross sections. The DWBA-based theory of direct processes to the continuum was derived by Tamura et al. The statistical theory of Feshback, Kerman and Koonin (FKK) introduced two reaction types in parallel as complementary mechanisms contributing to the preequilibrium decay. The multistep compound mechanism (MSC) results in symmetric angular distributions of the emitted particles, whereas the multistep direct mechanism (MSD) gives rise to the forward-peaked angular distributions. The theories of the MSC reactions differ in that the FKK theory incorporates the ''never come back'' hypothesis, which allowed the formulation of an applicable model that was successfully used in practical calculations. On the other hand the FKK theory of the MSD reactions differs conceptually from the theory of Tamura et al. and from the more general theory developed most recently by Nishioka et al. The latter theories were shown to be founded upon a postulated chaos located in the residual nucleus. In contrast, the theory of FKK assumes a chaotic interaction of the continuum particle to be emitted with the residual nucleus. The continuum or leading-particle statistics of the FKK theory results in the simple, convolution like, MSD cross section formula, which facilitates numerical calculations. Nevertheless two-step statistical DWBA calculations have been also performed. This paper extends the application of the FKK theory to the 93 Nb(n,xn) reaction at 20 MeV incident energy. (author). 14 refs, 1 fig

  8. ORLIB: a computer code that produces one-energy group, time- and spatially-averaged neutron cross sections

    International Nuclear Information System (INIS)

    Blink, J.A.; Dye, R.E.; Kimlinger, J.R.

    1981-12-01

    Calculation of neutron activation of proposed fusion reactors requires a library of neutron-activation cross sections. One such library is ACTL, which is being updated and expanded by Howerton. If the energy-dependent neutron flux is also known as a function of location and time, the buildup and decay of activation products can be calculated. In practice, hand calculation is impractical without energy-averaged cross sections because of the large number of energy groups. A widely used activation computer code, ORIGEN2, also requires energy-averaged cross sections. Accordingly, we wrote the ORLIB code to collapse the ACTL library, using the flux as a weighting function. The ORLIB code runs on the LLNL Cray computer network. We have also modified ORIGEN2 to accept the expanded activation libraries produced by ORLIB

  9. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  10. Inner-shell/subshell photoionization cross section measurements using a gamma excited variable energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Arora, S K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1982-02-15

    The method developed for the determination of K/L shell photoionization cross sections in various elements, 39 <= Z <= 92, in the characteristic X-ray energy region using a gamma excited variable energy X-ray source has been used for the measurement of Lsub(III) subshell photoionization cross section in Pb, Th and U. The measurements are made at the K X-ray energies of Rb, Nb and Mo, since these are able to excite selectively the Lsub(III) subshells of Pb, Th and U, respectively. The results, when compared with theoretical calculations of Scofield, are found to agree within the uncertainties of determination.

  11. Continuous energy cross section library for MCNP/MCNPX based on JENDL high energy file 2007. FXJH7

    International Nuclear Information System (INIS)

    Sasa, Toshinobu; Sugawara, Takanori; Fukahori, Tokio; Kosako, Kazuaki

    2008-11-01

    The latest JENDL High Energy File (JENDL/HE) was released in 2007 to respond the requirements of reaction data in high energy range up to several GeV to design accelerator facilities such as accelerator-driven systems and research complex like J-PARC. To apply the JENDL/HE-2007 file to the design study, the cross section library of FXJH7 series was constructed from the JENDL/HE file for the calculation using MCNP and MCNPX codes which are widely used in the field of nuclear reactors, fusion reactors, accelerator facilities, medical applications, and so on. In this report, the outline of the JENDL/HE-2007 file, modification of nuclear data processing code NJOY99, construction of FXJH7 library and test calculations for shielding and eigenvalue analyses are summarized. (author)

  12. Total photoabsorption cross section on nuclei measured in energy range 0.5-2.6 GeV

    International Nuclear Information System (INIS)

    Mirazita, M.

    1998-03-01

    The total photoabsorption cross section on several nuclei has been measured in the energy range 0.5 - 2.6 GeV. Nuclear data show a significant reduction of the absorption strength with respect to the free nucleon case suggesting a shadowing effect at low energies

  13. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  14. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  15. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  16. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  17. Measurement of double differential cross sections of secondary neutrons in the incident energy range 9-13 MeV

    International Nuclear Information System (INIS)

    Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren

    1992-01-01

    The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved

  18. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  19. ENDF/B-IV representation of the 238U total neutron cross section in the resolved resonance energy region

    International Nuclear Information System (INIS)

    de Saussure, G.; Olsen, D.K.; Perez, R.B.

    1976-01-01

    The ENDF/B-IV prescription fails to represent correctly the 238 U total (and scattering) cross section between the levels of the resolved range. It is shown how this representation can be improved by properly accounting for the contribution of levels outside the resolved region to the cross section at energies inside the resolved region, and by substituting the more precise multilevel Breit-Wigner formula for the presently used single-level formula. The importance of computing accurately the minima in the total cross section is illustrated by comparing values of the self-shielded capture resonance integral computed with ENDF/B-IV and with a more accurate cross section model

  20. Experimental determination of proton induced reaction cross sections on {sup nat}Ni near threshold energy

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Shuza [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Chakraborty, Animesh Kumer [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics; Spellerberg, Stefan; Spahn, Ingo; Qaim, Syed M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Shariff, Md. Asad; Das, Sopan [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Rashid, Md. Abdur [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2016-08-01

    A newly developed facility at the 3 MV Tandem Accelerator at Dhaka for measurement of proton induced reaction cross sections in the energy region below 5 MeV is outlined and tests for the beam characterization are described. The results were validated by comparison with the well-known excitation function of the {sup 64}Ni(p, n){sup 64}Cu reaction. Excitation functions of the reactions {sup nat}Ni(p, x){sup 60,61}Cu, {sup nat}Ni(p, x){sup 55,57,58m+g}Co and {sup nat}Ni(p, x){sup 57}Ni were also measured from threshold to 16 MeV using the stacked-foil technique, whereby irradiations were performed with 5 MeV protons available at the Tandem Accelerator and 16.7 MeV protons at the BC 1710 cyclotron at Juelich, Germany. The radioactivity was measured using HPGe γ-ray detectors. A few results are new, the others strengthen the database. In particular, the results of the reaction {sup nat}Ni(p, x){sup 61}Cu below 3 MeV could serve as beam monitor.

  1. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  2. The Effect of Proton Energy on SEU Cross-Section of a 16Mbit TFT PMOS SRAM with DRAM Capacitors

    CERN Document Server

    Uznanski, Slawosz; Blackmore, Ewart; Brugger, Markus; Gaillard, Remi; Mekki, Julien; Todd, Benjamin; Trinczek, Michael; Vilar Villanueva, Andrea

    2014-01-01

    Proton experimental data are analyzed for a 16-Mbit Thin-Film-Transistor (TFT) PMOS Static Random Access Memory (SRAM) with DRAM capacitors. The presence of high-Z materials as tungsten causes an unusual increase of the Single Event Upset (SEU) proton cross-section for the energies above 100MeV. Monte-Carlo simulations reproduce the experimentally measured cross-sections up to 480MeV and predict a further increase up to GeV energies. The implications of this increase are analyzed in the context of the LHC and other radiation environments where a significant fraction of the fluence lies above 100MeV.

  3. Generation of one energy group cross section library with MC2 computer code

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Souza, A.L. de.

    1982-01-01

    One group temperature dependent cross sections are generated via MC 2 for Pu-242, Ni-58, Fe-56, U-235, U-238, Pu-239, Pu-240, Pu-241, Be-9 e Th-232. The influence of the buckling and the weighting functions is studied throught calculations of an important integral parameter: the critical radius. (author) [pt

  4. Space, energy and anisotropy effects on 238U effective capture cross sections in the resonance region

    International Nuclear Information System (INIS)

    Meftah, B.; Karam, R.A.

    1984-01-01

    Agreement between calculations and measurements within prescribed limits of error is always the test of engineering design analysis. Large and puzzling discrepancies do exist between several measured and calculated important integral reactor parameters. A thorough and exhaustive investigation of the methods used in reactor analysis revealed that in the generation of effective resonance cross sections no anisotropy effects are considered in the resonances. This is true in the integral transport and fundamental-mode codes. The neglect of anisotropy introduces errors at two levels: (1) the effective group cross sections such as σsub(c), σsub(f) and σsub(s); and (2) the diffusion coefficients and P 1 and higher components of the scattering cross sections. The study showed that the inclusion of linear scattering anisotropy increases, in general, the cell effective capture cross section of 238 U in both ZPR-6/5 and TRX-3 reactors. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% Δk/k for ZPR-6/5 and -0.05% Δk/k for TRX-3. (author)

  5. The Cross-Sectional Association of Energy Intake and Dietary Energy Density with Body Composition of Children in Southwest China

    Directory of Open Access Journals (Sweden)

    Xue Zhou

    2015-07-01

    Full Text Available Objective: We examined whether dietary energy intake (EI and dietary energy density (ED were cross-sectionally associated with body composition of children living in Southwest China. Design and Methods: Multivariate regression analyses were performed on three day, 24 h dietary recall data and information on potential confounders from 1207 participants aged 8–14 years. EI was calculated from all foods and drinks and ED was classified into five categories. Body mass index (BMI z-scores, percentage of body fat (%BF, fat mass index (FMI, fat-free mass index (FFMI and ratio of waist to hip circumference (WHR were used to describe body composition. Results: Boys with higher total EI had higher BMI z-scores, %BF, and FMI than boys with lower total EI both before and after measurements were adjusted for confounders (age, fiber intake, physical activity, the timing of adding complementary foods, paternal education level and maternal BMI (p ≤ 0.04. However, EI was not associated with body composition in girls. Dietary ED, in any category, was not associated with body composition in either gender. Conclusions: Dietary ED was not associated with body composition of children in Southwest China, while dietary EI in boys, not girls, was positively associated with body composition. Reducing dietary energy intake may help to prevent obesity and related diseases in later life among boys living in Southwest China.

  6. The (e,eprimep0) coincidence cross section for 12C at transfer energy of 40 MeV

    International Nuclear Information System (INIS)

    Tadokoro, T.; Hotta, T.; Miura, T.; Sugawara, M.; Takahashi, A.; Tamae, T.; Tanaka, E.; Miyase, H.; Tsubota, H.

    1994-01-01

    The energy spectra and angular distributions of protons from the 12 C(e,e primep ) coincidence reaction have been measured at azimuthal angles of φ p =-45 circle and -135 circle out of the scattering plane, at energy transfer of 40 MeV and momentum transfer of 0.35 fm -1 (69 MeV/c). The longitudinal-transverse interference term, as well as the non-interference term of the (e,e primep 0 ) cross section have been obtained, and the transition amplitudes are deduced in the LS coupling basis. The cross sections are compared with an RPA calculation. The photo-reaction cross section derived from the transverse term is in reasonable agreement with previous experimental results. ((orig.))

  7. The 4p6 autoionization cross section of Rb atoms excited by low-energy electron impact

    International Nuclear Information System (INIS)

    Borovik, A; Roman, V; Kupliauskienė, A

    2012-01-01

    The autoionization cross section of rubidium atoms was obtained by measuring the total normalized intensities of ejected-electron spectra arising from the decay of the 4p 5 n 1 l 1 n 2 l 2 autoionizing levels. The electron impact energy range from the 4p 6 excitation threshold at 15.31 up to 50 eV was investigated. The cross section reaches the maximum value of (2.9 ± 0.6) × 10 −16  cm 2 at 21.8 eV impact energy. The general behaviours of the cross section and the role of particular autoionizing configurations in its formation were considered on the basis of large-scale configuration interaction calculations of energies, cross sections, autoionization probabilities in 5snl(n ⩽ 7; l ⩽ 4) and 4d nl(n ⩽ 5; l ⩽ 2) configurations as well as the measured excitation functions for the lowest levels in 5s 2 and 4d5s configurations. The resonance behaviour of the cross section between 15.3 and 18.5 eV impact energy is caused exclusively by the negative-ion resonances present close to the excitation thresholds of the (5s 2 ) 2 P and (4d5s) 4 P autoionizing levels. At higher impact energies, the autoionization cross section is composed of contributions from the high-lying quartet and doublet levels in 4d5s, 5p and 5s5p, 5d, 6s, 6p configurations. From the comparison of the present data with available experimental and calculated ionization cross sections, the 5s + 4p 6 direct ionization cross section of rubidium atoms was determined with the maximum value of (7.2 ± 2.2) × 10 −16  cm 2 at 36 eV. It was also found that the 4p 6 excitation–autoionization is the dominant indirect ionization process contributing over 30% of the total single ionization of rubidium atoms by electron impact in the 15.3–50 eV energy range. (paper)

  8. Precise Measurement of the $\\bar{p}p$ Total Cross-Section in the ISR Energy Range

    CERN Multimedia

    2002-01-01

    The major aim of this experiment is the precise measurement of the antiproton-proton total cross-section in the ISR energy range, using the total-rate method. The proton-proton total cross-section is remeasured with the same method and the same apparatus, and a precision of 0.5\\% is expected for both cross-sections. The total-rate method consists in the simultaneous measurement of the total interaction rate and the ISR luminosity. This is done with a set of scintillation-counter hodoscopes covering over 99.99\\% of the solid angle, which are sensitive to over 95\\% of all interactions. In addition to these detectors, small-angle drift-tube hodoscopes are used to measure the differential elastic cross-section as a function of the momentum transfert t. The total cross-section can be measured independently by extrapolating this differential cross-section to the forward direction and invoking the optical theorem. A study of the general features of charged-particle production is performed using finely divided scinti...

  9. Challenging fission cross section simulation with long standing macro-microscopic model of nucleus potential energy surface

    International Nuclear Information System (INIS)

    Tamagno, Pierre

    2015-01-01

    The work presented here aims to improve models used in the fission cross section evaluation. The results give insights for a significant breakthrough in this field and yielded large extensions of the evaluation code CONRAD. Partial cross sections are inherently strongly correlated together as of the competition of the related reactions must yield the total cross section. Therefore improving fission cross section benefits to all partial cross sections. A sound framework for the simulation of competitive reactions had to be settled in order to further investigate on the fission reaction; this was implemented using the TALYS reference code as guideline. After ensuring consistency and consistency of the framework, focus was made on fission. Perspective resulting from the use of macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; these models have been implemented and validated on experimental data and benchmarks. To comply with evaluation requirements in terms of computation time, several specific numerical methods have been used and parts of the program were written to run on GPU. These macroscopic-microscopic models yield potential energy surfaces that can be used to extract a one-dimensional fission barrier. This latter can then be used to obtained fission transmission coefficients that can be used in a Hauser-Feshbach model. This method has been finally tested for the calculation of the average fission cross section for 239 Pu(n,f). (author) [fr

  10. Measurement of (n,α) cross-sections for Cr, Fe and Ni at 14 MeV neutron energy

    International Nuclear Information System (INIS)

    Wattecamps, E.; Liskien, H.; Arnotte, F.

    1983-01-01

    Helium production cross-sections for the main constituents of stainless steel (Cr, Fe, Ni) have recently been published for neutron energies between 5 and 10 MeV. The α-particles were detected with a multi-angle telescope and cross-section data relative to the well known n-p scattering cross-section were deduced. Those measurements have been performed now also at 14 MeV. At this energy the background condition had to be improved by changing the neutron collimation, by reducing the sensitive volume of the ΔE-proportional counters, and by replacing remaining low-Z material inside the chamber by tantalum. Listing mode data acquisition is used and α-particle identification is performed by transforming the observed (ΔE,E) signal into a (MZ 2 ,E) signal. The measurements yield the angle-differential cross sections for five fixed angles. Angle-integrated cross-sections are compared with the few results available in literature. (Auth.)

  11. Differential neutron spectrometry in the very low neutron energy range. Neutron cross sections for Zr, Al, polyethylene and liquid fluoropolymers

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.; Novopol'tsev, M.I.; Geltenbort, P.; Brenner, T.

    2003-01-01

    Some results of the test of the time-of-flight neutron spectrometers in the energy range (0.05-2.5)μeV are described. The measurements of total and differential cross sections were performed for several substances relevant to the experiments in the physics of ultracold neutrons: Zr, Al, polyethylene and liquid fluoropolymers

  12. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  13. Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

    International Nuclear Information System (INIS)

    Pigni, M.T.; Herman, M.; Oblozinsky, P.

    2008-01-01

    We completed estimates of neutron cross section covariances for 55 Mn and 90 Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices

  14. Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Pigni,M.T.; Herman, M.; Oblozinsky, P.

    2008-06-24

    We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.

  15. Cross sections for energy transfer in collisions between two excited sodium atoms

    International Nuclear Information System (INIS)

    Huennekens, J.; Gallagher, A.

    1983-01-01

    We have measured cross sections, sigma/sub n/L, for the excitation transfer process Na(3P)+Na(3P)→Na(3S)+Na(nL), where nL is the 4D or 5S level. Our results are sigma/sub 4D/ = 23 A 2 +- 35% and sigma/sub 5S/ = 16 A 2 +- 35% at Tapprox.600 K. To obtain these cross sections we have used pulsed excitation and measured the intensities of 4D, 5S, and 3P fluorescence emissions, and the spatial distribution of excited atoms resulting from radiation diffusion, as well as the excited atom density as a function of time. Additionally, we have accounted for (time-dependent) radiation trapping of 3P and nL level radiation and for the resulting anisotropies of these fluorescence emissions. Comparisons of our results with theory have been made, and their relevance to other experiments is discussed

  16. Doubly differential cross sections of low-energy electrons emitted in the ionization of molecular hydrogen by bare carbon ions

    International Nuclear Information System (INIS)

    Tribedi, L.C.; Richard, P.; Ling, D.; Wang, Y.D.; Lin, C.D.; Moshammer, R.; Kerby, G.W. III; Gealy, M.W.; Rudd, M.E.

    1996-01-01

    We have measured the double differential cross sections (DDCS) (d 2 σ/d var-epsilon ed Ω e ) of low-energy electron emission in the ionization of H 2 bombarded by bare carbon ions of energy 30 MeV. The energy and angular distributions of the electron DDCS have been obtained for 12 different emission angles and for electron energies varying between 0.1 and 300 eV. We have also deduced the single differential and total ionization cross section from the measured DDCS. The data have been compared with the predictions of first Born approximations and the CDW-EIS (continuum distorted wave endash eikonal initial state) model. The CDW-EIS model provides an excellent agreement with the data. copyright 1996 The American Physical Society

  17. Validation of tungsten cross sections in the neutron energy region up to 100 keV

    Science.gov (United States)

    Pigni, Marco T.; Žerovnik, Gašper; Leal, Luiz. C.; Trkov, Andrej

    2017-09-01

    Following a series of recent cross section evaluations on tungsten isotopes performed at Oak Ridge National Laboratory (ORNL), this paper presents the validation work carried out to test the performance of the evaluated cross sections based on lead-slowing-down (LSD) benchmarks conducted in Grenoble. ORNL completed the resonance parameter evaluation of four tungsten isotopes - 182,183,184,186W - in August 2014 and submitted it as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The evaluations were performed with support from the US Nuclear Criticality Safety Program in an effort to provide improved tungsten cross section and covariance data for criticality safety sensitivity analyses. The validation analysis based on the LSD benchmarks showed an improved agreement with the experimental response when the ORNL tungsten evaluations were included in the ENDF/B-VII.1 library. Comparison with the results obtained with the JEFF-3.2 nuclear data library are also discussed.

  18. Solid-state effects on thermal-neutron cross sections and on low-energy resonances

    International Nuclear Information System (INIS)

    Harvey, J.A.; Mook, H.A.; Hill, N.W.; Shahal, O.

    1982-01-01

    The neutron total cross sections of several single crystals (Si, Cu, sapphire), several polycrystalline samples (Cu, Fe, Be, C, Bi, Ta), and a fine-powder copper sample have been measured from 0.002 to 5 eV. The Cu powder and polycrystalline Fe, Be and C data exhibit the expected abrupt changes in cross section. The cross section of the single crystal of Si is smooth with only small broad fluctuations. The data on two single Cu crystals, the sapphire crystal, cast Bi, and rolled samples of Ta and Cu have many narrow peaks approx. 10 -3 eV wide. High resolution (0.3%) transmission measurements were made on the 1.057-eV resonance in 240 Pu and the 0.433-eV resonance in 180 Ta, both at room and low temperatures to study the effects of crystal binding. Although the changes in Doppler broadening with temperature were apparent, no asymmetries due to a recoilless contribution were observed

  19. The growth with energy of vector meson photo-production cross-sections and low $x$ evolution

    CERN Document Server

    Hentschinski, Martin

    2017-01-01

    We investigate the energy dependence of the exclusive photo-production cross-sections of vector mesons $J/\\Psi$ and $\\Upsilon$ on protons. In particular we are interested in the question whether their energy dependence has a description in terms of perturbative low $x$ (i.e. BFKL) evolution. As an update to the original publication [1] we include recent LHCb 13 TeV results in our comparison with data.

  20. R matrix analysis of 239Pu neutron cross sections in the energy range up to 1000 eV

    International Nuclear Information System (INIS)

    de Saussure, G.; Perez, R.B.

    1990-01-01

    This paper reports on the results of an R matrix analysis of the 239 Pu neutron cross sections up to 1000-eV neutron energy. The analysis was performed with the multilevel multichannel Reich-Moore code SAMMY. The method of analysis is describe, and the selection of experimental data is discussed. Some tabular and graphical comparisons between calculated and measured cross sections and transmissions are presented. The statistical properties of the resonance parameters are examined. The resonance parameters are proposed for the new evaluated data files ENDF/B-VI and JEF2

  1. Total and inelastic cross-sections at LHC at CM energy of 7 TeV and beyond

    CERN Document Server

    Achilli, Andrea; Grau, Agnes; Pancheri, Giulia; Shekhovtsova, Olga; Srivastava, Yogendra N

    2011-01-01

    We discuss expectations for the total and inelastic cross-sections at LHC CM energies $\\sqrt{s}\\ =\\ 7\\ TeV$ {and $ 14\\ TeV$} obtained in an eikonal minijet model augmented by soft gluon $k_t$-resummation, which we describe in some detail. We present a band of predictions which encompass recent LHC data and suggest that the inelastic cross-section described by two channel eikonal models include only uncorrelated processes. We show that this interpretation of the model is supported by the LHC data.

  2. Cross section for induced L X-ray emission by protons of energy <400 keV

    International Nuclear Information System (INIS)

    Mohan, Harsh; Jain, Arvind Kumar; Kaur, Mandeep; Singh, Parjit S.; Sharma, Sunita

    2014-01-01

    In performing ion beam analysis, cross section for induced L X-ray emission plays a crucial role. There are different approaches by which these can be found experimentally or can be calculated theoretically based on various models. L X-ray production cross sections for Bi with protons in the energy range 260–400 keV at the interval of 20 keV are measured. These are compared with calculations obtained on the basis of current prevailing theories ECPSSR and ECPSSR-UA. Their importance in understanding this phenomenon and existing arguments in this regard will be highlighted

  3. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig

  4. [Absolute fission cross sections in the 14 MeV energy region]. Progress report, July 1982-June 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Progress is reported on the following studies: thermal neutron absorption cross section of sulfur and the 252 Cf nu bar dilemma, the sigma (H)/sigma (Mn) cross section ratio, the sigma (H)/sigma (B) cross section ratio, 14 MeV neutron cross section measurements, beryllium-based pulsed neutron detector, and testing charged particle transport and Monte Carlo codes

  5. The total neutron cross-section of Nb at different temperatures for neutrons with energies below 1 eV

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Maayouf, R.M.A.; Fayek, M.; Mostafa, M.; Hamouda, I.

    1981-09-01

    Total neutron cross-section measurements have been performed for natural Nb at liquid nitrogen, room and 425 0 K temperatures in the energy range from 2 MeV - 1 eV. The measurements were performed using two time-of-flight spectrometers installed in front of two of the ET-RR-1 reactor horizontal channels. The neutron diffraction pattern of Nb, at room temperature, was obtained using a double axis crystal spectrometer installed also at the ET-RR-1 reactor. The obtained total neutron cross-sections were analyzed using the single level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of Nb and the analysis of its neutron diffraction pattern. The incoherent and thermal inelastic scattering cross-sections of Nb were determined from the analysis of the total cross-section of Nb beyond the cut-off wavelength. The following results have been obtained: sigmasub(t) = (6.30+-0.20)b; sigmasub(coh) = (6.0+-0.3)b; sigmasub(incoh) = (2.0+-1.0)b; bsub(coh) = (6.91+-0.08)fm

  6. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  7. Ionisation differential cross section measurements for N2 at low incident energy in coplanar and non-coplanar geometries

    International Nuclear Information System (INIS)

    Sakaamini, Ahmad; Murray, Andrew James; Amami, Sadek; Madison, Don; Ning, Chuangang

    2016-01-01

    Ionisation triple differential cross sections have been determined experimentally and theoretically for the neutral molecule N 2 over a range of geometries from coplanar to the perpendicular plane. Data were obtained at incident electron energies ∼10 and ∼20 eV above the ionisation potential of the 3 σ g , 1 π u and 2 σ g states, using both equal and non-equal outgoing electron energies. The data were taken with the incident electron beam in the scattering plane ( ψ = 0°), at 45° to this plane and orthogonal to the plane ( ψ = 90°). The set of nine measured differential cross sections at a given energy were then inter-normalised to each other. The data are compared to new calculations using various distorted wave methods, and differences between theory and experiment are discussed. (paper)

  8. Determination of cross sections for the production of low-energy monoenergetic neutron fields; Determination de sections efficaces pour la production de champs neutroniques monoenergetiques de basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Lamirand, Vincent

    2011-11-18

    The response of a neutron detector, defined as the reading of the device per unit of incident fluence or dose, varies with neutron energy. The experimental determination of this variation, i.e. of the response function of this instrument, has to be performed by facilities producing monoenergetic neutron fields. These neutrons are commonly produced by interaction between accelerated ions (proton or deuteron) onto a thin target composed of a reactive layer deposited on a metallic backing. Using the {sup 7}Li(p, n), {sup 3}H(p, n), {sup 2}H(d, n) and {sup 3}H(d, n) reactions, monoenergetic neutrons are obtained between 120 keV and 20 MeV in the ion beam direction (0 deg.). To reach lower neutron energies, the angle of the measuring point with respect to the ion beam direction can be increased. However, this method presents several problems of neutron energy and fluence homogeneities over the detector surface, as well as an important increase of the scattered neutron contribution. Another solution is to investigate other nuclear reactions, as {sup 45}Sc(p, n) allowing to extend the neutron energy range down to 8 keV at 0 deg.. A complete study of this reaction and its cross section has been undertaken within the framework of a scientific cooperation between the laboratory of neutron metrology and dosimetry (IRSN, France), two European national metrological institutes, the National Physical Laboratory (UK) and the Physikalisch-Technische Bundesanstalt (Germany), and IRMM, the Institute for Reference Materials and Measurements (EC). In parallel, other possible reactions have been investigated: {sup 65}Cu(p, n), {sup 51}V(p, n), {sup 57}Fe(p, n), {sup 49}Ti(p, n), {sup 53}Cr(p, n) and {sup 37}Cl(p, n). They were compared in terms of neutron fluence and minimum energy of the produced neutrons. (author)

  9. Cross-sectional Integration of the Water-energy Nexus in Brazil

    Directory of Open Access Journals (Sweden)

    Theodoros Semertzidis

    2018-03-01

    Full Text Available This paper analyses the cross-sectoral integration of the water-energy nexus in Brazil. Recent droughts resulted in unprecedented water scarcity. This caused water shortages for population and agriculture, as well as for electricity production (hydropower being the main source of electricity production. As a result, the system became more vulnerable to blackouts. To alleviate the problem, fossil fuels were used as a back up. Droughts, floods and other water-related problems will not dissipate as time goes by in Brazil. The dependency on one single predominant source (hydropower makes Brazil’s electricity supply vulnerable. This study shows through data analysis, flow diagrams and metrics the interrelation between water and energy. Based on historical data, the analysis shows the importance of the water demand for hydropower, cooling for thermal plants, and the extraction and production of biofuels, as well as of the energy demand of water services (water supply, wastewater treatment.

  10. Double-differential beryllium neutron cross sections at incident neutron energies of 5. 9, 10. 1, and 14. 2 MeV. [5. 9 to 14. 2 MeV, differential cross sections, ENDF/B-IV

    Energy Technology Data Exchange (ETDEWEB)

    Drake, D.M.; Auchampaugh, G.F.; Arthur, E.D.; Ragan, C.E.; Young, P.G.

    1976-08-01

    Beryllium neutron-production cross sections were measured using the time-of-flight technique at incident neutron energies of 5.9, 10.1, and 14.2 MeV, and at laboratory angles of 25, 27.5, 30, 35, 45, 60, 80, 100, 110, 125, and 145/sup 0/. The differential elastic and inelastic cross sections are presented. Inelastic is defined here as those reactions that proceed through the states at 1.69-, 2.43-, 2.8-, and 3.06-MeV excitation energy in /sup 9/Be. Comparison of emission energy spectra with calculations using the ENDF/B-IV beryllium cross sections shows that the ENDF/B cross sections strongly overemphasize the low lying states in /sup 9/Be.

  11. Electron-impact rotationally elastic total cross sections for H2CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    International Nuclear Information System (INIS)

    Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel

    2011-01-01

    This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  12. Comparative study of few energy group of cross sections for fuel cells of thermal reactors

    International Nuclear Information System (INIS)

    1991-08-01

    A comparative study of nuclear constants calculated with LEOPARD and WIMSD-4 codes using a typical PWR cell was done. Few groups macroscopic cross section, spectral index, burnup and power distribution were analyzed. (author) and safety concern with the transport of radioactive materials, looking for the control of eventual exposure of radiation to men, properties and environment, that is: specification of radioactive materials to be transported; choice of loaded materials; specification of requisites of loaded materials; general specification for any way of transport (earth, water and air), and responsibilities and administrative requisites. (author)

  13. The neutron elastic scatterirg differential cross sections in energy range below 440 keV

    International Nuclear Information System (INIS)

    Zo In Ok; Nikolenko, V.G.; Popov, A.B.; Samosvat, G.S.

    1985-01-01

    The intensities of elastically scattered neutrons have been measured on Ti, Ni, Fe, Zn, Ge, Se, Zr, Mo, Ru, Rh, Pd, Ag, Cd, 116 Sn, 117 Sn, 118 Sn, 119 Sn, 120 Sn, 122 Sn, 124 Sn, Te, Ta, W, Re targets at 45 deg, 90 deg and 135 deg angles on the IBR-30 reactor. The differential cross sections were descried by the formula σ(THETA)=σsub(s)/σ4π[1+ωsub(1)Psub(1)(cos THETA)+ωsub(2)Psub(2)(cos THETA)]. The tables on σsub(s)(E), ω 1 (E) and ω 2 (E) obtained from the experimental data are given

  14. Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of 13 TeV

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Bachmann, Sebastian; Back, John; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brodski, Michael; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Da Silva, Cesar Luiz; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Delaney, Blaise; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Didenko, Sergey; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Durham, John Matthew; Dutta, Deepanwita; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Ene, Alexandru; Escher, Stephan; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Lopes, Lino; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hopchev, Plamen Hristov; Hu, Wenhua; Huang, Wenqian; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kim, Kyung Eun; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Krupa, Wojciech; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Lenisa, Paolo; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Liang, Xixin; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Gianfranco; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Panshin, Gennady; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Pereima, Dmitrii; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Pietrzyk, Boleslaw; Pietrzyk, Guillaume; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polukhina, Natalia; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Qin, Jia-Jia; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rinnert, Kurt; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Iwan Thomas; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Strokov, Sergey; Sun, Jiayin; Sun, Liang; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitkovskiy, Arseniy; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Walsh, John; Wang, Jianchun; Wang, Yilong; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Qingnian; Xu, Zehua; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2018-06-20

    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$ GeV/$c$ in the pseudorapidity range $2<\\eta<5$ is determined to be $\\sigma_{\\rm acc}= 62.2 \\pm 0.2 \\pm 2.5$ mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\\sigma_{\\rm inel}= 75.4 \\pm 3.0 \\pm 4.5$ mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7 TeV is also reported.

  15. Effect of new cross-section evaluations on criticality and neutron energy spectrum of a typical material test research reactor

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir; Aslam

    2004-01-01

    Several new WIMSD libraries based on recent cross-section evaluations such as IAEA, ENDFB-VI, JENDL, and JEF have been made available by IAEA. These libraries were used for the computation of multiplication factor and energy spectrum for Pakistan Research Reactor-1 (PARR-1). Methodology was validated for benchmark problems made available by IAEA and comparison with reference results. The value of effective multiplication factors for all newly released libraries are 1.8-3.2% less than that of 1981 WIMSD library. The effect of various cross-section libraries on neutron energy spectrum was also studied. Differences of about -10% to 12.5% were found in thermal flux using the newly released libraries as compared with that obtained using 1981 WIMSD library. From the analysis, it was found that the main source of the difference is the cross-sections of hydrogen bound in water. When these cross-sections of hydrogen (bound in water) from new libraries were used along with all other data in 1981 WIMSD library, the k eff obtained in this way has a difference of only 0.02-0.8% with that obtained from new libraries, while the flux spectrum agreed within 1% below 1 MeV with new libraries

  16. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  17. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  18. Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV

    Science.gov (United States)

    Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.

    2018-05-01

    We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.

  19. Increasing quantum yield of sodium salicylate above 80 eV photon energy: Implications for photoemission cross sections

    International Nuclear Information System (INIS)

    Lindle, D.W.; Ferrett, T.A.; Heimann, P.A.; Shirley, D.A.

    1986-01-01

    The quantum yield of the visible scintillator sodium salicylate is found to increase in the incident photon-energy range 80--270 eV. Because of its use as a photon-flux monitor in recent gas-phase photoelectron spectroscopy measurements, previously reported partial cross sections for Hg (4f, 5p, and 5d subshells) and CH 3 I (I 4d subshell) in this energy range are corrected, and new values are reported. For Hg, the correction brings the experimental data into better overall agreement with theory. However, considerable uncertainty remains in the absolute scale derived from previous Hg photoabsorption measurements, and no single rescaling of the subshell cross sections could simultaneously bring all three into agreement with available theoretical calculations

  20. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Department of Physics, Panjab University, Chandigarh-160014 (India); School of Physics and Material Science, Thapar University, Patiala-147004 (India); Sharma, Manoj K. [School of Physics and Material Science, Thapar University, Patiala-147004 (India); Gupta, Raj K. [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2011-11-15

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the l-summed extended-Wong model of Gupta and collaborators (2009) under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional 'barrier modification' effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from {sup 48}Ca + {sup 238}U, {sup 244}Pu, and {sup 248}Cm reactions and to fusion-evaporation cross-sections from {sup 58}Ni + {sup 58}Ni, {sup 64}Ni + {sup 64}Ni, and {sup 64}Ni + {sup 100}Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced l{sub max}-values at below-barrier energies, the near-barrier data point of {sup 48}Ca + {sup 248}Cm reaction could not be fitted to l{sub max}-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing 'modifications of the barrier', for the best fit to data at all incident center-of-mass energies E{sub c.m.}'s, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of

  1. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  2. Differential cross sections of proton Compton scattering at photon laboratory energies between 700 and 1000 MeV

    International Nuclear Information System (INIS)

    Jung, M.; Kattein, J.; Kueck, H.; Leu, P.; Marne, K.D. de; Wedemeyer, R.; Wermes, N.

    1981-05-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. 78 data points are presented as angular distributions at photon lab energies of 700, 750, 800, 850, 900, and 950 MeV. The c.m. scattering angle ranges from 40 0 to 130 0 , corresponding to a variation of the four momentum transfer squared between t = -0.10 to t = -0.96 GeV 2 at 700 and 950 MeV, respectively. Two additional differential cross sections have been measured at 1000 MeV, 35.6 0 and 47.4 0 . The angular distributions show forward peaks whose extrapolations to 0 0 are consistent with calculated forward cross sections taken from literature. The small angle data ( vertical stroke t vertical stroke approx. 2 ) together with the calculated cross sections at 0 0 are also consistent with the assumption of a slope parameter B of 5 GeV -2 . For the first time a re-rise of the angular distributions towards backward angles has been observed. It becomes less steep with increasing energy. The most interesting feature of the angular distributions is a sharp structure which appears between t = -0.55 GeV 2 at 700 MeV and t = -0.72 GeV 2 at 950 MeV. Such a rapid variation of the differential cross section with t has never been observed in elastic hadron-hadron scattering or photoproduction processes. It indicates the existence of a dynamical mechanism which could be a peculiarity of Compton scattering. (orig.)

  3. Charge-transfer cross sections of H+ ions in collisions with noble gas atoms in the energy range below 4.0 keV

    International Nuclear Information System (INIS)

    Kusakabe, Toshio; Sakaue, Hiroyuki A.; Tawara, Hiroyuki

    2011-01-01

    Charge-transfer cross sections in collisions of H + ions with the ground state He, Ar, Kr, and Xe atoms have been measured in the energy range below 4.0 keV with the initial growth rate method. These observed cross sections are also compared with previously published experimental data and theoretical predictions. In the He and Ar targets, it is found that some previous experimental data deviate significantly from the present observed cross sections as the collision energy decreases. It has been found that in the Kr and Xe targets, the energy dependence of the present observed cross sections behaves as “near-resonant” charge transfer. (author)

  4. The total neutron cross section of 58Fe in the energy range 7 to 325 keV

    International Nuclear Information System (INIS)

    Hong, L.D.; Beer, H.; Kaeppeler, F.

    1976-08-01

    The total neutron cross section of 58 Fe has been determined in the energy range 7-325 keV by a transmission measurement using enriched 58 Fe samples. The data have been shape fitted by means of an R-matrix multi-level formalism to extract resonance parameters for s- and l > 0 wave resonances. The s-wave strength function was determined to S 0 = (4.3 +- 1.9) c 10 -4 . (orig.) [de

  5. On the Determination of the 7Be(n, α)4He Reaction Cross Section at BBN Energies

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Bertulani, C. A.; Hou, S. Q.; La Cognata, M.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Tumino, A.

    2017-12-01

    7Be destruction channels are currently a matter of study because of their influence on the 7Li cosmological abundances. Here, we determine the cross section of the (n, α) reaction by using Trojan Horse experimental data for the 7Li(p, α)4He reaction and correcting for Coulomb effects. The deduced 7Be(n, α)4He data overlap with the Big Bang nucleosynthesis energies and the deduced reaction rate allows us to evaluate the corresponding cosmological implications.

  6. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  7. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  8. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  9. Evaporation residue cross sections for the {sup 100}Mo + {sup 116}Cd reaction -- energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    In this experiment we tried to measure the evaporation residue cross section over a wide range of beam energies for the {sup 100}Mo + {sup 116}Cd reaction using the FMA. However, because of longer-than-estimated runs needed at each beam energy, and the difficulty of bending evaporation residues at the higher energies in the FMA, data were taken only at beam energies of E{sub beam} = 460, 490, and 521 MeV, which correspond to excitation energies of E{sub exc} = 62, 78, and 95 MeV, respectively. By comparing to results for the {sup 32}S + {sup 184}W reactions measured recently, we expect to demonstrate a strong entrance channel effect related to the hindrance of complete fusion in near-symmetric heavy systems (a fusion hindrance factor of the order 7-10 is expected on the basis of the Extra-Push Model). The data are being analyzed.

  10. Recent measurements of low energy charge exchange cross sections for collisions of multicharged ions on neutral atoms and molecules

    International Nuclear Information System (INIS)

    Havener, Charles C.

    2001-01-01

    At ORNL Multicharged Ion Research Facility (MIRF), charge exchange (CX) cross sections have been measured for multicharged ions (MCI) on neutral atoms and molecules. The ORNL ion-atom merged-beam apparatus was used to measure single electron capture by MCI from H at eV/amu energies. A gas cell was used to measure single and double electron capture by MCI from a variety of molecular targets at keV collision energies. The merged-beams experiment has been successful in providing benchmark total electron capture measurements for several collision systems with a variety of multicharged ions on H or D

  11. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  12. Nuclear energy consumption and economic growth in OECD countries: Cross-sectionally dependent heterogeneous panel causality analysis

    International Nuclear Information System (INIS)

    Nazlioglu, Saban; Lebe, Fuat; Kayhan, Selim

    2011-01-01

    The purpose of this study is to determine the direction causality between nuclear energy consumption and economic growth in OECD countries. The empirical model that includes capital and labor force as the control variables is estimated for the panel of fourteen OECD countries during the period 1980-2007. Apart from the previous studies in the nuclear energy consumption and economic growth relationship, this study utilizes the novel panel causality approach, which allows both cross-sectional dependency and heterogeneity across countries. The findings show that there is no causality between nuclear energy consumption and economic growth in eleven out of fourteen cases, supporting the neutrality hypothesis. As a sensitivity analysis, we also conduct Toda-Yamamoto time series causality method and find out that the results from the panel causality analysis are slightly different than those from the time-series causality analysis. Thereby, we can conclude that the choice of statistical tools in analyzing the nature of causality between nuclear energy consumption and economic growth may play a key role for policy implications. - Highlights: → Causality between nuclear energy consumption and economic growth is examined for OECD countries. → Panel causality method, which allows cross-sectional dependency and heterogeneity, is utilized. → The neutrality hypothesis is supported.

  13. Doppler broadening and its contribution to Compton energy-absorption cross sections: An analysis of the Compton component in terms of mass-energy absorption coefficient

    International Nuclear Information System (INIS)

    Rao, D.V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G.E.

    2002-01-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1 deg. -180 deg. . Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1 deg. -180 deg., for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance

  14. Doppler Broadening and its Contribution to Compton Energy-Absorption Cross Sections: An Analysis of the Compton Component in Terms of Mass-Energy Absorption Coefficient

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    2002-09-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.

  15. Cross Sections for the Production of Residual Nuclides by Proton-Induced Reactions with Uranium at Medium Energies

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Michel, R.; Uosif, M.A.M.; Issa, S.A.M.; Flamentc, J.L.; David, J.C.; Leray, S.

    2009-01-01

    The production of residual nuclides by proton-induced reactions on uranium is investigated using activated targets from irradiation experiments at Saturne II synchrocyclotron at the Laboratory National Saturne/Saclay. These investigations contribute to the European research project NUDATRA within the IP EUROTRANS in which the feasibility of accelerator-driven transmutation of nuclear waste is evaluated. Experimental cross sections are derived from gamma-spectrometric measurements. A total of 1894 cross-section was deter-mined covering 44 residual nuclides in the energy range from 211 MeV to 2530 MeV. The experimental data together with those of earlier work of our group are discussed in the context of theoretical excitation functions calculated by the newly developed INCL4 + ABLA and the TALYS codes

  16. Neutron total cross section measurements in the energy region from 47 keV to 20 MeV

    International Nuclear Information System (INIS)

    Poenitz, W.P.; Whalen, J.F.

    1983-05-01

    Neutron total cross sections were measured for 26 elements. Data were obtained in the energy range from 47 keV to 20 MeV for 11 elements in the range of light-mass fission products. Previously reported measurements for eight heavy and actinide isotopes were extended to 20 MeV. Data were also obtained for Cu (47 keV to 1.4 MeV) and for Sc, Zn, Nd, Hf, and Pt (1.8 to 20 MeV). The present work is part of a continuing effort to provide accurate neutron total cross sections for evaluations and for optical-model parameteriztions. The latter are required for the derivation of other nuclear-data information of importance to applied programs. 37 references

  17. Measurement of total and partial photon proton cross sections at 180 GeV center of mass energy

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-03-01

    Photon proton cross sections for elastic light vector meson production, σ el γp , inelastic diffractive production, σ d γp , non-diffractive procution, σ nd γp , as well as the total cross section, σ γp tot , have been measured at an average γp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σ el γp =18±7 μb, σ d γp =33±8 μb, σ nd γp =91±11 μb, and σ γp tot =143±17 μb, where the errors include statistical and systematic errors added in quadrature. (orig.)

  18. Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections

    International Nuclear Information System (INIS)

    Lee, B.L. Jr.

    1994-08-01

    The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K eff > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k eff + 2σ ≤ 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25

  19. Determination of the interatomic potential from elastic differential cross sections at fixed energy: Functional sensitivity analysis approach

    International Nuclear Information System (INIS)

    Ho, T.; Rabitz, H.

    1989-01-01

    Elastic differential cross sections in atomic crossed beam experiments contain detailed information about the underlying interatomic potentials. The functional sensitivity density of the cross sections with respect to the potential δσ(θ)/δV(R) reveals such information and has been implemented in an iterative inversion procedure, analogous to that of the Newton--Raphson technique. The stability of the inversion is achieved with the use of the regularization method of Tikhonov and Miller. It is shown that given a set of well resolved and noise-free differential cross section data within a limited angular range and given a reasonable starting reference potential, the recovered potential accurately resembles the desired one in the important region, i.e., the region to which the scattering data are sensitive. The region of importance depends upon the collision energy relative to the well depth of the potential under study; usually a higher collision energy penetrates deeper into the repulsive part of the potential and thus accordingly yields a more accurate potential in that part. The inversion procedure produces also a quality function indicating the well determined radial region. Moreover, the extracted potential is quite independent of the functional form of the reference potential in contrast to curve fitting approaches. As illustrations, the model inert gas systems He--Ne and Ne--Ar have been considered. For collision energies within an order of magnitude of the associated potential well depth, the attractive part of the potential can be determined to high precision provided that scattering data at small enough angles are available

  20. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  1. EuropeaN Energy balance Research to prevent excessive weight Gain among Youth (ENERGY project: Design and methodology of the ENERGY cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Moreno Luis

    2011-01-01

    Full Text Available Abstract Background Obesity treatment is by large ineffective long term, and more emphasis on the prevention of excessive weight gain in childhood and adolescence is warranted. To inform energy balance related behaviour (EBRB change interventions, insight in the potential personal, family and school environmental correlates of these behaviours is needed. Studies on such multilevel correlates of EBRB among schoolchildren in Europe are lacking. The ENERGY survey aims to (1 provide up-to-date prevalence rates of measured overweight, obesity, self-reported engagement in EBRBs, and objective accelerometer-based assessment of physical activity and sedentary behaviour and blood-sample biomarkers of metabolic function in countries in different regions of Europe, (2 to identify personal, family and school environmental correlates of these EBRBs. This paper describes the design, methodology and protocol of the survey. Method/Design A school-based cross-sectional survey was carried out in 2010 in seven different European countries; Belgium, Greece, Hungary, the Netherlands, Norway, Slovenia, and Spain. The survey included measurements of anthropometrics, child, parent and school-staff questionnaires, and school observations to measure and assess outcomes (i.e. height, weight, and waist circumference, EBRBs and potential personal, family and school environmental correlates of these behaviours including the social-cultural, physical, political, and economic environmental factors. In addition, a selection of countries conducted accelerometer measurements to objectively assess physical activity and sedentary behaviour, and collected blood samples to assess several biomarkers of metabolic function. Discussion The ENERGY survey is a comprehensive cross-sectional study measuring anthropometrics and biomarkers as well as assessing a range of EBRBs and their potential correlates at the personal, family and school level, among 10-12 year old children in seven

  2. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  3. Stopping cross section of vanadium for H+ and He+ ions in a large energy interval deduced from backscattering spectra

    Science.gov (United States)

    Moro, M. V.; Bruckner, B.; Grande, P. L.; Tabacniks, M. H.; Bauer, P.; Primetzhofer, D.

    2018-06-01

    We have experimentally determined electronic stopping cross sections of vanadium for 50-2750 keV protons and for 250-6000 keV He ions by relative measurements in backscattering geometry. To check the consistency of the employed procedure we investigate how to define adequate reference stopping cross section data and chose different reference materials. To proof consistency of different reference data sets, an intercomparison is performed to test the reliability of the evaluation procedure for a wide range of energies. This process yielded consistent results. The resulting stopping cross section data for V are compared to values from the IAEA database, to the most commonly employed semi-empirical program SRIM, and to calculations according to CasP. For helium, our results show a significant deviation of up to 10% with respect to literature and to SRIM, but are in very good agreement with the CasP predictions, in particular when charge-exchange processes are included in the model.

  4. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  5. Neutron capture and fission cross section of Americium-243 in the energy range from 5 to 250 keV

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.

    1983-04-01

    The neutron capture and subthreshold fission cross section of 243 Am was measured in the energy range from 5 to 250 keV using 197 Au and 235 U as the respective standards. Neutrons were produced via the 7 Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two MoxonRae detectors with graphite and bismuthgraphite converters, respectively. Fission events were registered by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50-70 mm were used to obtain optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials the capture cross section could be determined with a total uncertainty of 3-6%. The respective values for the fission cross section are 8-12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant. (orig.)

  6. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  7. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study

    Science.gov (United States)

    2007-01-01

    Objective To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Design Cross sectional comparison of four computer games. Setting Research laboratories. Participants Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Main outcome measure Predicted energy expenditure, compared using repeated measures analysis of variance. Results Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (P<0.001). Predicted energy expenditure was at least 65.1 (95% confidence interval 47.3 to 82.9) kJ/kg/min greater when playing active rather than sedentary games. Conclusions Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children. PMID:18156227

  8. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  9. Measurements of Coulomb Cross Section for Production of Direct Electron-pairs by High Energy Ions at the CERN SPS

    CERN Multimedia

    2002-01-01

    QED predicts copious direct electron pair production by ultrarelativistic heavy nuclei in a high Z medium such as nuclear emulsion. First order QED calculations (combined screening and non-screening) for this process show that 1000@+32 electron pairs above 100~keV energy) should be emitted for a total |1|6O track length of 10.9~m in nuclear emulsion at 200~GeV/AMU. Emulsion exposures with oxygen (and other nuclei if available) at 60 and 200~GeV/AMU will be used to calibrate the energy dependent cross section @s~@j~(1n~E)|2|-|3, whose exponent depends on atomic screening. The oxygen tracks in the developed emulsions will be scanned with a microscope, and the number of direct electron pairs will be counted for individual tracks. The exposed stacks will contain sufficient emulsion (and CR39 plastic to check for possible interactions) that adequate path length will be available for exposures to @$>$~10|4~ions at each energy and ion species. \\\\ \\\\ If the absolute value of this cross section is confirmed as large a...

  10. Cross Sections for High-Energy Gamma Transitions from MeV Neutron Capture in {sup 206}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, I; Lundberg, B; Nilsson, L

    1970-03-15

    Gamma-ray spectra from neutron capture in Pb (radiogenic lead) in the energy range 1.5 to 8.5 MeV were recorded using time-of-flight techniques. The spectrometer was a Nal (Tl) crystal, 20.8 cm long and 22.6 cm in diameter. The spectra are dominated by gamma transitions to levels with large single-particle strength, in agreement with predictions of semi-direct capture theories. The theories predict enhancements of the direct capture cross section by a factor of 10 - 15 in the region of the giant dipole resonance. The observed enhancement is about 50.

  11. Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany)]. E-mail: cornelis.broeders@irs.fzk.de; Konobeyev, A.Yu. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany); Institute of Nuclear and Power Engineering, 249020 Obninsk (Russian Federation); Villagrasa, C. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany)

    2005-06-30

    The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10{sup -5} eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.

  12. Update of ENDF/B-V Mod 3 iron: neutron-producing reaction cross sections and energy-angle correlations

    International Nuclear Information System (INIS)

    Fu, C.Y.; Hetrick, D.M.

    1986-07-01

    An update of the ENDF/B-V Mod-3 evaluation for natural iron is described. The cross sections of (n,n') and (n,2n) reactions are revised. Energy-angle correlations in the secondary (n,n') neutrons are introduced in the ENDF/B-V formats. Anisotropic angular distributions are provided for the secondary neutrons in (n,2n), (n,np), and (n,nα) reactions. Revelant integral results, microscopic data, and nuclear model calculations that influence the revised results are summarized. 54 refs., 9 figs., 2 tabs

  13. On the SCA-description of the energy- and impact parameter dependence of K-shell ionization cross sections

    International Nuclear Information System (INIS)

    Trautmann, D.; Kauer, T.

    1989-01-01

    We present the application of the SCA-model to impact-parameter and energy-dependent K-shell ionization cross sections for several projectile-target combinations. Then we discuss the successes and failures of the SCA-description and investigate the additional approximations still existing in this approach. It is shown that after the introduction of a fully time-dependent perturbed electronic boundstate wave function many of the former discrepancies between experiment and theory can be resolved and in general very good agreement is obtained. (orig.)

  14. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  15. Effects of temperature and input energy on a quasi-three-level emission cross section of Nd3+:YAG pumped by a flashlamp

    International Nuclear Information System (INIS)

    Pourmand Seyed Ebrahim; Bidin Noriah; Bakhtiar Hazri

    2012-01-01

    The influence of temperature and input energy on the fluorescence emission cross section of Nd 3+ :YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a temperature range from −30 to 60°C and an input energy range from 18 to 75 J. The cross section is found to be decreased when the temperature and the input energy are increased. This is attributed to the thermal broadening mechanism of the emission line. This study is relevant for the development of laser design

  16. Systematics of neutron-induced fission cross sections over the energy range 0.1 through 15 MeV, and at 0.0253 eV

    International Nuclear Information System (INIS)

    Behrens, J.W.

    1977-01-01

    Recent studies have shown straightforward systematic behavior as a function of constant proton and neutron number for neutron-induced fission cross sections of the actinide elements in the incident-neutron energy range 3 to 5 MeV. In this report, the second in a series, fission cross-section values are studied over the MeV incident-neutron energy range, and at 0.0253 eV. Fission-barrier heights and neutron-binding energies are correlated by constant proton and neutron number; however, these systematic behaviors alone do not explain the trends observed in the fission cross-section values

  17. Interaction of polarized neutrons with polarized La nuclei and the structure of the cross section at energies up to 20 eV

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Mareev, Yu.D.; Novitskii, V.V.; Pikel'ner, L.B.; Skoi, V.R.

    1994-01-01

    Properties of lanthanum are investigated in an experiment on the interaction of polarized neutrons with polarized La nuclei. The total cross section for lanthanum is measured for neutron energies ranging from 0.4 to 10 eV. It is shown that one strong level below the neutron binding energy is sufficient for obtaining a good description of the lanthanum cross section in this energy range. The results on the cross section for the interaction of polarized projectiles on a polarized target confirm this conclusion. The spin of the 138 La neutron resonance at 3.0 eV is found to be J = 11 / 2 . 13 refs., 3 figs

  18. Comparison of energy expenditure in adolescents when playing new generation and sedentary computer games: cross sectional study.

    Science.gov (United States)

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2007-12-22

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Research laboratories. Six boys and five girls aged 13-15 years. Procedure Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kJ/kg/min), tennis (202.5 (31.5) kJ/kg/min), and boxing (198.1 (33.9) kJ/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kJ/kg/min) (Pgames. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  19. Tailoring cross-sectional energy-efficiency measures to target groups in industry

    NARCIS (Netherlands)

    Wohlfarth, Katharina; Eichhammer, Wolfgang; Schlomann, Barbara; Worrell, Ernst

    2018-01-01

    The improvement of energy efficiency in industrial companies plays a crucial role for the energy transition. Although significant economic potentials have been identified, the concerned actors are still struggling to realize them fully. To support the implementation of energy efficiency measures by

  20. Improvements to the nuclear model code GNASH for cross section calculations at higher energies

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1994-01-01

    The nuclear model code GNASH, which in the past has been used predominantly for incident particle energies below 20 MeV, has been modified extensively for calculations at higher energies. The model extensions and improvements are described in this paper, and their significance is illustrated by comparing calculations with experimental data for incident energies up to 160 MeV

  1. Measurement of the 232Th capture cross section in the energy region 5 keV-150 keV

    International Nuclear Information System (INIS)

    Lobo, G.; Schillebeeckx, P.; Brusegan, A.; Borella, A.; Corvi, F.; Janeva, N.; Volev, K.

    2003-01-01

    The 232 Th(n,γ) neutron capture cross-section is of great importance for accelerator driven reactor (ADS) systems based on the Thorium-Uranium fuel cycle. An analysis of the required nuclear data, reveals that the status of the 232 Th capture data is far from the requested 2 % uncertainty level. Recently 232 Th average capture measurements, between 5-200 keV neutron energy, were performed at the FzK Karlsruhe (DE). A comparison of the measured averaged capture cross section with the evaluated data files shows a reasonable agreement in the neutron energy range above 15 keV. However, discrepancies of up to 40 % at lower neutron energies are observed. The same order of discrepancies is observed when comparing their results with the results obtained by Macklin et al. at ORELA. To clarify these discrepancies we measured at IRMM the average capture cross-section at the GEel LINear Accelerator (GELINA). The measurements were performed at a 14.37 m flight-path using the Time-Of-Flight (TOF) method. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by a pair of C 6 D 6 -based liquid scintillators applying a pulse-height weighting method. The neutron flux was measured with an ionisation chamber placed at 80 cm before the Thorium sample. This chamber has a cathode loaded with two back-to-back layers of about 40 μg/cm 2 10 B. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 0.5 mm thick, corresponding to a thickness of 1.588 10 -3 at/b. The background for the capture measurements consists of a time independent and time dependent component. The former, mainly produced by the radioactive decay of the sample, was deduced from measurements with a closed beam. The latter was measured by replacing the thorium sample with a 0.5 mm thick 208 Pb sample of the same size. Such a Pb sample has practically the same scattering probability as the thorium sample and has a negligible capture yield. Therefore, the 208 Pb run provides a good

  2. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    Thanks to their efficiency enhancement systems based on post-buckled structural elements have been extensively used in many applications such as actuation, remote sensing and energy harvesting. The post-buckling snap-through behavior of bilaterally constrained beams has been exploited to create sensing or energy harvesting mechanisms for quasi-static applications. The conversion mechanism has been used to transform low-rate and low-frequency excitations into high-rate motions. Electric energy has been generated from such high-rate motions using piezoelectric transducers. However, lack of control over the post-buckling behavior severely limits the mechanism’s efficiency. This study aims to maximize the levels of harvestable power by controlling the location of snap-throughs along the beam at different buckling transitions. Since the snap-through location cannot be controlled by tuning the geometric properties of a uniform beam, non-uniform cross-sections are examined. An energy-based theoretical model is herein developed to predict the post-buckling response of non-prismatic beams. The total potential energy is minimized under constraints that represent the physical confinement of the beam between the lateral boundaries. The experimentally validated results show that changing the shape and geometric dimensions of non-uniform beams allows for the accurate controlling of the snap-through location at different buckling transitions. A 78.59% improvement in harvested energy levels has been achieved by optimization of beam shape.

  3. Energy drink consumption is associated with reduced sleep quality among college students: a cross-sectional study.

    Science.gov (United States)

    Faris, Mo'ez Al-Islam E; Jahrami, Haitham; Al-Hilali, Marwa M; Chehyber, Noor J; Ali, Sara O; Shahda, Sara D; Obaid, Reyad S

    2017-07-01

    Intake of caffeinated energy drinks has significantly increased, specifically among young adults and adolescents. College students are prone to developing unhealthy eating habits and dependence on stimulants, which puts them at a greater risk of sleep problems. This study aims to investigate the prevalence of caffeinated energy drink consumption and its association with sleep quality in college students. A sample of 919 randomly selected adults (237 males and 682 females) from various colleges at the University of Sharjah/United Arab Emirates participated in this cross-sectional study. Data were collected using an online validated questionnaire. The current study revealed that 376 students (41%) were consuming energy drinks on a regular basis. Approximately half of the students had normal sleep patterns; the other half had sleep problems (anxiety and intermittent sleep). Results of the present study revealed a significant (r = -0.10, P consumption of energy drinks and sleep quality and patterns. Moderate consumption of energy drinks was reported among college students. Consumption of energy drinks was significantly associated with changes in sleep quality and patterns of students. © 2016 Dietitians Association of Australia.

  4. Energy Drink and Coffee Consumption and Psychopathology Symptoms Among Early Adolescents: Cross-Sectional and Longitudinal Associations.

    Science.gov (United States)

    Marmorstein, Naomi R

    2016-06-01

    Background: Little is known about possible links between energy drink use and psychopathology among youth. This study examined cross-sectional and longitudinal associations between energy drink consumption and psychopathology among early adolescents. In addition, associations between psychopathology and coffee consumption were examined to assess whether findings were specific to energy drinks or also applied to another commonly used caffeinated beverage. Methods: One hundred forty-four youth who participated in the Camden Youth Development Study (72 males; mean age 11.9 at wave 1; 65% Hispanic, 30% African American) were assessed using self-report measures of frequency of energy drink and coffee consumption and depression, anxiety, conduct disorder (CD) symptoms, and teacher reports of attention-deficit hyperactivity disorder (ADHD). Youth (92%) were reassessed 16 months later. Results: Concurrently, energy drink and coffee consumption were associated with similar psychopathology symptoms; when the other beverage was adjusted for, energy drinks remained associated with CD and coffee remained associated with panic anxiety. Initial energy drink consumption predicted increasing ADHD and CD over time, though the association with CD dropped to a trend level of significance when coffee was adjusted for. Initial levels of hyperactive ADHD predicted increasing coffee consumption over time; this association remained when energy drinks were controlled. Social anxiety was associated with less increase in energy drink consumption over time, controlling for coffee. Conclusion: Energy drink and coffee consumption among early adolescents are concurrently associated with similar psychopathology symptoms. Longitudinally, the associations between these beverages and psychopathology differ, indicating that these substances have differing implications for development over time.

  5. First measurement of elastic, inelastic and total cross-section at sqrt(s)= 13 TeV by TOTEM and overview of cross-section data at LHC energies

    CERN Document Server

    Antchev, G.; The TOTEM collaboration; Atanassov, I.; Avati, V.; Baechler, J.; Barrera, C.B.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Burkhardt, H.; Cafagna, F.S.; Catanesi, M.G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Druzhkin, D.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Helander, P.; Isidori, T.; Ivanchenko, V.; Janda, M.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lindsey, C.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Malawski, M.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novák, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Passaro, V.; Peroutka, Z.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Siroky, J.; Smajek, J.; Snoeys, W.; Stefanovitch, R.; Sziklai, J.; Taylor, C.; Tcherniaev, E.; Turini, N.; Vacek, V.; Welti, J.; Williams, J.; Wyszkowski, P.; Zich, J.; Zielinski, K.

    2017-01-01

    The TOTEM collaboration has measured the proton-proton total cross section at sqrt(s) = 13 TeV with a luminosity-independent method. Using dedicated beta ∗ = 90 m beam optics, the Roman Pots were inserted very close to the beam. The inelastic scattering rate has been measured by the T1 and T2 telescopes during the same LHC fill. After applying the optical theorem the total proton-proton cross section is σ-tot = (110.6 ± 3.4) mb, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: σel = (31.0 ± 1.7) mb and σinel = (79.5 ± 1.8) mb.

  6. Total Factor Productivity and Energy Intensity in Indian Manufacturing: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Sahu

    2011-01-01

    Full Text Available The objective of the paper is to estimate the transcendental logarithmic production function and further study the determinants of total factor productivity (TFP of Indian manufacturing industries. The estimation of TFP is based on four inputs model, where apart from labour and capital, material and energy are the other two inputs. The findings of the paper suggest that labour and material inputs play major role as compared to the capital and energy input. Age of the firm, ownership, energy intensity, embodied and disembodied technology imports, research and development and exports were considered as the possible determinants of the TFP in the second stage regression. The finding of the estimates suggest that age of the firm, export intensity and disembodied technology import are positively related to the TFP, where ownership, energy intensity, embodied technology import and R&D intensity are negatively related to the TFP of the firms for Indian manufacturing.

  7. Measurements of the {sup 235}U(n,f) cross section in the 3 to 30 MeV neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.D.; Wasson, O.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Lisowski, P.W. [Los Alamos National Lab., NM (United States)] [and others

    1991-12-31

    To improve the accuracy of the {sup 235}U(n,f) cross section, measurements have been made of this standard cross section at the target 4 facility at Los Alamos National Laboratory (LANL). The data were obtained at the 20-meter flight path of that facility. The fission reaction rate was determined with a fast parallel plate ionization chamber and the neutron fluence was measured with an annular proton recoil telescope. The measurements provide the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section for neutron energies from about 3 to 30 MeV neutron energy. The data have been normalized to the very accurately known value near 14 MeV. The results are in good agreement with the ENDF/B-VI evaluation up to about 15 MeV neutron energy. Above this energy differences as large as 5% are observed.

  8. On uncertainties and fluctuations of averaged neutron cross sections in unresolved resonance energy region for 235U, 238U, 239Pu

    International Nuclear Information System (INIS)

    Van'kov, A.A.; Blokhin, A.I.; Manokhin, V.N.; Kravchenko, I.V.

    1985-01-01

    This paper analyses the reasons for the differences which exist between group-averaged evaluated cross-section data from different evaluated data files for U235, U238 and Pu239 in the unresolved resonance energy region. (author)

  9. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  10. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  11. Collision energy-resolved study of the emission cross-section and the Penning ionization cross-section in the reaction of BrCN with He*(2 3S)

    Science.gov (United States)

    Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi

    2001-12-01

    The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.

  12. Triple differential cross section for the near threshold single ionization of helium atoms for equal energy sharing

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: ghanshyam.purohit@spsu.ac.in [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Singh, P. [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Dorn, A.; Ren, X. [Max Planck Institute for Nuclear Physics, 69117 Heidelberg (Germany); Patidar, V. [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)

    2016-05-15

    Highlights: • Present paper describes electron impact single ionization of helium atoms near threshold. • This energy range provided challenges to theoretical models due to presence of several physical effects at low energies such as second order processes, PCI, polarization, etc. • Inclusion of second Born term and target polarization is helpful to analyze the measurements. • Present paper also describes usefulness of post collisional interaction in the collision dynamics at low energies. - Abstract: Low energy electron impact single ionization triple differential cross section (TDCS) results are reported for the helium atoms in the threshold regime at 1 eV, 3 eV and 5 eV excess energy. TDCSs are calculated in the doubly symmetric kinematics for the coplanar to perpendicular emission of electrons. Present attempt to calculate TDCS in the second Born approximation and treating target polarization and post collision interaction is helpful to analyze the available measurements. The second order processes, target polarization and post collision interaction (PCI) have been found to be significant in describing the trends of TDCS and helpful to produce reasonably good agreement with measurements.

  13. Triple differential cross section for the near threshold single ionization of helium atoms for equal energy sharing

    International Nuclear Information System (INIS)

    Purohit, G.; Singh, P.; Dorn, A.; Ren, X.; Patidar, V.

    2016-01-01

    Highlights: • Present paper describes electron impact single ionization of helium atoms near threshold. • This energy range provided challenges to theoretical models due to presence of several physical effects at low energies such as second order processes, PCI, polarization, etc. • Inclusion of second Born term and target polarization is helpful to analyze the measurements. • Present paper also describes usefulness of post collisional interaction in the collision dynamics at low energies. - Abstract: Low energy electron impact single ionization triple differential cross section (TDCS) results are reported for the helium atoms in the threshold regime at 1 eV, 3 eV and 5 eV excess energy. TDCSs are calculated in the doubly symmetric kinematics for the coplanar to perpendicular emission of electrons. Present attempt to calculate TDCS in the second Born approximation and treating target polarization and post collision interaction is helpful to analyze the available measurements. The second order processes, target polarization and post collision interaction (PCI) have been found to be significant in describing the trends of TDCS and helpful to produce reasonably good agreement with measurements.

  14. Cross sections and multiparticle production at supercollider energies in the dual parton model

    International Nuclear Information System (INIS)

    Ranft, J.

    1993-01-01

    The dual parton model (DPM) describes soft and semihard multiparticle production and treats diffractive processes for the first time in a consistent way. The model is formulated in the form of a Monte-Carlo event generator, DTUJET for hadron-hadron collisions at collider energies. The uncertainties in the model predictions in the TeV energy range due to the unknown parton structure functions at x≤0.02 is explored. The behaviour of the model studied in the forward fragmentation region, which is especially relevant for the interaction of Cosmic Rays

  15. Cross section for calculating the helium formation rate in construction materials irradiated by nucleons at energies to 800 MeV

    International Nuclear Information System (INIS)

    Konobeev, A.Yu.; Korovin, Yu.A.

    1992-01-01

    Recently, effects related to the formation of helium in irradiated construction materials have been studied extensively. Data on the nuclear cross sections for producing helium in these materials form the initial information necessary for such investigations. If the spectrum of the incoming particles is known, the value of the helium production cross section makes it possible to calculate the helium generation rate. In recent years, plans and simulating experiments on radiating materials with high-energy particles made it necessary to determine the helium production cross sections in constructionmaterials, which are irradiated by protons and neutrons with energies to 800 MeV. Helium-formation cross sections have been calculated at these energies. However, a correct description of the experimental data for various construction materials does not yet exist. For example, the calculated helium-formation cross sections turned out to overestimate the experimental data, and to underestimate the experimental data. The objective here is to calculate the helium-formation cross sections for various construction materials, which are irradiated by protons and neutrons to energies from 20 to 800 MeV, and to analyze the probable causes of deviations between experimental and earlier calculated cross sections

  16. Fission cross sections of {sup 235,238}U and {sup 209}Bi at incident proton energies above 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Obukhov, A I; Rimskij-Korsakov, A A; Eismont, V P [V.G. Khlopin Radium Inst., St. Petersburg (Russian Federation)

    1997-06-01

    The proton fission cross-section data of {sup 235,238}U and Bi were measured in the V.G. Khlopin Radium Institute over a wide proton energy range. The experimental and calculated data were also compared with experimental neutron values. The proton cross-section of {sup 235,238}U increased up to 60-70 MeV and then decreased. The bismuth proton fission cross-section increased in line with the rise in proton energy up to 1 GeV. (author). 21 refs, 6 figs.

  17. Non-Rutherford cross-sections for alpha elastic scattering off Z = 28-38 elements in the energy range up to 10 MeV

    Science.gov (United States)

    Gurbich, A. F.; Bokhovko, M. V.

    2018-04-01

    The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.

  18. Measurement of (n,/alpha/) cross sections of chromium, iron, and nickel in the 5- to 10-MeV neutron energy range

    International Nuclear Information System (INIS)

    Paulsen, A.; Liskien, H.; Arnotte, F.; Widera, R.

    1981-01-01

    A measuring program has been carried out at the Van de Graaff accelerator facility of the Central Bureau for Nuclear Measurements for the determination of (n,/alpha/) cross sections on the main constituents of fast reactor structural materials, namely the elements chromium, iron, and nickel. Results obtained in the energy range from 5 to 10 Mev are presented in terms of laboratory angle-differential cross sections, relative Legendre polynomial coefficients of angular distributions, angle-integrated cross sections, and average alpha energies. 13 refs

  19. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.

    1984-01-01

    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  20. An Examination of Cross Sectional Change in Student's Metaphorical Perceptions towards Heat, Temperature and Energy Concepts

    Science.gov (United States)

    Celik, Harun

    2016-01-01

    In science teaching, metaphors are important tools for understanding meaningful learning and conceptual formation by the help of daily life language. This study aims to evaluate how the concepts of heat, temperature and energy are perceived by students in secondary school science classes and how the perceptions of these concepts vary in terms of…

  1. Low-energy electron impact cross-sections and rate constants of

    Indian Academy of Sciences (India)

    Anand Bharadvaja

    2017-07-24

    Jul 24, 2017 ... nitrogen-containing compounds in fuels [13,14] etc. The. NH2 radical also known ... tron scattering from molecules and ions [37,38]. In the R-matrix ..... of photon energy, plasma dispersion effects become neg- ligible. Equation ...

  2. Cross-sections of residual nuclei from deuteron irradiation of thin thorium target at energy 7 GeV

    Directory of Open Access Journals (Sweden)

    Vespalec Radek

    2017-01-01

    Full Text Available The residual nuclei yields are of great importance for the estimation of basic radiation-technology characteristics (like a total target activity, production of long-lived nuclides etc. of accelerator driven systems planned for transmutation of spent nuclear fuel and for a design of radioisotopes production facilities. Experimental data are also essential for validation of nuclear codes describing various stages of a spallation reaction. Therefore, the main aim of this work is to add new experimental data in energy region of relativistic deuterons, as similar data are missing in nuclear databases. The sample made of thin natural thorium foil was irradiated at JINR Nuclotron accelerator with a deuteron beam of the total kinetic energy 7 GeV. Integral number of deuterons was determined with the use of aluminum activation detectors. Products of deuteron induced spallation reaction were qualified and quantified by means of gamma-ray spectroscopy method. Several important spectroscopic corrections were applied to obtain results of high accuracy. Experimental cumulative and independent cross-sections were determined for more than 80 isotopes including meta-stable isomers. The total uncertainty of results rarely exceeded 9%. Experimental results were compared with MCNP6.1 Monte-Carlo code predictions. Generally, experimental and calculated cross-sections are in a reasonably good agreement, with the exception of a few light isotopes in a fragmentation region, where the calculations are highly under-estimated. Measured data will be useful for future development of high-energy nuclear codes. After completion, final data will be added into the EXFOR database.

  3. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  4. The cross-section of returns, benchmark model parameters, and idiosyncratic volatility of nuclear energy firms after Fukushima Daiichi

    International Nuclear Information System (INIS)

    Lopatta, Kerstin; Kaspereit, Thomas

    2014-01-01

    This study analyzes how the stock market returns, the factor loadings from the Carhart (1997) 4-factor model, and the idiosyncratic volatility of shares in energy firms have been affected by the Fukushima nuclear accident. Unlike existing studies, which provide evidence of a wealth transfer from nuclear to renewable energy firms for specific countries, we use an international sample and investigate whether changes in the regulatory environment and the firm-specific commitment to nuclear and renewable energies correlate with the capital market's reactions to the Fukushima Daiichi accident. Our findings suggest that the more a firm relies on nuclear power, the more its share price declined after the accident. A commitment to renewable energies does not prevent declines in share prices but significantly helps to reduce the increase in market beta that is associated with this event. Nuclear energy firms domiciled in countries with a higher number of regulatory interventions that were triggered by the catastrophe have lower abnormal returns than those that are domiciled elsewhere. However, as a cross-sectional analysis reveals, a stronger commitment to nuclear power is the main driver for negative stock market returns. Furthermore, nuclear energy firms domiciled in countries with stronger regulatory shifts away from nuclear energy experience significant increases in market beta and the book-to-market equity factor loading according to the Carhart (1997) 4-factor model. We conclude that capital market participants are able to differentiate between the affectedness of firms with respect to their product portfolio. Energy firms could prevent increases in market beta due to catastrophes such as the Fukushima Daiichi accident by shifting some of their energy production from nuclear to renewable or other sources. - Highlights: • Abnormal stock returns of nuclear energy firms around Fukushima Daiichi depend on the mix of their energy portfolio. • Higher commitment to

  5. Real part of amplitude and hadron scattering cross section at superhigh energies

    International Nuclear Information System (INIS)

    Troshin, S.M.; Tyurin, N.E.

    1987-01-01

    New data on measuring the ratio of the real to imaginary part of the forward scattering amplitude: ρ pp-bar (√s=546 GeV)=0.24±0.04 have been considered. This result is shown to agree with the behaviour of σ tot (s), predicted by the U-matrix model. A possibility of transition to antishadow scattering mode at superhigh energies is stated

  6. Activation cross sections of deuteron induced reactions on niobium in the 30–50 MeV energy range

    International Nuclear Information System (INIS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A.V.

    2016-01-01

    Highlights: • Deuteron induced nuclear reactions on natural niobium up to 50 MeV. • Stacked foil irradiation technique. • Comparison of results with the ALICE-D, EMPIRE-D and TENDL-2015 calculations. • Application of radioisotopes in medicine and industry. - Abstract: Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of "9"3Nb(d,x)"9"3"m","9"0Mo, "9"2"m","9"1"m","9"0Nb, "8"9","8"8Zr and "8"8","8"7"m","8"7"gY in the energy range of 30–50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  7. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  8. Application of a gamma spectroscopy system to the measurement of neutron cross sections necessary to the development of nuclear energy

    International Nuclear Information System (INIS)

    Deruelle, O.

    2002-09-01

    This work concerns the development of nuclear energy and nuclear waste management in particular. Two parts of this study can be distinguished. In the first part (theoretical), a thorium-plutonium fuel based on MOX and dedicated for PWR was investigated in order to transmute plutonium in a potentially low waste fuel cycle. It was shown that this type of fuel is not regenerative but could be used for a transition to the industrial thorium fuel cycle without building new reactors. Thanks to moderated neutron spectra and high loaded actinide mass in the core, U-233 is quickly created (∼300 kg/y) for a loss of about ∼1200 kg of fissile plutonium. In the second part (experimental), we have developed and built a new reaction chamber to measure neutron cross sections of actinides by alpha-gamma spectroscopy. This experimental device (in principle transportable) was commissioned in the high flux reactor of ILL Grenoble. Neutron flux was measured by gamma spectroscopy of irradiated Al and Co samples and was found to be of the order of 6,0. 10 14 n.cm -2 .s -1 (4%). By the irradiation of 11μg of Am-243 and Pu-242, corresponding capture cross sections were measured in the thermal neutron flux at 50 deg C. These are the results: 243 Am(n,γ) 244fond. Am = 4,72±1,42b; 243 Am(n,γ) 244total Am = 74,8±3,25b; 242 Pu (n,γ) 243 Pu = 22,7±1,09b. Uncertainties of the measurements are mostly due to the determination of the neutron flux, efficiency of the electronics and ambiguities related to the definition of the area under α-γ spectra. Although our measured cross sections deviate (by 10-30%) from the corresponding values widely used in evaluated data libraries such as ENDF, JEF and JENDL, in this work we have demonstrated the feasibility and principle of our experimental method. Furthermore, the value for the 243-americium capture cross-section is in very good agreement with the last two measurements done in 1975 and 1997. These facts allowed us to think of new experiments

  9. Total Reaction Cross Section of Silicon Induced by ^{4}He in the Energy Range 3-10 MeV/u

    CERN Document Server

    Ugryumov, V Yu; Basybekov, K B; Bialkowski, E; Budzanowski, A; Duysebaev, A D; Duysebaev, B A; Zholdybaev, T K; Ismailov, K M; Kadyrzhanov, K K; Kalpakchieva, R; Kugler, A; Kukhtina, I N; Kushniruk, V F; Kuterbekov, K A; Mukhambetzhan, A; Penionzhkevich, Yu E; Sadykov, B M; Skwirczynska, I; Sobolev, Yu G

    2003-01-01

    The energy dependence of total reaction cross section for alpha-particles on ^{nat}Si has been directly and accurately measured by the transmission method. These data show that sigma_R has different energy dependence from theoretical predictions at low energies. The sigma_R corrections due to inelastic scattering to the first excited state were made by integrating corresponding angular distributions.

  10. Total reaction cross section of silicon induced by 4He in the energy range 3-10 MeV/u

    International Nuclear Information System (INIS)

    Ugryumov, V.Yu.; Kuznetsov, I.V.; Kalpakchieva, R.

    2003-01-01

    The energy dependence of total reaction cross section for α-particles on nat Si has been directly and accurately measured by the transmission method. These data show that σ R has different energy dependence from theoretical predictions at low energies. The σ R corrections due to inelastic scattering to the first excited state were made by integrating corresponding angular distributions

  11. Electron scattering cross sections for SF6 and SF5CF3 at intermediate and high energies (100-10000 eV)

    International Nuclear Information System (INIS)

    Limao-Vieira, P.; Blanco, F.; Oller, J.C.; Munoz, A.; Perez, J.M.; Vinodkumar, M.; Garcia, G.; Mason, N.J.

    2005-01-01

    A modified experimental apparatus with improved angular resolution and stability has been used to measure the total electron scattering cross sections for SF 6 and SF 5 CF 3 in the energy range of 100-5000 eV. A detailed analysis of the experimental error sources is provided. The experimental results are compared with integral elastic and inelastic cross sections calculated using the independent atom model approximation and a modified single-center additivity rule for electron energies ranging from 1 to 10,000 eV. The accuracy of these approximations method is discussed through a comparison with the experimental results. Previous cross-sectional data for SF 6 are compared with the present theoretical and experimental results. For SF 5 CF 3 , we present the first electron scattering cross-sectional data for the 100-10,000 eV energy range, as well as the first empirical determination of the molecular polarizability

  12. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  13. Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section

  14. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  15. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  16. Measurements of the total neutron cross-sections of poly- and mono-germanium crystals at neutron energies below 1 eV

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Abdel-Kawy, A.; Abbas, Y.; Habib, N.; Adib, M.; Hamouda, I.

    1983-12-01

    Total neutron cross-section measurements have been performed for poly and mono-germanium crystals in the energy range from 2 meV-1eV. The measurements were performed using two TOF and a double axis crystal spectrometer installed at the ET-RR-1 reactor. The obtained neutron cross-sections were analyzed using the single level Breit-Wigner formula. The coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of Ge and the analysis of its neutron diffraction pattern. The incoherent and thermal diffuse scattering cross-sections of Ge were estimated from the analysis of the total cross-section data obtained for Ge mono-crystal

  17. A Study of the Energy Dependence of the Th 232 Capture Cross Section in the Energy Region 0.1 to 3.4 eV

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, G

    1967-11-15

    Using the fast chopper at the Stockholm reactor R1 a comparison between the (n, {gamma}) cross sections for thorium and copper has been made in the energy interval 0.1 to 3.4 eV. The (n, {gamma}) cross section for copper follows the 1/v law sufficiently well in this energy interval to be used as a 1/v standard. The deviation at 3.4 eV does not exceed 5 %. The capture cross section, {sigma}, for thorium decreases more rapidly than 1/v and the deviation is found to be close to 60 % at 3.4 eV. If one assumes that the deviation is caused essentially by a single negative resonance this should be located at 5.1 {+-} 0.5 eV. Furthermore, if a value of 24 meV for {gamma}{sub {gamma}}, the radiation width for the negative resonance, is used one finds that {gamma}{sub n}{sup 0}, the reduced neutron width for the same resonance, amounts to 1.82 {+-} 0.25 meV. Using these parameters together with the resonance parameters for the positive resonances a value of the total microscopic scattering cross section at 0.025 eV has been calculated as 12.2 {+-} 0.4 b. A value of the contributions above 0.5 eV to the resonance integral from the 'tail' of the negative resonance and the 1/v - parts of the positive resonances has also been calculated giving the result 1.6 b. Finally, the g-factor (Westcott's nomenclature) for a Maxwellian spectrum at 20 deg C becomes 0.994.

  18. Generation and Testing of the ENDF/B-VI Continuous-Energy Cross-Section Library for Use with Continuous-Energy Versions of KENO

    International Nuclear Information System (INIS)

    Goluoglu, Sedat; Dunn, Michael E.; Greene, Norman Maurice; Petrie Jr, Lester M.; Hollenbach, Daniel F.

    2007-01-01

    KENO V.a and KENO-VI are Monte Carlo codes that solve the multigroup form of the Boltzmann transport equation. These codes are part of the SCALE system of codes and are used for performing criticality calculations of systems with fissionable material. In general, continuous-energy Monte Carlo methods are preferred because such an approach avoids many of the assumptions inherent in the multigroup treatment. On the other hand, continuous-energy treatment is much more demanding in terms of computer storage space for data, memory requirements, and calculation speed. Continuous-energy versions of KENO V.a and KENO-VI have been created and are being extensively tested. Generation of ENDF/B-VI continuous-energy cross sections is explained, and the results of the validation and verification of the codes and the data are presented

  19. Evaluations of cross sections on Zr, Nb, and W up to 200 MeV for JENDL high energy file

    International Nuclear Information System (INIS)

    Kunieda, Satoshi; Shigyo, Nobuhiro; Ishibashi, Kenji

    2005-01-01

    Nuclear data were evaluated on Zr isotopes, 93 Nb and W isotopes for neutron- and proton-induced reactions up to 200 MeV. Optical model potential parameters were determined to give good agreements with experimental values of elastic-scattering, total, and total-reaction cross sections by the traditional phenomenological approach. The GNASH nuclear model code was used for evaluations of particle-production cross sections. Since the direct inelastic-scatterings induced by the excitations of giant resonances are not negligible for medium/heavy nuclei, the calculation was performed to take them into consideration. For composite-particle emission cross sections from pre-equilibrium states, semi-empirical models were utilized to give good agreements with experimental data. Evaluated cross sections were compared with experimental values and the LA150 evaluations. (author)

  20. Changes in energy content of lunchtime purchases from fast food restaurants after introduction of calorie labelling: cross sectional customer surveys.

    Science.gov (United States)

    Dumanovsky, Tamara; Huang, Christina Y; Nonas, Cathy A; Matte, Thomas D; Bassett, Mary T; Silver, Lynn D

    2011-07-26

    To assess the impact of fast food restaurants adding calorie labelling to menu items on the energy content of individual purchases. Cross sectional surveys in spring 2007 and spring 2009 (one year before and nine months after full implementation of regulation requiring chain restaurants' menus to contain details of the energy content of all menu items). Setting 168 randomly selected locations of the top 11 fast food chains in New York City during lunchtime hours. 7309 adult customers interviewed in 2007 and 8489 in 2009. Energy content of individual purchases, based on customers' register receipts and on calorie information provided for all items in menus. For the full sample, mean calories purchased did not change from before to after regulation (828 v 846 kcal, P = 0.22), though a modest decrease was shown in a regression model adjusted for restaurant chain, poverty level for the store location, sex of customers, type of purchase, and inflation adjusted cost (847 v 827 kcal, P = 0.01). Three major chains, which accounted for 42% of customers surveyed, showed significant reductions in mean energy per purchase (McDonald's 829 v 785 kcal, P = 0.02; Au Bon Pain 555 v 475 kcal, PKFC 927 v 868 kcal, P<0.01), while mean energy content increased for one chain (Subway 749 v 882 kcal, P<0.001). In the 2009 survey, 15% (1288/8489) of customers reported using the calorie information, and these customers purchased 106 fewer kilocalories than customers who did not see or use the calorie information (757 v 863 kcal, P<0.001). Although no overall decline in calories purchased was observed for the full sample, several major chains saw significant reductions. After regulation, one in six lunchtime customers used the calorie information provided, and these customers made lower calorie choices.

  1. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  2. Evaluation of cross sections for neutron interactions with {sup 238}U in the energy region between 5 keV and 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sirakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Capote, R.; Trkov, A. [International Atomic Energy Agency, NAPC-Nuclear Data Section, Vienna (Austria); Gritzay, O. [Institute for Nuclear Research, Kyiv (Ukraine); Kim, H.I. [Korea Atomic Energy Research Institute, Nuclear Data Center, Daejeon (Korea, Republic of); Kopecky, S.; Paradela, C.; Schillebeeckx, P. [European Commission, Joint Research Centre, Geel (Belgium); Kos, B. [Jozef Stefan Institute, Ljubljana (Slovenia); Pronyaev, V.G. [Rosatom State Corporation, Atomsrandart, Moscow (Russian Federation)

    2017-10-15

    Cross sections for neutron interactions with {sup 238}U in the energy region from 5 keV to 150 keV have been evaluated. Average total and capture cross sections have been derived from a least squares analysis using experimental data reported in the literature. The resulting cross sections have been parameterised in terms of average resonance parameters maintaining full consistency with results of optical model calculations by using a dispersive coupled channel optical model potential. The average compound partial cross sections have been expressed in terms of transmission coefficients by applying the Hauser-Feshbach statistical reaction theory including width-fluctuations. A generalized single-level representation compatible with the energy-dependent options of the ENDF-6 format has been applied using standard boundary conditions. The results have been transferred into a full ENDF-6 compatible data file. (orig.)

  3. X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92

    International Nuclear Information System (INIS)

    Saloman, E.B.; Hubbell, J.H.; Scofield, J.H.

    1988-01-01

    This work presents for the energy range 0.1--100 keV the National Bureau of Standards (NBS) database of experimental x-ray attenuation coefficients (total absorption cross sections) and cross sections calculated using a relativistic Hartree--Slater model for the photoelectric cross section for all elements of atomic number Z = 1--92. The information is displayed in both tabular and graphical form. Also shown on the graphs are cross sections obtained using the semiempirical set of recommended values of B. L. Henke and co-workers (Atomic Data and Nuclear Data Tables 27, 1 (1982)). A bibliography of the NBS database for this energy range is included. copyright 1988 Academic Press, Inc

  4. Unexpectedly large cross sections of high-energy electrons ejected from water vapor by 6.0-10.0 MeV/u He2+ ions

    International Nuclear Information System (INIS)

    Ohsawa, D.; Sato, Y.; Okada, Y.; Shevelko, V.P.; Soga, F.

    2005-01-01

    We present absolute doubly differential cross sections (DDCS) of electron emission (= 2+ ions with water vapor, in which unexpectedly large DDCS values were observed at the backward angles, particularly in the high-energy region, as well as singly differential cross sections larger than the Rudd model by a factor of 2-3 at ∼10 keV. The experimental results imply that these high-energy electrons are accelerated through the Fermi-shuttle acceleration. We evaluated the partial cross sections, which contribute to this acceleration, to be 7.1 and 4.5x10 -19 cm 2 , respectively, leading to ∼0.7% of the total ionization cross sections

  5. Program RECENT (version 79-1): reconstruction of energy-dependent neutron cross sections from resonance parameters in the ENDF/B format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1979-01-01

    Program RECENT reconstructs energy-dependent neutron total, elastic, capture, and fission cross sections from a combination of resonance parameters and tabulated background cross sections in the ENDF/B format. Entire evaluations, not just cross sections, are written to the result file, which is in ENDF/B format. The output includes the original resonance parameters in a form that can be used in Doppler broadening and self-shielding calculations. A listing of the source deck is available on request. 5 figures, 5 tables

  6. Photofission cross-section ratio measurement of 235U/238U using monoenergetic photons in the energy range of 9.0-16.6 MeV

    Science.gov (United States)

    Krishichayan; Bhike, Megha; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-05-01

    Photofission cross-section ratios of 235U and 238U have been measured using monoenergetic photon beams at the HIγS facility of TUNL. These measurements have been performed in small energy steps between 9.0 and 16.6 MeV using a dual-fission ionization chamber. Measured cross-section ratios are compared with the previous experimental data as well as with the recent evaluated nuclear data library ENDF.

  7. Total cross section for hadron production by electron-positron annihilation between 2.4 and 5.0 GeV center-of-mass energy

    International Nuclear Information System (INIS)

    Augustin, J.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Feldman, G.J.; Fischer, G.E.; Fryberger, D.; Hanson, G.; Jean-Marie, B.; Larsen, R.R.; Luth, V.; Lynch, H.L.; Lyon, D.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Richter, B.; Schwitters, R.F.; Vannucci, F.; Abrams, G.S.; Briggs, D.; Chinowsky, W.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Kadyk, J.A.; Trilling, G.H.; Whitaker, J.S.; Zipse, J.E.

    1975-01-01

    The total cross section for hadron production by e + e - annihilation has been measured at center-of-mass energies between 2.4 and 5.0 GeV. Aside from the very narrow resonances psi (3105) and psi (3695), the cross section varies between 32 and 17 nb over this region with structure in the vicinity of 4.1 GeV

  8. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  9. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    Science.gov (United States)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  10. The cross-section for J/psi production in proton-proton collisions at centre-of-mass energies between 23 and 63 GeV/c

    International Nuclear Information System (INIS)

    Cobb, J.H.; Iwata, S.; Palmer, R.B.; Rahm, D.C.; Stumer, I.; Fabjan, C.W.; Mannelli, I.; Nakamura, K.; Nappi, A.; Struczinski, W.; Willis, W.J.; Goldberg, M.; Horwitz, N.; Moneti, G.C.; Kourkoumelis, C.; Lankford, A.J.; Rehak, P.

    1977-01-01

    The cross-section for J/psi production in proton-proton collisions has been measured as a function of centre-of-mass energy at the CERN Intersecting Storage Rings by observing its decay into electron-positron pairs. This cross-section is found to rise by a factor of about six over the full centre-of mass energy range from √s=23 to √s=63 GeV. Electrons resulting from this decay were identified by the use of liquid argon calorimeters and lithium foil transition radiators. Measurements of the energies of the electrons were obtained from the liquid argon calorimeters. (Auth.)

  11. (n,xn cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    Directory of Open Access Journals (Sweden)

    Bielewicz Marcin

    2017-01-01

    Full Text Available Study of the deep subcritical systems (QUINTA using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW. The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON. We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn reactions in yttrium (Y-89 foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn cross section measurements were carried out at The Svedberg laboratory (TSL in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  12. Method of determining the partial cross sections in a heavy liquid. Application to the production of strange particles by high energy π"-

    International Nuclear Information System (INIS)

    Lloret, Antonio

    1964-01-01

    This research thesis reports the study if the measurement of cross sections on proton, and more particularly the development of a method of determination of cross sections which takes problems raised by a heavy liquid into account. This method is applied with sufficiently high energies for the Fermi momentum to have no influence on cross sections. The author first presents the general method of determination of partial cross sections in a heavy liquid: case of a hydrogen chamber, ideal case of a heavy liquid chamber without possibility of secondary interactions nor evaporations, search for a formula removing secondary interactions, correction due to the fact that the number of neutrons is not equal to the number of protons in the mixture nuclei, application to cross sections of production of high energy strange particles, calculation of the number of produced high energy particles. The experiment is then presented with its chamber, its measurement and calculation techniques. The author then reports and discusses cross section calculations and compares results with those of previous experiments. The last part addresses the study of secondary interactions in nuclei

  13. Experimental study of the energy dependence of the total cross section for the He-6 + Si-nat and Li-9 + Si-nat reactions

    Czech Academy of Sciences Publication Activity Database

    Sobolev, Yu. G.; Penionzhkevich, Y. E.; Aznabaev, D.; Zemlyanaya, E. V.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Knyazev, A.; Kugler, Andrej; Lashmanov, N. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Mendibayev, K.; Skobelev, N. K.; Slepnev, R. S.; Smirnov, V. V.; Testov, D.

    2017-01-01

    Roč. 48, č. 6 (2017), s. 922-926 ISSN 1063-7796 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : energy dependence * cross section Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 0.681, year: 2016

  14. Coplanar asymmetric angles and symmetric energy sharing triple differential cross sections for 200 eV electron-impact ionization of Ar (3p)

    International Nuclear Information System (INIS)

    Ozer, Zehra N; Varol, Onur; Yavuz, Murat; Dogan, Mevlut; Amami, Sadek; Madison, Don

    2015-01-01

    We have measured triple differential cross sections (TDCSs) for electron-impact ionization of the 3p shell of Ar at 200 eV incident electron energy. The experiments have been performed in coplanar asymmetric energy sharing geometry. The experimental results are compared with the theoretical models of three body distorted wave (3DW) and distorted wave Born approximation (DWBA). (paper)

  15. Photo-neutron reaction cross-section for 93Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    International Nuclear Information System (INIS)

    Naik, H.; Kim, G.N.; Schwengner, R.; Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C.; John, R.; Massarczyk, R.; Junghans, A.; Shin, S.G.; Key, Y.; Wagner, A.; Lee, M.W.; Goswami, A.; Cho, M.-H.

    2013-01-01

    The photo-neutron cross-sections of 93 Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The 93 Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the 93 Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections are sharper compared to 93 Nb(γ, 3n) and 93 Nb(γ, 4n) reaction cross-sections. The sharp increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual 93 Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels

  16. The measurement of neutron differential scattering cross sections for 12C, 14N and 16O in the energy range 20-26 Mev

    International Nuclear Information System (INIS)

    Petler, J.S.; Finlay, R.W.; Meigooni, A.S.; Islam, M.S.; Rapaport, J.

    1985-01-01

    The Ohio University Beam Swinger provides a high resolution, low back-ground time-of-flight facility for the measurement of elastic and inelastic neutron scattering. It has been used to obtain a comprehensive set of differential scattering cross sections for 12 C, 14 N, 16 O and 40 Ca between 18 and 26 MeV. The elastic cross sections can be used directly to obtain partial kerma factors and, combined with the known total cross sections, provide accurate values for the reaction cross sections. Angular distributions have been measured for inelastic scattering from all the nuclear levels that cannot decay by particle emission thus providing (by subtraction) a limit on the sum of all charged-particle producing reactions. The integrated cross sections for inelastic scattering from some particle-unstable states in 12 C are in excellent agreement with the cross sections for three-body breakup obtained by Antolkovic et al. The differential data have been used, together with higher energy proton scattering data to produce energy-dependent optical model parameters for each of these nuclei in the energy range 20-60 MeV. It has been found that the elastic differential cross sections at theta > 100 0 for 12 C, 14 N and 16 O cannot be well described by a spherical optical model. Explicit consideration of coupled-channel effects, and in the case of 12 C, deformation of the ground state, improves the agreement between calculation and experiment. Heavy ion recoil kerma factors and reaction cross sections have been obtained for each element and compared with previous calculations and measurements

  17. Differential cross section measurement of elastic scattering 12C(p,p)12C in the astrophysical range of energy

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebaev, N.; Dzazairov -Kakhramanov, V.; Hassan, S.F.; Satpaev, N.K.; Zazulin, D.M.

    2004-01-01

    Full text: The fulfillment of planned works on measurements of differential cross sections of elastic scattering of protons on nuclear 12 C at the energy region of 350†1050 keV suggests the preparation of thin self - supporting carbon target. The self - supporting target is necessary in order to perform investigations in the total angular range. In the future last data will be used in order to determine optical potentials and scattering phases for this nuclear in the energy range of astrophysical interest. There was prepared target layer of the 12 C with natural composition of carbon and of thickness of 17.4 μg/cm 2 . The spraying was conducted in the vacuum evaporation installation (VUP - 4) by an electron bombardment method. Carbon was sprayed on a glass plate with previously deposited of layer salt. After a heating during 12 hours at the temperature of 150 o C the film of carbon was floated from glass plate and self - supporting target has been picked up on the specially prepared target frame. In order to determine thickness of target there was used the resonance chamber, installed in the protons channel of the accelerator RAC - 2 - 1 (INP NNC RK), with the help of which there was measured energy loss of the protons beam during the passage through target, disposed in the central chamber. For this purpose there was used the reaction 27 Al(p,γ) 28 Si with narrow resonance with E R = 992 keV and with detection of gamma-quanta with E γ = 1779 keV. On shift of the resonance E R =992 keV in the reaction 27 Al(p,γ) 28 Si, which takes place owing to protons energy loss in the thickness of carbon film, and using table values of brake quantities S(E p )[MeV·cm 2 /g] [1], there was determined thickness of this fine film. Such the method allows to determine thicknesses of films in the interval of (10 † 100) mcg/cm 2 with the accuracy of not worse than 5%. In the present work there were carried out measurements of angular distributions of cross sections of the

  18. Measurement of the efficient cross section of the reaction 7Be(p, γ)8B at low energies and implications in the problem of solar neutrinos

    International Nuclear Information System (INIS)

    Hammache, Fairouz

    1999-01-01

    The 8 B produced inside the sun through the reaction 7 Be(p,γ) 8 B is the main, and even unique, source of high energy neutrinos detected in most solar neutrino detection experiments, except with Gallex and Sage. These experiments have all measured a neutrinos flux lower than the one predicted by solar models. Several explanations have been proposed to explain this deficit, but all require a precise knowledge of the efficient cross-section of the reaction 7 Be(p,γ) 8 B, because the neutrinos flux of 8 B is directly proportional to this reaction. The direct measurement of this cross section for the solar energy is impossible because of its low value (about 1 femto-barn). In order to get round this problem, the cross sections are measured at higher energy and extrapolated to the solar energy using a theoretical energy dependence. The 6 previous experimental determinations of the efficient cross section were shared in two distinct groups with differences of about 30% which leads to an uncertainty of the same order on the high energy neutrinos flux. The re-measurement of the cross section of this reaction with a better precision is thus of prime importance. A direct measurement of the cross section in the energy range comprised between 0.35 and 1.4 MeV (cm) has been performed first. These experiments have permitted the precise measurement of each parameter involved in the determination of the cross section. Then, measurements of the cross section have been carried out with the PAPAP accelerator at 185.8, 134.7 and 111.7 keV, the lowest mass center energy never reached before. The results are in excellent agreement with those obtained at higher energies. The value obtained by extrapolation of these data for the astrophysical factor S 17 (0) is 19.21.3 EV-B, which leads to a significant reduction of the uncertainty on the high energy neutrinos flux of 8 B. (J.S.)

  19. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  20. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  1. Calculations and Evaluations of Cross Sections for n + 204,206,207,208,natPb Reactions in the En ≤ 250 MeV Energy Range

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhang Zhengjun; Cai Chonghai

    2005-01-01

    The quality and reliability of the computational simulation of a macroscopic nuclear device are directly related to the quality of the underlying basic nuclear data. To meet these needs, according to advanced nuclear models that account for details of nuclear structure and the quantum nature of nuclear reaction and the experimental data of total, nonelastic, and elastic scattering cross sections, and elastic scattering angular distributions of Pb and its isotopes, all cross sections of neutron-induced reaction, angular distributions, energy spectra, especially the double-differential cross sections for neutron, proton, deuteron, triton, helium, and alpha emissions are calculated and analyzed for n + 204,206,207,208,nat Pb at incident neutron energies below 20 MeV by using the UNF nuclear model code. At neutron incident energies 20 n ≤ 250 MeV, MEND codes are used. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B-VI and JENDL-3

  2. Multiple cell upset cross-section modeling: A possible interpretation for the role of the ion energy-loss straggling and Auger recombination

    International Nuclear Information System (INIS)

    Zebrev, G.I.; Zemtsov, K.S.

    2016-01-01

    We found that the energy deposition fluctuations in the sensitive volumes may cause the multiple cell upset (MCU) multiplicity scatter in the nanoscale (with feature sizes less than 100 nm) memories. A microdosimetric model of the MCU cross-section dependence on LET is proposed. It was shown that ideally a staircase-shaped cross-section vs LET curve spreads due to the energy-loss straggling impact into a quasi-linear dependence with a slope depending on the memory cell area, the cell critical energy and efficiency of charge collection. This paper also presents a new model of the Auger recombination as a limiting process of the electron–hole charge yield, especially at the high-LET ion impact. A modified form of the MCU cross-section vs LET data interpolation is proposed, discussed and validated.

  3. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  4. Multiple cell upset cross-section modeling: A possible interpretation for the role of the ion energy-loss straggling and Auger recombination

    Energy Technology Data Exchange (ETDEWEB)

    Zebrev, G.I., E-mail: gizebrev@mephi.ru; Zemtsov, K.S.

    2016-08-11

    We found that the energy deposition fluctuations in the sensitive volumes may cause the multiple cell upset (MCU) multiplicity scatter in the nanoscale (with feature sizes less than 100 nm) memories. A microdosimetric model of the MCU cross-section dependence on LET is proposed. It was shown that ideally a staircase-shaped cross-section vs LET curve spreads due to the energy-loss straggling impact into a quasi-linear dependence with a slope depending on the memory cell area, the cell critical energy and efficiency of charge collection. This paper also presents a new model of the Auger recombination as a limiting process of the electron–hole charge yield, especially at the high-LET ion impact. A modified form of the MCU cross-section vs LET data interpolation is proposed, discussed and validated.

  5. Measurement of the photon-proton total cross section at a center-of-mass energy of 209 GeV at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wessoleck, H.; Bailey, D.S.; Brook, N.H.; Cole, J.E.; Foster, B.; Heath, G.P.; Heath, H.F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotanski, A.; Slominski, W.; Bauerdick, L.A.T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hillert, S.; Koetz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Surrow, B.; Whitmore, J.J.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Woelfle, S.; Bell, M.; Bussey, P.J.; Doyle, A.T.; Glasman, C.; Hanlon, S.; Lee, S.W.; Lupi, A.; McCance, G.J.; Saxon, D.H.; Skillicorn, I.O.; Bodmann, B.; Holm, U.; Salehi, H.; Wick, K.; Ziegler, A.; Ziegler, Ar.; Carli, T.; Gialas, I.; Klimek, K.; Lohrmann, E.; Milite, M.; Collins-Tooth, C.; Foudas, C.; Goncalo, R.; Long, K.R.; Metlica, F.; Miller, D.B.; Tapper, A.D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A.N.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Ahn, S.H.; Lee, S.B.; Park, S.K.; Lim, H.; Son, D.; Barreiro, F.; Garcia, G.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terron, J.; Vazquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D.G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korotkova, N.A.; Korzhavina, I.A.; Kuzmin, V.A.; Levchenko, B.B.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Solomin, A.N.; Vlasov, N.N.; Zotkin, S.A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J.J.; Wiggers, L.; de Wolf, E.; Bruemmer, N.; Bylsma, B.; Durkin, L.S.; Gilmore, J.; Ginsburg, C.M.; Kim, C.L.; Ling, T.Y.; Boogert, S.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Ferrando, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M.R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Oh, B.Y.; Saull, P.R.B.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Heusch, C.; Park, I.H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M.I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Galea, R.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J.M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M.E.; Heaphy, E.A.; Jones, T.W.; Lane, J.B.; Lightwood, M.S.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R.J.; Pawlak, J.M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J.A.; Zarnecki, A.F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L.K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kcira, D.; Lammers, S.; Reeder, D.D.; Savin, A.A.; Smith, W.H.; Deshpande, A.; Dhawan, S.; Hughes, V.W.; Straub, P.B.; Bhadra, S.; Catterall, C.D.; Fourletov, S.; Menary, S.; Soares, M.; Standage, J.

    2002-01-01

    The photon-proton total cross section has been measured in the process e + p→e + γp→e + X with the ZEUS detector at HERA. Events were collected with photon virtuality Q 2 2 and average γp center-of-mass energy W γp =209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb -1 . The measured total cross section is σ tot γp =174±1 (stat.)±13 (syst.) μb. The energy dependence of the cross section is compatible with parameterizations of high-energy pp and pp-bar data

  6. First measurement of the total proton-proton cross section at the LHC energy of √s =7 TeV

    CERN Document Server

    Antchev, G.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csörgõ, T.; Deile, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, M.R.; Kaspar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajícek, M.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Magaletti, L.; Mercadante, A.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vítek, M.; Welti, J.; Whitmore, J.

    2011-01-01

    TOTEM has measured the differential cross-section for elastic proton-proton scattering at the LHC energy of √s = 7TeV analyzing data from a short run with dedicated large Beta∗ optics. A single exponential fit with B = 20.1GeV**−2 (all errors are given in the text) describes the lowest range of the squared four-momentum transfer |t| from 0.02 to 0.3GeV**2. After the extrapolation to |t| = 0, a total elastic scattering cross-section of 24.8mb was obtained. Applying the Optical Theorem and using the luminosity measurement from CMS, a total proton-proton cross-section of 98.3mb was deduced which is in good agreement with the expectation from the overall fit of previously measured data over a large range of energies. From the total and elastic pp cross-section measurements, an inelastic pp cross-section of (73:5{\\pm}0:6stat +1:8 -1:3 syst) mb was inferred. PACS 13.60.Hb: Total and inclusive cross sections

  7. Experimental study of energy dependence of proton induced fission cross sections for heavy nuclei in the energy range 200-1000 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, A.A.; Gavrikov, Yu.A.; Vaishnene, L.A.; Vovchenko, V.G.; Poliakov, V.V.; Fedorov, O.Ya.; Chestnov, Yu.A.; Shchetkovskiy, A.I [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, Orlova roscha 1, 188300 (Russian Federation); Fukahori, T. [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195 (Japan)

    2005-07-01

    The results of the total fission cross sections measurements for {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu nuclei at the energy proton range 200-1000 MeV are presented. Experiments were carried out at 1 GeV synchrocyclotron of Petersburg Nuclear Physics Institute (Gatchina). The measurement method is based on the registration in coincidence of both complementary fission fragments by two gas parallel plate avalanche counters, located at a short distance and opposite sides of investigated target. The insensitivity of parallel plate avalanche counters to neutron and light charged particles allowed us to place the counters together with target immediately in the proton beam providing a large solid angle acceptance for fission fragment registration and reliable identification of fission events. The proton flux on the target to be studied was determined by direct counting of protons by scintillation telescope. The measured energy dependence of the total fission cross sections is presented. Obtained results are compared with other experimental data as well as with calculation in the frame of the cascade evaporation model. (authors)

  8. The fission cross section ratios and error analysis for ten thorium, uranium, neptunium and plutonium isotopes at 14. 74 MeV neutron energy

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.W.

    1987-03-01

    The error information from the recent measurements of the fission cross section ratios of nine isotopes, /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, and /sup 242/Pu, relative to /sup 235/U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are /sup 230/Th - 13%, /sup 237/Np - 9.6% and /sup 239/Pu - 7.6%. 5 refs., 6 tabs.

  9. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    International Nuclear Information System (INIS)

    Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  10. Data interpretation, objective evaluation procedures and mathematical techniques for the evaluation of energy-dependent ratio, shape and cross section data

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1980-01-01

    The evaluation of several energy-dependent neutron cross sections which are of importance for practical applications is considered. The evaluation process is defined as the procedure which is used to derive the best knowledge of these cross sections based on the available direct experimental data information, and, using theoretical models, on the auxiliary data base. The experimental data base represents a multiple overdetermination of the unknown cross sections with various correlations between the measured values. Obtaining the least-squares estimator is considered as the standard mathematical procedure to derive a consistent set of evaluated cross section values. Various approximations made in order to avoid the monstrous system of normal equations are considered and the feasibility of the exact solution is demonstrated. The variance-covariance of the result, its reliability and the improvements obtained in iterative steps are discussed. Finally, the inclusion of auxiliary, supplementary information is considered. 45 references

  11. The fission cross section ratios and error analysis for ten thorium, uranium, neptunium and plutonium isotopes at 14.74 MeV neutron energy

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1987-03-01

    The error information from the recent measurements of the fission cross section ratios of nine isotopes, 230 Th, 232 Th, 233 U, 234 U, 236 U, 238 U, 237 Np, 239 Pu, and 242 Pu, relative to 235 U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are 230 Th - 13%, 237 Np - 9.6% and 239 Pu - 7.6%. 5 refs., 6 tabs

  12. Photoelectric absorption cross sections with variable abundances

    Science.gov (United States)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  13. Elastic electron differential cross sections for argon atom in the intermediate energy range from 40 eV to 300 eV

    Science.gov (United States)

    Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.

    2018-02-01

    Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.

  14. Empirical regularities in the excitation cross-section behavior of the lead atom (transitions from energy levels of 6pnd configurations)

    Science.gov (United States)

    Smirnov, Yu M.

    2018-03-01

    Electron-impact excitation of lead atom levels belonging to 6pnd configurations has been studied in experiment. One hundred two excitation cross-sections have been measured at an incident electron energy of 50 eV. Eleven optical excitation functions (OEFs) have been recorded in the exciting electron energy range of E = 0-200 eV. The resulting findings were used to study the excitation cross-sections dependence on the principal quantum number of upper levels for thirteen PbI spectral series.

  15. Total cross section measurements for νμ, ν-barμ interactions in 3 - 30 GeV energy range with IHEP - JINR neutrino detector

    International Nuclear Information System (INIS)

    Anikeev, V.B.; Belikov, S.V.; Borisov, A.A.

    1995-01-01

    The results of total cross section measurements for the ν μ , ν-bar μ interactions with isoscalar target in the 3 - 30 GeV energy range have been presented. The data were obtained with the IHEP - JINR Neutrino Detector in the 'natural' neutrino beams of the U - 70 accelerator. The significant deviation from the linear dependence for σ tot versus neutrino energy is determined in the energy range less than 15 GeV. 46 refs., 10 figs., 5 tabs

  16. Differential and integral electron scattering cross sections from tetrahydrofuran (THF) over a wide energy range: 1-10.000 eV

    International Nuclear Information System (INIS)

    Fuss, M.C.; Sanz, A.G.; Blanco, F.; Limao-Vieira, P.; Brunger, M.J.; Garcia, G.

    2014-01-01

    Tetrahydrofuran (THF, C 4 H 8 O) has a molecular structure that is similar to the ribose in the DNA backbone and is used as a surrogate of ribose to get electron scattering cross sections. Total, integral inelastic and integral and differential elastic cross sections have been calculated with the screening-corrected additivity rule (SCAR) method based on the independent atom model (IAM) for electron scattering from THF. Since the permanent dipole moment of THF enhances rotational excitation particularly at low energies and for small angles, an estimate of the rotational excitation cross section was also computed by assuming the interaction with a free electric dipole as an independent, additional process. Our theoretical results compare very favourably to the existing experimental data. Finally, a self-consistent set of integral and differential interaction cross-sections for the incident energy range 1 eV - 10 keV is established for use in our low energy particle track simulation (LEPTS). All cross section data are supplied numerically in tabulated form. (authors)

  17. Thick-target method in the measurement of inner-shell ionization cross-sections by low-energy electron impact

    International Nuclear Information System (INIS)

    An, Z.; Wu, Y.; Liu, M.T.; Duan, Y.M.; Tang, C.H.

    2006-01-01

    In this paper, we have studied the thick-target method for the measurements of atomic inner-shell ionization cross-section or X-ray production cross-section by keV electron impact. We find that in the processes of electron impact on the thick targets, the ratios of the characteristic X-ray yields of photoelectric ionization by bremsstrahlung to the total characteristic X-ray yields are Z-dependent and shell-dependent, and the ratios also show the weak energy-dependence. In addition, in the lower incident energy region (i.e. U < 5-6), the contribution from the rediffusion effect and the secondary electrons can be negligible. In general, the thick-target method can be appropriately applied to the measurements of atomic inner-shell ionization cross-sections or X-ray production cross-sections by electron impact for low and medium Z elements in the lower incident electron energy (i.e. U < 5-6). The experimental accuracies by the thick-target method can reach to the level equivalent or superior to the accuracies of experimental data based on the thin-target method. This thick-target method has been applied to the measurement of K-shell ionization cross-sections of Ni element by electron impact in this paper

  18. Associations of parental education and parental physical activity (PA) with children's PA: The ENERGY cross-sectional study

    NARCIS (Netherlands)

    Jimenez-Pavon, D.; Fernandez-Alvira, J.M.; te Velde, S.J.; Brug, J.; Bere, E.; Jan, N.; Kovacs, E.; Androutsos, O.; Manios, Y.; de Bourdeaudhuij, I.; Moreno, L.A.

    2012-01-01

    Objective: The present study sought to examine the independent associations of parental education and physical activity (PA) with children's PA across Europe. Methods: A total of 7214 children (10-12. years) were recruited from a school-based cross-sectional survey during 2010 in seven European

  19. Neutron cross-sections of deuterium in the energy range 0.0001eV-15MeV

    International Nuclear Information System (INIS)

    Bazazyants, N.O.; Zabrodskaya, A.S.; Larina, A.F.; Nikolaev, M.N.

    1978-08-01

    The paper describes the evaluation of deuterium neutron cross-sections, the spectra of neutrons from the reaction D(n,2n)P and the angular distributions of neutrons from this reaction and of neutrons elastically scattered on deuterium. The evaluation results are presented in the SOCRATOR format. The 26-group system of constants for deuterium is also presented. (author)

  20. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  1. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  2. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  3. Energy dependence of the cross section of fast deuteron knock-out from Li, Be, and C by 380 to 665 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, V I; Kosarev, G E; Reshetnikov, G P; Savchenko, O V; Tesh, Z

    1974-12-31

    The high energy parts of the spectra of fast deuterons, which are knocked out from Li, Be and C targets by protons at a 5.5 deg lab. angle with proton energies of 666, 578, 484 and 382 MeV were measured. The cross sections of quasi-elastic deuteron knock-out obtained are compared with the corresponding cross sections of elastic pd-scattering at energies mentioned above. The evaluations of the effective number of two-nucleon clusters are discussed, which have been obtained taking into account (in the Glauber approximation) the incident proton and knocked-out deuteron interactions with nuclear nucleons. The results show the common behavior of the scattering mechanism responsible for elastic pd- and quasi-elastic proton backward scattering with large momentum transfer to two-nucleon clusters. The energy dependence of the deuteron production cross section at the energy kinematically corresponding to the p + N yields d + pi process on tanget nucleons is close to that of the cross section for the p + p yields d + pi /sup +/ process. (auth)

  4. Inclusive dielectron cross sections in p+p and p+d interactions at beam energies from 1.04 to 4.88 GeV

    International Nuclear Information System (INIS)

    Wilson, W.K.; Beedoe, S.; Carroll, J.; Igo, G.; Seidl, P.; Toy, M.; Bossingham, R.; Gong, W.G.; Heilbronn, L.; Huang, H.Z.; Krebs, G.; Letessier-Selvon, A.; Magestro, D.; Matis, H.S.; Miller, J.; Naudet, C.; Porter, R.J.; Roche, G.; Schroeder, L.S.; Yegneswaran, A.; Bougteb, M.; Manso, F.; Prunet, M.; Roche, G.; Hallman, T.; Madansky, L.; Welsh, R.C.; Kirk, P.; Wang, Z.F.

    1998-01-01

    Measurements of dielectron production in p+p and p+d collisions with beam kinetic energies from 1.04 to 4.88 GeV are presented. The differential cross section is presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the mass spectra and their evolution with beam energy provide information about the relative importance of the various dielectron production mechanisms in this energy regime. The p+d to p+p ratio of the dielectron yield is also presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the transverse momentum and rapidity spectra from the p+d and p+p systems are found to be similar to one another for each of the beam energies studied. The beam energy dependence of the integrated cross sections is also presented. copyright 1998 The American Physical Society

  5. Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Ackers, M.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Ambrosio, G.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arms, K.E.; Armstrong, S.R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barone, M.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Bertolucci, S.; Besana, M.I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Binder, M.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bocci, A.; Bocian, D.; Bock, R.; Boddy, C.R.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C.N.; Booth, P.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozhko, N.I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Bright-Thomas, P.G.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N.J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E.J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Calvet, S.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Caprio, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerna, C.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervetto, M.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clifft, R.W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Correard, S.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Dameri, M.; Damiani, D.S.; Danielsson, H.O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Daum, C.; Dauvergne, J.P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawe, E.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; de La Broise, X.; De La Cruz-Burelo, E.; De La Taille, C.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delagnes, E.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diaz Gomez, M.M.; Diblen, F.; Diehl, E.B.; Dietl, H.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Dowell, J.D.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J.G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Efthymiopoulos, I.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Evdokimov, V.N.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Ferro, F.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M.J.; Fisher, S.M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fohlisch, F.; Fokitis, M.; Fonseca Martin, T.; Fopma, J.; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gapienko, V.A.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gieraltowski, G.F.; Gilbert, L.M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glatzer, J; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Gnanvo, K.G.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Golovnia, S.N.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonidec, A.; Gonzalez, S.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Pineiro, B.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Gorski, B.T.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gouanere, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafstrom, P.; Grah, C.; Grahn, K-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Grebenyuk, O.G.; Green, B.; Greenfield, D.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Grewal, A.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Grivaz, J.F.; Groer, L.S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gushchin, V.N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haeberli, C.; Haefner, P.; Hartel, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hallewell, G.D.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C.J.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harper, R.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B.M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Hazen, E.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Hendriks, P.J.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hill, N.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hindson, D.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Hollins, T.I.; Holmes, A.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homer, R.J.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J-Y.; Hott, T.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howell, D.F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jezequel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M.D.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, M.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joo, K.K.; Joos, D.; Joram, C.; Jorge, P.M.; Jorgensen, S.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenney, C.J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kimura, N.; Kind, O.; Kind, P.; King, B.T.; King, M.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A.M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Knobloch, J.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Konig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G.M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S.V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kortner, S.; Kostka, P.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasel, O.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lambacher, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Landsman, H.; Lane, J.L.; Lange, C.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V.V.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Lepidis, J.; Leroy, C.; Lessard, J-R.; Lesser, J.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linde, F.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Livermore, S.S.A.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maass en, M.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; MacQueen, D.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magnoni, L.; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Mangin-Brinet, M.; Manjavidze, I.D.; Mann, A.; Mann, W.A.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C.P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, Ph.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Mass, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayer, J.K.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCarthy, T.G.; McCubbin, N.A.; McFarlane, K.W.; McGarvie, S.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McMahon, T.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meuser, S.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Miele, P.; Migas, S.; Migliaccio, A.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, W.J.; Mills, C.; Milov, A.; Milstead, D.A.; Milstein, D.; Mima, S.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrevski, J.; Mitrofanov, G.Y.; Mitsou, V.A.; Mitsui, S.; Miyagawa, P.S.; Miyazaki, K.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moch, M.; Mockett, P.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Mock, S.; Moisseev, A.M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Moorhead, G.F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morita, Y.; Morley, A.K.; Mornacchi, G.; Morone, M-C.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Moszczynski, A.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moye, T.H.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munar, A.; Munwes, Y.; Murakami, K.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Naito, D.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nasteva, I.; Nation, N.R.; Nattermann, T.; Naumann, T.; Nauyock, F.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, S.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neukermans, L.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norniella Francisco, O.; Norton, P.R.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohska, T.K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, C.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J.P; Ottewell, B.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Oye, O.K.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palma, A.; Palmer, J.D.; Palmer, M.J.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panin, V.N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulou, Th.D.; Paramonov, A.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Patel, N.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peeters, S.J.M.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petereit, E.; Peters, O.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Phillips, P.W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Pleskach, A.V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popescu, R.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prata, M.; Pravahan, R.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosendahl, P.L.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottlander, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadeh, I.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sala, P.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Savva, P.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schaller, M.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmidt, E.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Scholte, R.C.; Schoning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schroff, D.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schweiger, D.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shield, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Sjursen, T.B.; Skinnari, L.A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T.J.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Stefanidis, E.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stiller, W.; Stockmanns, T.; Stockton, M.C.; Stodulski, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, Y.; Sviridov, Yu.M.; Swedish, S.; Sykora, I.; Sykora, T.; Szczygiel, R.R.; Szeless, B.; Szymocha, T.; Sanchez, J.; Ta, D.; Taboada Gameiro, S.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K.K.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thomson, M.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Ventura, S.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vertogardov, L.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Viel, S.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vovenko, A.S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Will, J.Z.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wuestenfeld, J.; Wulf, E.; Wunstorf, R.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Xu, N.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, S.; Yang, U.K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, J.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaets, V.G.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zalite, Yo.K.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, A.V.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.

    2011-01-01

    Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.

  6. Evaluation of the 237Np neutron cross sections in the energy range from 10-5 eV to 5 MeV

    International Nuclear Information System (INIS)

    Derrien, H.; Fort, E.

    1979-01-01

    The 237 Np neutron cross-sections have been evaluated in the energy range from thermal to 5 MeV. A set of resonance parameters including a negative level, is recommanded after examination of the available experimental data. This set is used 1) to calculate the cross-sections from the thermal region to 150 ev, and 2) to provide the statistical parameters suitable to the calculations in the unresolved region. At higher energies, the transmission coefficients Te are calculated by the coupled channel optical model code ECIS. They are then used as input in the statistical model code FISINGA. The optical model parameters, including the deformation parameters, are those used by Lagrange for the Pu isotopes, slightly modified to reproduce at 40 KeV the total cross-sections obtained from the pure statistical parameters. The recommendations of Lynn concerning the level density parameters have been used. In this paper we describe the various steps of the evaluation

  7. Low energy cross section data for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions with atoms and molecules

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    2007-04-01

    Systematic cross section measurements for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions in low energy collisions with atoms and molecules have been performed continuously by the identical apparatus installed with an octo-pole ion beam guide (OPIG) since 1980 till 2004. Recently, all of accumulated cross section data for a hundred collision systems has been entered into CMOL and CHART of the NIFS atomic and molecular numerical database together with some related cross section data. In this present paper, complicated ion-molecule reactions in hydrogen systems are revealed and the brief outlines of specific properties in low energy charge transfer collisions of multiply charged ions with atoms and molecules are introduced. (author)

  8. Effective and absolute cross sections for low-energy (1-30 eV) electron interactions with condensed biomolecules

    Science.gov (United States)

    Zheng, Yi; Sanche, Léon

    2018-06-01

    Ionizing radiation is intensively used for therapeutic [e.g., radiotherapy, brachytherapy, and targeted radionuclide therapy (TRT)], as well as for diagnostic medical imaging purposes. In these applications, the radiation dose given to the patient should be known and controlled. In conventional cancer treatments, absorbed dose calculations rely essentially on scattering cross sections (CSs) of the primary high-energy radiation. In more sophisticated treatments, such as combined radio- and chemo-therapy, a description of the details of energy deposits at the micro- and nano-scopic level is preferred to relate dose to radiobiological effectiveness or to evaluate doses at the biomolecular level, when radiopharmaceuticals emitting short-range radiation are delivered to critical molecular components of cancer cells (e.g., TRT). These highly radiotoxic compounds emit large densities of low-energy electrons (LEEs). More generally, LEE (0-30 eV) are emitted in large numbers by any type of high-energy radiation; i.e., about 30 000 per MeV of deposited primary energy. Thus, to optimize the effectiveness of several types of radiation treatments, the energy deposited by LEEs must be known at the level of the cell, nucleus, chromosome, or DNA. Such local doses can be evaluated by Monte Carlo (MC) calculations, which account event-by-event, for the slowing down of all generations of particles. In particular, these codes require as input parameters absolute LEE CSs for elastic scattering, energy losses, and direct damage to vital cellular molecules, particularly DNA, the main target of radiation therapy. In the last decade, such CSs have emerged in the literature. Furthermore, a method was developed to transform relative yields of damages into absolute CSs by measuring specific parameters in the experiments. In this review article, we first present a general description of dose calculations in biological media via MC simulation and give an overview of the CSs available from

  9. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  10. Ground-state inversion method applied to calculation of molecular photoionization cross-sections by atomic extrapolation: Interference effects at low energies

    International Nuclear Information System (INIS)

    Hilton, P.R.; Nordholm, S.; Hush, N.S.

    1980-01-01

    The ground-state inversion method, which we have previously developed for the calculation of atomic cross-sections, is applied to the calculation of molecular photoionization cross-sections. These are obtained as a weighted sum of atomic subshell cross-sections plus multi-centre interference terms. The atomic cross-sections are calculated directly for the atomic functions which when summed over centre and symmetry yield the molecular orbital wave function. The use of the ground-state inversion method for this allows the effect of the molecular environment on the atomic cross-sections to be calculated. Multi-centre terms are estimated on the basis of an effective plane-wave expression for this contribution to the total cross-section. Finally the method is applied to the range of photon energies from 0 to 44 eV where atomic extrapolation procedures have not previously been tested. Results obtained for H 2 , N 2 and CO show good agreement with experiment, particularly when interference effects and effects of the molecular environment on the atomic cross-sections are included. The accuracy is very much better than that of previous plane-wave and orthogonalized plane-wave methods, and can stand comparison with that of recent more sophisticated approaches. It is a feature of the method that calculation of cross-sections either of atoms or of large molecules requires very little computer time, provided that good quality wave functions are available, and it is then of considerable potential practical interest for photoelectorn spectroscopy. (orig.)

  11. Fusion and transfer cross sections of He-3 induced reaction on Pt and Au in energy range 10-24.5 MeV

    Czech Academy of Sciences Publication Activity Database

    Skobelev, N. K.; Penionzhkevich, Y. E.; Voskoboynik, E. I.; Kroha, Václav; Burjan, Václav; Hons, Zdeněk; Mrázek, Jaromír; Piskoř, Štěpán; Šimečková, Eva; Kugler, Andrej

    2014-01-01

    Roč. 11, č. 2 (2014), s. 114-120 ISSN 1547-4771 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : cross section * energy range * Coulomb barrier Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  12. Experimental determination of neutron capture cross sections of fast reactor structure materials integrated in intermediate energy spectra. Vol. 2: description of experimental structure

    International Nuclear Information System (INIS)

    Tassan, S.

    1978-01-01

    A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented

  13. Estimation of uncertainties of displacement cross-sections for iron and tungsten at neutron irradiation energies above 0.1 MeV

    International Nuclear Information System (INIS)

    Konobeyev, A.Yu.; Fischer, U.; Simakov, S.P.

    2016-01-01

    The goal of this work is the evaluation of uncertainties of calculated atomic displacement cross sections for iron and tungsten irradiated with neutrons. Uncertainties were analysed for neutron incident energies above 0.1 MeV, which make the main contribution to the value of radiation damage rate for different types of nuclear or fusion reactors and neutron sources

  14. Reaction cross sections for protons on {sup 12}C, {sup 40}Ca, {sup 90}Zr and {sup 208}Pb at energies between 80 and 180 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Auce, A.; Ingemarsson, A.; Johansson, R. [and others

    2005-04-01

    Results of reaction cross section measurements on {sup 12}C, {sup 40}Ca, {sup 90}Zr and {sup 208}Pb at incident proton energies between 80 and 180 MeV and for {sup 58}Ni at 81 MeV are presented. The experimental procedure is described and the results are compared with earlier measurements and predictions using macroscopic and microscopic models.

  15. Reaction cross sections for protons on 12C, 40Ca, 90Zr and 208Pb at energies between 80 and 180 MeV

    International Nuclear Information System (INIS)

    Auce, A.; Ingemarsson, A.; Johansson, R.

    2005-04-01

    Results of reaction cross section measurements on 12 C, 40 Ca, 90 Zr and 208 Pb at incident proton energies between 80 and 180 MeV and for 58 Ni at 81 MeV are presented. The experimental procedure is described and the results are compared with earlier measurements and predictions using macroscopic and microscopic models

  16. Asymmetry of the cross section of the reaction. gamma. n. --> pi. /sup -/p induced by linearly polarized photons with energies 0. 8--1. 75 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V.V.; Akopyan, G.G.; Vartapetyan, G.A.; Galumyan, P.I.; Grabskii, V.O.; Karapetyan, V.V.; Karapetyan, G.V.; Oktanyan, V.K.

    1985-10-25

    The asymmetry of the cross section ..sigma.. of the reaction ..gamma..n..--> pi../sup -/p induced by linearly polarized photons in the energy range 0.8--1.75 GeV and at c.m. angles of 45--90/sup 0/ is measured. The measurement results are consistent with the predictions of the existing phenomenological analyses.

  17. Angular distribution and cross section measurements of 64Zn(n,α)61Ni reaction for neutron energy 5 MeV

    International Nuclear Information System (INIS)

    Chen Yingtang; Chen Zemin; Qi Huiquan; Li Mingtao

    1995-01-01

    A twin gridded ionization chamber with dual parameter data acquisition system is used to study neutron induced charged particle emission reaction. The angular distribution and cross section of α-particles from the 64 Zn(n,α) 61 Ni reaction are measured at neutron energy 5 MeV

  18. Deconvolution of overlapping features in electron energy-loss spectra: the determination of absolute differential cross sections for electron-impact excitation of electronic states of molecules

    International Nuclear Information System (INIS)

    Campbell, L.; Brunger, M.J.; Teubner, O.J.P.; Mojarrabi, B.

    1996-06-01

    A set of three computer programs is reported which allow for the deconvolution of overlapping molecular electronic state structure in electron energy-loss spectra, even in highly perturbed systems. This procedure enables extraction of absolute differential cross sections for electron-impact excitation of electronic states of diatomic molecules from electron energy-loss spectra. The first code in the sequence uses the Rydberg-Klein-Rees procedure to generate potential energy curves from spectroscopic constants, while the second calculates Franck-Condon factors by numerical solution of the Schroedinger equation, given the potential energy curves. The third, given these Franck-Condon factors, the previously calculated relevant energies for the vibrational levels of the respective electronic states and the experimental energy-loss spectra, extracts the differential cross sections for each state. Each program can be run independently, or the three can run in sequence to determine these cross sections from the spectroscopic constants and the experimental energy-loss spectra. The application of these programs to the specific case of electron scattering from nitric oxide (NO) is demonstrated. 25 refs., 2 tabs., 2 figs

  19. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  20. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  1. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  2. Interaction of protons with the C{sub 60} molecule: calculation of deposited energies and electronic stopping cross sections (v{sub {<=}}5 au)

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: pmc@irsamc.ups-tlse.fr; Bordenave-Montesquieu, D.; Rentenier, A.; Bordenave-Montesquieu, A. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-09-28

    The energy deposited by a proton in a C{sub 60} molecule is calculated over a broad collision velocity range from 0.1 to 5 au, using the free-electron gas model of Lindhard and Winther (1964 Mat. Fys. Medd. K Dan. Vidensk. Selsk. 34) and the C{sub 60} electron density distribution calculated by Puska and Nieminen. The energy lost by the proton is maximum near 1.8 au collision velocity in contrast with the saturation found in the low-velocity regime, in the 0.25-0.5 au velocity range, by Kunert and Schmidt. From the impact parameter dependence we deduce the distributions of deposited energies, the averaged energy losses and the C{sub 60} electronic stopping cross sections. It is found that the C{sub 60} molecule behaves as a carbon foil giving very similar absolute stopping cross sections per atom. (author). Letter-to-the-editor.

  3. Experimental cross sections for light-charged particle production induced by neutrons with energies between 25 and 65 MeV incident on aluminum

    International Nuclear Information System (INIS)

    Benck, S.; Slypen, I.; Meulders, J.P.; Corcalciuc, V.

    2001-01-01

    Experimental double-differential cross sections (d 2 σ/dΩdE) for fast neutron-induced proton, deuteron, triton, and alpha-particle production on aluminum are reported, at several incident neutron energies between 25 and 65 MeV, for outgoing particle energies above the experimental energy thresholds. Angular distributions were measured at laboratory angles between 20 deg. and 160 deg. . Reliable extrapolated spectra are derived for very forward (2.5 deg. and 10 deg. ) and very backward angles (170 deg. and 177.5 deg. ). Based on these experimental data, energy-differential (dσ/dE), angle-differential (dσ/dΩ), and total production cross sections (σ T ) are reported for each outgoing particle

  4. FORTRAN 4 programs for the extraction of potential well parameters from the energy dependence of total elastic scattering cross sections

    Science.gov (United States)

    Labudde, R. A.

    1972-01-01

    An attempt has been made to keep the programs as subroutine oriented as possible. Usually only the main programs are directly concerned with the problem of total cross sections. In particular the subroutines POLFIT, BILINR, GASS59/MAXLIK, SYMOR, MATIN, STUDNT, DNTERP, DIFTAB, FORDIF, EPSALG, REGFAL and ADSIMP are completely general, and are concerned only with the problems of numerical analysis and statistics. Each subroutine is independently documented.

  5. On the influence of sample and target properties on the results of energy-dependent cross section measurements

    International Nuclear Information System (INIS)

    Winkler, G.

    1988-01-01

    The impact of sample and target properties on the accuracy of experimental nuclear cross section data is discussed in the context of the basic requirements in order to obtain reliable results from the respective measurements from the user's point of view. Special emphasis is put on activation measurements with fast neutrons. Some examples are given and suggestions are made based on experiences and recent investigations by the author and his coworkers. (author). Abstract only

  6. Verification of SIGACE code for generating ACE format cross-section files with continuous energy at high temperature

    International Nuclear Information System (INIS)

    Li Zhifeng; Yu Tao; Xie Jinsen; Qin Mian

    2012-01-01

    Based on the recently released ENDF/B-VII. 1 library, high temperature neutron cross-section files are generated through SIGACE code using low temperature ACE format files. To verify the processed ACE file of SIGACE, benchmark calculations are performed in this paper. The calculated results of selected ICT, standard CANDU assembly, LWR Doppler coefficient and SEFOR benchmarks are well conformed with reference value, which indicates that high temperature ACE files processed by SIGACE can be used in related neutronics calculations. (authors)

  7. The PSIMECX medium-energy neutron activation cross-section library. Part III: Calculational methods for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    The PSIMECX library contains calculated nuclide production cross-sections from neutron-induced reactions in the energy range about 2 to 800 MeV in the following 72 stable isotopes of 24 elements: {sup 12}C, {sup 13}C, {sup 16}O, {sup 17}O, {sup 18}O, {sup 23}Na, {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 27}Al, {sup 28}Si, {sup 29}Si, {sup 30}Si, {sup 31}P, {sup 32}S, {sup 33}S, {sup 34}S, {sup 36}S, {sup 35}Cl, {sup 37}Cl, {sup 39}K, {sup 40}K, {sup 41}K, {sup 40}Ca, {sup 42}Ca, {sup 43}Ca, {sup 44}Ca, {sup 46}Ca, {sup 48}Ca, {sup 46}Ti, {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 50}Ti, {sup 50}V, {sup 51}V, {sup 50}Cr, {sup 52}Cr, {sup 53}Cr, {sup 54}Cr, {sup 55}Mn, {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 66}Zn, {sup 67}Zn, {sup 68}Zn, {sup 70}Zn, {sup 92}Mo, {sup 94}Mo, {sup 95}Mo, {sup 96}Mo, {sup 97}Mo, {sup 98}Mo, {sup 100}Mo, {sup 121}Sb, {sup 123}Sb, {sup 204}Pb, {sup 206}Pb, {sup 207}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U. The energy range covers essentially all transmutation channels other than capture. The majority of the selected elements are main constituents of normal materials of construction used in and around accelerator facilities and the library is, first and foremost, designed to be a tool for the estimation of their activation in wide-band neutron fields. This third report describes and discusses the calculational methods used for the heavy nuclei. The library itself has been described in the first report of this series and the treatment for the medium and light mass nuclei is given in the second. (author)

  8. Cross Section Measurements In The Main Injector Particle Production (FNAL-E907) Experiment At 58 GEV Energy

    International Nuclear Information System (INIS)

    Gunaydin, Yusuf Oguzhan

    2009-01-01

    Cross-sections are presented for 58 GeV π, K, and p on a wide range of nuclear targets. These cross-sections are essential for determining the neutrino flux in measurements of neutrino cross-sections and oscillations. The E907 Main Injector Particle Production (MIPP) experiment at Fermilab is a fixed target experiment for measuring hadronic particle production using primary 120 GeV/c protons and secondary π, K, and p beams. The particle identification is made by dE/dx in a time projection chamber, and by time-of-flight, differential Cherenkov and ring imaging Cherenkov detectors, which together cover a wide range of momentum from 0.1 GeV/c up to 120 GeV/c. MIPP targets span the periodic table, from hydrogen to uranium, including beryllium and carbon. The MIPP has collected ∼ 0.26 x 10 6 events of 58 GeV/c secondary particles produced by protons from the main injector striking a carbon target.

  9. Application of a generalisation of the Kohn variational method to the calculation of cross sections for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.

    1984-01-01

    The phaseshift corresponding to the lowest partial wave and the associated approximation to the total cross section are calculated for low-energy positron-hydrogen-molecule scattering using a generalisation of the Kohn variational method. The trial wavefunction is expressed in terms of confocal elliptical coordinates. Except at incident positron energies below about 2 eV, reasonable agreement with experiment is obtained below the positronium formation threshold at 8.63 eV. (author)

  10. SCATPI, a subroutine for calculating πN cross sections and polarizations for incident pion kinetic energies between 90 and 300 MeV

    International Nuclear Information System (INIS)

    Walter, J.B.; Rebka, G.A. Jr.

    1979-03-01

    A subroutine, SCATPI, was written which calculates π + p elastic differential cross sections for incident pion kinetic energies between 90 and 310 MeV for π - p. The calculation is based upon the phase shift analysis of Carter, Bugg, and Carter, and is reliable to about 2% for π + p and 3% for π - p differential cross sections. SCATPI also calculates other scattering parameters for the π+-p systems. The calculations are compared with the measurements used in the phase shift analysis, and with selected recent measurements. The use of SCATPI is described. 14 figures, 4 tables

  11. X-ray attenuation coefficients and photoelectric cross sections of Cu, Fe and Sn for the energy range 3-29 KeV

    International Nuclear Information System (INIS)

    Wang Dachun; Yang Hua; Luo Pingan; Ding Xunliang; Wang Xinfu; Zhou Hongyu; Shen Xinyin; Zhu Guanghua

    1991-08-01

    The document contains the following two papers: X-ray attenuation coefficient and photoelectric cross sections of Sn for the Energy Range 3.3 KeV to 29.1 KeV - by Wang Dachun, Yang Hua and Luo Pingan. X-ray attenuation coefficients and photoelectric cross sections of Cu and Fe for the range 3 KeV to 29 KeV - by Wang Dachun, Ding Xunliang, Wang Xinfu, Yang Hua, Zhou Hongyu, Shen Xinyin and Zhu Guanghua. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  12. Cross-section activation measurement for U-238 through protons and deuterons in energy interval 10-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Abramovich, S.N.; Zvenigorodskii, A.G. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    There were presented results of cross-section measurements for nuclear reactions {sup 238}U(p,n){sup 238}Np, {sup 238}U(d,2n){sup 238}Np, {sup 238}U(d,t){sup 237}U, {sup 238}U(d,p){sup 239}U, and {sup 238}U(d,n){sup 239}Np. Interval of projectile energy was 10-14 MeV. For measurements of cross-sections it was used the activatio methods. The registration of {beta}- and {gamma}-activity was made with using of plastic scintillation detector and Ge(Li)-detector.

  13. Neutron radiative capture cross section of 232Th in the energy range 0.1 to 1.2 MeV

    International Nuclear Information System (INIS)

    Jain, H.M.; Kailas, S.

    1987-01-01

    Recently reported neutron radiative capture cross section of 232 Th measurements in the energy range 0.1 to 1.2 MeV are compared with the calculations based on the statistical model Hauser-Feshbach theory using the spherical optical model transmission coefficients and simple Fermi gas level density formula. The calculations are in good agreement with the recent experimental data, reproducing both the absolute magnitude and the shape exhibited by the excitation function. The results of this comparative study can be used for improving the evaluation of the neutron radiative capture cross section of 232 Th. 16 refs., 3 tables, 4 figures. (author)

  14. Neutron radiative capture cross section of 232Th in the energy range 0.1 to 1.2 MeV

    International Nuclear Information System (INIS)

    Jain, H.M.; Kailas, S.

    1987-03-01

    Recently reported neutron radiative capture cross section of Th-232 measurements in the energy range 0.1 to 1.2 MeV are compared with the calculations based on the statistical model Hauser-Feshbach theory using the spherical optical model transmission coefficients and simple Fermi gas level density formula. The calculations are in good agreement with the recent experimental data, reproducing both the absolute magnitude and the shape exhibited by the excitation function. The results of this comparative study can be used for improving the evaluation of the neutron radiative capture cross section of Th-232. (author)

  15. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  16. Cross section for the 103Rh(n,n')103Rhm reaction in the energy range 5.7 endash 12 MeV

    International Nuclear Information System (INIS)

    Miah, M.M.; Strohmaier, B.; Vonach, H.; Mannhart, W.; Schmidt, D.

    1996-01-01

    The 103 Rh(n,n ' ) 103 Rh m cross section was measured by the activation method in the neutron energy range 5.7 endash 12 MeV with an uncertainty of ≅5%. Monoenergetic neutrons produced by the D(d,n) 3 He reaction were used to irradiate metallic Rh samples at 0 degree relative to the deuteron beam. The K x rays from 103 Rh m were measured with a calibrated Si detector, and the neutron fluence was determined by means of a 238 U fission chamber. The measured cross sections resolve the discrepancies in previous data and agree with the results of recent statistical model calculations of the fast-neutron cross sections of rhodium. copyright 1996 The American Physical Society

  17. Validation of FLUKA calculated cross-sections for radioisotope production in proton-on-target collisions at proton energies around 1 GeV

    CERN Document Server

    Felcini, M

    2006-01-01

    The production cross-sections of several radioisotopes induced by 1 GeV protons impinging on different target materials have been calculated using the FLUKA Monte Carlo and compared to measured cross-sections. The emphasis of this study is on the production of alpha and beta/gamma emitters of interest for activation evaluations at a research complex, such as the EURISOL complex, using several MW power proton driver at an energy of 1 GeV. The comparisons show that in most of the cases of interest for such evaluations, the FLUKA Monte Carlo reproduces radioisotope production cross-sections within less than a factor of two with respect to the measured values. This result implies that the FLUKA calculations are adequately accurate for proton induced activation estimates at a 1 GeV high power proton driver complex.

  18. Photofission Cross Sections for 237Np in the Energy Interval from 5.27 to 10.83 MeV

    International Nuclear Information System (INIS)

    Geraldo, L.P.; Semmler, R.; Goncalez, O. L.; Mesa, J.; Arruda-Neto, J.D.T.; Garcia, F.; Rodriguez, O.

    2000-01-01

    Photofission cross sections for 237 Np have been measured as a function of energy, in the interval from 5.27 to 10.83 MeV. The gamma-ray spectra were those produced by thermal neutron capture, in 30 different target materials, at a tangential beam hole of the Instituto de Pesquisas Energeticas e Nucleares IEA-R1 2-MW research reactor. The set of experimental data has been unfolded employing least-squares methods and the covariance matrix methodology. The determined photofission cross sections for 237 Np, together with the complete correlation matrix for the involved errors, are presented and are compared with previous measurements reported in the literature. A statistical calculation for the 237 Np photofission cross sections was performed, and the results are compared with the experimental data

  19. Optical model neutron cross sections calculations for Cu63, Cu65 and natural Cu in the energy range 1-15 Mev

    International Nuclear Information System (INIS)

    Iliescu, N.

    1975-01-01

    The theory of optical model and cross sections is developing. The neutron reactions considered in the high energy rate (0,1-15 MeV) were: total, elastic, elastic angular distributions, nonelastic, inelastic for resolved levels. This region was subdivided in two parts: in the first one, ranging from 0,1 to 1 MeV, the evaluation was mainly based on empirical fits of the experimental data, whereas in the second part the fits were carried out with theoretical models: optical and statistical. The potential parameters were obtained fitting the total, elastic, inelastic cross sections and elastic angular distributions. Using Hauser-Feshbach theory, angular distribution and cross sections for compound elastic scattering and inelastic scattering are calculated

  20. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  1. Precise relative cross sections for np scattering

    International Nuclear Information System (INIS)

    Goetz, J.; Brogli-Gysin, C.; Hammans, M.; Haffter, P.; Henneck, R.; Jourdan, J.; Masson, G.; Qin, L.M.; Robinson, S.; Sick, I.; Tuccillo, M.

    1994-01-01

    We present data on the differential cross section for neutron-proton scattering for an incident neutron energy of 67 MeV. These data allow a precise determination of the 1 P 1 phase which, in phase-shift analyses, is strongly correlated with the S-D amplitude which we are measuring via different observables. ((orig.))

  2. Differential cross sections of proton Compton scattering at photon laboratory energies between 1.2 and 1.7 GeV

    International Nuclear Information System (INIS)

    Duda, J.; Hoefner, F.W.; Jung, M.; Kleissler, R.; Kueck, H.; Leu, P.; Marne, K.D. de; Munk, B.; Vogl, W.; Wedemeyer, R.

    1982-11-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. The experiment covers photon laboratory energies between 1.2 GeV and 1.7 GeV and the square of the four-momentum transfer ranges from t = -0.17 GeV 2 to -0.98 GeV 2 corresponding to c.m. scattering angles between 35 0 and 80 0 . The cross sections exhibit a forward peak followed by a monotone fall-off up to the largest measured vertical stroketvertical stroke-values. Fits of the form dsigma/dt = A.exp(Bt) to the data points with vertical stroketvertical stroke 2 yield forward cross sections A, which are consistent with the 0 0 cross sections calculated from the measured total photon-proton cross section. The average slope is B = 5.6 +- 0.14 GeV 2 . (orig.)

  3. Measurements of multijet production cross sections in proton-proton collisions at 7 TeV center-of-mass energy with the ATLAS Detector

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    Inclusive multijet production has been studied with the ATLAS detector in proton-proton collisions at a center-of-mass energy of 7 TeV, using an integrated luminosity of 17 nb$^{-1}$. The anti-$k_t$ algorithm with distance parameter $R=0.6$ is used to identify jets. The inclusive multijet cross section is measured, as well as the ratio of cross sections for inclusive production of $n-1$ and $n$ jets for $n\\leq 6$. The differential cross sections of the first, second, third and fourth leading jets as a function of transverse momentum, and the differential cross section as a function of the scalar sum of the $p_T$ of selected jets, $H_T$, for different jet multiplicities are presented. The ratio of the differential cross section as a function of $H_T$ for 3-jet and 2-jet events is also measured. The results are compared to expectations based on leading order QCD, which agree with the data.

  4. Analysis of a Novel Transverse Flux Machine with a Tubular Cross-section for Free Piston Energy Converter Application

    Energy Technology Data Exchange (ETDEWEB)

    Cosic, Alija

    2010-07-01

    Constantly growing need for oil, all over the world, has caused oil price to rise rapidly during the last decade. High oil prices have made fuel economy as one of the most important factors when consumers are buying their cars today. Realizing this, many car manufacturers have developed or are looking for some alternative solutions in order to decrease fuel consumption. Combining two different technologies in a vehicle, the so called hybrid vehicle, can be seen as the first step toward a better and more sustainable development.There are several different solutions for hybrid vehicles today, among the best known are the Serie Electric Hybrid Vehicle (SEHV), the Parallel Electric Hybrid Vehicle (PEHV) and the Serie-Parallel Hybrid Electric Vehicle (SPEHV). By integrating a combustion engine with a linear electric machine into one unit, a system that is called Free Piston Energy Converter (FPEC) is achieved. The FPEC is suitable for use in a SEHV. Other application areas like stand alone generator are also possible. In this report a novel Transverse Flux Machine (TFM) with a tubular cross section of the translator has been investigated. Application of the machine in a FPEC has put tough requirement on the translator weight, specific power and force density. Different configurations of the winding arrangements as well as the magnet arrangement have been investigated. It has been concluded that the buried magnet design suffers from high leakage flux and is thus not a suitable TFM concept. Instead the surface mounted magnet design has been chosen for further investigation. An analytical model has been developed and a prototype machine has been built based on the analytical results. In order to have a better understanding of the machine characteristic a 3D-FEM analysis has been performed. The results from the analytical model, FEM model and measurements are analyzed and compared. The comparison between the measured and FEM-simulated results shows very good agreement

  5. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    International Nuclear Information System (INIS)

    Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2017-01-01

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  6. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Philip Christopher S., E-mail: pscruz1@up.edu.ph; Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2017-04-15

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  7. Investigation of energy dependent light emission cross sections for He+-A2 and A+2-He collisions and their interpretation by a Landau-Zener-model

    International Nuclear Information System (INIS)

    Federer, W.

    1982-01-01

    An apparatus for investigations of reaction channels of inelastic ion collisions with a gas target by photon spectroscopy is described. The incoming energy can be varied between 0 and 1800 eV and the emitted light can be observed in the range 2000-9000 A. First the emission spectra of He + -Ar and Ar + -He collisions is measured and interpreted. Then the energy dependence of several line intensities are measured and transformed to absolute emission cross-sections. Several types of cross section versus energy curves are distinguished. They are finally interpreted in the framework of a semiclassical model of a quasi-molecule built from the two colliding partners. (G.Q.)

  8. The differential cross section of the 12C(p,p)12C reaction near the resonance at energy 1.726 MeV

    International Nuclear Information System (INIS)

    Duvanov, S.M.; Kobzev, A.P.

    1996-01-01

    New experimental results on the differential cross section of the 12 C(p,p) 12 C reaction near the separate resonance at 1726 keV were obtained for the 170 deg scattering angle. The cross section measured with a thin target has been used for computer simulation of the spectra measured for a defined initial proton energy for two thick targets. The precision measurements of the proton energies have been carried out using the resonance of 27 Al(p,γ) 28 Si reaction at 1726.0 keV. The energy scale of the excitation function of the 12 C(p,p) 12 C reaction near the resonance at 1726 keV has been defined more exactly. It will improve the precision of depth profiling of carbon in solids. 11 refs., 5 figs., 1 tab

  9. New calculations and measurements of the Coulomb cross-section for the production of direct electron pairs by high energy nuclei

    Science.gov (United States)

    Derrickson, J. H.; Dake, S.; Dong, B. L.; Eby, P. B.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Iyono, A.; King, D. T.

    1989-01-01

    Recently, new calculations were made of the direct Coulomb pair cross section that rely less in arbitrary parameters. More accurate calculations of the cross section down to low pair energies were made. New measurements of the total direct electron pair yield, and the energy and angular distribution of the electron pairs in emulsion were made for O-16 at 60 and 200 GeV/amu at S-32 at 200 GeV/amu which give satisfactory agreement with the new calculations. These calculations and measurements are presented along with previous accelerator measurements made of this effect during the last 40 years. The microscope scanning criteria used to identify the direct electron pairs is described. Prospects for application of the pair method to cosmic ray energy measurements in the region 10 (exp 13) to 10 (exp 15) eV/amu are discussed.

  10. Structured ion impact: Doubly differential cross sections

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1987-01-01

    The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He + impact on He, Ne, Ar, Kr, and H 2 O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied

  11. Low energy collision experiments using the beam guide technique. Charge transfer cross sections of Ar/sup 3+/ and Kr/sup 3+/ in their own gases

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Kazuhiko; Kaneko, Yozaburo

    1986-12-01

    The trajectories of charged particles moving in an octopole ion beam guide (OPIG) are computer-simulated for various initial conditions of motion. Boundary conditions between the stable and unstable regions of beam trajectory in OPIG are obtained. These calculated results are very useful for operation of OPIG under the best condition. In low energy collision experiments using the beam guide technique, cross sections of one-, two- and three-electron capture processes in collision systems of Ar/sup 3+/-Ar and Kr/sup 3+/-Kr are measured in energy region from 0.375 to 768 eV in center-of-mass system. In both collision systems, one-electron capture reaction is predominant in higher energy side, however, the dominant reaction changes from one-electron capture reaction to the symmetric resonant three-electron capture reaction in the low energy region below about 10 eV. As was predicted, it was first confirmed that each cross section obtained for symmetric resonant triple-charge-transfer reaction of Ar/sup 3+/ and Kr/sup 3+/ at the low energy end of Ecm = 0.375 eV is larger than both cross sections of symmetric resonant double-charge-transfer for the doubly charged ion and symmetric resonant single-charge-transfer for the singly charged ion.

  12. Negative ion detachment cross sections

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1992-10-01

    The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below

  13. Cross sections for multistep direct reactions

    International Nuclear Information System (INIS)

    Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan

    2002-01-01

    Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)

  14. Coplanar equal energy-sharing 64.6 eV e-He triple differential cross sections

    International Nuclear Information System (INIS)

    Bray, I.; Fursa, D. V.

    1996-11-01

    Electron impact ionization of the ground state of helium is measured and calculated for the case of 64.6 eV incident electrons with coplanar outgoing 20 eV electrons. Various geometries are considered: symmetric, fixed θ A and fixed θ B - θ A . The method of calculation is the convergent close-coupling theory. This theory is able to reproduce the angular profiles in essentially all of these geometries, yet it yields a constant factor of approximately two lower cross sections than experiment. 14 refs., 4 figs

  15. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  16. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  17. Cross sections for charm production by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S

    1983-02-03

    The production of charmed particles has been measured using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative cross section for charged current charmed particle production is sigma(v -> ..mu../sup -/c)/sigma(v -> ..mu../sup -/) = 6.5 +- 1.9/1.8%, and the energy dependence of the cross section is presented. One event with charm pair production was observed. A limit of sigma(v -> ..mu..canti c)/sigma(v -> ..mu..c) < 6% (90% CL) is found for the ratio of charged current pair and single charm production.

  18. 238U neutron-induced fission cross section for incident neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1979-01-01

    A measurement of the 238 U neutron-induced fission cross section was performed at the ORELA Linac facility in the neutron energy range between 5 eV and 3.5 MeV. The favorable signal-to-background ratio and high resolution of this experiment resulted in the identificaion of 85 subthreshold fission resonances or clusters of resonances in the neutron energy region between 5 eV and 200 keV. The fission data below 100 keV are characteristic of a weak coupling situation between Class I and Class II levels. The structure of the fission levels at the 720 eV and 1210 eV fission clusters is discussed. There is an apparent enhancement of the fission cross section at the opening of the 2 + neutron inelastic channel in 238 U at 45 keV. An enhancement of the subthreshold fission cross section between 100 keV and 200 keV is tentatively interpreted in terms of the presence of a Class II, partially damped vibrational level. There is a marked structure in the fission cross section above 200 keV up to and including the plateau between 2 and 3.5 MeV. 11 figures and 6 tables

  19. Measurements of the Coulomb dissociation cross section of 156 MeV 6Li projectiles at extremely low relative fragment energies of astrophysical interest

    International Nuclear Information System (INIS)

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.

    1991-04-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de

  20. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1.5 MV

    International Nuclear Information System (INIS)

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs

  1. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  2. Extracting the cross section angular distributions for 15C high-energy resonance excited via the (18O,16O two-neutron transfer reaction

    Directory of Open Access Journals (Sweden)

    Carbone D.

    2016-01-01

    Full Text Available The 13C(18O,16O15C reaction has been studied at 84 MeV incident energy. The ejectiles have been momentum analized by the MAGNEX spectrometer and 15C excitation energy spectra have been obtained up to about 20 MeV. In the region above the two-neutron separation energy, a bump has been observed at 13.7 MeV. The extracted cross section angular distribution for this structure, obtained by using different models for background, displays a clear oscillating pattern, typical of resonant state of the residual nucleus.

  3. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  4. $^7Be(n,\\alpha)^4He$ reaction and the Cosmological Lithium Problem: measurement of the cross section in a wide energy range at n_TOF (CERN)

    CERN Document Server

    Barbagallo, M.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Mengoni, A.; Dressler, R.; Schumann, D.; Käppeler, F.; Colonna, N.; Finocchiaro, P.; Ayranov, M.; Damone, L.; Kivel, N.; Aberle, O.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barros, S.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Duran, I.; Fernandez-Dominguez, B.; Ferrari, A.; Ferreira, P.; Furman, W.; Ganesan, S.; García-Rios, A.; Gawlik, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Katabuchi, T.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lerendegui, J.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mazzone, A.; Mendoza, E.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Pappalardo, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Piscopo, M.; Plompen, A.; Porras, I.; Praena, J.; Quesada, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J.; Sabate-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vollaire, J.; Wallner, A.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-01-01

    The energy-dependent cross section of the 7Be(n,alpha)4He reaction, of interest for the so-called Cosmological Lithium Problem in Big Bang Nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of 7Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure 7Be, and a specifically designed experimental setup. Coincidences between the two alpha-particles have been recorded in two Si-7Be-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 60's at a nuclear reactor. The energy dependence here reported clearly indicates the inadequacy of the cross section estimates currently used in ...

  5. Experimental and theoretical determinations of the absolute ionization cross section of alkali metals by electron impact in the energy range from 100 to 2000 eV

    International Nuclear Information System (INIS)

    Jalin, Rene

    1972-01-01

    The absolute electron impact ionization cross sections for the alkali metals in the energy range between 100 eV and 2000 eV were measured by the non-modulated crossed beam technique. The neutral beam of alkali atoms is produced by a Knudsen cell and crossed at right angles with the electron beam. The ions formed are collected on a plate and their intensity determined with a D.C. amplifier. The neutral beam is condensed on a cold trap cooled with liquid nitrogen, this temperature being much lower than that required to obtain total condensation. The amount of metal deposited is measured by the isotopic dilution technique and by atomic absorption, and the density of the atoms in the neutral beam is calculated. The total absolute ionization cross sections can then be determined. All possible errors have been carefully analyzed and their magnitudes estimated. The absolute ionization cross section for Li at an energy of 500 eV is: Q Li = 0,358 x 10 -16 cm 2 . This value is half of that obtained by Mac Farland and Kinney. The partial ionization cross sections for the singly and multiply charged ions is determined with a mass spectrometer attached to this apparatus. For the singly charged ions, the variation of the cross section with the energy of the ionizing electrons is in agreement with the optically allowed transition law: Q = A log BE/E. From the variation of Q with E, the squared matrix elements of the transition moment (|M i |) 2 are determined for all the elements studied. New calculations of the ionization cross section of Li and Na were performed in the framework of the Born-Bethe approximation as modified by Gaudin and Botter to take into account collisions with large momentum variation of the incident electron. Hartree-Fock type wave functions for the ground state atom (tabulated by Clementi) were used. The calculated values are in good agreement with our experimental results and with the former theoretical results calculated by various methods. This work also

  6. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  7. Cross sections for production of 70 discrete-energy gamma rays created by neutron interactions with 56Fe for En to 40 MeV: Tabulated data

    International Nuclear Information System (INIS)

    Dickens, J.K.; Todd, J.H.; Larson, D.C.

    1990-09-01

    Inelastic and nonelastic neutron interactions with 56 Fe have been studied for incident neutron energies between 0.8 and 41 MeV. An iron sample isotopically enriched in the mass 56 isotope was used. Gamma rays representing 70 transitions among levels in residual nuclei were identified, and production cross sections were deduced. The reactions studied were 56 Fe(n,n') 56 Fe, 56 Fe(n,p) 56 Mn, 56 Fe(n,2n) 55 Fe, 56 Fe(n,d + n,np) 55 Mn, 56 Fe(n,t + n,nd + n,2np) 54 Mn, 56 Fe(n,α) 53 Cr, 56 Fe(n,nα) 52 Cr, and 56 Fe(n,3n) 54 Fe. Values obtained for production cross sections as functions of incident neutron energy are presented in tabular form. 38 refs., 7 figs., 12 tabs

  8. Neutron integral test of graphite cross sections in MeV energy region for the JENDL-3T through an analysis of WINFRITH shielding experiment

    International Nuclear Information System (INIS)

    Ueki, Kohtaro; Sakurai, Kiyoshi.

    1988-01-01

    The neutron integral tests of graphite cross sections in MeV neutron energy region for the ENDF/B-IV, JENDL-2, JENDL-3PR1 and -3T were performed through the Monte Carlo analysis of the graphite shielding experiment at the WINFRITH. The measured values were on the reaction rates of 115 In(n,n') 115m In, 27 Al(n,α) 24 Na, 32 S(n,p) 32 P, and 103 Rh(n,n') 103m Rh threshold detectors located in the graphite slabs, so that the experiment on the graphite was good at the integral test of neutron cross sections in MeV energy resion. (author)

  9. Approximate method of calculation of non-equilibrium flow parameters of chemically reacting nitrogen tetroxide in the variable cross-section channels with energy exchange

    International Nuclear Information System (INIS)

    Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.

    1986-01-01

    It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems

  10. Measurements of L-shell x-ray production cross-sections of Au and Ag by low energy electron impact

    International Nuclear Information System (INIS)

    Wu, Y; An, Z; Liu, M T; Duan, Y M; Tang, C H; Luo, Z M

    2004-01-01

    Au L α and L β and Ag L-shell x-ray production cross-sections by electron impact have been measured in the incident energy region from near threshold to about 25 keV. Thin films with thick aluminium substrates were used as targets in the experiments. The effect of directional and energy spreading of the electron beam within the active films and x-ray enhancement due to backscattering electrons and bremsstrahlung photons from the substrates are corrected by means of Monte Carlo simulations. The corrected experimental data provided by this method are compared with calculated cross-sections from a PWBA theory with Coulomb, relativistic and exchange corrections and with other experimental data available in the literature

  11. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    Science.gov (United States)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  12. Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniel Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holtsch, Anne; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Øye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Markus; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.

  13. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru; Frolova, T. A. [Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  14. Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 GeV

    International Nuclear Information System (INIS)

    Bai, J. Z.; Ban, Y.; Bian, J. G.; Chen, G. P.; Chen, H. F.; Chen, J.; Chen, J. C.; Chen, Y.; Chen, Y. B.; Chen, Y. Q.

    2000-01-01

    Using the upgraded Beijing Spectrometer, we have measured the total cross section for e + e - annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6, and 5.0 GeV. Values of R , σ(e + e - →hadrons )/σ(e + e - → μ + μ - ) , are determined. (c) 2000 The American Physical Society

  15. Measurement of the ratio of charged current neutrino cross sections on neutrons and protons in the energy range 1-10 GeV

    International Nuclear Information System (INIS)

    Lerche, W.; Pohl, M.; Schultze, K.; Derange, B.; Francois, T.; Van Dam, P.; Jaffre, M.; Longuemare, C.; Pascaud, C.; Calimani, E.; Ciampolillo, S.; Mattioli, F.

    1978-01-01

    The charged current cross-section ratio R = sigma(γ+n)/sigma(γ+p), averaged over the energy range, 1-10 GeV, is determined by two independent methods. The combined value is R = 2.08+-0.15. Semi-inclusive proton production rates on both proton and neutron targets are presented. Event rates of exclusive channels on the proton target are also given. (Auth.)

  16. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  17. Calculations of neutron and proton induced reaction cross sections for actinides in the energy region from 10 MeV to 1 GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-01-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10 MeV to 1 GeV. At energies up to 100 MeV the nuclear theory code GNASH was used for nuclear data calculation for incident neutrons for 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100 MeV to 1 GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was made on a simultaneous analysis of data for a variety of reaction channels for the nucleus considered, as well as of data that are available for nearby nuclei or other incident particles. Comparison with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicates that the calculations reproduce the trends, and often the details, of the experimental data. (author)

  18. Calculations of neutron and proton induced reaction cross sections for actinides in the energy region from 10MeV to 1GeV

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1995-06-01

    Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10MeV to 1GeV. At energies up to 100MeV the nuclear theory code GNASH was used for nuclear data calculation for neutrons incident for on 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100MeV to 1GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was placed upon a simultaneous analysis of data for a variety of reaction channels for the nuclei considered, as well as of data that are available for nearby nuclei or for other incident particles. Comparisons with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicate that the calculations reproduce the trends, and often the details, of the measurements data. (author) 82 refs

  19. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    Science.gov (United States)

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Measurement of D(d,p)T Reaction Cross Sections in Sm Metal in Low Energy Region (10(≤) Ed(≤)20 keV)

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; YANG Zhen; H. Yunemura; A. Nakagawa; LV Hui-Yi; CHEN Jian-Yong; LIU Sheng-Jin; J. Kasagi

    2007-01-01

    To study the screening effect of nuclear reactions in metallic environments, the thick target yields, the cross sections and the experimental S(E) factors of the D{d,p)T reaction have been measured on deuterons implanted in Sm metal at 133.2 K for beam energies ranging from 10 to 20keV. The thick target yields of protons emitted in the D(d,p)T reaction are measured and compared with those data extrapolated from cross sections and stopping power data at higher energies. The screening potential in Sm metal at 133.2K is deduced to be 520±56eV. As compared with the value achieved in the gas target, the calculated screening potential values are much larger. This screening potential cannot be simply interpreted only by the electron screening. Energy dependences of the cross section cr(E) and the experimental S(E) factor for D(d,p)T reaction in Sm metal at 133.2K are obtained, respectively.

  1. Double-spin asymmetries in the cross section of rho sup 0 and phi production at intermediate energies

    CERN Document Server

    Airapetian, A; Akopov, Z; Amarian, M

    2003-01-01

    Double-spin asymmetries in the cross section of electroproduction of rho sup 0 and phi mesons on the proton and deuteron are measured at the HERMES experiment. The photoabsorption asymmetry in exclusive rho sup 0 electroproduction on the proton exhibits a positive tendency. This is consistent with theoretical predictions that the exchange of an object with unnatural parity contributes to exclusive rho sup 0 electroproduction by transverse photons. The photoabsorption asymmetry on the deuteron is found to be consistent with zero. Double-spin asymmetries in rho sup 0 and phi meson electroproduction by quasi-real photons were also found to be consistent with zero; the asymmetry in the case of the phi meson is compatible with a theoretical prediction which involves s anti s knockout from the nucleon. (orig.)

  2. Level density parameter dependence of the fission cross sections of some subactinide nuclei induced by protons with the incident energy up to 250 MeV

    International Nuclear Information System (INIS)

    Aydin, A.; Yalim, H.A.; Tel, E.; Sarer, B.; Unal, R.; Sarpuen, I.H.; Kaplan, A.; Dag, M.

    2009-01-01

    This study aims to show the dependence on the choice of the ratio of the level density parameters a f and a n corresponding to the saddle point of fission and equilibrium deformation of nucleus, respectively, of the proton induced fission cross sections of some subactinide targets. The method was employed using different level density parameter ratios for each fission cross section calculation in ALICE/ASH computer code. The ALICE/ASH code calculations were compared both with the available experimental data and with the Prokofiev systematics data. It is found that the fission cross sections dependent heavily on the choice of level density parameter ratio in the fission and neutron emission channels, a f /a n , for some subactinide nuclei. To get a good description of the measured fission cross sections for subactinide nuclei, we used a ratio of the level density parameters in the fission and neutron emission channels, a f /a n , depending both on the target-nucleus and on the energy of the projectile, in agreement with results published in literature.

  3. Measurement of dijet cross sections in pp collisions at 7 TeV centre−of−mass energy using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Buehrer, Felix; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coelli, Simone; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costa Batalha Pedro, Rute; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliot, Frederic; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Dwuznik, Michal; Ebke, Johannes; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mazzanti, Marcello; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perepelitsa, Dennis; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petteni, Michele; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodrigues, Luis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schroer, Nicolai; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Socher, Felix; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    Double-differential dijet cross sections measured in pp collisions at the LHC with a 7 TeV centre-of-mass energy are presented as functions of dijet mass and rapidity separation of the two highest-$pT$ jets. These measurements are obtained using data corresponding to an integrated luminosity of 4.5 fb$^{-1}$, recorded by the ATLAS detector in 2011. The data are corrected for detector effects so that cross sections are presented at the particle level. Cross sections are measured up to 5 TeV dijet mass using jets reconstructed with the anti-kt algorithm for values of the jet radius parameter of 0.4 and 0.6. The cross sections are compared with next-to-leading-order perturbative QCD calculations by NLOJet++ corrected to account for non-perturbative effects. Comparisons with POWHEG predictions, using a next-to-leading-order matrix element calculation interfaced to a parton−shower Monte Carlo simulation, are also shown. Electroweak effects are accounted for in both cases. The quantitative comparison of data and ...

  4. Parents and friends both matter: simultaneous and interactive influences of parents and friends on European schoolchildren's energy balance-related behaviours - the ENERGY cross-sectional study.

    Science.gov (United States)

    te Velde, Saskia J; ChinAPaw, Mai J M; De Bourdeaudhuij, Ilse; Bere, Elling; Maes, Lea; Moreno, Luis; Jan, Nataša; Kovacs, Eva; Manios, Yannis; Brug, Johannes

    2014-07-08

    The family, and parents in particular, are considered the most important influencers regarding children's energy-balance related behaviours (EBRBs). When children become older and gain more behavioural autonomy regarding different behaviours, the parental influences may become less important and peer influences may gain importance. Therefore the current study aims to investigate simultaneous and interactive associations of family rules, parent and friend norms and modelling with soft drink intake, TV viewing, daily breakfast consumption and sport participation among schoolchildren across Europe. A school-based cross-sectional survey in eight countries across Europe among 10-12 year old schoolchildren. Child questionnaires were used to assess EBRBs (soft drink intake, TV viewing, breakfast consumption, sport participation), and potential determinants of these behaviours as perceived by the child, including family rules, parental and friend norms and modelling. Linear and logistic regression analyses (n = 7811) were applied to study the association of parental (norms, modelling and rules) and friend influences (norm and modelling) with the EBRBs. In addition, potential moderating effects of parental influences on the associations of friend influences with the EBRBs were studied by including interaction terms. Children reported more unfavourable friend norms and modelling regarding soft drink intake and TV viewing, while they reported more favourable friend and parental norms and modelling for breakfast consumption and physical activity. Perceived friend and parental norms and modelling were significantly positively associated with soft drink intake, breakfast consumption, physical activity (only modelling) and TV time. Across the different behaviours, ten significant interactions between parental and friend influencing variables were found and suggested a weaker association of friend norms and modelling when rules were in place. Parental and friends norm and

  5. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  6. High resolution measurements of the He-He total scattering cross section for reduced collision energies between 0.2 and 200

    International Nuclear Information System (INIS)

    Feltgen, R.; Koehler, K.A.; Pauly, H.; Torello, F.; Vehmeyer, H.

    1974-01-01

    The energy dependence of the total scattering cross section is measured for the isotopic systems He 4 -He 4 and He 3 -He 3 using a velocity selected He primary beam and a He target in a scattering chamber maintained at 1.57 deg K. In the low energy region both systems show a pronounced atomic Ramsauer-Townsend effect. At higher energies 13 backward glory extrema in the case of He 4 -He 4 and 10 extrema for He 3 -He 3 are observed. From these extrema the energy dependence of the s-phase shift can be derived. Applying the semiclassical inversion method proposed by Miller it is possible to compute the repulsive potential in the energy range of the measurement

  7. Evaluation of 54Fe(n,2n)53m+gFe reaction cross sections for high energy dosimetry applications

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Pashchenko, A.B.

    2001-01-01

    The new evaluation of excitation function for the high energy threshold 54 Fe(n,2n) 53m+g Fe dosimetry reaction in the energy range from the threshold to 20 MeV is briefly described. The cross section uncertainties and the covariance matrix were estimated simultaneously from the analysis. The adopted curve is compared to the available processed experimental data and the existing FEI-93, ENDF/B-VI and JENDL-3.2 evaluations. The ENDF-6 formatted data file is available from the Web site of the Russian Nuclear Data Center (RNDC) online (http://www.rndc.ippe.obninsk.ru). (author)

  8. Validation of the Monte Carlo criticality program KENO IV and the Hansen-Roach sixteen-energy-group-cross sections for high-assay uranium systems

    International Nuclear Information System (INIS)

    Handley, G.R.; Masters, L.C.; Stachowiak, R.V.

    1981-01-01

    Validation of the Monte Carlo criticality code, KENO IV, and the Hansen-Roach sixteen-energy-group cross sections was accomplished by calculating the effective neutron multiplication constant, k/sub eff/, of 29 experimentally critical assemblies which had uranium enrichments of 92.6% or higher in the uranium-235 isotope. The experiments were chosen so that a large variety of geometries and of neutron energy spectra were covered. Problems, calculating the k/sub eff/ of systems with high-uranium-concentration uranyl nitrate solution that were minimally reflected or unreflected, resulted in the separate examination of five cases

  9. The evaluation of the 237Np fission cross section in the 20 KeV - 20 MeV energy range

    International Nuclear Information System (INIS)

    Dushin, V.N.; Kalinin, V.A.; Shpakov, V.I.

    1997-01-01

    The results of the development of nuclear data evaluation based on the generalized least squares method is presented. The method to interpolate experimental data measured at arbitrary energy points, and their transfer to a fixed energy grid is described. The results of the 237 Np fission cross section measurements performed until 1988 were critically analyzed. A 781 x 781 covariant matrix was derived from the correlation analysis of the experimental results. The results of the evaluation, and the associated correlation matrix was obtained using the generalized least square method. (author). 34 refs, 4 figs, 2 tabs

  10. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  11. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  12. Absolute partial photoionization cross sections of ethylene

    Science.gov (United States)

    Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.

    1991-07-01

    Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.

  13. Double differential cross sections of ethane molecule

    Science.gov (United States)

    Kumar, Rajeev

    2018-05-01

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  14. Cross sections required for FMIT dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-01-01

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies

  15. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  16. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  17. Electron collision cross sections and radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Y.

    1983-01-01

    A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures

  18. Experimental determination of the cross sections of the n-3He-system in the energy range of 1 to 40 MeV

    International Nuclear Information System (INIS)

    Haesner, B.

    1982-08-01

    Cross sections have been measured in the n+ 3 He-system over a broad energy range. The experiments were conducted using the pulsed white neutron beam at the Karlsruhe Neutron Time of Flight Facility. The total cross sections were measured from 1-40 MeV using the 190 m flight path with 1.5 ns time resolution. This represents a substantial improvement over previous measurements. Angular distributions (THETAsub(c.m.) = 33 0 -179 0 ) for the elastic n- 3 He scattering were measured simultaneously in the energy range from 5 to 30 MeV.