WorldWideScience

Sample records for energy cropping systems

  1. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  2. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  3. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  4. EUE (energy use efficiency) of cropping systems for a sustainable agriculture

    International Nuclear Information System (INIS)

    Alluvione, Francesco; Moretti, Barbara; Sacco, Dario; Grignani, Carlo

    2011-01-01

    Energy efficiency of agriculture needs improvement to reduce the dependency on non-renewable energy sources. We estimated the energy flows of a wheat-maize-soybean-maize rotation of three different cropping systems: (i) low-input integrated farming (LI), (ii) integrated farming following European Regulations (IFS), and (iii) conventional farming (CONV). Balancing N fertilization with actual crop requirements and adopting minimum tillage proved the most efficient techniques to reduce energy inputs, contributing 64.7% and 11.2% respectively to the total reduction. Large differences among crops in energy efficiency (maize: 2.2 MJ kg -1 grain; wheat: 2.6 MJ kg -1 grain; soybean: 4.1 MJ kg -1 grain) suggest that crop rotation and crop management can be equally important in determining cropping system energy efficiency. Integrated farming techniques improved energy efficiency by reducing energy inputs without affecting energy outputs. Compared with CONV, energy use efficiency increased 31.4% and 32.7% in IFS and LI, respectively, while obtaining similar net energy values. Including SOM evolution in the energy analysis greatly enhanced the energy performance of IFS and, even more dramatically, LI compared to CONV. Improved energy efficiency suggests the adoption of alternative farming systems to reduce greenhouse gas emissions from agriculture. However, a thorough evaluation should include net global warming potential assessment. -- Highlights: → We evaluated the energy flows of integrated as alternative to conventional Farming. → Energy flows, soil organic matter evolution included, were analyzed following process analysis. → Energy flows were compared using indicators. → Integrated farming improved energy efficiency without affecting net energy. → Inclusion of soil organic matter in energy analysis accrue environmental evaluation.

  5. Compatibility of switchgrass as an energy crop in farming systems of the southeastern USA

    Energy Technology Data Exchange (ETDEWEB)

    Bransby, D.I.; Rodriguez-Kabana, R.; Sladden, S.E. [Auburn Univ., AL (United States)

    1993-12-31

    The objective of this paper is to examine the compatibility of switchgrass as an energy crop in farming systems in the southeastern USA, relative to other regions. In particular, the issues addressed are (1) competition between switchgrass as an energy crop and existing farm enterprises, based primarily on economic returns, (2) complementarity between switchgrass and existing farm enterprises, and (3) environmental benefits. Because projected economic returns for switchgrass as an energy crop are highest in the Southeast, and returns from forestry and beef pastures (the major existing enterprises) are low, there is a very strong economic incentive in this region. In contrast, based on current information, economic viability of switchgrass as an energy crop in other regions appears doubtful. In addition, switchgrass in the southeastern USA would complement forage-livestock production, row crop production and wildlife and would provide several additional environmental benefits. It is concluded that the southeastern USA offers the greatest opportunity for developing switchgrass as an economically viable energy crop.

  6. Energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1990-04-15

    At the Research Station of Royal Veterinary and Agricultural University, Copenhagen, Denmark, investigation concerning cultivation and exploitation of field crops for production of fuels was carried out during the period 1986-1989. High yielding crops, such as sugar beet - BETA VULGARIS, jerusalem artichoke - HELIANTHUS TUBEROSUS, rhubarb - RHEUM RHAPONTICUM, and comfrey - SYMPHYTUM ASPERUM, were grown experimentally in the field. Different cultivation methods for the crops were used and evaluated. Simultaneously with the field experiment, laboratory investigation was carried out to determine the energy potential of different products and by-products from the crops processes, such as alcoholic and methanogenic fermantation. Production expenses for the crops were determined, and cost of the fuels was estimated. The experimental results show that beet is a superior crop for the climatic conditions of Northern Europe. In the season 1986, yields exceeded 20 t TS/ha in the form of roots and tops, where achieved. A combined exploitation of beet roots and tops via alcoholic and methanogenic fermantation gave a gross energy corresponding to 80 hl OE/ha/yr. Using methanogenic fermentation exclusively, from ensiled beet roots and tops, gross energy yield corresponding to 85 hl IE/ha/yr, was achieved. The cost of energy in the form of alcohol from beet roots was estimated to be 5.17 DKK/1 OE (0.64 ECU/l OE). The cost of energy in the form of methane from ensiled beet tops, was estimated to be 2.68 DKK/l OE (0.33 ECU/l OE). At the present time, methane produced on the basis of ensiled beet roots and tops appears to be competitive with fossil fuels. Irrespective of the cost, however, the possibility of producing clean energy from field crops remains of interest for the future. (author) 27 refs.

  7. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    International Nuclear Information System (INIS)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R.

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans

  8. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  9. Analysis of energy consumption in lowland rice-based cropping system of Malaysia

    Directory of Open Access Journals (Sweden)

    Chan Chee Wan

    2005-07-01

    Full Text Available Sufficient energy is needed in the right form and at the right time for adequate crop production. One way to optimize energy consumption in agriculture is to determine the efficiency of methods and techniques used. With the current increase in world population, energy consumption needs effective planning. That is, the input elements need to be identified in order to prescribe the most efficient methods for controlling them. This study was undertaken in order to determine the direct and indirect energy consumption of field operations in a lowland rice production system of Malaysia. Field time, fuel and other energy requirements were measured for the tillage, planting, fertilizing, spraying and harvesting operations performed. Energy analysis carried out revealed the highest average operational energy consumption was for tillage (1747.33 MJ ha-1 which accounted for about 48.6% of the total operational energy consumption (3595.87 MJ ha-1, followed by harvesting (1171.44 MJ ha-1, 32.6% and planting (562.91 MJ ha-1, 15.7%. Fertilizing and pesticide spraying did not make any significant contributions to the operational energy consumption. Based on energy sources, fuel was the main consumer of direct energy with 2717.82 MJha-1 (22.2%, and fertilizer recording the highest indirect energy consumption of 7721.03 MJha-1 (63.2%. Human labour, pesticides, seeds and indirect energy for machinery use had marginal importance, contributing only 0.2%, 0.6%, 6.8% and 6.9%, respectively to the total energy consumption (12225.97 MJha-1. Average grain yield was 6470.8 kg ha-1, representing energy output of 108321.75 MJha-1, that is, 96095.78 MJ net energy gain or 8.86 MJ output per MJ input. Energy input per kilogram grain yield was 1.89 MJkg-1. The results of the study indicate energy gain in the lowland rice production system of Malaysia.

  10. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed.......This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  11. Plant production, production energy, energy crops - approaches toward intelligent use of energy crops in bioenergy systems; Pflanzenproduktion, Produktionsenergie, Energiepflanzen - Ansaetze intelligenter Energiepflanzennutzung in Bioenergie-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Scheibler, M. [ENTEC Environment Technology Umwelttechnik GmbH, Fussach (Austria); Priedl, J.

    2002-12-01

    Food surplus production in the European Union should be replaced by biomass plantation for biogas production. The choice of energy plants like sunflowers or triticale and the harvesting time depends on soils, microclimates and crop rotation. The authors present a consultance package for planning, construction and operation of a Complete Stirred Reactor for biomass fermentation. Investment and operating cost depend on plant size and degree of automation. (uke)

  12. Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)

    International Nuclear Information System (INIS)

    Ferraro, Diego Omar

    2012-01-01

    As agricultural system comprises natural processes that are ruled by thermodynamics, the energy utilization is well suited for assessing the sustainability in the management of natural resources. The goals of this paper are 1) to assess the energy use efficiency of the main crops during the 1992–2005 period in Inland Pampa (Argentina); 2) to evaluate the database structure in terms of energy allocation; 3) to assess the changes in technical efficiency using frontier analysis and 4) to identify the best explanatory variables for energy efficiency variability. Results showed an upward trend in productivity per unit area in the crops analyzed (excluding sunflower). Summer soybean and sunflower showed higher energy efficiency values by the end of time series. The main shift in the energy use pattern was the reduction of the energy allocated to tillage. The overall performance of the wheat and soybean crops in the study area appears to be closer to the energy usage pattern shown by the top 5% energy use efficiency crop fields. The exploratory analysis using classification and regression trees (CART) revealed that the energy allocation to tillage; and the crop specie were the attributes that mainly explained the energy efficiency changes. -- Highlights: ► Energy use efficiency (EUE) of main Pampean crops (Argentina) in the 1992–2005 period was analyzed. ► An upward trend in productivity per unit area was observed with the exception of sunflower crop. ► Summer soybean and sunflower showed higher energetic efficiencies by the end of the time series analyzed. ► Average wheat and soybean EUE were closer to the energy usage pattern of the top 5% EUE crop fields. ► Tillage energy and crop specie were the attributes that most strongly explain the EUE changes.

  13. Analysis of Selected Environmental Indicators in the Cultivation System of Energy Crops

    Directory of Open Access Journals (Sweden)

    Šoltysová Božena Š

    2017-11-01

    Full Text Available The changes of selected chemical parameters were observed in Gleyic Fluvisols. The field experiment was established as a twofactor experiment with four energy crops (Arundo donax L., Miscanthus × giganteus, Elymus elongatus Gaertner, Sida hermafrodita and two variants of fertilization (nitrogen fertilization in rate 60 kg ha-1, without nitrogen fertilization. Soil samples were taken from the depth of 0 to 0.3 m at the beginning of the experiment in the autumn 2012 and at the end of reference period in the autumn 2015. Land management conversion from market crops to perennial energy crops cultivation has influenced changes of selected soil chemical parameters. The contents of soil organic carbon were affected by cultivated energy crops differently. It was found out that Arundo increased the organic carbon content and Miscanthus, Elymus and Sida decreased its content. At the same time, the same impact of the crops on content of available phosphorus and potassium and soil reaction was found. It was recorded that each cultivated crop decreased the soil reaction and available phosphorus content and increased the content of available potassium.

  14. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  15. Effects of different cropping systems and weed management methods on free energy and content of pigments in maize

    Directory of Open Access Journals (Sweden)

    Igor Spasojević

    2014-03-01

    Full Text Available Rotation is a cropping system that has many advantages and ensures better crop growth and yielding. Its combinination with other cropping measures can ensure optimal crop density for maximal growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems: monoculture and two rotations, including maize, wheat and soybean (MSW and MWS, and different weed management methods (weed removal by hoeing, application of a full recommended herbicide dose (RD and half that dose (0.5 RD, and weedy check on weed biomass and maize growth parameters - leaf area index (LAI, free energy, contents of chlorophyll and carotenoids, grain yield, and their possible relationships in two fields of the maize hybrids ZP 677 (H1 and ZP 606 (H2. The lowest LAI and grain yield were found in monoculture, particularly in weedy check, which had relatively high weed infestation. Higher weed biomass was also observed in herbicide treated plots in monoculture. Such high competition pressure indicates a stress reflected on reduced LAI and chlorophyll content, and increased free energy and content of carotenoids. On the other hand, rotation, particularly if it is combined with the application of herbicides or hoeing, had a positive impact on yielding potential by increasing LAI and the contents of chlorophyll and carotenoids, and decreasing free energy.

  16. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  17. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    Science.gov (United States)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  18. Energy crops - where are they?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, Jim [CPL Scientific Ltd., Newbury (United Kingdom)

    1999-07-01

    The author examines briefly the factors controlling the growth of energy crops, particularly the relationship between dry matter yield and fuel costs and conversion efficiency and electricity price. The EU target is for 135 Mtoe from biomass by 2010 and consideration is given on how this can be met.

  19. Energy balance in rainfed herbaceous crops in a semiarid environment for a 15-year experiment. 1. Impact of farming systems

    Science.gov (United States)

    Moreno, M. M.; Moreno, C.; Lacasta, C.; Tarquis, A. M.; Meco, R.

    2012-04-01

    During the last years, agricultural practices have led to increase yields by means of the massive consumption on non-renewable fossil energy. However, the viability of a production system does not depend solely on crop yield, but also on its efficiency in the use of available resources. This work is part of a larger study assessing the effects of three farming systems (conventional, conservation with zero tillage, and organic) and four barley-based crop rotations (barley monoculture and in rotation with vetch, sunflower and fallow) on the energy balance of crop production under the semi-arid conditions over a 15 year period. However, the present work is focused on the farming system effect, so crop rotations and years are averaged. Experiments were conducted at "La Higueruela" Experimental Farm (4°26' W, 40°04' N, altitude 450 m) (Spanish National Research Council, Santa Olalla, Toledo, central Spain). The climate is semi-arid Mediterranean, with an average seasonal rainfall of 480 mm irregularly distributed and a 4-month summer drought period. Conventional farming included the use of moldboard plow for tillage, chemical fertilizers and herbicides. Conservation farming was developed with zero tillage, direct sowing and chemical fertilizers and herbicides. Organic farming included the use of cultivator and no chemical fertilizers or herbicides. The energy balance method used required the identification and quantification of all the inputs and outputs implied, and the conversion to energy values by corresponding coefficients. The parameters considered were (i) energy inputs (EI) (diesel, machines, fertilizers, herbicides, seeds) (ii) energy outputs (EO) (energy in the harvested biomass), (iii) net energy produced (NE) (EI - EO), (iv) the energy output/input ratio (O/I), and (v) energy productivity (EP) (Crop yield/EI). EI was 3.0 and 3.5 times higher in conservation (10.4 GJ ha-1 year-1) and conventional (11.7 GJ ha-1 year-1) than in organic farming (3.41 GJ ha-1

  20. The Danish energy crop research and development project - main conclusions

    International Nuclear Information System (INIS)

    Gylling, Morten

    2003-01-01

    Production of energy crops in Denmark is more or less non-existent in Denmark at the time being. However, the need for biomass on the other side of year 2005 exceeds the existing biomass resources and a substantial amount of energy crops will be necessary in order to fulfil the goals in Energy 21. The targeted share of the use of renewable energy sources by year 2030 is approximately 30%. Energy crops are seen as the most important new resource in order to create a balanced input mix of renewable in the energy system. The energy crops are mainly seen as fuel in small and medium sized CHP plants and in the big power plants. The Danish energy crop project consists of three main parts: a demonstration part, a research and development part, and an overall assessment part. Based on the results from the project the following overall conclusions can be made: Seen from a strictly market and production economic point of view energy crops will not be competitive in a foreseeable future, neither as a production for farmers nor as a fuel at the utility companies; The costs per GJ of energy crops are still higher than a GJ of straw; The cost difference between annual and perennial energy crops are slightly in favour of perennials, however the conditions on the individual farms should govern the choice between annual and perennial energy crops; Energy crops must be seen as part of an overall environmental scheme covering both agriculture and the energy sector; Given the right production scheme energy crops can be grown on environmental sensitive areas and on most ground water protection areas; Adding the potential sustainability benefits like reduced nutrient leakage and reduced CO 2 emissions energy crops seem to be a sensible and sustainable solution; Due to different handling, storage and fuel characteristics an all year delivery scheme of energy crops should include a mix of different energy crops to keep overall cost down. (BA)

  1. Requirement, balance and energy efficiency under two models of cropping systems in the center-south of Buenos Aires, Argentina.

    Science.gov (United States)

    Zamora, Martin; Barbera, Agustin; Hansson, Alejandro; Carrasco, Natalia; Domenech, Marisa

    2017-04-01

    In a natural ecosystem, the solar energy is the main source. However, in the agro ecosystem we should use others in order to sustain specific processes or to avoid some interactions. This energy is introduced in the agro-system not only as fossil fuel but also as inputs like fertilizers and pesticides or for agricultural machines. Since February 2011, two adjacent fields were set at Barrow Experimental Station (Lat:-38.322844, Lon:-60.25572): one of them adopting agro-ecology principles (AGROE), as biodiversity increase, polyculture with legumes, less use of agrochemicals; while the other one is based on industrial model of agriculture (ACTUAL). This model is defined by its capital intensity and dependence on massive inputs like seeds, fertilizer, and pesticides. In both fields, beef cattle and agriculture production have been implemented with different intensity. The aim of this study was to compare the demand, production, balance and energy efficiency between these two agro-systems. To do this, we use tables of energy associated with different processes and inputs. For both systems, we estimate the energetic demand used in seeds, pesticides, fertilizers and labor during the crop sequence from February 2011 to December 2015; the energy production according to grains and meat yield achieved; the energetic balance calculated as the difference between inputs and outputs of energy in the system and finally, the energy efficiency which is the ratio between the energy produced and consumed. Inputs-outputs ratios of energy were transformed into equivalent units = GJ (Gigajoules). After a sequence of seven crops, ACTUAL consumed 60 GJ, which represents 158% more energy than AGROE. Particularly, ACTUAL consumed a 72% more energy in cultivation labor, 372% more in herbicides and 10 times more energy used in fertilizers than AGROE. Even though ACTUAL produced 37% more energy than AGROE (187 GJ vs 127 GJ) in grain and meat, the energetic balance was only 12% higher. However

  2. Energy crops for biogas plants. Bavaria; Energiepflanzen fuer Biogasanlagen. Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, A.; Biertuempel, A.; Conrad, M. (and others)

    2012-08-15

    For agriculturists in Bavaria (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  3. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    Science.gov (United States)

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  4. Addressing crop interactions within cropping systems in LCA

    DEFF Research Database (Denmark)

    Goglio, Pietro; Brankatschk, Gerhard; Knudsen, Marie Trydeman

    2018-01-01

    objectives of this discussion article are as follows: (i) to discuss the characteristics of cropping systems which might affect the LCA methodology, (ii) to discuss the advantages and the disadvantages of the current available methods for the life-cycle assessment of cropping systems, and (iii) to offer...... management and emissions, and (3) functional unit issues. The LCA approaches presented are as follows: cropping system, allocation approaches, crop-by-crop approach, and combined approaches. The various approaches are described together with their advantages and disadvantages, applicability...... considers cropping system issues if they are related to multiproduct and nutrient cycling, while the crop-by-crop approach is highly affected by assumptions and considers cropping system issues only if they are related to the analyzed crop. Conclusions Each LCA approach presents advantages and disadvantages...

  5. Microeconomic aspects of energy crops cultivation

    International Nuclear Information System (INIS)

    Bartolelli, V.; Mutinati, G.; Pisani, F.

    1992-01-01

    The topic of energy crops, namely of those crops designed to produce biomass to transform into ethanol, has been explored, in Italy and abroad, in all its technical and agronomical aspects. The microeconomic aspect, including the evaluation of convenience for the farmer in adopting such crops, is, on the contrary, less well researched. RENAGRI has developed a research methodology able to give information about the level of convenience of two energy crops (Sweet Sorghum and Topinambour) and has applied it to different Italian agricultural situations, in order to verify the existence of conditions favourable to the cultivation of the two crops, or to indicate the necessity of eventual subvention. (author)

  6. Effect of crop rotations and fertilization on energy balance in typical production systems on the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, R.P.; Stumborg, M.A.; Campbell, C.A.

    1989-03-01

    Non-renewable energy inputs (both direct and indirect), metabolizable energy output and energy efficiency of 10 spring wheat (Triticum aestivum L.) rotations were examined over 18 years on a loam soil in the Brown soil zone of the Canadian Prairies. The rotations, which were managed using conventional tillage, included a range of crops, cropping intensities, crop sequences and fertilizer practices. Results showed that the total energy input per unit of land was lowest for the traditional fallow-wheat (F-W) rotation (3482 MJ ha/sup -1/), intermediate (4470 MJ ha/sup -1/) for N- and P-fertilized fallow-wheat-wheat (F-W-W) and highest for N- and P-fertilized continuous wheat (7100 MJ ha/sup -1/). Substituting flax (Linum usitatissimum L.) or rye (Secale cereale L.) for wheat in the rotations reduced total energy input by 3 to 8%, while withholding the application of either N or P fertilizer reduced total energy input by 16-37%. Liquid fuel for field operations and local product transport, and fertilizer (primarily N) were the major energy inputs; both increased with cropping intensity. Fuel accounted for 30-50% of the total energy input of the rotations. Fertilizer represented 15-49% of the total energy input and was more important than fuel for the continuous crop rotations. Despite the high energy content in pesticides, they accounted for only 4-11% of the total energy input of the rotations. Metabolizable energy output displayed similar response patterns as total energy input reflecting the higher total annual grain yields as cropping intensity increased. The average energy output to input ratio for F-W was 3.6, or 262 kg of wheat GJ/sup -1/ of energy input, while those for F-W-W and continuous wheat were 3.3 and 2.6, or 240 and 191 kg of wheat GJ/sup -1/ of energy input, respectively. Rotations that included flax or cereal forage crops had the lowest energy efficiencies. 2 figs., 31 refs., 4 tabs.

  7. Biogas production from energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.

    2006-07-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Codigestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors with and without a second stage upflow anaerobic sludge blanket reactor (UASB) or methanogenic filter (MF) were evaluated. The methane potentials of crops, as determined in laboratory methane potential assays, varied from 0.17 to 0.49 m3 CH{sub 4} kg-1 VS{sub added} (volatile solids added) and from 25 to 260 m3 CH4 t-1 ww (tons of wet weight). Jerusalem artichoke, timothy-clover and reed canary grass gave the highest methane potentials of 2 900-5 400 m3 CH{sub 4} ha-1, corresponding to a gross energy potential of 28-53 MWh ha-1 and 40 000-60 000 km ha-1 in passenger car transport. The methane potentials per ww increased with most crops as the crops matured. Ensiling without additives resulted in minor losses (0-13%) in the methane potential of sugar beet tops but more substantial losses (17-39%) in the methane potential of grass, while ensiling with additives was shown to have potential in improving the methane potentials of these substrates by up to 19-22%. In semi-continuously fed laboratory continuously stirred tank reactors (CSTRs) co-digestion of manure and crops was shown feasible with feedstock VS containing up to 40% of crops. The highest specific methane yields of 0.268, 0.229 and 0.213 m3 CH{sub 4} kg-1 VS{sub added} in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained with 30% of crop in the feedstock, corresponding to 85-105% of the methane potential in the substrates as determined by batch assays. Including 30% of crop in

  8. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Directory of Open Access Journals (Sweden)

    Marty R Schmer

    Full Text Available Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L. and switchgrass (Panicum virgatum L. field trial under differing harvest strategies and nitrogen (N fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates. Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1 of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  9. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    Science.gov (United States)

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  10. Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU

    Czech Academy of Sciences Publication Activity Database

    Djomo, S. N.; Ač, Alexander; Zenone, T.; De Groote, T.; Bergante, S.; Facciotto, G.; Sixto, H.; Ciria Ciria, P.; Weger, J.; Ceulemans, R.

    2015-01-01

    Roč. 41, jan (2015), s. 845-854 ISSN 1364-0321 R&D Projects: GA MŠk EE2.3.30.0056 Institutional support: RVO:67179843 Keywords : poplar * willow * bioenergy crops * energy balance * energy efficiency Subject RIV: GC - Agronomy Impact factor: 6.798, year: 2015

  11. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  12. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  13. Switchgrass a valuable biomass crop for energy

    CERN Document Server

    2012-01-01

    The demand of renewable energies is growing steadily both from policy and from industry which seeks environmentally friendly feed stocks. The recent policies enacted by the EU, USA and other industrialized countries foresee an increased interest in the cultivation of energy crops; there is clear evidence that switchgrass is one of the most promising biomass crop for energy production and bio-based economy and compounds. Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to  switchgrass in terms of agricultural practices, potential use and markets, and environmental and social benefits. Considering this potential energy source from its biology, breed and crop physiology to its growth and management to the economical, social and environmental impacts, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a ...

  14. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  15. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  16. Energy crops for biogas plants. Brandenburg; Energiepflanzen fuer Biogasanlagen. Brandenburg

    Energy Technology Data Exchange (ETDEWEB)

    Adam, L.; Barthelmes, G.; Biertuempfel, A. (and others)

    2012-06-15

    In the brochure under consideration, the Agency for Renewable Resources (Guelzen-Pruezen, Federal Republic of Germany) reported on recommendations on alternative cropping systems for energy crop rotations in order to achieve high yields in combination with high diversity, risk spreading and sustainability. In particular, the natural site conditions in the Federal State of Brandenburg (Federal Republic of Germany) are determined.

  17. Energy Crops and the Common Agricultural Policy

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Kes; Nilsson, Helen; Tomescu, Mihail [Lund Univ. (Sweden). International Inst. for Industrial Environmental Economics (IIIEE)

    2006-07-15

    The Biomass Action Plan (BAP) for Europe outlines how to achieve the targets for bioenergy and energy crops defined by the European Commission and member states. However, it is the Common Agricultural Policy (CAP) that shapes the utilisation of agricultural land. This paper therefore reviews the supportive measures for energy crops in recent CAP reforms and investigates the effects on farmers in 'real-life' case studies from Sweden, Italy and Austria. This paper explores if the recent CAP reforms are sufficient to motivate farmers to cultivate energy crops; identifies the barriers and drivers for energy crops from the perspective of farmers; and suggests how to enhance supportive measures in the CAP to overcome barriers and complement the BAP.

  18. Energy potential of agricultural crops in Kosovo

    International Nuclear Information System (INIS)

    Sahiti, Naser; Sfishta, Avni; Gramatikov, Plamen

    2015-01-01

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  19. Will energy crop yields meet expectations?

    International Nuclear Information System (INIS)

    Searle, Stephanie Y.; Malins, Christopher J.

    2014-01-01

    Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha −1  y −1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. - Highlights: • This review covers Miscanthus, switchgrass, poplar, willow, and Eucalyptus. • High yields of energy crops are typically from small experimental plots. • Field scale yields are lower due to real world harvesting losses and edge effects. • The potential for yield improvement of energy crops is relatively limited. • Expectations must be realistic for successful policies and commercial production

  20. Biomass for energy from field crops

    Energy Technology Data Exchange (ETDEWEB)

    Zubr, J.

    1988-01-01

    On the basis of a field experiment, selected crops were evaluated for feasibility in producing biomass applicable as raw material for fuels. Both the main products and byproducts of the crops were investigated in the laboratory for qualitative characteristics and were subjected to methanogenic fermentation under mesophilic conditions. The biogas energy potential and gross energy potential were determined. Under the climatic conditions of Northern Europe, sugar beet (Beta vulgaris) was found to be a superior energy crop. White cabbage (Brassica oleracea var. Capitata), rhubarb (Rheum rhaponticum) and comfrey (Symphytum asperum) can be considered as potential crops for biomass. The agrotechnical and the economic aspects of the biomass production are being subjected to further investigation.

  1. Assessing the ecological and economic sustainability of energy crops

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Biewinga, E.E.; Bijl, G. van der

    1998-01-01

    The production and use of biomass for energy has both positive and negative impacts on the environment. The environmental impacts of energy crops should be clarified before political choices concerning energy are made. An important aid to policy-making would be a systematic methodology to assess the environmental sustainability of energy crops. So far, most studies on the environmental aspects of energy crops deal mainly with the energy production of the crops and the possible consequences for CO 2 mitigation. The Dutch Centre for Agriculture and Environment (CLM) has developed a systematic methodology to assess the ecological and socio-economic sustainability of biomass crops. The method is best described as a multicriteria analysis of process chains and is very much related to Life Cycle Assessment (LCA). Characteristics of our methodology are the use of: definition of functional units; analysis of the entire lifecycle; definition of yield levels and corresponding agricultural practices; analysis of both ecological and economic criteria; definition of reference systems; definition of procedures for normalisation and weighting. CLM has applied the method to assess the sustainability of ten potentially interesting energy crops in four European regions. The results are used to outline the perspectives for large scale production of biomass crops with regard to the medium and long term land availability in Europe. For the crops considered, net energy budget ranges from 85 GJ net avoided energy per ha for rape seed for fuel to 248 GJ net avoided fossil energy per ha for silage maize for electricity from gasification. The methodology of the tool and its results were discussed at the concerted action ''Environmental aspects of biomass production and routes for European energy supply'' (AIR3-94-2455), organised by CLM in 1996. Major conclusions of the research: multicriteria analyhsis of process lifecycles is at present the best available option to assess the ecological

  2. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    The grain legume (pulse) faba bean (Vicia faba L.) is grown world-wide as a protein source for food and feed. At the same time faba bean offers ecosystem services such as renewable inputs of nitrogen (N) into crops and soil via biological N2 fixation, and a diversification of cropping systems. Even...... though the global average grain yield has almost doubled during the past 50 years the total area sown to faba beans has declined by 56% over the same period. The season-to-season fluctuations in grain yield of faba bean and the progressive replacement of traditional farming systems, which utilized...... legumes to provide N to maintain soil N fertility, with industrialized, largely cereal-based systems that are heavily reliant upon fossil fuels (=N fertilizers, heavy mechanization) are some of the explanations for this decline in importance. Past studies of faba bean in cropping systems have tended...

  3. Energy embodiment in Brazilian agriculture: an overview of 23 crops

    Directory of Open Access Journals (Sweden)

    João Paulo Soto Veiga

    2015-12-01

    Full Text Available The amount of energy required to produce a commodity or to supply a service varies from one production system to another and consequently giving rise to differing levels of environmental efficiency. Moreover, since energy prices have been continuously increasing over time, this energy amount may be a factor that has economic worth. Biomass production has a variety of end-products such as food, energy, and fiber; thus, taking into account the similarity in end-product of different crops (e.g.: sunflower, peanuts, or soybean for oil it is possible to evaluate which crops require less energy per functional unit, such as starch, oil, and protein. This information can be used in decision-making about policies for food safety or bioenergy. In this study, 23 crops were evaluated allowing for a comparison in terms of energy embodied per functional unit. Crops were grouped as follows: starch, oil, horticultural, perennial and fiber, to provide for a deeper analysis of alternatives for the groups, and subsidize further studies comparing conventional and alternative production systems such as organic or genetically modified organisms, in terms of energy. The best energy balance observed was whole sugarcane (juice, bagasse and straw with a surplus of 268 GJ ha−1 yr−1; palm shows the highest energy return on investment with a ratio of approximately 30:1. For carbohydrates and protein production, cassava and soybean, respectively, emerged as the crops offering the greatest energy savings in the production of these functional foods.

  4. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  5. European energy crops overview. Country report for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Statens Planteavlsforsoeg, Tjele Denmark; Statens Jordbrugstekniske Forsoeg, Horsens Denmark

    1996-06-01

    Biomass constitutes a significant contribution to the Danish energy production and is a major tool in increasing the contribution from renewables. So far the focus has been on utilizing existing biomass residues like straw and forest residues and not energy crops. The government has agreed to carry out a demonstration and development programme on energy crops in order to analyse aspects of economy, energy, environment, nature conservancy and comerciality. Several plant species have been investigated for their potential as energy crops and overview information in presented on buchina, sunflower, knotweed, Jerusalem artichoke, false flax, reed Canary grass and corn cockle. More detailed descriptions are given on willow, Miscanthus, energy grain (grain whole crop) and rape which have been most intensively investigated. Rape has been the energy crop grown on the largest scale (40-50,000 ha) but the oil has not been used for energy purposes in Denmark. A research programme on the development of a low input production system for non-food rape is currently conducted. The perennial crops willow and Miscanthus are grown with low input of fertilizer and pesticides and are considered environmentally friendly. Willow-SRC is used as fuel at district heating plants, both commercially and for feasibility studies. Full-scale tests have been carried out on Miscanthus combustion in farm heating plant constructed for straw firing, and on co-combustion with coal at power stations. Grain whole crop (energy grain) has been combusted at a district heating plant, a CHP-plant and a power station. Co-combustion with coal was carried out at a CFB-boiler. Concerning ethanol based on energy crops, only a few activities are in progress. (EG) 89 refs.

  6. Energy-, environmental and economic evaluation of energy crops utilization

    International Nuclear Information System (INIS)

    1994-06-01

    This preliminary project is prepared in order to clarify the economic possibilities and rentability of energy crops. Examples of energy crop resource potential, environmental and economic consequences are calculated on the basis of existing data. Utilization of annual and perennial crops is evaluated with regard to the usual following of agricultural areas, and to the traditional power generation in a coal-fueled plant. Two technological options are discussed: one based on energy crop fuels supplementing the conventional coal fuel, and the other based on a separate biomass-fueled boiler, connected to the conventional coal-fueled unit. Implementation of the main project,following the preliminary one will permit to estimate the future prospects and strategies of energy crop utilization as a profitable energy resource. (EG)

  7. Combined production of free-range pigs and energy crops – animal behaviour and crop damages

    DEFF Research Database (Denmark)

    Horsted, Klaus; Kongsted, Anne Grete; Jørgensen, Uffe

    2012-01-01

    Intensive free-range pig production on open grasslands has disadvantages in that it creates nutrient hotspots and little opportunity for pigs to seek shelter from the sun. Combining a perennial energy crop and pig production might benefit the environment and animal welfare because perennial energy...... crops like willow (Salix sp.) and Miscanthus offer the pigs protection from the sun while reducing nutrient leaching from pig excrements due to their deep rooting system. The objectives of this study were to evaluate how season and stocking density of pigs in a free-range system with zones of willow...

  8. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  9. The economics of producing energy crops

    International Nuclear Information System (INIS)

    Shapouri, H.; Duffield, J.

    1993-01-01

    The US agricultural sector has an immense supply of natural resources which can be used to product energy. Production of energy from these resources could stimulate economic growth, improve environmental quality, and enhance energy security. However, producing feedstocks and converting biomass to energy require large amounts of capital, equipment, labor, and processing facilities. This paper looks at the costs and benefits of producing energy crops for fuel conversion. A review of studies and crop data show that the cost of growing and converting various feedstocks with current technology is greater than the cost of producing conventional fuels. Conventional motor fuels have a price advantage over biofuels, but market prices don't always reflect the cost of negative externalities imposed on society. Government decisions to invest in alternative energy sources should be based on research that includes the environmental costs and benefits of energy production. The future of biofuels will depend on the continuation of government research and incentive programs. As new technologies advance, the costs of processing energy crops and residues will fall, making biofuels more competitive in energy markets

  10. Energy crops for biogas plants. Saxony; Energiepflanzen fuer Biogasanlagen. Sachsen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Buttlar, C. von; Conrad, M. [and others

    2012-08-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  11. Energy crops for biogas plants. Thuringia; Energiepflanzen fuer Biogasanlagen. Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Bischof, R.; Conrad, M. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Thuringia. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  12. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  13. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  14. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    Science.gov (United States)

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  15. Energy production on farms. Sustainability of energy crops

    International Nuclear Information System (INIS)

    Van Zeijts, H.

    1995-01-01

    In this article the results of a study on sustainability of energy crops are discussed. Contribution to the reduction of the greenhouse effect and other environmental effects were investigated for the Netherlands. The study assumed that energy crops are grown on set-aside land or grain land. Generating electricity and/or heat from hemp, reed, miscanthus, poplar and willow show the best prospects. These crops are sustainable and may in the future be economically feasible. Ethanol from winter wheat shows the most favourable environmental effects, but is not economically efficient. Liquid fuels from oil seed rape and sugar beet are not very sustainable. 2 tabs., 4 refs

  16. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.

    Science.gov (United States)

    Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M

    2005-01-01

    greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  17. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  18. Measuring Evapotranspiration of five Alley Cropping systems in Germany using the Eddy-Covariance- and Bowen-Ratio Energy-Balance methods

    Science.gov (United States)

    Markwitz, Christian; Knohl, Alexander; Siebicke, Lukas

    2017-04-01

    The inclusion of trees into the agricultural landscape of Europe is gaining popularity as a source for energy production. Fast growing tree species such as poplar or willow are included as short rotation coppice or alley cropping systems, which consist of tree alleys interleaved by annual rotating crops or perennial grasslands. Estimating turbulent fluxes of those systems using the eddy-covariance- (ECEB) and bowen-ratio energy-balance (BREB) method is challenging due to the methods limitation to horizontally homogeneous terrain and steady state conditions. As the conditions are not fulfilled for those systems the energy-balance is commonly not fully closed, with the non-closure being site specific. An underestimation of measured heat fluxes leads to an overestimation of the latent heat fluxes inferred from the ECEB method. The aim of our study is to 1) quantify the site specific non-closure of the energy-balance and 2) characterize the performance of both methods, compared to direct eddy-covariance measurements using a high frequency infra-red gas analyzer (LI-7200, Licor Inc.). To assess continuous evapotranspiration (ET) rates on a 30-minute time scale we installed a combined ECEB and BREB system at five alley cropping and five agricultural reference sites across Germany. For time periods of four weeks we performed direct eddy covariance flux measurements for H2O and CO2 over one crop- and one grassland alley cropping- and their respective reference systems during the growing season of 2016. We found a non-closure between 21 and 26 % for all sites, considering all day- and night-time data. The residual energy was highest during the morning and lowest in the afternoon. Related to that the energy-balance ratio (EBR), i.e. the ratio between the turbulent heat fluxes and available energy, was below one in the morning hours and increased slightly during the day up to 1.8, until the EBR decreased sharply after sunset. The EBR correlated to the daily cycle of solar

  19. Energy crops for biogas plants. Saxony-Anhalt; Energiepflanzen fuer Biogasanlagen. Sachsen-Anhalt

    Energy Technology Data Exchange (ETDEWEB)

    Boese, L.; Buttlar, C. von; Boettcher, K. (and others)

    2012-07-15

    For agriculturists in Saxony-Anhalt (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  20. Energy crops for biogas plants. Baden-Wuerttemberg; Energiepflanzen fuer Biogasanlagen. Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Butz, A.; Heiermann, M.; Herrmann, C. [and others

    2013-05-01

    For agriculturists in Baden-Wuerttemberg (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  1. Energy crops for biogas plants. Mecklenburg-Western Pomerania; Energiepflanzen fuer Biogasanlagen. Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Bull, I.; Formowitz, B. (and others)

    2012-06-15

    For agriculturists in Mecklenburg-Western Pomerania (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  2. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning

    International Nuclear Information System (INIS)

    Eckner, Jens; Peter, Christiane; Vetter, Armin

    2015-01-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  3. The Evaluation of Science Learning Program, Technology and Society Application of Audio Bio Harmonic System with Solar Energy to Improve Crop Productivity

    Directory of Open Access Journals (Sweden)

    D. Rosana

    2017-04-01

    Full Text Available One of the greatest challenges in science learning is how to integrate a wide range of basic scientific concepts of physics, chemistry, and biology into an integrated learning material. Research-based teaching material in this area is still very poor and does not much involve students of science education in its implementation as part of the learning program science technology and society (STS. The purpose of this study is to get the result of evaluation of the teaching and learning of STS in the form of public service in Kulon Progo, Yogyakarta. The program to improve crop productivity through the application of Audio Bio Harmonic System (ABHS with solar energy have been selected for utilizing the natural animal sounds to open stomata of the leaves conducted during foliar fertilization, making it suitable for integrated science lessons. Component of evaluation model used is Stufflebeam model evaluation (CIPP. CIPP evaluation in these activities resulted in two aspects: The first aspect was improving the skills of students and farmers in using ABHS, and these two aspects, namely food crop productivity; (1 cayenne increased 76.4%, (2 increased red onions (56.3% and (3 of maize increased by 67.8%. Besides, it was also the effect of the application of ABHS on the rate of plant growth. The outcome of this study is the STS teaching materials and appropriate technology of ABHS with solar energy.

  4. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  5. Straw and energy crops- analysis of economy, energy and environment

    International Nuclear Information System (INIS)

    Parsby, M.

    1996-01-01

    The purpose of the biomass agreement of 14 June 1993 was to increase the use of biomass fuels in the Danish power plants to 1.2 million tons straw and 200 000 wood chips. Contribution from straw combustion should reach 25 PJ in year 2000. However biomass cultivation can endanger the governmental policy of pesticide and nitrogen reduction in agriculture. In the worst harvest years straw quantity can be reduced to 70 % of the normal level, while in good years there would occur a 3-4 fold excess of straw. Supply depends in a decisive degree on the offered price as the indirect cost can vary much (wet straw, delayed sawing, lost fertilizer value etc.). Potential for energy crops can be based on ca 300 000 ha present fallow agricultural areas. Cost is higher than that for straw, the most probable plants are elephant grass, willow, rape, sugar beets, winter cereals. Cost is lower for perennial plants, but at least 10-12 years are necessary for such crops to become profitable. Generally the biofuel crops are more expensive than crops for immediate combustion. Expenses for energy crops will decrease with time per ton dry matter, but ground rent for soils previously fallow has to be taken into account. A reduced nitrogen fertilization will reduce the economic profits quite essentially due to smaller harvests. Pesticide consumption will not have to grow as straw and elephant grass do not require any larger quantities (unless very large areas of one crop are cultivated).(EG) 92 refs

  6. PHA bioplastics, biochemicals, and energy from crops.

    Science.gov (United States)

    Somleva, Maria N; Peoples, Oliver P; Snell, Kristi D

    2013-02-01

    Large scale production of polyhydroxyalkanoates (PHAs) in plants can provide a sustainable supply of bioplastics, biochemicals, and energy from sunlight and atmospheric CO(2). PHAs are a class of polymers with various chain lengths that are naturally produced by some microorganisms as storage materials. The properties of these polyesters make them functionally equivalent to many of the petroleum-based plastics that are currently in the market place. However, unlike most petroleum-derived plastics, PHAs can be produced from renewable feedstocks and easily degrade in most biologically active environments. This review highlights research efforts over the last 20 years to engineer the production of PHAs in plants with a focus on polyhydroxybutryrate (PHB) production in bioenergy crops with C(4) photosynthesis. PHB has the potential to be a high volume commercial product with uses not only in the plastics and materials markets, but also in renewable chemicals and feed. The major challenges of improving product yield and plant fitness in high biomass yielding C(4) crops are discussed in detail. Plant Biotechnology Journal © 2013 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  7. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 2. symposium energy crops 2009; 2. Symposium Energiepflanzen 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-27

    Within the meeting '2nd Symposium energy plants 2009', held at 17th to 18th November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The bio energy policy of the Federal Government in the area of attention between climatic protection, ecology and economy (Ilse Aigner); (2) Chances and threatens of cultivation of energy plants for a sustainable energy supply (Alois Heissenhuber); (3) Certification as a prerequisite of the global exploration of bio energy (Andreas Feige); (4) A project support in the field of cultivation of energy plants, a review (Andreas Schuette); (5) Results from the investigation of the crop rotation in the EVA network (Armin Vater); (6) Optimisation of the cultivation technology of sorghum millets (Christian Roehricht); (7) The two-culture utilization system - a comparison between ecologic and conventional cultivation (Reinhold Stuelpnagel); (8) Crop rotation with energy plants - Chances and threatens for the plant protection (Baerbel Gerowitt); (9) Efficiency of utilization of water for energy plants (Siegfried Schittenhelm); (10) Utilization of arable food grasses and permanent grassland as a substrate for biogas (Matthias Benke); (11) Economical evaluation of plant fermentation substrates (Dominik Reus); (12) Energy plants as a challenge for the agricultural engineering (Heiner Bruening); (13) Influence of the design of cultivation on the subsequent effects of the cultivation of energy plants (Michael Glemnitz); (14) Energy plants and waters protection - Key aspects and possible options of action (Heike Nitsch); (15) Neophytes as energy plants - Chances and threatens (Werner Kuhn); (16) Manifold in te landscape - extensive cultivation systems with renewable raw materials as an option for nature protection? (Peer Heck); (17) Ecologic aspects of agro forestry systems (Holger Gruenewald); (18) Enhancement of the potential of energy yield of winter wheat (Wolfgang Friedt); (19) Interspersed silphie

  9. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  10. Manure and energy crops for biogas production. Status and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.; Nielsen, A.M.; Murto, M.; Christensson, K.; Rintala, J.; Svensson, M.; Seppaelae, M.; Paavola, T.; Angelidaki, I.; Kaparaju, P.L.

    2008-07-01

    This study has evaluated the development of biogas technology in three Nordic countries and analysed the effects of using nine model energy crops as supplement to manure feedstocks in biogas plants. The study compares the global warming impacts and the energy balance for the nine crops used for heat and power production. The energy balances and impacts on greenhouse gases of the studied crops differ between the countries. In Sweden and Denmark, the same crops turned out to be the most promising in terms of energy yield and impact on greenhouse gases. In general, the same crops that score high in terms of energy yield also score high in reducing the amount of greenhouse gases. Based on the examined parameters, it can be concluded that the most promising crops are Jerusalem artichoke, beets, maize, and, in Finland, reed canary grass as well. (au)

  11. Herbaceous energy crops: a general survey and a microeconomic analysis

    International Nuclear Information System (INIS)

    Caserta, G.

    1995-01-01

    Liquid fuels (bioethanol and biooil) derived from herbaceous crops are considered beneficial for the environment and human health especially if they are used as fuels for motor vehicles. The choice of the most suited crop to be cultivated for liquid biofuel production depends on many factors; the most important being the economic convenience for farmers to cultivate the new energy crop in place of the traditional ones. In order to analyse the conditions which favour the cultivation and selling of specific energy crops, a simple methodology is proposed, based on the calculation of the ''threshold price'' of the energy crop products. The ''threshold price'' is the minimum price at which the primary products of the energy crop, i.e., roots, tubers, seeds, etc., must be sold in order to obtain a gross margin equal to that usually obtained from the traditional crop which is replaced by the energy crop. As a case-study, this methodology has been applied to twelve Italian provinces where the cultivation of six energy crops, both in productive lands and set-aside lands, is examined. The crops considered are sugar beet, sweet sorghum and topinambour, useful for bioethanol production; and rapeseed, sunflower and soya, which are usually employed for the production of biooil. (Author)

  12. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  13. Integrated crop protection as a system approach

    OpenAIRE

    Haan, de, J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values connected to integrated crop protection. The role of integrated crop protection in prototyping new systems is discussed. The results of twenty years working with this prototyping methodology are pre...

  14. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw...

  15. Modelling of cadmium fluxes on energy crop land

    International Nuclear Information System (INIS)

    Palm, V.

    1992-04-01

    The flux of cadmium on energy crop land is investigated. Three mechanisms are accounted for; Uptake by plant, transport with water, and sorption to soil. Sorption is described with Freundlich isotherms. The system is simulated mathematically in order to estimate the sensitivity and importance of different parameters on the cadmium flow and sorption. The water flux through the soil and the uptake by plants are simulated with a hydrological model, SOIL. The simulated time period is two years. The parameters describing root distribution and evaporation due to crop are taken from measurements on energy crop (Salix). The resulting water flux, water content in the soil profile and the water uptake into roots, for each day and soil compartment, are used in the cadmium sorption simulation. In the cadmium sorption simulation the flux and equilibrium chemistry of cadmium is calculated. It is shown that the amount of cadmium that accumulates in the plant, and the depth to which the applied cadmium reaches depends strongly on the constants in the sorption isotherm. With an application of 10 mg Cd/m 2 in the given range of Freundlich equations, the simulations gave a plant uptake of between 0 and 30 % of the applied cadmium in two years. At higher concentrations, where cadmium sorption can be described by nonlinear isotherms, more cadmium is present in soil water and is generally more bioavailable. 25 refs

  16. Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region

    Directory of Open Access Journals (Sweden)

    Anna Dalla Marta

    2011-06-01

    Full Text Available The contribution of agrobiomasses, as a source of energy, to the reduction of greenhouse gas emissions was confirmed by several studies. Biomass from agriculture represents one of the larger and more diverse sources to exploit and in particular ethanol and diesel have the potential to be a sustainable replacement for fossil fuels, mainly for transport purposes. However, the cultivation of energy crops dedicated to the production of biofuels presents some potential problems, e.g., competitiveness with food crops, water needs, use of fertilizers, etc., and the economic, energy, and environmental convenience of such activity depends on accurate evaluations about the global efficiency of the production system. In this study, the processes related to the cultivation of energy crops were analyzed from an energy and water cost perspective. The crops studied, maize (Zea mais and sunflower (Helianthus annuus, were identified for their different water requirements and cultivation management, which in turns induces different energy costs. A 50-year climatic series of meteorological data from 19 weather stations scattered in the Tuscany region was used to feed the crop model CropSyst for the simulation of crop production, water requirement, and cultivation techniques. Obtained results were analyzed to define the real costs of energy crop cultivation, depending on energy and water balances. In the energy crop cultivation, the only positive energy balance was obtained with the more efficient system of irrigation whereas all the other cases provided negative balances. Concerning water, the results demonstrated that more than 1.000 liters of water are required for producing 1 liter of bioethanol. As a consequence, the cultivation of energy crops in the reserved areas of the region will almost double the actual water requirement of the agricultural sector in Tuscany.

  17. Life cycle assessment of a willow bioenergy cropping system

    International Nuclear Information System (INIS)

    Heller, M.C.; Keoleian, G.A.; Volk, Timothy A.

    2003-01-01

    The environmental performance of willow biomass crop production systems in New York (NY) is analyzed using life cycle assessment (LCA) methodology. The base-case, which represents current practices in NY, produces 55 units of biomass energy per unit of fossil energy consumed over the biomass crop's 23-year lifetime. Inorganic nitrogen fertilizer inputs have a strong influence on overall system performance, accounting for 37% of the non-renewable fossil energy input into the system. Net energy ratio varies from 58 to below 40 as a function of fertilizer application rate, but application rate also has implications on the system nutrient balance. Substituting inorganic N fertilizer with sewage sludge biosolids increases the net energy ratio of the willow biomass crop production system by more than 40%. While CO 2 emitted in combusting dedicated biomass is balanced by CO 2 adsorbed in the growing biomass, production processes contribute to the system's net global warming potential. Taking into account direct and indirect fuel use, N 2 O emissions from applied fertilizer and leaf litter, and carbon sequestration in below ground biomass and soil carbon, the net greenhouse gas emissions total 0.68 g CO 2 eq. MJ biomassproduced -1 . Site specific parameters such as soil carbon sequestration could easily offset these emissions resulting in a net reduction of greenhouse gases. Assuming reasonable biomass transportation distance and energy conversion efficiencies, this study implies that generating electricity from willow biomass crops could produce 11 units of electricity per unit of fossil energy consumed. Results form the LCA support the assertion that willow biomass crops are sustainable from an energy balance perspective and contribute additional environmental benefits

  18. Modelling nutrient management in tropical cropping systems

    OpenAIRE

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  19. Modelling the crop: from system dynamics to systems biology

    NARCIS (Netherlands)

    Yin, X.; Struik, P.C.

    2010-01-01

    There is strong interplant competition in a crop stand for various limiting resources, resulting in complex compensation and regulation mechanisms along the developmental cascade of the whole crop. Despite decades-long use of principles in system dynamics (e.g. feedback control), current crop models

  20. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  1. The Giant Reed as an energy crop: assessing the energy requirements within its supply chain

    DEFF Research Database (Denmark)

    Rodias, Efthymis; Busato, P.; Bochtis, Dionysis

    2013-01-01

    Biomass energy is one form of renewable energy sources that are in the core of interesting for many researchers. There many different biomass sources that can be exploited for energy production, such as crop residues, waste materials, forestry residues and energy crops. Regarding energy crops......, there are many different types of crops significantly varies in terms of energy potential yields, production and provision methods, etc. To this end, a thoroughly assessment of the energy inputs and outputs of each potential energy crop is necessary. In this paper, the Giant Reed is evaluated energetically...... as a potential energy crop. The assessment regards a 10 year period. The considered energy elements include direct inputs (e.g. fuel consumption) as well as indirect inputs (e.g. embodied energy of materials and machinery). According to the results, the balance between the estimated total energy input...

  2. Watershed Scale Optimization to Meet Sustainable Cellulosic Energy Crop Demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, Indrajeet [Purdue Univ., West Lafayette, IN (United States); Cibin, Raj [Purdue Univ., West Lafayette, IN (United States); Bowling, Laura [Purdue Univ., West Lafayette, IN (United States); Brouder, Sylvie [Purdue Univ., West Lafayette, IN (United States); Cherkauer, Keith [Purdue Univ., West Lafayette, IN (United States); Engel, Bernard [Purdue Univ., West Lafayette, IN (United States); Frankenberger, Jane [Purdue Univ., West Lafayette, IN (United States); Goforth, Reuben [Purdue Univ., West Lafayette, IN (United States); Gramig, Benjamin [Purdue Univ., West Lafayette, IN (United States); Volenec, Jeffrey [Purdue Univ., West Lafayette, IN (United States)

    2017-03-24

    The overall goal of this project was to conduct a watershed-scale sustainability assessment of multiple species of energy crops and removal of crop residues within two watersheds (Wildcat Creek, and St. Joseph River) representative of conditions in the Upper Midwest. The sustainability assessment included bioenergy feedstock production impacts on environmental quality, economic costs of production, and ecosystem services.

  3. Energy and emergy analysis of mixed crop-livestock farming

    Science.gov (United States)

    Kuczuk, Anna; Pospolita, Janusz; Wacław, Stefan

    2017-10-01

    This paper contains substance and energy balances of mixed crop-livestock farming. The analysis involves the period between 2012 and 2015. The structure of the presentation in the paper includes: crops and their structure, details of the use of plants with a beneficial effect on soil and stocking density per 1ha of agricultural land. Cumulative energy intensity of agricultural animal and plant production was determined, which is coupled the discussion of the energy input in the production of a grain unit obtained from plant and animal production. This data was compared with the data from the literature containing examples derived from intensive and organic production systems. The environmental impact of a farm was performed on the basis of emergy analysis. Emergy fluxes were determined on the basis of renewable and non-renewable sources. As a consequence, several performance indicators were established: Emergy Yield Ratio EYR, Environmental Loading Ratio ELR and ratio of emergy from renewable sources R! . Their values were compared with the parameters characterizing other production patterns followed in agricultural production. As a consequence, conclusions were derived, in particular the ones concerning environmental sustainability of production systems in the analyzed farm.

  4. Some ecological and socio-economic considerations for biomass energy crop production

    International Nuclear Information System (INIS)

    Paine, L.K.; Undersander, D.J.; Temple, S.A.; Klemme, R.M.; Peterson, T.L.; Bartelt, G.A.; Sample, D.W.; Rineer, K.C.

    1996-01-01

    The purpose of this paper is to suggest a regional approach to ensure that energy crop production will proceed in an ecologically and economically sustainable way. At this juncture, we have the opportunity to build into the system some ecological and socio-economic values which have not traditionally been considered. If crop species are chosen and sited properly, incorporation of energy crops into our agricultural system could provide extensive wildlife habitat and address soil and water quality concerns, in addition to generating renewable power. We recommend that three types of agricultural land be targeted for perennial biomass energy crops: (1) highly erodible land; (2) wetlands presently converted to agricultural uses; and (3) marginal agricultural land in selected regions. Fitting appropriate species to these lands, biomass crops can be successfully grown on lands not ecologically suited for conventional farming practices, thus providing an environmental benefit in addition to producing an economic return to the land owner. (author)

  5. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  6. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  7. Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Jørgensen, Uffe; Petersen, Bjørn Molt

    2012-01-01

    This paper addresses the conversion of Danish agricultural land from food/feed crops to energy crops. To this end, a life cycle inventory, which relates the input and output flows from and to the environment of 528 different crop systems, is built and described. This includes seven crops (annuals...... and perennials), two soil types (sandy loam and sand), two climate types (wet and dry), three initial soil carbon level (high, average, low), two time horizons for soil carbon changes (20 and 100 years), two residues management practices (removal and incorporation into soil) as well as three soil carbon turnover...... rate reductions in response to the absence of tillage for some perennial crops (0%, 25%, 50%). For all crop systems, nutrient balances, balances between above- and below-ground residues, soil carbon changes, biogenic carbon dioxide flows, emissions of nitrogen compounds and losses of macro...

  8. Energy Crop-Based Biogas as Vehicle Fuel—The Impact of Crop Selection on Energy Efficiency and Greenhouse Gas Performance

    Directory of Open Access Journals (Sweden)

    Pål Börjesson

    2015-06-01

    Full Text Available The production of biogas from six agricultural crops was analysed regarding energy efficiency and greenhouse gas (GHG performance for vehicle fuel from a field-to-tank perspective, with focus on critical parameters and on calculation methods. The energy efficiency varied from 35% to 44%, expressed as primary energy input per energy unit vehicle gas produced. The GHG reduction varied from 70% to 120%, compared with fossil liquid fuels, when the GHG credit of the digestate produced was included through system expansion according to the calculation methodology in the ISO 14044 standard of life cycle assessment. Ley crop-based biogas systems led to the highest GHG reduction, due to the significant soil carbon accumulation, followed by maize, wheat, hemp, triticale and sugar beet. Critical parameters are biogenic nitrous oxide emissions from crop cultivation, for which specific emission factors for digestate are missing today, and methane leakage from biogas production. The GHG benefits were reduced and the interrelation between the crops changed, when the GHG calculations were instead based on the methodology stated in the EU Renewable Energy Directive, where crop contribution to soil carbon accumulation is disregarded. All systems could still reach a 60% GHG reduction, due to the improved agricultural management when digestate replaces mineral fertilisers.

  9. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.G.; English, B.C. [Univ. of Tennessee, Knoxville, TN (United States)

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-party custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.

  10. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    Science.gov (United States)

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  11. Environmental assessment of two different crop systems in terms of biomethane potential production

    International Nuclear Information System (INIS)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  12. Environmental assessment of two different crop systems in terms of biomethane potential production

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  13. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Economic assessment and comparison of acacia energy crop with annual traditional crops in Southern Europe

    International Nuclear Information System (INIS)

    Gasol, Carles M.; Rieradevall, Joan; Gabarrell, Xavier; Brun, Filippo; Mosso, Angela

    2010-01-01

    In several policy documents bioenergy is recognized as an important renewable energy source in Italy. The increase in energy prices represents an opportunity for lignocellulosic energy crops such as acacia and poplar. However, for Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF) to be adopted by farmers, these crops must be perceived to be at least as profitable as crops that normally compete with these plantations for land use. The purpose of this paper is to evaluate the economic feasibility of acacia (Robinia pseudoacacia) as an energy crop in a low input production regime in Italy and, in particular, to consider its competitiveness with wheat. Our results show that neither SRC and SRF techniques using assumed production costs (EUR3820 and EUR5285 ha -1 yr -1 ) nor biomass productions are able to obtain a positive profit (-EUR184 and -EUR172 ha -1 yr -1 ) that can convince farmers to invest in biomass plantations on their land. The results demonstrate that wheat is a more economically secure option than SRC or SRF. The viability of local biomass production in Italy and Southern Europe depends on the active support of the governments; without them, biomass is not economically competitive for the farmers when compared to crops such as wheat. (author)

  15. Individual plant care in cropping systems

    OpenAIRE

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  16. VT Renewable Energy Sites - Oilseed Crop Biodiesel

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  17. Barriers to and drivers of the adpotion of energy crops by Swedish farmers: An empirical approach

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Anna C.; Ostwald, Madelene; Asplund, Therese; Wibeck, Victoria (Linkoeping Univ., Linkoeping (Sweden). The Tema Inst., Centre for Climate Science and Policy Research)

    2011-06-15

    Since the Swedish government and the EU intend to encourage farmers to expand energy crop production, knowledge of the factors motivating adoption decisions is vital to policy success. Earlier studies have demonstrated that important barriers to farmer adoption of energy crops include converting from annual to perennial crops and from traditional crops or production systems to new ones. Economic motivations for changing production systems are strong, but factors such as values (e.g., aesthetics), knowledge (e.g., habits and knowledge of production methods), and legal conditions (e.g., cultivation licenses) are crucial for the change to energy crops. This paper helps fill gaps in the literature regarding why farmers decide to keep or change a production system. Based on a series of focus group interviews with Swedish farmers, the paper explores how farmers frame crop change decisions and what factors they consider most important. The main drivers of and barriers to growing energy crops, according to interviewees, are grouped and discussed in relation to four broad groups of motivational factors identified in the literature, i.e., values, legal conditions, knowledge, and economic factors. The paper ends by discussing whether some barriers could be overcome by policy changes at the national and European levels

  18. Energy saving: From engineering to crop management

    NARCIS (Netherlands)

    Dieleman, J.A.; Hemming, S.

    2011-01-01

    In greenhouse horticulture, energy costs form an increasingly larger part of the total production costs. Energy is primarily used for temperature control, reduction of air humidity, increase of light intensity and CO2 supply. Use of fossil energy can be reduced by limiting the energy demand of the

  19. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  20. ORGANOFINERY: FROM GREEN CROPS TO PROTEINS, ENERGY AND FERTILISER

    DEFF Research Database (Denmark)

    Salces, Beatriz Molinuevo; Fernandez, Maria Santamaria; Kiel, P.

    Difficulties with the supply of organic protein feed; low crop yields and low value of leguminous forage crops and a lack of organic fertilisers are nowadays some of the major challenges faced in organic farming with monogastric animals. Thus, organic farmers are forced to import feed and manure ...... from conventional farms. In order to overcome these challenges, the OrganoFinery project targets to develop a green biorefinery concept where organic crops are utilised for animal feed, fertiliser and energy production by producing biogas....

  1. Phytoremediation of differents wastewaters using energy crops

    OpenAIRE

    Leigue Fernandez, Maria Alejandra

    2014-01-01

    The sources of renewable energy acquire considerable interest, if accompanied by a more rational use of energy, to facilitate the transaction by a high use of fossil fuels to a sustainable use of renewable energy. There are many alternative energy source such as wind, solar, geothermal and biomass that fulfil the criteria of sustainability and economic feasibility. Biomass refers to all the vegetable matter that can be obtained from photosynthesis. Biodiesel can be produced from a variety of ...

  2. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  3. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  4. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    International Nuclear Information System (INIS)

    Weih, Martin; Hoeber, Stefanie; Beyer, Friderike; Fransson, Petra

    2014-01-01

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  5. Traits to Ecosystems: The Ecological Sustainability Challenge When Developing Future Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Weih, Martin, E-mail: martin.weih@slu.se; Hoeber, Stefanie; Beyer, Friderike [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Fransson, Petra [Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala (Sweden)

    2014-05-22

    Today, we are undertaking great efforts to improve biomass production and quality traits of energy crops. Major motivation for developing those crops is based on environmental and ecological sustainability considerations, which however often are de-coupled from the trait-based crop improvement programs. It is now time to develop appropriate methods to link crop traits to production system characteristics set by the plant and the biotic communities influencing it; and to the ecosystem processes affecting ecological sustainability. The relevant ecosystem processes involve the net productivity in terms of biomass and energy yields, the depletion of energy-demanding resources (e.g., nitrogen, N), the carbon dynamics in soil and atmosphere, and the resilience and temporal stability of the production system. In a case study, we compared aspects of N use efficiency in various varieties of an annual (spring wheat) and perennial (Salix) energy crop grown under two nutrient regimes in Sweden. For example, we found considerable variation among crops, varieties, and nutrient regimes in the energy yield per plant-internal N (megajoule per gram per year), which would result in different N resource depletion per unit energy produced.

  6. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate h...

  7. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    OpenAIRE

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  8. An operational fluorescence system for crop assessment

    Science.gov (United States)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  9. Socio-economic impacts of energy crops for heat generation in Northern Greece

    International Nuclear Information System (INIS)

    Panoutsou, Calliope

    2007-01-01

    Bioenergy is considered to be an attractive option mainly due to driving forces of an environmental nature (e.g. climate change and sustainability issues). This is particularly the case for energy crops, which show higher productivity per land unit than their conventional counterparts. In addition, by comparison, such crops are more homogeneous in terms of their physical and chemical characteristics than residual resources that are often described as the biomass resource of the future. However, despite the long-term research and the considerable efforts to promote them, implementation is still rather slow across Europe. In this paper, two perennial energy crops, cardoon and giant reed, are evaluated in Rodopi, northern Greece, as alternative land use, through comparative financial appraisal with the main conventional crops. Based on the output of this analysis, the breakeven for the two energy crops is defined and an economic and socio-economic evaluation of a biomass district heating system is conducted. Results prove that energy crops can be attractive alternatives if they are properly integrated into existing agricultural activities and complement the current cropping options. As such, they provide raw material for local heat applications, thus resulting in increased income for the region and an increase in the number of jobs. (author)

  10. Comparing annual and perennial crops for bioenergy production - influence on nitrate leaching and energy balance

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Schelde, Kirsten; Ugilt Larsen, Søren

    2015-01-01

    Production of energy crops is promoted as a means to mitigate global warming by decreasing dependency on fossil energy. However, agricultural production of bioenergy can have various environmental effects depending on the crop and production system. In a field trial initiated in 2008, nitrate...... concentration in soil water was measured below winter wheat, grass-clover and willow during three growing seasons. Crop water balances were modelled to estimate the amount of nitrate leached per hectare. In addition, dry matter yields and nitrogen (N) yields were measured, and N balances and energy balances...... was also measured in an old willow crop established in 1996 from which N leaching ranged from 6 to 27 kg ha−1 yr−1. Dry matter yields ranged between 5.9 and 14.8 Mg yr−1 with lowest yield in the newly established willow and the highest yield harvested in grass-clover. Grass-clover gave the highest net...

  11. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M J; Christian, D; Wilkins, C

    1997-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  12. Quantifying biomass production in crops grown for energy

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.J.; Christian, D.; Wilkins, C.

    1996-12-31

    One estimate suggests that continued CAP (Common Agricultural Policy) reform may lead to as much as 2 million hectares of land set aside from arable production by the year 2020 in the UK alone, with 20 million hectares in the EU in total. Set-aside currently occupies more than 500,000 hectares in the UK. Set-aside land is providing more opportunities for non-food crops, for example fuel crops, which provide biomass for energy. Whilst any crop species will produce biomass which can be burnt to produce energy, arable crops were not developed with this in mind but rather a specific harvestable commodity, e.g. grain, and therefore the total harvestable commodity is seldom maximised. The characteristics of an ideal fuel crop have been identified as: dry harvested material for efficient combustion; perennial growth to minimise establishment costs and lengthen the growing season; good disease resistance; efficient conversion of solar radiation to biomass energy; efficient use of nitrogen fertiliser (where required) and water; and yield close to the theoretical maximum. Miscanthus, a genus of Oriental and African C4 perennial grasses, has been identified as possessing the above characteristics. There may be other species, which, if not yielding quite as much biomass, have other characteristics of merit. This has led to the need to identify inherently productive species which are adapted to the UK, and to validate the productivity of species which have already been 'discovered'. (author)

  13. Energy systems

    International Nuclear Information System (INIS)

    Haefele, W.

    1974-01-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  14. Energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [Nuclear Research Centre, Applied Systems Analysis and Reactor Physics, Karlsruhe (Germany); International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1974-07-01

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  15. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    Science.gov (United States)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  16. Energy crops for biogas plants. Lower Saxony; Energiepflanzen fuer Biogasanlagen. Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Benke, M.; Formowitz, B. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Lower Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  17. N2O Emission from energy crop fields

    International Nuclear Information System (INIS)

    Joergensen, B.J.; Nyholm Joergensen, R.

    1996-03-01

    The interest in N 2 O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N 2 O per unit mass is about 320 times greater than CO 2 . The contribution of N 2 O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N 2 O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N 2 O from the soil per produced energy unit. The aims of this study were to assess the annual N 2 O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N 2 O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N 2 O emission from the soils, a section with development of the technique for N 2 O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N 2 O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N 2 O ha -1 yr -1 . This amount corresponds to 960 kg CO 2 ha -1 yr -1 compared to a total CO 2 reduction of 10 to 19 tons CO 2 ha -1 yr -1 using the energy crops as substitution for fossil fuels. An efficient way to reduce the N 2 O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO 2 reduction per unit dry matter. Following the guidelines for good agricultural practice concerning the

  18. Comparison of energy and yield parameters in maize crop

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mirjat, M.S.; Amjad, N.

    2013-01-01

    The aim of this study was to determine direct and indirect input energy in maize production and to investigate the efficiency of energy consumption in maize crop. Result showed that emergence percent, plant height, number of grains per cob and grain yield were the highest in deep tillage as compared to conventional and zero tillage. Total energy input and output were the highest in deep tillage with NPK at the rate 150-75-75kg/ha. The net energy gain was found the highest in deep tillage followed by conventional tillage and the lowest net energy gain in zero tillage. (author)

  19. Modelling farmer uptake of perennial energy crops in the UK

    International Nuclear Information System (INIS)

    Sherrington, Chris; Moran, Dominic

    2010-01-01

    The UK Biomass Strategy suggests that to reach the technical potential of perennial energy crops such as short rotation coppice (SRC) willow and miscanthus by 2020 requires 350,000 hectares of land. This represents a more than 20-fold increase on the current 15,546 hectares. Previous research has identified several barriers to adoption, including concerns over security of income from contracts. In addition, farmers perceive returns from these crops to be lower than for conventional crops. This paper uses a farm-level linear programming model to investigate theoretical uptake of energy crops at different gross margins under the assumption of a profit-maximising decision maker, and in the absence of known barriers to adoption. The findings suggest that while SRC willow, at current prices, remains less competitive, returns to miscanthus should have encouraged adoption on a wider scale than at present. This highlights the importance of the barriers to adoption. Recently announced contracts for miscanthus appear to offer a significant premium to farmers in order to encourage them to grow the crops. This raises the question of whether a more cost-effective approach would be for government to provide guarantees addressing farmers concerns including security of income from the contracts. Such an approach should encourage adoption at lower gross margins. (author)

  20. Evaluating trees as energy crops in Napa County

    Science.gov (United States)

    Dean R. Donaldson; Richard B. Standiford

    1983-01-01

    An evaluation of tree species for energy crops was initiated at two areas in Napa County, California. At one area, Eucalyptus viminalis at 39 months was significantly taller than E. camaldulensis at 50 months. Also evaluated were five clones of Pinus radiata, Juglans regia X hindsii...

  1. Computing energy budget within a crop canopy from Penmann's ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    Computing energy budget within a crop canopy from. Penmann's formulae. Mahendra Mohan∗ and K K Srivastava∗∗. ∗Radio and Atmospheric Science Division, National Physical Laboratory, New Delhi 110012, India. ∗∗Department of Chemical Engineering, Institute of Technology, Banaras Hindu University, Varanasi.

  2. Plant factories; crop transpiration and energy balance

    NARCIS (Netherlands)

    Graamans, Luuk; Dobbelsteen, van den Andy; Meinen, Esther; Stanghellini, Cecilia

    2017-01-01

    Population growth and rapid urbanisation may result in a shortage of food supplies for cities in the foreseeable future. Research on closed plant production systems, such as plant factories, has attempted to offer perspectives for robust (urban) agricultural systems. Insight into the explicit role

  3. Energy crops as a strategy for reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Olesen, J.E.

    2002-01-01

    The current Danish energy plan stipulates a production of 5 PI from energy crops in 2010. This may be attained through growing of either annual (e.g., cereal) or perennial energy crops (e.g., willow or Miscanthus). Existing Danish data and the IPCC methodology was used to calculate nitrous oxide emissions from and carbon sequestration in soils cropped with an annual energy crop (triticale) or a perennial energy crop (Miscanthus). The calculations for Miscanthus were performed separately for harvest in November or April, since the harvest time affects both yields and emissions. The estimates for Miscanthus were based on a 20-year duration of the cultivation period. The energy use for growing the crops was included in the energy budgets, as was the reduction in CO 2 emission that will result from substitution of fossil fuel (natural gas). The calculations were performed for both a coarse sandy soil and a loamy sand. The results were compared with current (reference) practice for growing cereals. There were only minor differences in production data and emissions between the two soil types. The area required to produce 5 PI was smallest for Miscanthus harvested in November (c. 25,000 ha), and about equal for triticale and Miscanthus harvested in April (c. 32,000 ha). The reduction in nitrous oxide emissions compared with cereal production was smallest for triticale (20 kt CO 2 equivalents /eq] yr -1 ) and about equal for Miscanthus at the two harvest times (30-36 kt CO 2 eq yr -1 ). Growing Miscanthus resulted in a carbon sequestration, with the highest rates (100 kt CO 2 eq yr -1 ) for Miscanthus harvested in April. The energy use for production of triticale was slightly lower than for normal cereal growing, whereas growing Miscanthus for harvest in April resulted in a smaller energy use which corresponded to an emission reduction of 20 kt CO 2 yr -1 . The substitution of fossil fuel corresponded to 285 kt CO 2 yr -1 . Summing all items, growing 5 PI worth of

  4. Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan; Ceylan, R. Figen; Kizilay, Hatice [Faculty of Agriculture, Department of Agricultural Economics, Akdeniz University, Antalya 07070 (Turkey)

    2011-05-15

    The study examines energy use patterns and the relationship between energy inputs and yield for double crop (fall and summer) glasshouse tomato production in Antalya province, where is one of the most important greenhouse centres in Turkey. The data of the study was retrieved from 37 fall and 25 summer glasshouse tomato producers via face to face survey in 2007. The research findings revealed energy use values for inputs such as manure, electricity, chemical fertilizer and fuel. While the average yield per hectare is 25025.4 kg for enterprises involved in tomato production in fall, it is 22392.9 kg for summer production. The overall energy consumption is higher in fall production with 81362.2 MJ ha{sup -1} in comparison to summer production 63023.2 MJ ha{sup -1}. In addition, the specific energy requirement is 3521.2 MJ t{sup -1} and 2814.4 MJ t{sup -1} for fall and summer production in order and the energy efficiency was found out to be 0.31 kg MJ{sup -1} and 0.36 kg MJ{sup -1} respectively. Finally, the energy relationship was tested using the production relationship. The findings indicated that direct energy sources are effective in tomato yield for both of the two seasons. More clearly, the most significant energy input was electrical energy for summer production and a combination of electrical energy, human power and machinery for fall production. Yet, excess and unconscious use of chemical ingredients in glasshouse tomato production was confirmed as energy derived from chemical drugs leaded a declination in the yield for fall season. Therefore, the paper revealed energy relationship for double crop glasshouse tomato production in Antalya, being a reference for similar production methodologies. (author)

  5. Effect of pre-treatments on methane production potential of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaki, A.; Ronkainen; Rintala, J.A. [Jyvaskla Univ. (Finland). Dept. of Biological and Environmental Sciences; Viinikainen, T.A. [Jyvaskla Univ. (Finland). Dept. of Chemistry

    2004-07-01

    Energy crops, that is, crops grown specifically for energy purposes are an alternative to food production in areas with sufficient agricultural land. Crop residues are also a potential source of energy. The anaerobic digestion of solid materials is limited by hydrolysis of complex polymeric substances such as lignocellulose. The methane producing potential of ligno cellulosic material is to pretreat the substrate in order to break up the polymer chains to more easily accessible soluble compounds. In this study, three different substrates were used: sugar beet tops, grass hay, and straw of oats. Biological pretreatments were the following: enzyme treatment, composting, white-rot fungi treatment. Also, pretreatment in water was tried. Chemical pretreatments included peracetic acid treatment, and treatment with two different alkalis. Alkaline pretreatments of hay and sugar beet tops have the potential to improve the methane yield. For instance, the yield of grass hay was increased 15 per cent by one particular alkaline treatment. Straw did not respond to any of the treatments tried. 18 refs., 1 tab., 2 figs.

  6. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  7. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning; Klimaschutz und Energiepflanzenanbau. Potenziale zur Treibhausgasemissionsminderung durch Fruchtfolge- und Anbauplanung

    Energy Technology Data Exchange (ETDEWEB)

    Eckner, Jens [Thueringer Landesanstalt fuer Landwirtschaft (Germany); Peter, Christiane; Vetter, Armin

    2015-07-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  8. Social and ecological analysis of commercial integrated crop livestock systems

    NARCIS (Netherlands)

    Garrett, R.D.; Niles, M.T.; Gil, J.D.B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T.S.; Brewer, K.; Faccio Carvalho, de P.C.; Cortner, O.; Dynes, R.; Garbach, K.; Kebreab, E.; Mueller, N.; Peterson, C.; Reis, J.C.; Snow, V.; Valentim, J.

    2017-01-01

    Crops and livestock play a synergistic role in global food production and farmer livelihoods. Increasingly, however, crops and livestock are produced in isolation, particularly in farms operating at the commercial scale. It has been suggested that re-integrating crop and livestock systems at the

  9. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  10. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  11. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  12. Organic versus Conventional Cropping Sustainability: A Comparative System Analysis

    Directory of Open Access Journals (Sweden)

    Tiffany L. Fess

    2018-01-01

    Full Text Available We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.

  13. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    Science.gov (United States)

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  14. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  15. Energy and economic analysis of traditional versus introduced crops cultivation in the mountains of the Indian Himalayas: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Kaechele, H. [Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Socioeconomics, Eberswalder Str. 84, 15374 Muencheberg (Germany); Rao, K.S. [Centre for Inter-disciplinary Studies of Mountain and Hill Environment, Academic Research Center, University of Delhi, Delhi 110007 (India); Maikhuri, R.K. [G.B. Pant Institute of Himalayan Environment and Development, Garhwal Unit, P.O. Box 92, Srinagar (Garhwal) 246174 (India); Saxena, K.G. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2007-12-15

    This study analyzed the energy and economics associated with cultivation of traditional and introduced crops in the mountains of the Central Himalaya, India. The production cost in terms of energy for introduced crops such as tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) cultivation was 90,358-320,516 MJ ha{sup -1} as compared to between 19,814 and 42,380 MJ ha{sup -1} for traditional crops within Himalayan agroecosystems. For the introduced crops, high energy and monetary input was associated with human labor, forest resources, chemical fertilizer and pesticides. However, energy threshold/projection for farmyard manure in traditional crop cultivation was 80-90% of the total energy cost, thus traditional crop cultivation was more efficient in energy and economics. During the study, the farm productivity of introduced crops cultivation declined with increasing years of cultivation. Consequently, the energy output from the system has been declining at the rate of -y20,598 to y20,748 MJ ha{sup -1} yr{sup -1} for tomato and y12,072 to y15,056 MJ ha{sup -1} yr{sup -1} for bell pepper under irrigated and rain-fed land use in the mountains, respectively. The comparative analysis on this paradigm shift indicates that more research is needed to support sustainable crop cultivation in the fragile Himalayan environment. (author)

  16. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  17. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  18. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  19. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  20. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  1. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus `Giganteus` (M. `Giganteus`) and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substituion for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO{sub 2} reduction

  2. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substitution for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the

  3. Agronomical and biological results of solar energy heating by the combination of the sunstock system with an outside captor on a muskmelon crop grown in polyethylene greenhouses

    Directory of Open Access Journals (Sweden)

    Vandevelde, R.

    1983-01-01

    Full Text Available Six cultivars of muskmelon (Early Dew, "68-02", "Early Chaca", "Jivaro", "Super Sprint" and "Cantor" transplanted at two differents dates were cultivated under two PE greenhouses heated by solar energy recovery and compared to a control greenhouse. The greenhouses were covered with a double shield of normal PE of 100 microns. The first greenhouse was considered as the control. The second one was equipped with a sunstock solar energy collector distribution system, consisting in a covering of 37 % of the ground surface by flat black PVC tubes, used during the day as a solar energy captor for heating the water of a basin and during the night as a radiant mulch for heating the greenhouse by emission of radiation warmth. The third greenhouse was equipped also with the same sunstock System, but connected with a supplementary outdoor collector by means of flat PE tubes corresponding to about 28 % covering of the greenhouse, and resulting in a more important energy stock, available for heating during the night. Minimum air temperature was raised by about 1, 5 and 2, 5°C respectively in the second and the third greenhouse, while the minimum soil temperature was raised with about 1 and 2°C respectively. Evolution of the maximum temperatures was more irregular and was depending also from the incident energy. Plant growth under the solar heated greenhouse was more accelerated, and resulted in an earlier fruitset, an earlier production and a higher total yield.

  4. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  5. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  6. An investigation into the energy use in relation to yield of traditional crops in central Himalaya, India

    International Nuclear Information System (INIS)

    Chandra, Abhishek; Saradhi, P. Pardha; Rao, K.S.; Saxena, K.G.; Maikhuri, R.K.

    2011-01-01

    Agrobiodiversity and agroecosystem management have changed in central Himalaya due to increasing emphasis on market economy and the motive 'maximization of profit'. Such changes have benefited local people in economic terms, but at the same time increased their vulnerability to environmental and economic risks. The present study addressed the issue of how the ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. Important characteristics of agrodiversity management are the use of bullocks for draught power, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. The present analysis of resource input-output energy currency in traditional crop production indicated that inputs into different crop systems were significantly higher during kharif season compared to rabi season both under rainfed and irrigated conditions. The maximum input for crop during rabi season (second crop season) was about 31% of that of kharif season (first crop season after fallow) under rainfed conditions. Under irrigated conditions the rabi season input was about 63% of kharif season input. Under rainfed conditions, paddy sole cropping required maximum inputs (231.31 GJ/ha) as compared to mustard sole cropping (11.79 GJ/ha). The present investigation revealed that the total energy inputs and outputs are higher for irrigated agriculture as compared to rainfed system, the difference in inputs is about 5 fold and outputs is about 2 fold. The output-input ratio showed that irrigated systems have higher values as compared to rainfed systems. -- Highlights: → Agriculture continues to be biggest employment provider in the region. → Ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. → Analysis of resource input-output energy currency in traditional crop production. → Improvements in crop

  7. Environmental Sustainability of Some Cropping Systems in the ...

    African Journals Online (AJOL)

    Results from most findings reviewed in this paper had shown that there was no one size fits cropping system that can be use for sustainability of the humid environment but the best approach was the diversification of both traditional and modern cropping systems. The transition to systems which are both sustainable and ...

  8. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  9. Hemp: A more sustainable annual energy crop for climate and energy policy

    International Nuclear Information System (INIS)

    Finnan, John; Styles, David

    2013-01-01

    The objective of this study was to compare the fuel-chain greenhouse gas balance and farm economics of hemp grown for bioenergy with two perennial bioenergy crops, Miscanthus and willow, and two more traditional annual bioenergy crops, sugar beet and oil seed rape (OSR). The GHG burden of hemp cultivation is intermediate between perennial and traditional annual energy crops, but net fuel chain GHG abatement potential of 11 t/CO 2 eq./ha/year in the mid yield estimate is comparable to perennial crops, and 140% and 540% greater than for OSR and sugar beet fuel chains, respectively. Gross margins from hemp were considerably lower than for OSR and sugar beet, but exceeded those from Miscanthus when organic fertilizers were used and in the absence of establishment grants for the latter crop. Extrapolated up to the EU scale, replacing 25% of OSR and sugar beet production with hemp production could increase net GHG abatement by up to 21 Mt CO 2 eq./year. Hemp is a considerably more efficient bioenergy feedstock than the dominant annual energy crops. Integrated into food crop rotations, hemp need not compete with food supplies, and could provide an appealing option to develop more sustainable non-transport bioenergy supply chains. - Highlights: ► The GHG burden of hemp is intermediate between perennial and annual energy crops. ► Replacing 25% of OSR/beet with hemp could increase GHG abatement by 21 Mt/CO 2 eq./year. ► Hemp is a more efficient bioenergy feedstock than the dominant annual energy crops

  10. Cost evaluation of energy crops at farm gate in different EU countries and related agricultural issues

    International Nuclear Information System (INIS)

    Calliope, P.; Dalianis, C.

    1996-01-01

    Interest on energy crops varies greatly among EU regions. Certain climatic conditions prevailing in the areas, determine the coice of the energy crop which is going to be used as raw material for energy production. Furthermore, energy markets, farm structure and set aside regulations as well as national policy play a critical role to biomass exploitation for energy purposes. A common methodology was developed (Moore, 1996) for comparing costs of different options for ''biomass-to-energy systems'' across six EU countries (figure 1). This methodology was developed in the framework of an AIR Concerted Action financed by DGXII of EU and entitled ''Development of a Standard Methodology for Integrating Non-Food Crops in Rural Areas with Niche Energy Markets''. Cost estimations were done form the first stage of raw material production till the final energy product (kWh of heat and electricity or lt of liquid biofuel. In this paper, only the raw material production cost estimation phase will be presented. (Author)

  11. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  12. Carbon storage and recycling in short-rotation energy crops

    International Nuclear Information System (INIS)

    Ranney, J.W.; Wright, L.L.; Mitchell, C.P.

    1991-01-01

    Short-rotation energy crops can play a significant role in storing carbon compared to the agricultural land uses they would displace. However, the benefits from these plantations in avoiding further use of fossil fuel and in taking pressure off of native forests for energy uses provides longer term carbon benetfits than the plantation carbon sequestration itself. The fast growth and harvest frequency of plantations tends to limit the amount of above and below-ground carbon storage in them. The primary components of plantation carbon sequestering compared to sustained agricultural practices involve above-ground wood, possible increased soil carbon, litter layer formation, and increased root biomass. On the average, short-rotation plantations in total may increase carbon inventories by about 30 to 40 tonnes per hectare over about a 20- to 56-year period when displacing cropland. This is about doubling in storage over cropland and about one-half the storage in human-impacted forests. The sequestration benefit of wood energy crops over cropland would be negated in about 75 to 100 years by the use of fossil fuels to tend the plantations and handle biomass. Plantation interactions with other land uses and total landscape carbon inventory is important in assessing the relative role plantations play in terrestrial and atmospheric carbon dynamics. It is speculated that plantations, when viewed in this context. could trencrate a global leveling of net carbon emissions for approximately 10 to 20 years

  13. Cropping system impact on soil quality determinants

    Directory of Open Access Journals (Sweden)

    M. VESTBERG

    2008-12-01

    Full Text Available Worldwide interest in soil quality evaluation has increased rapidly throughout the past decade, prompting us to evaluate the long-term impact of four cropping systems on several biological, chemical and physical determinants of soil quality. We hypothesized that after 17 years several of the determinants would show significant differences between conventional cereal and low input/organic rotations. Four crop rotations were imposed on a silt soil from 1982 through 1999. Rotation A was a conventionally managed cereal rotation that received 100% of the recommended mineral fertilizer each year. Rotation B was also managed conventionally from 1982 until 1993, although it received only 50% of the recommended mineral fertilizer. From 1994 through 1999, rotation B was managed as an organic rotation. Rotations C and D were low-input rotations with plant residues returned either untreated (Cor composted (Dfrom 1982 until 1994.From 1994 through 1999,they were also anaged organically. Significant decreases in extractable phosphorus (Pand potassium were observed in rotations C and D compared with rotation A, presumably because their yearly nutrient inputs were somewhat lower. The amount of soil organic carbon (Corg, soil water holding capacity, the numbers and biomass of earthworms and the microbial biomass carbon and nitrogen were or tended to be higher in low input/organic than in conventionally managed plots. These effects may be in connection with the slightly increased levels of Corg in soil of the organic rotations. Activities of twelve enzymes were strongly affected by sampling time (early-versus late-summer, but much less by long-term management. Litter decomposition, numbers of soil nematodes, arbuscular mycorrhizal (AMfungal diversity,AM spore density and AM functioning were little affected by rotation. However,AM spore density correlated positively with the high amounts of extractable calcium and P which were a result from excessive liming applied

  14. Energy performance and efficiency of two sugar crops for the biofuel supply chain. Perspectives for sustainable field management in southern Italy

    International Nuclear Information System (INIS)

    Garofalo, Pasquale; D'Andrea, Laura; Vonella, A. Vittorio; Rinaldi, Michele; Palumbo, A. Domenico

    2015-01-01

    Improvement of the energy balance and efficiency for reduced input of cropping systems is one of the main goals for the cultivation of energy crops. In this field study, two sugar crops for bioethanol production were cultivated under different soil tillage management (conventional; no tillage) and mineral nitrogen application (0, 75, 150 kg N ha"−"1): sweet sorghum and sugar beet. The energy performance and efficiency along the bioethanol supply chain were analysed and compared. Both of these crops showed good growth adaptation to the different soil and nitrogen management, and thus the energy return, resource and energy efficiencies were significantly improved in the low-input system. Sweet sorghum provided better responses in terms of water and nitrogen use efficiency for biomass accumulation, as well as its energy yield and net gain, compared to sugar beet, whereas sugar beet showed higher energy efficiency than sorghum. According to these data, both of these crops can be cultivated in a Mediterranean environment with low energy input, which guarantees good crop and energy performances for biofuel strategy planning. - Highlights: • Two sugar crops for the bioethanol supply chain were evaluated. • Energy performances and efficiencies were assessed under different energy input. • Sugar yield resulted not compromised by the different crop management. • The energy gain was improved with low energy input at field level. • Sweet sorghum gave the highest energy yield, sugar beet the energy efficiency.

  15. A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Directory of Open Access Journals (Sweden)

    Nicola Silvestri

    2017-03-01

    Full Text Available The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus×giganteus Greef et Deuter, Phragmites australis L., Populus×canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L. was the most suitable crop whereas Populus×canadensis Moench and Miscanthus×giganteus Greef et Deuter (in the case of biogas conversion occupied the last positions in the ranking.

  16. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  17. Mineral composition and ash content of six major energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Andrea; Venturi, Gianpietro [Department of Agroenvironmental Science and Technologies (DiSTA), University of Bologna, Viale G. Fanin, 44, 40127 Bologna (Italy); Di Virgilio, Nicola [Institute of Biometeorology, National Research Council, Via P. Gobetti, 101 I, 40129 Bologna (Italy)

    2008-03-15

    The chemical composition of biofuels has not received adequate attention given that it is an important aspect in the introduction of energy crops. In this study, the ash content and mineral composition (C, N, Al, Ca, Cl, Fe, K, Mg, Na, P, S, Si) of stems, leaves and reproductive organs of some promising energy crops were determined and compared with the respective recommended thresholds reported in literature. Overall, cynara exhibited the highest ash and mineral contents, which indicate high slagging, fouling and corrosion tendencies. However, cynara also showed the lowest Si content, both in leaves (4.3 g kg{sup -1}) and in stems (0.9 g kg{sup -1}). Sweet sorghum and giant reed exhibited the highest N content (up to 16 g kg{sup -1}), which greatly exceeded the recommended limits in leaves. Importantly, Cl always exceeded the recommended limits (up to 18 mg kg{sup -1} in cynara), both in stems and in leaves, thus resulting in a major stumbling block for all crops. Several significant correlations among elements were found at a single plant part; conversely these correlations were generally very weak considering different plant components, with the exception of K (r=0.91**), P (r=0.94**) and ashes (r=0.64**). Generally, leaves resulted in a significant deterioration of biofuel quality when compared with stems and flower heads. Therefore, agricultural strategies aimed at reducing the leaf component (e.g. by delaying the harvest) may considerably improve the suitability of biofuels for current combustion plants. (author)

  18. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  19. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  20. Profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    Groundnut is an important cash crop and a good source of vegetable oil to resource-poor farmers. The study examined the Profitability of Groundnut–based Cropping Systems among farmers in Hong Local Government Area of Adamawa State, Nigeria. Specifically, the socio-economic characteristics of the farmers were ...

  1. Energy crops. Data for planning of energy crop cultivation. KTBL data compilation with internet services; Energiepflanzen. Daten fuer die Planung des Energiepflanzenanbaus. KTBL-Datensammlung mit Internetangebot

    Energy Technology Data Exchange (ETDEWEB)

    Eckel, H.; Grube, J.; Zimmer, E. (comps.)

    2006-07-01

    Based on the KTBL data compilation ''Betriebsplanung Landwirtschaft'', this data compilation (''Datensammlung Energiepflanzen'') provides comprehensive information on the cultivation of energy crops and production planning. Production techniques are outlined up to the final step of provision to the consumer, so that full-scale cost calculation is possible. Hints for cultivation are presented which take into account the differences between food and fodder crop cultivation. Rare crops are gone into for which little experience is available but which have great potential for utilisation in agriculture. Energetic utilisation is a field for a wider range of crops and with new options for crop rotation. These are discussed in two separate chapters. There is also information on legal aspects of energy crop production, relevant standards, and quality requirements on substrates for energetic use and for secondary harvesting. (orig.)

  2. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Herbaceous energy crops in humid lower South USA

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M.; Woodard, K.R. [Univ. of Florida, Gainesville, FL (United States)

    1993-12-31

    The humid lower South has the long warm growing season and high rainfall conditions needed for producing high-yielding perennial herbaceous grasses and shrubs. Many potential biomass plants were evaluated during a ten-year period. Perennial tall grasses such as elephantgrass (Pennisetum purpureum), sugarcane and energycane (Saccharum spp.) and the leguminous shrub Leucaena leucocephala were the highest in biomass production. These perennial crops often have top growth killed by winter freezes and regenerate from underground parts. The tall grasses have high yields because of linear crop growth rates of 18 to 27 g m{sup 2} d{sup {minus}1} for long periods (140 to 196 d) each season. Tall grasses must be planted vegetatively, which is more costly than seed propagation, however, once established, they may persist for many seasons. Oven dry biomass yields have varied from 20 to 45 Mg ha{sup {minus}1} yr{sup {minus}1} in colder subtropical to mild temperate locations to over 60 Mg ha{sup {minus}1} yr{sup {minus}1} in the lower portion of the Florida peninsular. Highest biomass yields have been produced when irrigated with sewage effluent or when grown on phosphatic clay and muck soils in south Florida. The energy content of 1 Mg of oven dry tall grass and leucaena is equivalent to that of about 112 and 123 gallons of number 2 diesel fuel, respectively.

  4. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  5. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  6. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  7. Interest in energy wood and energy crop production among Finnish non-industrial private forest owners

    International Nuclear Information System (INIS)

    Raemoe, A.-K.; Jaervinen, E.; Latvala, T.; Toivonen, R.; Silvennoinen, H.

    2009-01-01

    EU targets and regulations regarding energy production and the reduction of greenhouse gas emissions have been tightening in the 2000s. In Finland the targets are planned to be achieved mainly by increasing the use of biomass. Wood already accounts for a marked proportion of Finnish energy production, but additional reserves are still available. Energy crop production also has considerable potential. Practically all Finnish farmers are also forest owners. Therefore, private forest owners are in a decisive position regarding the supply of energy wood and crops in Finland. In this paper the future supply of biomass is examined according to their past behaviour, intentions and attitudes. Finnish forest owners have a positive attitude towards the use of wood and crops in energy production. Price is becoming more critical as a motive for the supply of energy wood. Recreation and nature conservation play a smaller role than factors related to wood production and forest management as for motives for harvesting energy wood. However, almost a half of forest owners in this study were uncertain of their willingness to supply biomass. This is partly due to limited knowledge of the issues involved in energy wood and agricultural energy crop production and the underdeveloped markets for energy biomass. In order to achieve the targets, supply should be activated by further developing market practices, information, guidance and possibly other incentives for landowners. In general, there is interest among landowners in increasing the supply of energy biomass. However, the growth of supply presumes that production is an economically attractive and competitive alternative, that the markets are better organized than at present, and that more comprehensive information is available about bioenergy and biomass markets and production techniques.

  8. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  9. Initial study - compilation and synthesis of knowledge about energy crops from field to energy production

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Bubholz, Monika; Forsberg, Maya; Myringer, Aase; Palm, Ola; Roennbaeck, Marie; Tullin, Claes

    2007-11-15

    Energy crops constitute an yet not fully utilised potential as fuel for heating and power production. As competition for biomass increases interest in agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp is increasing. Exploiting the potential for energy crops as fuels will demand that cultivation and harvest be coordinated with transportation, storage and combustion of the crops. Together, Vaermeforsk and the Swedish Farmers' Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilisation of bioenergy from agriculture to combustion for heat and power production in Sweden. The vision is that during the course of the 2006 - 2009 programme, decisive steps will be taken towards a functioning market for biofuels for bioenergy from agriculture. This survey has compiled and synthesised available knowledge and experiences about energy crops from field to energy production. The aim has been to provide a snapshot of knowledge today, to identify knowledge gaps and to synthesise knowledge we have today into future research needs. A research plan proposal has been developed for the research programme

  10. Evaluation of triticale as energy crop in Italy.

    Science.gov (United States)

    Cantale, Cristina; Correnti, Angelo; Farneti, Anna; Felici, Fabio; Mentuccia, Luciano; Pignatelli, Vito; Sprocati, Anna Rosa; Ammar, Karim; Galeffi, Patrizia

    2014-01-01

    The promotion of renewable energy represents a target of the European 2020 strategy for economical growth and sustainable competitiveness. Cereals are considered a promising biomass producing crop in temperate regions of Europe to be used for both fuel alcohol and biogas production. Among cereals, triticale represents a good candidate for this kind of application, showing a number of advantages such as high grain yield even in marginal environments, tolerance to drought, tolerance to more acid soils, lower production costs and lower susceptibility to biotic stresses. The aim of this study was to compare yield and quality of eight triticale lines grown in marginal areas in a two-year experiment. Italian variety, Magistral, and a bread wheat variety (EW9) were selected for comparison. Data from fields, chemical analyses and preliminary results from fermentation are reported.

  11. Meteorological risks and impacts on crop production systems in Belgium

    Science.gov (United States)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  12. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  13. Multicriteria analysis for the selection of the most appropriate energy crops: the case of Cyprus

    Science.gov (United States)

    Kylili, Angeliki; Christoforou, Elias; Fokaides, Paris A.; Polycarpou, Polycarpos

    2016-01-01

    Energy crops are considered key actors in meeting the international and European carbon reduction targets, increasing the national energy security through renewable energy production, mitigating climate change impacts, and promoting sustainability. Multicriteria analysis is a suitable decision-making tool for the energy sector, where the final decisions have to consider for a range of aspects, and can be utilised as well for deciding on appropriate energy crops. In this paper, a popular multicriteria method, PROMETHEE, is employed for the identification of the most optimal energy crops for their exploitation in Cyprus. The criteria and the weights of each are defined, and accordingly five different scenarios are developed and examined. The obtained results indicated that the promotion of second-generation energy crops is more ideal in terms of the set objectives, as well as more sustainable than the exploitation of any first-generation energy crop.

  14. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    Science.gov (United States)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  15. Low Energy Technology. A Unit of Instruction on Energy Conservation in Field Crop Production.

    Science.gov (United States)

    Davis, George; Scanlon, Dennis C.

    This unit of instruction on energy conservation in field crop production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate…

  16. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  17. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  18. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    Science.gov (United States)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  19. Soil microbiome characteristics and soilborne disease development associated with long-term potato cropping system practices

    Science.gov (United States)

    Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...

  20. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2008-06-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  1. Agronomic, Energetic and Environmental Aspects of Biomass Energy Crops Suitable for Italian Environments

    Directory of Open Access Journals (Sweden)

    Giuseppina M. D’Agosta

    2011-02-01

    Full Text Available The review, after a short introduction on the tendencies of the European Community Policy on biomasses, describes the agronomic, energy potential and environmental aspects of biomass crops for energy in relation to the research activity carried out in Italy on this topic, differentiating crops on the basis of the main energy use: biodiesel and bioethanol (which refers to “first generation biofuel”, heat and electricity. Currently, many of the crops for potential energy purposes are food crops (wheat, barley, corn, rapeseed, soybean, sunflower, grain sorghum, sugar beet and their production may be used as biofuel source (bioethanol and biodiesel since their crop management aspects are well known and consequently they are immediately applicable. Other species that could be used, highly productive in biomass, such as herbaceous perennial crops (Arundo donax, Miscanthus spp., cardoon, annual crops (sweet sorghum, short rotation woody crops (SRF have been carefully considered in Italy, but they still exhibit critical aspects related to propagation technique, low-input response, harvest and storage technique, cultivars and mechanization. Crops for food, however, often have negative energetic indices and environmental impacts (carbon sequestration, Life Cycle Assessment, consequent to their low productivity. Conversely, crops which are more productive in biomass, show both a more favourable energy balance and environmental impact.

  2. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Science.gov (United States)

    Some small scale irrigation systems (powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  3. The environmental benefits of cellulosic energy crops at a landscape scale

    International Nuclear Information System (INIS)

    Graham, R.L.; Liu, W.; English, B.C.

    1995-01-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops--particularly the cellulosic energy crops current under development. For this discussion, the term energy crop refers to a crop grown primarily to create feedstock for either making biofuels such as ethanol or burning in a heat or electricity generation facility. Cellulosic energy crops are designed to be used in cellulose-based ethanol conversion processes (as opposed to starch or sugar-based ethanol conversion processes). As more cellulose can be produced per hectare of land than can sugar or starch, the cellulose-based ethanol conversion process is a more efficient sue of land for ethanol production. Assessing the environmental impacts of biomass energy from energy crops is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing cellulosic energy crops especially at the landscape or regional scale. However, to set the stage for this discussion, the authors begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics

  4. Soil organism in organic and conventional cropping systems.

    OpenAIRE

    Bettiol, Wagner; Ghini, Raquel; Galvão, José Abrahão Haddad; Ligo, Marcos Antônio Vieira; Mineiro, Jeferson Luiz de Carvalho

    2002-01-01

    Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum) and corn (Zea mays) crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. C...

  5. The value of crop germplasm and value accounting system

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; CHANG Ying

    2007-01-01

    The value evaluation and accounting of crop germplasm not only provides the theory and method for the price of germplasm, thus makes further lawful and fair transactions, but also ensures the benefits of crop germplasm owners and is also instructive in keeping the foodstuff safety. This paper founded a multidimensional value accounting system, which included physical accounting, value accounting and quality index accounting; individual accounting and total accounting; quantity accounting and quality accounting.

  6. Impact of management strategies on the global warming potential at the cropping system level

    International Nuclear Information System (INIS)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N.; Desjardins, Raymond L.; Worth, Devon E.; Zentner, Robert; Malhi, Sukhdev S.

    2014-01-01

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha −1 decreased on average the emissions of N 2 O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO 2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N 2 O, NO and NH 3 flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha −1 reduced the GWP per ha and GJ basis by 18%. • N 2 O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact

  7. Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production

    Directory of Open Access Journals (Sweden)

    Prem Woli

    2014-12-01

    Full Text Available This study was conducted to identify the crop management options—the combinations of various cultivars, irrigation amounts, planting dates, and soils—that would maximize the energy sustainability and eco-friendliness of maize (Zea mays L. stover-based ethanol production systems in the Mississippi Delta. Stover yields simulated with CERES-Maize were used to compute net energy value (NEV and carbon credit balance (CCB, the indicators of sustainability and eco-friendliness of ethanol production, respectively, for various scenarios. As the results showed, deeper soils with higher water holding capacities had larger NEV and CCB values. Both NEV and CCB had sigmoid relationships with irrigation amount and planting date and could be maximized by planting the crop during the optimum planting window. Stover yield had positive effects on NEV and CCB, whereas travel distance had negative. The influence of stover yield was larger than that of travel distance, indicating that increasing feedstock yields should be emphasized over reducing travel distance. The NEV and CCB values indicated that stover-based ethanol production in the Mississippi Delta is sustainable and environmentally friendly. The study demonstrated that the energy sustainability and eco-friendliness of maize stover-based ethanol production could be increased with alternative crop management options.

  8. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  9. MAFF overview - the present policy on energy crops, the effect of GATT and CAP

    International Nuclear Information System (INIS)

    Thomas, Richard

    1992-01-01

    This item outlines current United Kingdom government policy on energy crops. A representative of the Ministry of Agriculture, Fisheries and Food describes the effect of current international trade agreement negotiations on policy on energy crops, particularly cereals and oilseeds. The success of biofuels is thought to depend chiefly on the prevailing fiscal climate. (UK)

  10. Characterization of the southwest United States for the production of biomass energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; Folger, A.G.

    1987-03-01

    The southwest United States, an area of diverse climate, topography, terrain, soils, and vegetation, is characterized to determine the feasibility of growing terrestrial energy crops there. The emphasis in the study is on delineating general zones of relative resource and environmental suitability, which are then evaluated to estimate the potential of the region for energy crop production. 100 refs., 25 figs., 24 tabs.

  11. Assessment of GHG emissions of biomethane from energy cereal crops in Umbria, Italy

    International Nuclear Information System (INIS)

    Buratti, C.; Barbanera, M.; Fantozzi, F.

    2013-01-01

    Highlights: • GHG emissions of biomethane from energy crops cultivated in a central Italian farm were investigated. • Electricity consumption of the biogas plant was monitored. • Current scenario does not allow to achieve a GHG saving according to Renewable Energy Directive. • GHG emissions could be reduced by covering the storage tanks of digestate and installing a CHP plant. - Abstract: Biomethane from energy crops is a renewable energy carrier and therefore it potentially contributes to climate change mitigation. However, significant greenhouse gas (GHG) emissions resulting from cultivation and processing must be considered. Among those, the production and use of nitrogen fertilizers, the resulting nitrous oxide (N 2 O) emissions, the methane emissions from digestate storage and the energy consumption of the biogas plant are crucial factors. In the present paper an integrated life cycle assessment (LCA) of GHG emissions from biomethane production is carried out, taking into account own measurements and experience data from a modern biogas plant located in Umbria, Italy. The study is also focused on the electricity consumption of the biogas plant, assessing the specific absorption power of each machinery. The analysis is based on the methodology defined by the European Union Renewable Energy Directive 2009/28/EC (RED). The main result is that the biomethane chain exceeds the minimum value of GHG saving (35%) mainly due to the open storage of digestate. However by varying the system, using heat and electricity from a biogas CHP plant and covering digestate storage tank, a reduction of 68.9% could be obtained

  12. Energy infrastructure: hydrogen energy system

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T N

    1979-02-01

    In a hydrogen system, hydrogen is not a primary source of energy, but an intermediary, an energy carrier between the primary energy sources and the user. The new unconventional energy sources, such as nuclear breeder reactors, fusion reactors, direct solar radiation, wind energy, ocean thermal energy, and geothermal energy have their shortcomings. These shortcomings of the new sources point out to the need for an intermediary energy system to form the link between the primary energy sources and the user. In such a system, the intermediary energy form must be transportable and storable; economical to produce; and if possible renewable and pollution-free. The above prerequisites are best met by hydrogen. Hydrogen is plentiful in the form of water. It is the cheapest synthetic fuel to manufacture per unit of energy stored in it. It is the least polluting of all of the fuels, and is the lightest and recyclable. In the proposed system, hydrogen would be produced in large plants located away from the consumption centers at the sites where primary new energy sources and water are available. Hydrogen would then be transported to energy consumption centers where it would be used in every application where fossil fuels are being used today. Once such a system is established, it will never be necessary to change to any other energy system.

  13. Policy Instruments for an Increased Supply of Energy Crops; Styrmedel foer ett utoekat utbud av biobraensle

    Energy Technology Data Exchange (ETDEWEB)

    Stenkvist, Maria; Widmark, Annika; Wiklund, Sven-Erik; Liljeblad, Anna

    2009-05-15

    At present, energy crops are not commonly used as fuel for heat and power production in Sweden, but as a result of increased competition for biomass, the interest for agricultural fuels such as willow, straw, reed canary grass and hemp increases. The purpose of this study is through a qualitative study that includes a literature study as well as case studies carried out by interviews, with respondents in the agriculture- and energy sectors highlight the conditions for increased production and use of energy crops. The main objective is to propose relevant policy instruments that could increase the production and use of energy crops. The purpose with the proposed policy instruments is that they should serve as a basis for discussions with politicians and authorities regarding the supply of bio fuels through the use of energy crops. The result of the study indicates that the main obstacle for increasing the production and use of energy crops is that the cultivation of energy crops today is unprofitable. To reduce the production costs it is necessary to improve the competitiveness of energy crops, primarily in relation to wood chips. The study shows that there is a potential for reduction of production costs through development of the logistics chain. Policy measures promoting the use of bio fuels exists today, but are not fully used to increase the share of energy crops in the bio fuel energy mix. The reason for this is that they are generally not as cost efficient as alternative bio fuels. It is important that competition issues are addressed, both regarding competition issues between different bio fuels, but also competition issues between various energy crops that exists today. Further obstacles to accelerate the introduction of energy crops at the market are high investment costs for establishment of some of the energy crops. From the analysis in this study, the following policy instruments are suggested in order to increase the production and the use of energy

  14. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  15. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics

    Directory of Open Access Journals (Sweden)

    I.K.D. Jaya

    2014-04-01

    Full Text Available Degraded agricultural lands in the arid tropics have low soil organic carbon (SOC and hence low productivity. Poor farmers that their livelihoods depend highly on these types of lands are suffering. Cropping strategies that are able to improve the soil productivity are needed. In the present study, some intercropping models of food crops with bio-energy crop of castor (Ricinus communis L. were tested to assess their potential to improve the degraded land productivity. The intercropping models were: (1 castor - hybrid maize, (2 castor – short season maize, (3 castor – mungbean, and (4 castor –short season maize – mungbean. The results show that yields of the component crops in monoculture were relatively the same as in intercropping, resulted in a high Land Equivalent Ratio (LER. The highest LER (3.07 was calculated from intercropping castor plants with short season maize crops followed by mungbean with intercropping productivity of IDR 15,097,600.00 ha-1. Intercropping has a great potential to improve degraded agriculture land productivity and castor is a promising plant to improve biodiversity and area coverage on the land.

  16. Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China

    International Nuclear Information System (INIS)

    Zhang, L.X.; Yang, Z.F.; Chen, G.Q.

    2007-01-01

    An ecological energetic evaluation is presented in this paper as a complement to economic account for the cropping-grazing system in the Inner Mongolia Autonomous Region in China in the year 2000. Based on Odum's well-known concept of emergy in terms of embodied solar energy as a unified measure for environmental resources, human or animal labors and industrial products, a systems diagram is developed for the crop and livestock productions with arms and sub-arms for free renewable natural resource input, purchased economic investment, yields of and interactive fluxes between the cropping and grazing sub-industries. In addition to conventional systems indices of the emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR) and environmental sustainability index (ESI) introduced for congregated systems ecological assessment with essential implication for sustainability, new indicators of soil emergy cost (SEC), self-support intensity (SSI) and self-support orientation (SSO) are defined to characterize the desertification and internal recycling associated with the special agricultural system. Extensive emergy accounting is made for the cropping-grazing system as a whole as well as for the cropping and grazing subsystems. The overall cropping-grazing system is shown with outstanding production competence compared with agricultural systems in some other provinces and the national average in China, though confronted with severe desertification associated with soil loss. The production of crops has higher emergy density and yield rate per unit area as well as higher rate of soil loss than grazing system. The soil emergy cost defined as the soil loss emergy divided by the yield emergy is estimated to be of the same value for both of the subsystems, but the grazing activity is with less extraction intensity, leaving rangeland to rest and rehabilitate. Suggestions with regard to the local sustainability and national ecological security in

  17. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  18. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    DEFF Research Database (Denmark)

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E

    2013-01-01

    mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...... explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties and past and current management all......In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...

  19. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  20. Food Yields and Nutrient Analyses of the Three Sisters: A Haudenosaunee Cropping System

    Directory of Open Access Journals (Sweden)

    Jane Mt.Pleasant

    2016-11-01

    Full Text Available Scholars have studied The Three Sisters, a traditional cropping system of the Haudenosaunee (Iroquois, from multiple perspectives. However, there is no research examining food yields, defined as the quantities of energy and protein produced per unit land area, from the cropping system within Iroquoia. This article compares food yields and other nutrient contributions from the Three Sisters, comprised of interplanted maize, bean and pumpkin, with monocultures of these same crops. The Three Sisters yields more energy (12.25 x 106 kcal/ha and more protein (349 kg/ha than any of the crop monocultures or mixtures of monocultures planted to the same area. The Three Sisters supplies 13.42 people/ha/yr. with energy and 15.86 people/ha/yr. with protein. Nutrient contents of the crops are further enhanced by nixtamalization, a traditional processing technique where maize is cooked in a high alkaline solution. This process increases calcium, protein quality, and niacin in maize.

  1. Environmental and Social Management System Implementation Handbook : Crop Production

    OpenAIRE

    International Finance Corporation

    2014-01-01

    This Handbook is intended to be a practical guide to help companies in the crop production industry develop and implement an environmental and social management system, which should help to improve overall operations. If a company has existing management systems for quality or health and safety, this Handbook will help to expand them to include environmental and social performance. Sectio...

  2. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  3. Energy production study of crops with biofuel potential in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Lidia; Huerga, Ignacio; Hilbert, Jorge [Instituto Nacional de Tecnologia Agropecuaria (CIA/INTA), Buenos Aires (Argentina). Centro de Investigacion de Agroindustria. Inst. de Ingenieria Rural], Emails: ingdonato@cnia.inta.gov.ar, ihuerga@cnia.inta.gov.ar, hilbert@cnia.inta.gov.ar

    2008-07-01

    The present study is focus on the final energy balance of bioenergy production in Argentina using soybean, sunflower, rapeseed, corn and sorghum as feedstocks. The balance considers the difference between the energy contained per unit and the amount used for its generation in all the different steps from sowing to final destination. For direct energy consumption Costo Maq software was employed using local fuel consumption forecast for each field labor. Particular attention is paid to the energy consumption in the agricultural steps considering the distinctive no till system spread out in Argentina that has a very low energy input. Direct and indirect energy were considered in the different steps of bioethanol and biodiesel generation. Industrial conversion consumption was based on international literature data. Comparisons were made between tilled and no till practices and considering or not the energy contained in co products. Results indicate a balance ranging from 0.96 to 1.54 not considering the co products. If co products were introduced the balances ranged between 1.09 and 4.67. (author)

  4. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  5. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Rachael D. Garrett

    2017-03-01

    Full Text Available The reintegration of crop and livestock systems within the same land area has the potential to improve soil quality and reduce water and air pollution, while maintaining high yields and reducing risk. In this study, we characterize the degree to which federal policies in three major global food production regions that span a range of socioeconomic contexts, Brazil, New Zealand, and the United States, incentivize or disincentivize the use of integrated crop and livestock practices (ICLS. Our analysis indicates that Brazil and New Zealand have the most favorable policy environment for ICLS, while the United States provides the least favorable environment. The balance of policy incentives and disincentives across our three cases studies mirrors current patterns of ICLS usage. Brazil and New Zealand have both undergone a trend toward mixed crop livestock systems in recent years, while the United States has transitioned rapidly toward continuous crop and livestock production. If transitions to ICLS are desired, particularly in the United States, it will be necessary to change agricultural, trade, environmental, biofuels, and food safety policies that currently buffer farmers from risk, provide too few incentives for pollution reduction, and restrict the presence of animals in crop areas. It will also be necessary to invest more in research and development in all countries to identify the most profitable ICLS technologies in each region.

  6. The perspective crops for the bioregenerative human life support systems

    Science.gov (United States)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  7. Toward cropping systems that enhance productivity and sustainability

    Science.gov (United States)

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  8. Soilless cultivation system for functional food crops

    International Nuclear Information System (INIS)

    Ahamad Sahali Mardi; Shyful Azizi Abdul Rahman; Ahmad Nazrul Abd Wahid; Abdul Razak Ruslan; Hazlina Abdullah

    2007-01-01

    This soilless cultivation system is based on the fertigation system and cultivation technologies using Functional Plant Cultivation System (FPCS). EBARA Japan has been studying on the cultivation conditions in order to enhance the function of decease risk reduction in plants. Through the research and development activities, EBARA found the possibilities on the enhancement of functions. Quality and quantity of the products in term of bioactive compounds present in the plants may be affected by unforeseen environmental conditions, such as temperature, strong light and UV radiation. The main objective to develop this system is, to support? Functional Food Industry? as newly emerging field in agriculture business. To success the system, needs comprehensive applying agriculture biotechnologies, health biotechnologies and also information technologies, in agriculture. By this system, production of valuable bioactive compounds is an advantage, because the market size of functional food is increasing more and more in the future. (Author)

  9. The seawater greenhouse: desalination and crop-production in arid zones based on renewable energy

    International Nuclear Information System (INIS)

    Davies, P. A.; Paton, C.; Sablani, S. S.; Perret, J.; Goosen, M. F. A.; Walterbeek, Reinier R.

    2006-01-01

    population growth is threatening the avaliability of fresh water in many regions of the world. With agriculture accounting for approximately 70% of all water used, the water crisis is closely linked to food production and economic development. Conventional agriculture is very inefficient in its use of water with several hundred liters needed to produce just one kilogram of produce. Although seawater is abundant, conventional desalination consumes substantial energy, usually derived from fossil fuels. There is an urgent ned for affordable and sustainable means of p[roducing crops, without heavy reliance on water and energy resource. The seawater Greenhouse is a novel approach to solving this problem. It combines energy-efficient desalination with water-efficient cultivation. Pilot projects have been constructed in Tenerife, the United Arab Emirates and Oman. This paper describes the results from these projects and outlines the potential for opening the seawater Greenhouse from renewable energy sources. Different types of source are evaluated and compared with respect to cost and load matching. Conclusions are drawn about the viability of a stand-alone system for the production of water and crops.(Author)

  10. Integrated crop protection as a system approach

    NARCIS (Netherlands)

    Haan, de J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values

  11. Optimal combination of energy crops under different policy scenarios; The case of Northern Greece

    International Nuclear Information System (INIS)

    Zafeiriou, Eleni; Petridis, Konstantinos; Karelakis, Christos; Arabatzis, Garyfallos

    2016-01-01

    Energy crops production is considered as environmentally benign and socially acceptable, offering ecological benefits over fossil fuels through their contribution to the reduction of greenhouse gases and acidifying emissions. Energy crops are subjected to persistent policy support by the EU, despite their limited or even marginally negative impact on the greenhouse effect. The present study endeavors to optimize the agricultural income generated by energy crops in a remote and disadvantageous region, with the assistance of linear programming. The optimization concerns the income created from soybean, sunflower (proxy for energy crop), and corn. Different policy scenarios imposed restrictions on the value of the subsidies as a proxy for EU policy tools, the value of inputs (costs of capital and labor) and different irrigation conditions. The results indicate that the area and the imports per energy crop remain unchanged, independently of the policy scenario enacted. Furthermore, corn cultivation contributes the most to iFncome maximization, whereas the implemented CAP policy plays an incremental role in uptaking an energy crop. A key implication is that alternative forms of motivation should be provided to the farmers beyond the financial ones in order the extensive use of energy crops to be achieved. - Highlights: •A stochastic and a deterministic LP model is formulated. •The role of CAP is vital in generated income. •Imports and cultivated areas are subsidy neutral. •The regime of free market results in lower income acquired from the potential crop mix. •Non – financial motivation is a key determinant of the farmers’ attitude towards energy crops.

  12. The FSE system for crop simulation, version 2.1

    NARCIS (Netherlands)

    Kraalingen, van D.W.G.

    1995-01-01

    A FORTRAN 77 programming environment for continuous simulation of agro-ecological processes, such as crop growth and calculation of water balances is presented. This system, called FSE (FORTRAN Simulation Environment), consists of a main program, weather data and utilities for performing specific

  13. Effects of organic manure and crop rotation system on potato ...

    African Journals Online (AJOL)

    Effects of organic manure and crop rotation system on potato ( Solanum tuberosum L.) tuber ... Ethiopian Journal of Science and Technology ... (FYM); V2 = 2.5 t/h fresh sesbania green manure (FSB) V3 = 5 t/ha FYM; and V4 = 5 t/ha FYM +2.5 ...

  14. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  15. Factors affecting the choice of cropping systems in Kebbi State ...

    African Journals Online (AJOL)

    The study examined the factors that influence choice of cropping systems in Kebbi State Nigeria. The technique applied in the study was Logit regression. Data to conduct the research was obtained mainly from primary sources through a questionnaire survey of 256 farmers, comprising 98 monocroppers and 158 ...

  16. Profitability of groundnut-based cropping systems among farmers in ...

    African Journals Online (AJOL)

    Profitability of groundnut-based cropping systems among farmers in Hong local government area of Adamawa state, Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information ...

  17. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams,

  18. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  19. Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe

    International Nuclear Information System (INIS)

    Gasol, Carles M.; Gabarrell, Xavier; Rieradevall, Joan; Anton, Assumpcio; Rigola, Miquel; Carrasco, Juan; Ciria, Pilar; Solano, M.L.

    2007-01-01

    The energetic and environmental performance of production and distribution of the Brassica carinata biomass crop in Soria (Spain) is analysed using life cycle assessment (LCA) methodology in order to demonstrate the major potential that the crop has in southern Europe as a lignocellulosic fuel for use as a renewable energy source. The Life Cycle Impact Assessment (LCIA) including midpoint impact analysis that was performed shows that the use of fertilizers is the action with the highest impact in six of the 10 environmental categories considered, representing between 51% and 68% of the impact in these categories. The second most important impact is produced when the diesel is used in tractors and transport vehicles which represents between 48% and 77%. The contribution of the B. carinata cropping system to the global warming category is 12.7 g CO 2 eq. MJ -1 biomass produced. Assuming a preliminary estimation of the B. carinata capacity of translocated CO 2 (631 kg CO 2 ha -1 ) from below-ground biomass into the soil, the emissions are reduced by up to 5.2 g CO 2 eq. MJ -1 . The production and transport are as far as a thermoelectric plant of the B. carinata biomass used as a solid fuel consumes 0.12 MJ of primary energy per 1 MJ of biomass energy stored. In comparison with other fossil fuels such as natural gas, it reduces primary energy consumption by 33.2% and greenhouse gas emission from 33.1% to 71.2% depending on whether the capacity of translocated CO 2 is considered or not. The results of the analysis support the assertion that B. carinata crops are viable from an energy balance and environmental perspective for producing lignocellulosic solid fuel destined for the production of energy in southern Europe. Furthermore, the performance of the crop could be improved, thus increasing the energy and environmental benefits. (author)

  20. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    will be lower than indicated by our data. We obtained the greatest net reduction in greenhouse gas emissions by co-production of bioethanol and biogas or by biogas alone produced from either fresh grass-clover or whole crop maize. Here the net reduction corresponded to about 8 tons CO2 per hectare per year...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  1. National and regional economic impacts of electricity production from energy crops in the Netherlands

    NARCIS (Netherlands)

    Vlasblom, J.; Broek, R. van den; Meeusen-van Onna, M.

    1998-01-01

    Besides the known environmental benefits, national and regional economic impacts may form additional arguments for stimulating government measures in favour of electricity production from energy crops in the Netherlands. Therefore, we compared the economic impacts (at both national and regional

  2. Optimization of Southeastern Forest Biomass Crop Production: A Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations

    Energy Technology Data Exchange (ETDEWEB)

    Chescheir, George M. [North Carolina State Univ., Raleigh, NC (United States); Nettles, Jami E, [Weyerhaeuser Company; Youssef, Mohamed [North Carolina State Univ., Raleigh, NC (United States); Birgand, Francois [North Carolina State Univ., Raleigh, NC (United States); Amatya, Devendra M. [United States Forest Service; Miller, Darren A. [Weyerhaeuser Company; Sucre, Eric [Weyerhaeuser Company; Schilling, Erik [National Council for Air and Stream Improvement, Inc.; Tian, Shiying [North Carolina State Univ., Raleigh, NC (United States); Cacho, Julian F. [Argonne National Lab. (ANL), Argonne, IL (United States); Bennett, Erin M. [Ecosystem Planning and Restoration, LLC; Carter, Taylor [HDR; Bowen, Nicole Dobbs [Engineering Design Consultants; Muwamba, Augustine [College of Charleston; Panda, Sudhanshu [University of North Georgia; Christopher, Sheila [Univ. of Notre Dame, IN (United States); Phillips, Brian D. [North Carolina State Univ., Raleigh, NC (United States); Appelboom, Timothy [NC Department of Environmental Quality; Skaggs, Richard W. [North Carolina State Univ., Raleigh, NC (United States); Greene, Ethan J. [Land Trust for Central North Carolina; Marshall, Craig D. [Mississippi State University; Allen, Elizabeth [North Carolina State Univ., Raleigh, NC (United States); Schoenholtz, Stephen H. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2018-04-12

    Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land.

    The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize these results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States.

    Specific objectives are to:

    1. Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast.
    2. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality.
    3. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter.
    4. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems.
    5. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations.
    6. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production.
    7. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems.
    Watershed and plot scale studies

  3. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  4. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    Science.gov (United States)

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  5. Feed legumes for truly sustainable crop-animal systems

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2017-06-01

    Full Text Available Legume cultivation has sharply decreased in Italy during the last 50 years. Lucerne remains widely grown (with about 12% of its area devoted to dehydration, whereas soybean is definitely the most-grown grain legume. Poor legume cropping is mainly due to the gap in yielding ability with major cereals, which has widened up in time according to statistical data. Lucerne displays definitely higher crude protein yield and somewhat lower economic gap with benchmark cereals than feed grain legumes. Pea because of high feed energy production per unit area and rate of genetic progress, and white lupin because of high protein yield per unit area, are particularly interesting for Italian rain-fed environments. Greater legume cultivation in Europe is urged by the need for reducing energy and green-house gas emissions and excessive and unbalanced global N flows through greater symbiotic N fixation and more integrated crop-animal production, as well as to cope with ongoing and perspective raising prices of feed proteins and N fertilisers and insecurity of feed protein supplies. The transition towards greater legume cultivation requires focused research effort, comprehensive stakeholder cooperation and fair economic compensation for legume environmental services, with a key role for genetic improvement dragged by public breeding or pre-breeding. New opportunities for yield improvement arise from the ongoing development of cost-efficient genome-enabled selection procedures, enhanced adaptation to specific cropping conditions via ecophysiological and evolutionary-based approaches, and more thorough exploitation of global genetic resources.

  6. Energy Information Systems

    Science.gov (United States)

    Home > Building Energy Information Systems and Performance Monitoring (EIS-PM) Building Energy evaluate and improve performance monitoring tools for energy savings in commercial buildings. Within the and visualization capabilities to energy and facility managers. As an increasing number of

  7. Fertilizer consumption and energy input for 16 crops in the United States

    Science.gov (United States)

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  8. Willow trees from heavy metals phytoextraction as energy crops

    International Nuclear Information System (INIS)

    Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Habart, Jan; Svoboda, Karel; Punčochář, Miroslav

    2012-01-01

    Phytoextraction ability of some fast growing plant species leads to the idea of connecting biomass production with soil remediation of contaminated industrial zones and regions. This biomass will contain significant amount of heavy metals and its energetic utilization has to be considered carefully to minimize negative environmental impacts. This study was focused on potential disposal methods of willow trees contaminated by heavy metals (Cd, Cu, Pb, Zn) with the emphasis on energetic utilization of biomass. Composting seems to be suitable pre-treatment method resulting in decrease of heavy metals leachability and biomass weight reduction. The possibility of willow trees application for energetic purposes was investigated and consequently incineration tests of willow trees samples in fluidized bed reactor were realized. Distribution of selected heavy metals in different ash fractions and treatment methods of produced ashes were studied as well. -- Highlights: ► Composting is an appropriate pre-treatment method for phytoextraction crops. ► Fluidized bed combustion is suitable disposal method of phytoextraction crops. ► Ashes from phytoextraction crops combustion cannot be used as fertilizers.

  9. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  10. Impact of management strategies on the global warming potential at the cropping system level.

    Science.gov (United States)

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review

    Directory of Open Access Journals (Sweden)

    Melissa PRELAC

    2016-09-01

    Full Text Available Phytoremediation is a method that use plants which can remove or stabilize pollutants in the environment. The aim of the polluted area remediation is to return ecosystems into original condition. Phytoremediation is a green technology used for a wide range of pollutants as well as on various lands, low costs and reduced environment impacts. Energy crops are relatively new in this field of researches and insufficiently explored. However, the results so far show their potential in heavy metal removal. The aim of this research was to examine the available literature and determine the phytoremediation potential of cadmium, chromium, copper, lead, mercury, nickel and zinc from the soil using Arundo donax, Miscanthus x giganteus, Panicum virgatum, Pennisetum purpureum, Sida hermaphrodita and Sorghum x drummondii. According to the researches conditions, studied energy crops are reccomended in heavy metals phytoextraction, rhizofiltration, stabilization and accumulation. Still, those plants accumulate higher concentrations of heavy metals in the rhizosphere which makes them heavy metals excluders since heavy metals are not translocated into the plants' shoot system and favorable in the implementation of rhizofiltration as well.

  12. Energy productivity of some plantation crops in Malaysia and the status of bioenergy utilisation

    International Nuclear Information System (INIS)

    Lim, K.O.; Zainal Alimuddin Zainal Alauddin; Ghulam Abdul Quadir; Mohd Zulkifly Abdullah

    2000-01-01

    The paper assesses the energy productivity of the major plantation crops in Malaysia as well as the status of bioenergy utilisation in that country. Of the crops studied and under present local cultivation practices, oil palms and cocoa trees stand out as good trappers of solar energy while paddy plants are the least efficient. Presently, Malaysia consumes roughly 340 million boe of energy per year. Of this amount 14% are contributed by biomass. However of the total amount of biowastes generated in the country roughly 24.5% are already utilised for energy purposes and roughly 75.5% are still unutilised and therefore wasted. (Author)

  13. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  14. Managed Multi-strata Tree + Crop Systems: An Agroecological Marvel

    Directory of Open Access Journals (Sweden)

    P. K. Ramachandran Nair

    2017-12-01

    Full Text Available Today, when the emphasis on single-species production systems that is cardinal to agricultural and forestry programs the world over has resulted in serious ecosystem imbalances, the virtues of the time-tested practice of growing different species together as in managed Multi-strata Tree + Crop (MTC systems deserve serious attention. The coconut-palm-based multispecies systems in tropical homegardens and shaded perennial systems are just two such systems. A fundamental ecological principle of these systems is niche complementarity, which implies that systems that are structurally and functionally more complex than crop- or tree monocultures result in greater efficiency of resource (nutrients, light, and water capture and utilization. Others include spatial and temporal heterogeneity, perennialism, and structural and functional diversity. Unexplored or under-exploited areas of benefits of MTC systems include their ecosystem services such as carbon storage, climate regulation, and biodiversity conservation. These multispecies integrated systems indeed represent an agroecological marvel, the principles of which could be utilized in the design of sustainable as well as productive agroecosystems. Environmental and ecological specificity of MTC systems, however, is a unique feature that restricts their comparison with other land-use systems and extrapolation of the management features used in one location to another.

  15. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Science.gov (United States)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  16. nteraction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    E azizi

    2016-05-01

    of 3 soybean varieties, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest NUE. In the two years, intercropping of millet, soybean and sesame and intercropping of millet, sesame, fenugreek and ajowan showed the highest nitrogen and phosphorus absorption efficiency (NAE. Intercropping of millet, soybean and sesame showed the highest potassium uptake efficiency. In this study, nutrient resource did not have a significant effect on water and nutrient use efficiency. The research results have indicated that often nitrogen amount and use efficiency in legume and non legume intercropping were higher than monocultures. This indicates the synergist effect in the intercroppings (Vandermeer, 1989; Szumigalski & Van Acker, 2006. In general, the different benefits of diversity and better use of available inputs are obtained by increasing the diversity of crops and proper selection of plants cultivated in intercropping systems and crop rotations in monoculture systems Acknowledgments This research (044 p was funded by the Vice Chancellor for Research of the Ferdowsi University of Mashhad, which is hereby acknowledged.

  17. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  18. Dynamic cropping systems: Holistic approach for dryland agricultural systems in the northern Great Plains of North America

    Science.gov (United States)

    Cropping systems over the past century have developed greater crop specialization, more effectively conserve our soil and water resources, and are more resilient. The purpose of this chapter is to discuss the evolution of cropping systems in the Northern Great Plains and provide an approach to crop...

  19. Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System

    OpenAIRE

    Daniel, James B. II

    1997-01-01

    Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and qu...

  20. Impact of management strategies on the global warming potential at the cropping system level

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  1. Effects of alternative cropping systems on globe artichoke qualitative traits.

    Science.gov (United States)

    Spanu, Emanuela; Deligios, Paola A; Azara, Emanuela; Delogu, Giovanna; Ledda, Luigi

    2018-02-01

    Traditionally, globe artichoke cultivation in the Mediterranean basin is based on monoculture and on use of high amounts of nitrogen fertiliser. This raises issues regarding its compatibility with sustainable agriculture. We studied the effect of one typical conventional (CONV) and two alternative cropping systems [globe artichoke in sequence with French bean (NCV1), or in biannual rotation (NCV2) with cauliflower and with a leguminous cover crop in inter-row spaces] on yield, polyphenol and mineral content of globe artichoke heads over two consecutive growing seasons. NCV2 showed statistical differences in terms of fresh product yield with respect to the monoculture systems. In addition, the dihydroxycinnamic acids and dicaffeoylquinic acids of non-conventional samples were one-fold significantly higher than the conventional one. All the samples reported good mineral content, although NCV2 achieved a higher Fe content than conventional throughout the two seasons. After two and three dates of sampling, the CONV samples showed the highest levels of K content. In our study, an acceptable commercial yield and quality of 'Spinoso sardo' were achieved by shifting the common conventional agronomic management to more sustainable ones, by means of an accurate choice of cover crop species and rotations introduced in the systems. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia

    Directory of Open Access Journals (Sweden)

    Tek Maraseni

    2015-11-01

    Full Text Available Several studies have quantified the energy consumption associated with crop production in various countries. However, these studies have not compared the energy consumption from a broad range of farming practices currently in practice, such as zero tillage, conventional tillage and irrigated farming systems. This study examines direct on-farm energy use for high value grain crops grown under different farming practices in Australia. Grain farming processes are identified and “typical” farming operation data are collected from several sources, including published and unpublished literature, as well as expert interviews. The direct on-farm energy uses are assessed for 27 scenarios, including three high value grain crops―wheat, barley and sorghum―for three regions (Northern, Southern and Western Australia under three farming conditions with both dryland (both for conventional and zero-tillage and irrigated conditions. It is found that energy requirement for farming operations is directly related to the intensity and frequency of farming operations, which in turn is related to tillage practices, soil types, irrigation systems, local climate, and crop types. Among the three studied regions, Western Australia requires less direct on-farm energy for each crop, mainly due to the easily workable sandy soils and adoption of zero tillage systems. In irrigated crops, irrigation energy remains a major contributor to the total on-farm energy demand, accounting for up to 85% of total energy use.

  3. Emission of N2O from production of energy crops

    International Nuclear Information System (INIS)

    Lind, A.M.; Joergensen, U.; Maag, M.

    1995-01-01

    The contribution of N 2 O (nitrous oxide) to the greenhouse effect has been increasing during the latest years. The increase in the contribution from N 2 O is partly caused by increasing emission from soil, mainly due to human activity, and partly as a result of an increasing radiatively greenhouse effect as relative to CO 2 according to general recalculations and reevaluation. The contribution from agriculture is directly from cultivated soil as well as indirectly (production of fertilizer and food). Formation of N 2 O in soil is mainly dependent on variations in content of soil water, oxygen state, and on availability of organic matter. Soil type and cropping are also important. The factors are interrelated, and their influence on the two N 2 O-forming processes, nitrification and denitrification, are very fluctuating resulting in large variations (spatial and temporal) for measurements of the emission in field. In the present paper, the state of knowledge is given for the emission of nitrous oxide from cultivated soil as well as from different types of natural ecosystems. Significant differences between N 2 O-emission from different annual crops cannot be expected. Based on Danish measurements of N 2 O-emission (spring barley, winter wheat and spring rape) the net displacement of CO 2 is calculated. The deduction of N 2 O varied from being double as high as the deduction for the production dependent CO 2 -emission to a lot less than that. There was a marked influence of the yields of the specific crops in the actual measuring years on the relative effect of the N 2 O deduction on the net-displacement of CO 2 . (EG)

  4. Croatian Energy System Defossilization

    International Nuclear Information System (INIS)

    Potocnik, V.

    2013-01-01

    Defossilization of an energy system, as primary cause of the actual climate change, means exchange of predominantly imported fossil fuels with climate more convenient energy carriers, facilitating thus the way out of crisis.Overview of the world and Croatian energy system situation is presented as well as the overview of climate change. The most important Croatian energy system defossilization measures-energy efficiency increase, renewable energy inclusion and others - are described.(author)

  5. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    Science.gov (United States)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  6. Energy systems security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Energy Systems Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to electricity transmission grids and their protection, risk assessment of energy systems, analysis of interdependent energy networks. Methods to manage electricity transmission disturbances so as to avoid blackouts are discussed, and self-healing energy system and a nano-enabled power source are presented.

  7. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and a 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.

  8. Cultivation of energy crops. Environmental impacts, competitive utilization and potentials; Anbau von Energiepflanzen. Umweltauswirkungen, Nutzungskonkurrenzen und Potenziale

    Energy Technology Data Exchange (ETDEWEB)

    Muehlenhoff, Joerg

    2013-04-15

    This background paper under consideration reports on the utilization of energy crops with regard to energy supply and climate change. Energy crops are renewable plants which are grown only for energy utilization. The harvested biomass is prepared for the power supply, heat supply and fuel supply by means of different usage paths.

  9. Biological N2 fixation by chickpea in inter cropping system on sand soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant nutrition and fertilization unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea incorporating. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. In cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes, where benefit is found, it is mainly due to sparing of soil N rather than direct transfer from the legume. Inter cropped wheat, has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system an increase of wheat grain yield against the sole system, regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between or gain sources reflected the superiority of compost under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil systems. While totally organic materials had accumulates more N in grains than those of untreated treated control. In the some time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. A mong the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (%Ndfa) shoots and seeds of chickpea plants: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  10. Soil fertility and soil loss constraints on crop residue removal for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, S.

    1979-07-01

    A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

  11. Cover Crop (Rye) and No-Till System in Wisconsin

    OpenAIRE

    Alföldi, Thomas

    2014-01-01

    Erin Silva, University of Wisconsin, describes an organic no-till production technique using rye as cover crop to suppress weeds in the following production season. Using a roller-crimper, the overwintering rye is terminated at the time of cash crop planting, leaving a thick mat of plant residue on the soil surface. Soybeans are sown directly into the cover crop residue, allowing the cash crop to emerge through the terminated cover crop while suppressing weeds throughout the season. W...

  12. No till system of maize and crop-livestock integration

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2013-12-01

    Full Text Available The aim of this work was to evaluate the implementation of the Integrated Crop-Livestock (ICL in beef cattle farms where the corn was planted directly on the pasture, under no-till system, in the first year. The Crop-Livestock Integration (CLI models evaluated consisted of Brachiaria decumbens pastures intercropped with corn in the no tillage system. However, the evaluated CLI system differed from the usual system because it did not use the conventional tillage in the first year, while the conventional soil preparation and sowing of grass is used by most of the Brazilian farms. The results show that in the first year the period of time spent planting and side-dressing nitrogen   on corn was longer compared to the following years, mainly due to the lack of uniformity of the ground surface, once no conventional tillage was used to prepare the soil and these operations were performed with own implements for direct planting. Therefore, many seeds were placed either very deep or not buried, thus compromising the crop and becoming necessary to replant the corn with a manual planter. From the second year on, even though the conditions were not ideal, the ground surface became more accessible for the sowing and cultivation of corn, after the tillage of the first year. The time spent in most operations performed was longer than usual, especially planting and side-dressing nitrogen on the corn so that the discs did not chop off plants due to the irregularities of the ground surface. Productivity dropped due to the problems already discussed that contributed to a lower income. It is therefore concluded that, under these experimental conditions, the conventional tillage is imperative when implementing the CLI system, even considering the soil management improvements observed from the first to the second year.

  13. Evaluation of energy plantation crops in a high-throughput indirectly heated biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, M.A.; Litt, R.D. [Battelle, Columbus, OH (United States)

    1993-12-31

    Experiments were run in Battelle`s 10 ton per day Process Research Unit (PRU) gasifier using two high-growth, energy plantation crops -- hybrid poplar -- and an herbaceous biomass crop -- switch grass. The results show that both feedstocks provide gas production rates, product gas compositions, and heating value similar to other biomass feedstocks tested in the Battelle gasification process. The ash compositions of the switch grass and hybrid poplar feedstocks were high in potassium relative to previously tested biomass feedstocks. High growth biomass species tend to concentrate minerals such as potassium in the ash. The higher potassium content in the ash can then cause agglomeration problems in the gasification system. A method for controlling this agglomeration through the addition of small amounts (approximately 2 percent of the wood feed rate) of an additive could adequately control the agglomeration tendency of the ash. During the testing program in the PRU, approximately 50 tons of hybrid poplar and 15 tons of switch grass were gasified to produce a medium Btu product gas.

  14. Kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Folini, P.

    1983-09-03

    A flywheel system for the purpose of energy storage in decentral solar- or wind energy plants is introduced. The system comprises a rotor made out of plastic fibre, a motor/generator serving as electro-mechanical energy converter and a frequency-voltage transformer serving as electric adapter. The storable energy quantity amounts to several kWh.

  15. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  16. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  17. Rapeseed is an efficient energy crop which can still improve

    Directory of Open Access Journals (Sweden)

    Flenet Francis

    2007-11-01

    Full Text Available The ability of biofuels to contribute efficiently to the replacement of fossil energy and to the reduction of greenhouse gas emissions has been a matter of debate. Hence, there is a need to assess accurately the energy balance of biofuels and their ability to reduce greenhouse gas emissions, in order to evaluate and to improve the benefit for society. In rapeseed, the energy ratio (energy produced per unit of non-renewable energy input is well above 2 whatever the method of calculation. In order to investigate the variability of energy ratios and to identify ways of improvement, a study was conducted in France in 2005 and 2006. The method of mass allocation of input energy was used for calculations, instead of the substitution method, because with this method the results do not depend on the utilization of co-products. Hence, this method is better adapted to follow improvements. A great variability in the energy ratio was observed in 2005 and 2006. Seed yields and energy cost of fertilizer N explained most of this variability. Hence, improvements should focus on increasing yield with little increase in energy cost, and on decreasing wasting of N fertilizer. However the farmer incomes, and the net production of energy per hectare, must also be a matter of concern. The inventories of greenhouse gas emissions of biofuels are still uncertain because of the great variability of soil emissions, due to environmental and management factors. Hence, in order to assess the effect of rapeseed on greenhouse gas emissions, methods based on process-oriented models accounting for these factors must be used. Such models give promising results, but further testing is still needed.

  18. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    Science.gov (United States)

    Agostini, Francesco; Gregory, Andrew S; Richter, Goetz M

    Soil organic carbon (SOC) changes associated with land conversion to energy crops are central to the debate on bioenergy and their potential carbon neutrality. Here, the experimental evidence on SOC under perennial energy crops (PECs) is synthesised to parameterise a whole systems model and to identify uncertainties and knowledge gaps determining PECs being a sink or source of greenhouse gas (GHG). For Miscanthus and willow ( Salix spp.) and their analogues (switchgrass, poplar), we examine carbon (C) allocation to above- and belowground residue inputs, turnover rates and retention in the soil. A meta-analysis showed that studies on dry matter partitioning and C inputs to soils are plentiful, whilst data on turnover are rare and rely on few isotopic C tracer studies. Comprehensive studies on SOC dynamics and GHG emissions under PECs are limited and subsoil processes and C losses through leaching remain unknown. Data showed dynamic changes of gross C inputs and SOC stocks depending on stand age. C inputs and turnover can now be specifically parameterised in whole PEC system models, whilst dependencies on soil texture, moisture and temperature remain empirical. In conclusion, the annual net SOC storage change exceeds the minimum mitigation requirement (0.25 Mg C ha -1 year -1 ) under herbaceous and woody perennials by far (1.14 to 1.88 and 0.63 to 0.72 Mg C ha -1 year -1 , respectively). However, long-term time series of field data are needed to verify sustainable SOC enrichment, as the physical and chemical stabilities of SOC pools remain uncertain, although they are essential in defining the sustainability of C sequestration (half-life >25 years).

  19. Miscanthus: A Review of European Experience with a Novel Energy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Scurlock, J.M.O.

    1999-02-01

    Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5-10 years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this novel energy crop deserves serious investigation as a possible candidate biofuel crop for the US alongside switchgrass. To date, no agronomic trials or trial results for miscanthus are known from the conterminous US, so its performance under US conditions is virtually unknown. Speculating from European data, under typical agricultural practices over large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As with most of the new bioenergy crops, there seems to be a steep ''learning curve.'' Establishment costs appear to be fairly high at present (a wide range is reported from different European countries), although these may be expected to fall as improved management techniques are developed.

  20. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Yang

    2017-06-01

    Full Text Available In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with four crop rotations: sweet potato→ cotton→ sweet potato→ winter wheat-summer maize (SpCSpWS, 4-year cycle; peanuts → winter wheat-summer maize (PWS, 2-year cycle; ryegrass–cotton→ peanuts→ winter wheat-summer maize (RCPWS, 3-year cycle; and winter wheat-summer maize (WS, each year. We found that, compared to WS, the SpCSpWS annual evapotranspiration was 28% lower, PWS was 19% lower and RCPWS was 14% lower. The yield per unit of water evaporated improved for wheat within any alternative rotation compared to WS, increasing up to 19%. Average soil moisture contents at the sowing date of wheat in the SpCSpWS, PWS, and RCPWS rotations were 7, 4, and 10% higher than WS, respectively. The advantage of alternative rotations was that a deep rooted crop of winter wheat reaching down to 180 cm followed shallow rooted crops (sweet potato and peanut drawing soil moisture from 0 to 120 cm. They benefited from the sequencing and vertical complementarity of soil moisture extraction. Thus, replacing the traditional crop rotation with cropping system that involves rotating with annual shallow rooted crops is promising for reducing groundwater depletion in the North China Plain.

  1. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  2. Short rotation woody crops: Using agroforestry technology for energy in the United States

    International Nuclear Information System (INIS)

    Wright, L.L.; Ranney, J.W.

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described

  3. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    A field experiment was carried out in an arable organic cropping system and included a sequence with sole cropped fababean (Vicia faba L.), lupin (Lupinus angustifolius L.), pea (Pisum sativum L.), oat (Avena sativa L.) and pea–oat intercropping with or without an undersown perennial ryegrass...... N2 fixation and 15N labeling technique to determine the fate of pea and oat residue N recovery in the subsequent crop. The subsequent spring wheat and winter triticale crop yields were not significantly affected by the previous main crop, but a significant effect of catch crop undersowing...

  4. Rodigo Uno (Italy) geothermal thermal energy for crop drying

    International Nuclear Information System (INIS)

    Facchini, U.; Sordelli, C.; Magnoni, S.; Cantadori, M.

    1992-01-01

    This paper outlines the chief design and performance features of a forage drying installation which makes use of locally available geothermal energy. The heat exchange is accomplished through a water-air exchanger directly fed by 59 degrees C geothermal springs. Two 80,000 cubic meter/hour ventilators, making use of this energy (58 to 38 degrees C heat exchange), raise the drying air temperature by 16 degrees C, while providing an overall drying capacity of 43,200 kg/day. The balance of available 38 degrees C geothermal energy is being employed by a local aquaculture farm. The paper comments on the economic and environmental benefits being derived from this direct utilization of geothermal energy

  5. Jerusalem artichoke: what is its potential. [Energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, M.D.

    1979-01-01

    The agronomic potential of Jerusalem artichokes (J.A.) and the economic possibilities of commercial production of these tubers for use in fuel production is discussed. The nutrient content and the composition of reducing sugars in 6 strains of J.A. are given. Energy requirements in terms of energy resource depletion of fossil fuel to produce 1 hectare of J.A. and the theoretical yields of ethanol from J.A., sugar beet, corn, and wheat are tabulated. (DMC)

  6. Methods to enhance hydrolysis during one and two-stage anaerobic digestion of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Jagadabhi, P. S.

    2011-07-01

    The objective of this thesis was to evaluate methods to enhance hydrolysis (measured as specific SCOD production, g SCOD g-1 VS) during one and two-stage anaerobic digestion (AD) of energy crops and crop residues. Addition of macro (NH{sub 4}Cl), micro nutrients (Fe, Ni, Co and Mo) and leachate replacement during mono-digestion of grass silage in one-stage leach bed reactors (LBRs) enhanced hydrolysis by 18 % (0.56 g SCOD g-1 VS), 7 % (0.45 g SCOD g-1 VS) and 34 % (0.51 g SCOD g-1 VS) respectively compared to respective controls. On the other hand, creating micro-aerobic conditions (at 1 l min-1, 2.5 l of air) did not improve hydrolysis but enhanced VFA production by 4 fold (from 2.2 g l-1 to 9 g l-1). Application of rumen cultures improved hydrolysis by 10 % (0.33 g SCOD g-1 VS) more than control (0.30 g SCOD g-1 VS). Similarly, during two-stage AD in LBR-UASB reactor configuration leachate replacement enhanced hydrolysis in cucumber and grass silage (0.5 g SCOD g-1 VS) than in tomato and common reed (0.35 and 0.15 g SCOD g-1 VS respectively). During co-digestion of grass silage and cow manure at a ratio of 30:70 (VS) in CSTR, re-circulation of alkali treated solid fraction of digestate did not improve the anaerobic biodegradation rates or methane yields. Results from batch experiments showed that methane potential of grass silage varied from 0.28-0.39 m3 CH{sub 4} kg-1 VS{sub added} in all the experiments. On the other hand, methane potentials of the studied crop residues were 0.32 m3 CH{sub 4} kg-1 VS{sub added} for tomato and 0.26 m3 CH{sub 4} kg-1 VS{sub added} for cucumber and common reed. Alkali pretreatment of solids, obtained from digestate (during co-digestion of grass silage and cow manure in one-stage CSTRs), at a low concentration of 20 g NaOH kg-1 VS resulted in higher methane yield (0.34 m3 CH{sub 4} kg-1 VS{sub added}) than the other tested dosages (40 and 60 g NaOH kg-1 VS). Addition of macro nutrient (NH{sub 4}Cl) enhanced methane potential of

  7. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    Science.gov (United States)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  8. The feasibility of crop diversification in rice based cropping systems in haor ecosystem

    OpenAIRE

    Shopan, J.; Bhuiya, M.S.U.; Kader, M.A.; Hasan, M.K.

    2012-01-01

    An experiment was conducted in five farmers’ field in Dingaputa haor of Purba Tetulia village, Mohangonj Upazila in Netrakona district during the period from 20 July 2010 to 15 May 2011. The objective of the study was to determine the feasibility of growing short duration vegetable and oil crops in seasonal fallow of Boro rice-Fallow-Fallow cropping patterns in terms of both combined yields and economic performance. Six short duration vegetables such as potato, red amaranth, stem amaranth, sp...

  9. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

    DEFF Research Database (Denmark)

    Halberg, Niels; Dalgaard, Randi; Olesen, Jørgen E

    2008-01-01

    -energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50-60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer......, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields...

  10. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    Science.gov (United States)

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. An ultrasonic system for weed detection in cereal crops.

    Science.gov (United States)

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-12-13

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  12. Comparison of the effects of different crop rotation systems on winter ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... were found the best crop rotation systems under rain-fed conditions of ... Crop rotation is one of the major cultural practices in the .... components such as seed weight in a spike, harvest index, seed ..... due to high prices of product belonging to fodder pea and ... was a cash crop in agricultural marketing.

  13. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  14. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Dresbøll, Dorte Bodin; Kristensen, Hanne Lakkenborg

    2012-01-01

    systems based on fertility building crops (green manures and catch crops). In short, the main distinctions were not observed between organic and conventional systems (i.e. C vs. O1, O2 and O3), but between systems based mainly on nutrient import vs. systems based mainly on fertility building crops (C...... of the organic rotation, both relying on green manures and catch crops grown during the autumn after the main crop as their main source of soil fertility, and the O3 system further leaving rows of the green manures to grow as intercrops between vegetable rows to improve the conditions for biodiversity...... were found. Root growth of all crops was studied in the C and O2 system, but only few effects of cropping system on root growth was observed. However, the addition of green manures to the systems almost doubled the average soil exploration by active root systems during the rotation from only 21% in C...

  15. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  16. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  17. Interaction of nutrient resource and crop diversity on resource use efficiency in different cropping systems

    Directory of Open Access Journals (Sweden)

    M Allahdadi

    2016-05-01

    Full Text Available Introduction With the continuous growth of world population, degradation and ecological imbalance throughout the world, there is a need to increase agricultural production and environmental protection measures. In this respect, efforts to supply nutrients to the environment are at the head of the programs. One of the ways to approach this goal is the use of intercropping systems (Najafi & Mohammadi, 2005(. Suitable performance in intercropping systems may be achieved by selecting genotypes possessing traits consistent with and appropriate for establishing minimum and maximum synergy and competition employing proper agronomic practices such as density and planting pattern (Mutungamiri et al., 2001. In this context, selected plants should be less competitive in terms of environmental impact. The purpose of this study was to investigate the effect of different planting patterns on the competition between the two species of Calendula and soybean and to evaluate the yield and quality of an intercropping system compared with a mono-cropping system. Materials and Methods In order to evaluate the competition between soybean and calendula, a field experiment was conducted based on randomized complete block design with 7 treatments and 3 replications in the research farm of the Faculty of Agriculture, the University of Tabriz in 2009. The treatments included pure stands for both species, 1:1, 2:2, 4:2, 4:4 and 6:4 for soybean and calendula number of rows per strip, respectively. Before planting, soybean seeds were inoculated with Bradyrhyzobium japonicum. Before harvesting, the number of pods per plant, seeds per plant, 1000- grain weight, grain yield, percentage of oil and protein of soybean grain were measured in 10 randomly selected plants. The number of flowers per plant, dry inflorescence weight and dry petal weight of Calendula were recorded. The harvest of flowers of calendula began on July 30 and harvesting was done every 15 days in six steps. It

  18. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  19. Report of the workshop 'State of the art of Energy Crops Cultivation', 29 April 1998

    International Nuclear Information System (INIS)

    Gigler, J.K.

    1998-06-01

    The presentations (mainly copies of overhead sheets) of the title workshop are given. Technical (supply, transport and logistics), economical (cost price, market, and financing), environmental (life cycle analysis, biodiversity and physical planning), and other aspects (regulations, Bioguide and combined cultivation) with respect to the production of energy crops were discussed

  20. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  1. Decentralized energy from waste systems

    International Nuclear Information System (INIS)

    Antizar-Ladislao, B.; Turrion-Gomez, J. L.

    2010-01-01

    In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change. (author)

  2. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  3. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies....

  4. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Björnsson, Lovisa

    2012-01-01

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  5. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...... and foster learning in participatory co-design workshops. Results and expectations: The expected results of the Climate-CAFE on-going project will produce an overview of potential CC adaptation measures for selected sites across the EU, along with mutual learning experiences for improved understanding......Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...

  6. Symbiotic Performance of Herbaceous Legumes in Tropical Cover Cropping Systems

    Directory of Open Access Journals (Sweden)

    Basil Ibewiro

    2001-01-01

    Full Text Available Increasing use of herbaceous legumes such as mucuna (Mucuna pruriens var. utilis [Wright] Bruck and lablab (Lablab purpureus [L.] Sweet in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2. The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM than live mulch (LM systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.

  7. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    Directory of Open Access Journals (Sweden)

    Ian J. Bonner

    2014-10-01

    Full Text Available Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L. grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF. The strategy used in the case study integrates switchgrass (Panicum virgatum L. into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection, while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1 and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1 and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.

  8. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  9. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, H.B.

    2008-01-01

    . The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...

  10. Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland

    International Nuclear Information System (INIS)

    Styles, David; Jones, Michael B.

    2007-01-01

    It has been demonstrated that Miscanthus and willow energy-crop cultivation could be economically competitive with current agricultural land uses at a farm-gate biomass price ranging from EUR70 to EUR130 t -1 dry matter [Styles, D., Thorne, F., Jones, M.B., in review. Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems. Biomass and Bioenergy, May 2006]. This paper uses the same farm-gate prices to calculate the economic competitiveness of energy crop electricity and heat production, using a net-present-value (NPV) approach (20-year period, 5% discount rate). Direct and gasified co-firing of willow wood with coal would result in electricity generation 30% or 37% more expensive than coal generation, at current coal and CO 2 allowance prices and a farm-gate biomass cost of EUR100 t -1 . 'Break-even' CO 2 allowance prices are EUR33 and EUR37 t -1 , respectively. However, co-firing of Miscanthus with peat is close to economic competitiveness, and would require a CO 2 allowance price of EUR16 t -1 to break-even (against a current price of EUR12 t -1 ). NPV analyses indicate that wood heat is significantly cheaper than oil, gas or electric heat, excluding existing wood-boiler installation subsidies. Discounted annual savings range from EUR143 compared with gas to EUR722 compared with electric heating at the domestic scale and from EUR3454 to EUR11,222 at the commercial scale. Inclusion of available subsidies improves the comparative economics of domestic wood heat substantially. The economic advantage of wood heat is robust to variation in fuel prices, discount rates and heat loads. The greatest obstacles to energy-crop utilisation include: (i) a reluctance to consider long-term economics; (ii) possible competition from cheaper sources of biomass; (iii) the need for a spatially coordinated supply and utilisation network. (author)

  11. Analysis of the impact of energy crops on water quality. Final report

    International Nuclear Information System (INIS)

    Hatfield, J.L.; Gale, W.J.

    1993-01-01

    This report consists of two separate papers. The first, ''The potential use of agricultural simulation models in predicting the fate of nitrogen and pesticides applied to switchgrass and poplars,'' describes three models (CREAMS, GLEAMS, and EPIC) for the evaluation of the relationships which determine water quality in the agroecosystem. Case studies are presented which demonstrate the utility of these models in evaluating the potential impact of alternative crop management practices. The second paper, ''Energy crops as part of a sustainable landscape,'' discusses concepts of landscape management and the linkage among agricultural practices and environmental quality

  12. LCA of Energy Systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Espinosa Martinez, Nieves; Hauschild, Michael Zwicky

    2018-01-01

    Energy systems are essential in the support of modern societies’ activities, and can span a wide spectrum of electricity and heat generation systems and cooling systems. Along with their central role and large diversity, these systems have been demonstrated to cause serious impacts on human health...... , ecosystems and natural resources. Over the past two decades, energy systems have thus been the focus of more than 1000 LCA studies, with the aim to identify and reduce these impacts. This chapter addresses LCA applications to energy systems for generation of electricity and heat . The chapter gives insight...

  13. Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system

    NARCIS (Netherlands)

    Dai, X.Q.; Zhang, H.Y.; Spiertz, J.H.J.; Yu, J.; Xie, G.H.; Bouman, B.A.M.

    2010-01-01

    In the aerobic rice system, adapted rice cultivars are grown in non-flooded moist soil. Aerobic rice may be suitable for double cropping with winter wheat in the Huai River Basin, northern China plain. Field experiments in 2005 and 2006 were conducted to study the response of aerobic rice and winter

  14. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    Science.gov (United States)

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  15. Using the GENESYS model quantifying the effect of cropping systems on gene escape from GM rape varieties to evaluate and design cropping systems

    Directory of Open Access Journals (Sweden)

    Colbach Nathalie

    2004-01-01

    Full Text Available Gene flow in rapeseed is a process taking place both in space and over the years and cannot be studied exclusively by field trials. Consequently, the GENESYS model was developed to quantify the effects of cropping systems on transgene escape from rapeseed crops to rapeseed volunteers in neighbour plots and in the subsequent crops. In the present work, this model was used to evaluate the risk of rape harvest contamination by extraneous genes in various farming systems in case of co-existing GM, conventional and organic crops. When 50 % of the rape varieties in the region were transgenic, the rate of GM seeds in non-GM crop harvests on farms with large fields was lower than the 0.9 % purity threshold proposed by the EC for rape crop production (food and feed harvests, but on farms with smaller fields, the threshold was exceeded. Harvest impurity increased in organic farms, mainly because of their small field size. The model was then used to evaluate the consequences of changes in farming practices and to identify those changes reducing harvest contamination. The effects of these changes depended on the field pattern and farming system. The most efficient practices in limiting harvest impurity comprised improved set-aside management by sowing a cover crop in spring on all set-aside fields in the region, permanently banning rape crops and set-aside around seed production fields and (for non-GM farmers clustering farm fields to reduce gene inflow from neighbour fields.

  16. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  17. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbies, Mark [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Volk, Timothy [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Abrahamson, Lawrence [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shuren, Richard [GreenWood Resources, Inc., Portland, OR (United States); Stanton, Brian [GreenWood Resources, Inc., Portland, OR (United States); Posselius, John [Case New Holland, New Holland, PA (United States); McArdle, Matt [Mesa Reduction Engineering and Processing, Inc., Auburn, NY (United States); Karapetyan, Samvel [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Patel, Aayushi [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shi, Shun [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Zerpa, Jose [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States)

    2014-10-03

    Biomass for biofuels, bioproducts and bioenergy can be sourced from forests, agricultural crops, various residue streams, and dedicated woody or herbaceous crops. Short rotation woody crops (SRWC), like willow and hybrid poplar, are perennial cropping systems that produce a number of environmental and economic development benefits in addition to being a renewable source of biomass that can be produced on marginal land. Both hybrid poplar and willow have several characteristics that make them an ideal feedstock for biofuels, bioproducts, and bioenergy; these include high yields that can be obtained in three to four years, ease of cultivar propagation from dormant cuttings, a broad underutilized genetic base, ease of breeding, ability to resprout after multiple harvests, and feedstock composition similar to other sources of woody biomass. Despite the range of benefits associated with SRWC systems, their deployment has been restricted by high costs, low market acceptance associated with inconsistent chip quality (see below for further explanation), and misperceptions about other feedstock characteristics (see below for further explanation). Harvesting of SRWC is the largest single cost factor (~1/3 of the final delivered cost) in the feedstock supply system. Harvesting is also the second largest input of primary fossil energy in the system after commercial N fertilizer, accounting for about one third of the input. Therefore, improving the efficiency of the harvesting system has the potential to reduce both cost and environmental impact. At the start of this project, we projected that improving the overall efficiency of the harvesting system by 25% would reduce the delivered cost of SRWC by approximately $0.50/MMBtu (or about $7.50/dry ton). This goal was exceeded over the duration of this project, as noted below.

  18. Production of biomass/energy crops on phosphatic clay soils in central Florida

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, J.A. [Univ. of Florida, Bartow, FL (United States); Prine, G.M.; Woodard, K.R. [Univ. of Florida, Gainesville, FL (United States); Anderson, D.L. [Univ. of Florida, Belle Glade, FL (United States); Shibles, D.B.; Riddle, T.C. [Mined Lands Agricultural Research/Demonstration Project, Bartow, FL (United States)

    1993-12-31

    Phosphatic clay is a byproduct of phosphate mining. Presently more than 40,470 ha have been created, most in central Florida, and about 810 ha are being added each year. Phosphatic clays have high fertility and high water holding capacity, reducing fertilization costs and producing high yields without irrigation. Based on 10 years of research, scientists have selected tall annual-regenerating perennial C-4 grasses as having the greatest potential for biomass production in Florida. The purpose of this work was to determine the feasibility of growing these tall perennial grasses for biomass on phosphatic clay. Elephantgrass, sugarcane and energycane, and erianthus were planted in duplicate replications on phosphatic clay soil in late August, 1986. yield was measured by one harvest in December or January each year for four years. Nitrogen fertilization included 112 kg ha{sup {minus}1} the first year followed by 134 kg ha{sup {minus}1} for the next three years. Nitrogen is the only supplemental nutrient needed to grow all tall grass crops on phosphatic clay. The average annual oven dry matter yield over the 4-yr period was 36.3 Mg ha{sup {minus}1} for PI 300086 elephantgrass, 45.2 for N51 elephantgrass, 42.5 for L79-1002 energycane, 49.0 for US72-1153 energycane, 49.7 for US78-1009 sugarcane, 52.2 for US56-9 sugarcane, 56.2 for CP72-1210 sugarcane, and 48.8 for 1K-7647 erianthus. More recent work has utilized domestic sewage sludge as a nitrogen source for the tall grasses. Preliminary sugar yields of selected sugarcane accessions & sweet sorghum were 4.7 Mg ha{sup {minus}1} for CP72-1210, 12.5 for US67-2022, 3.4 for US78-1009 and 1.3 Mg ha{sup {minus}1} for sweet sorghum. The high yields of the tall grasses grown on phosphatic clay with low inputs indicate a great potential for these crops as a source of renewable energy. A sustainable cropping system may be maintained by utilizing municipal sewage sludge as a nitrogen source with tall grasses on phosphatic clay.

  19. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    2017-06-01

    Full Text Available Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet.

  20. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    Science.gov (United States)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  1. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  2. PRACT (Prototyping Rotation and Association with Cover crop and no Till) - a tool for designing conservation agriculture systems

    NARCIS (Netherlands)

    Naudin, K.; Husson, M.O.; Scopel, E.; Auzoux, S.; Giller, K.E.

    2015-01-01

    Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till)

  3. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  4. New secondary energy systems

    International Nuclear Information System (INIS)

    Schulten, R.

    1977-01-01

    As an introduction, the FRG's energy industry situation is described, secondary energy systems to be taken into consideration are classified, and appropriate market requirements are analyzed. Dealt with is district heating, i.e. the direct transport of heat by means of circulating media, and long-distance energy, i.e. the long-distance energy transport by means of chemical conversion in closed- or open-cycle systems. In closed-cycle systems heat is transported in the form of chemical latent energy. In contrast to this, chemical energy is transported in open-cycle systems in the form of fuel gases produced by coal gasification or by thermochemical water splitting. (GG) [de

  5. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    Science.gov (United States)

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  6. Diversity of segetal weeds in pea (Pisum sativum L. depending on crops chosen for a crop rotation system

    Directory of Open Access Journals (Sweden)

    Marta K. Kostrzewska

    2014-04-01

    Full Text Available This study, lasting from 1999 to 2006, was conducted at the Research Station in Tomaszkowo, which belongs to the University of Warmia and Mazury in Olsztyn. The experiment was set up on brown rusty soil classified as good rye complex 5 in the Polish soil valuation system. The analysis comprised weeds in fields sown with pea cultivated in two four-field crop rotation systems with a different first crop: A. potato – spring barley – pea – spring barley; B. mixture of spring barley with pea – spring barley – pea – spring barley. Every year, at the 2–3 true leaf stage of pea, the species composition and density of individual weed species were determined; in addition, before harvesting the main crop, the dry matter of weeds was weighed. The results were used to analyze the constancy of weed taxa, species diversity, and the evenness and dominance indices, to determine the relationships between all biological indicators analyzed and weather conditions, and to calculate the indices of similarity, in terms of species composition, density and biomass of weeds, between the crop rotations compared. The species richness, density and biomass of weeds in fields with field pea were not differentiated by the choice of the initial crop in a given rotation system. In the spring, the total number of identified taxa was 28 and it increased to 36 before the harvest of pea plants. Chenopodium album and Echinochloa crus-galli were the most numerous. Chenopodium album, Echinochloa crus-galli, Sonchus arvensis, Fallopia convolvulus and Viola arvensis were constant in all treatments, regardless of what the first crop in rotation was or when the observations were made. The species diversity and the evenness and species dominance indices varied significantly between years and dates of observations. Species diversity calculated on the basis of the density of weed species was higher in the rotation with a mixture of cereals and legumes, while that calculated on

  7. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    Our strong dependence on fossil fuels results from the intensive use and consumption of petroleum derivatives which, combined with diminishing oil resources, causes environmental and political concerns. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. This paper focuses on a biorefinery concept which produces bioethanol, bioenergy and biochemicals from two types of agricultural residues, corn stover and wheat straw. These biorefinery systems are investigated using a Life Cycle Assessment (LCA) approach, which takes into account all the input and output flows occurring along the production chain. This approach can be applied to almost all the other patterns that convert lignocellulosic residues into bioenergy and biochemicals. The analysis elaborates on land use change aspects, i.e. the effects of crop residue removal (like decrease in grain yields, change in soil N 2 O emissions and decrease of soil organic carbon). The biorefinery systems are compared with the respective fossil reference systems producing the same amount of products/services from fossils instead of biomass. Since climate change mitigation and energy security are the two most important driving forces for biorefinery development, the assessment focuses on greenhouse gas (GHG) emissions and cumulative primary energy demand, but other environmental categories are evaluated as well. Results show that the use of crop residues in a biorefinery saves GHG emissions and reduces fossil energy demand. For instance, GHG emissions are reduced by about 50% and more than 80% of non-renewable energy is saved. Land use change effects have a strong influence in the final GHG balance (about 50%), and their uncertainty is discussed in a sensitivity analysis. Concerning the investigation of the other impact categories, biorefinery systems

  8. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  9. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  10. Cropping Systems Dynamics in the Lower Gangetic Plains of India using Geospatial Technologies

    Directory of Open Access Journals (Sweden)

    K. R. Manjunath

    2012-08-01

    Full Text Available Cropping system study is useful to understand the overall sustainability of agricultural system. Capturing the change dynamics of cropping systems, especially spatial and temporal aspects, is of utmost importance in overall planning and management of natural resources. This paper highlights the remote sensing based cropping systems change-dynamics assessment. Current study is aimed at use of multidate-multisensor data for deriving the seasonal cropping pattern maps and deriving the remote sensing based cropping system performance indicators during 1998–99 and 2004–05 in West- Bengal state of India. The temporal assessment of the changes of cropping systems components such as cropping pattern and indices for the study years 1998–99 and 2004–05 have been brought out. The results indicate that during the six years of time the kharif cropping pattern has almost remained the same, being a rice dominant system. A notable point is the decrease in the aus rice due to readjusting the cropping system practice to suit the two crop systems in many places was observed. Marginal variations in mustard and wheat areas during rabi season was observed. The boro (summer rice area has almost remained constant. The rice-fallow-fallow (R-F-F rotation reduced by about 4 percent while the rice-fallow-rice (R-F-R increased by about 7 percent percent. The Area Diversity Index reduced by about 38 percent in 2004 which may be attributed to decrease in kharif pulses and minor crops during kharif and summer. However, diversity during rabi season continued to remain high. The increase in Multiple Cropping Index was observed predominantly in the southern part of the state. Cultivated Land Utilization Index shows an increase by about 0.05.

  11. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  12. Integrating renewables into energy systems

    International Nuclear Information System (INIS)

    1999-03-01

    An analysis of renewable energy schemes was undertaken via case studies in China, India, Indonesia, Kenya, South Africa, Thailand and Zimbabwe, that provided an insight into the application of best practice for overcoming market, technical and financial barriers to the establishment of the sustainable markets required for the large-scale deployment of renewable energy technologies. The project showed clearly the need to select and target interventions according to the context. Lessons were extracted against a number of themes, as well as against the various technologies analysed and simple guides to the principles of best practice were derived under the following headings:- experience of gaining access to (micro) finance; the technical and non-technical issues raised when small, typically independent, generators seek access to central electricity grid systems; how to best undertake awareness raising and dissemination activities; promoting, building and operating biogas systems; promoting, building and operating solar (photovoltaic) home systems; promoting, building and operating grid connected wind power; promoting, building and operating solar hot water systems; promoting agricultural cogeneration using crop residues. (author)

  13. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  14. Yield gap analysis of feed-crop livestock systems

    NARCIS (Netherlands)

    Linden, van der Aart; Oosting, Simon J.; Ven, van de Gerrie W.J.; Veysset, Patrick; Boer, de Imke J.M.; Ittersum, van Martin K.

    2018-01-01

    Sustainable intensification is a strategy contributing to global food security. The scope for sustainable intensification in crop sciences can be assessed through yield gap analysis, using crop growth models based on concepts of production ecology. Recently, an analogous cattle production model

  15. Network-assisted crop systems genetics: network inference and integrative analysis.

    Science.gov (United States)

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  17. Methodological Aspects of On-Farm Monitoring of Cropping Systems Management

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    Full Text Available To conduct agro-environmental assessments at field and farm scale, detailed management data of crop and animal production systems are needed. However, this type of data is only rarely collected by public administrations. In the period 2005-2006, we made an experience of on-farm monitoring of cropping systems management, within a larger project aimed at assessing sustainability of agricultural systems in Italian Parks. In this paper, we describe and discuss the steps taken to carry out periodic face-to-face interviews in farms in the Sud Milano Agricultural Park (northern Italy. The first step was the selection of seven farms, which we identified by applying cluster analysis at a large database describing 733 farms of the Park. After having identified the most relevant agro-environmental issues in the studied area, we established a list of simple but sound indicators to evaluate the effects of agricultural management on the environment. The criteria used to select the indicators were that they should: be calculated on easily available data, not be based on direct measurements, make a synthesis of different aspects of reality, and be easily calculated and understood. The indicators selected evaluate nutrient management, fossil energy use, pesticide toxicity, soil management, and economic performance. Subsequently, we designed a data model to store input data used to calculate the indicators (farm configuration, flows of materials and money through the farm gate, animals and their rations, history of crop cultivation, crop management. The data model that we obtained is relatively complex, but adequate to store and analyse the large amount of data acquired during the two-year project. A questionnaire was developed to fully comply with the indicators selected and the data model. The questionnaire was used to carry out approximately six interviews per farm each year, with an investment of time of 1-2 hours per interview. Appropriate double checks of

  18. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.

    2012-01-01

    cropping systems to allow for more diversification of the crop rotations to combat these weed problems with less herbicide input. Cover crops, stubble management strategies and tactics that strengthen crop growth relative to weed growth are also seen as important components in future IPM systems...

  19. Energy potential, energy ratios, and the amount of net energy in Finnish field crop production; Peltobioenergian tuotanto Suomessa. Potentiaali, energiasuhteet ja nettoenergia

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, H.

    2012-11-01

    Energy potential, energy ratios, and the amount of net energy in Finnish field crop production were studied in this thesis. Special attention was paid to indirect energy inputs and how to treat them in energy analysis. Manufacturing of machines and agrochemicals and production of seeds are examples of indirect energy inputs.The bioenergy potential of the Finnish field crop production could be as large as 12 - 22 TWh, or 3 - 5% of the total energy consumption in Finland in 2008. The major part of this energy would originate from straw and biomass like reed canary grass cultivated for energy use. However, only 0.5 TWh of the potential is utilized. The output/input energy ratios of the studied field crops varied from 3 to 18, being highest (18) for reed canary grass and second highest (7) for sugar beet and grass cultivated for silage. The energy ratio of cereals and oil seed crops varied from 3 to 5 if only the yield of seeds was considered. If the yield of straw and stems was also taken into account the energy ratios would have been almost twofold. The energy ratios for Finnish wheat and barley were as high as those gained in Italian and Spanish conditions, respectively. However, the energy ratios of maize, elephant grass and giant reed were even over 50 in Central and Southern Europe. Plants that use the C4 photosynthesis pathway and produce high biomass yields thrive best in warm and sunny climate conditions. They use nitrogen and water more sparingly than C3 plants typically thriving in the cooler part of the temperate zone. When evaluating energy ratios for field crops it should be kept in mind that the maximal energy potential of the energy crop is the heating value of the dry matter at the field gate. Transportation of the crop and production of liquid fuels and electricity from biomass lowers the energy ratio. A comparison of field energy crops to a reforested field suggested that fast growing trees, as hybrid aspen and silver birch, would yield almost as

  20. What is the future for biofuels and bio-energy crops

    International Nuclear Information System (INIS)

    2005-01-01

    This seminar is part of the Ifri research program on agricultural policies. It aims to evaluate the future prospects for the development of bio-energy crops in light of the new energetic and environmental order. Within one generation the hydrocarbon market will likely be under great pressure. The prospect of a lasting high oil price will lead to the use of renewable resources like biofuels. Moreover growing environmental concern about global warming give one more credibility to the development of biofuels. These fuels emit a limited amount of greenhouse gas compared to standard fuels. We have to therefore examine the development possibility of these fuels taking into account the agronomic features of the crops used, the technology of the transformation process and existing initiative policies with respect to the regions studied. Also, we have to evaluate the impact of the energy crisis on food supply via the substitution effect in land allocation. (author)

  1. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  2. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  3. Oil crops: requirements and possibilities for their utilization as an energy source

    International Nuclear Information System (INIS)

    Boerner, G.; Schoenefeldt, J.; Mehring, I.

    1995-01-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author)

  4. Sustainability of energy crops. Four papers by the Centre for Agriculture and Environment

    International Nuclear Information System (INIS)

    Hanegraaf, M.C.; Van Kuik, M.; Van Zeijts, H.

    1998-07-01

    Between 1994 and 1996 CLM developed a method for assessing the ecological and economic sustainability of producing and using energy from agricultural and forest biomass. The method has much in common with environmental life cycle assessment (LCA). CLM has also co-ordinated a concerted action called 'Environmental aspects of biomass production and routes for European energy supply'. LCA is at present the best available instrument for assessing the ecological sustainability of energy crops. CLM focused on three topics disseminating the results of the concerted action; updating the work on bioethanol, and proposals for new financial instruments. The results are presented in this report. First, the results from the concerted action and work carried out by CLM were disseminated. Papers were presented at the international conference on 'Implementation of solid biofuels for carbon dioxide mitigation', 29-30 September 1997, Uppsala, Sweden, and at the international workshop on 'Environmental aspects of energy crop production', 9-10 October 1997, Brasimone, Italy. In addition, a paper was written on the need to co-ordinate policy options to stimulate the production and use of energy crops from an energy, agricultural and environmental point of view. Second, a study on bioethanol was carried out in which data obtained elsewhere on the use of bioethanol as a transport fuel were revised and updated. The sustainability of bioethanol production from sugar beet was compared with that of bioethanol from winter wheat. Using bioethanol from sugar beet replaces more fossil energy than bioethanol from winter wheat. For both crops, the costs per ton avoided CO2 decrease over time to 2010, but are still higher than electricity routes. The third action was the development of proposals for new financial instruments to stimulate energy production from biomass in the agricultural and forestry sector. This proposal was presented at the ALTENER Seminar on 'Financial incentives for

  5. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    Science.gov (United States)

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  6. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  7. Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Monika Yadav

    2018-06-01

    Full Text Available Bioenergy, biofuels, and a range of valuable chemicals may be extracted from the abundantly available lignocellulosic biomass. To reduce the recalcitrance imposed by the complex cell wall structure, genetic engineering has been proposed over the years as a suitable solution to modify the genes, thereby, controlling the overall phenotypic expression. The present review provides a brief description of the plant cell wall structure and its compositional array i.e., lignin, cellulose, hemicellulose, wall proteins, and pectin, along with their effect on biomass digestibility. Also, this review discusses the potential to increase biomass by gene modification. Furthermore, the review highlights the potential genes associated with the regulation of cell wall structure, which can be targeted for achieving energy crops with desired phenotypes. These genetic approaches provide a robust and assured method to bring about the desired modifications in cell wall structure, composition, and characteristics. Ultimately, these genetic modifications pave the way for achieving enhanced biomass yield and enzymatic digestibility of energy crops, which is crucial for maximizing the outcomes of energy crop breeding and biorefinery applications.

  8. Potential productivity of the Miscanthus energy crop in the Loess Plateau of China under climate change

    International Nuclear Information System (INIS)

    Liu, Wei; Sang, Tao

    2013-01-01

    With a vast area of marginal land, the Loess Plateau of China is a promising region for large-scale production of second-generation energy crops. However, it remains unknown whether such production is sustainable in the long run, especially under climate change. Using a regional climate change model, PRECIS, we analyzed the impact of climate change on Miscanthus production in the Loess Plateau. Under three emission scenarios, A2, B2, and A1B, both the average yield and total area capable of supporting Miscanthus production would increase continuously in the future period (2011–2099). As a result, the total yield potential in the region would increase by about 20% in this future period from the baseline period (1961–1990). This was explained primarily by predicted increases in temperature and precipitation across the Loess Plateau, which improved the yield of the perennial C4 plants relying exclusively on rainfed production. The areas that are currently too dry or too cold to support Miscanthus production could be turned into energy crop fields, especially along the arid–semiarid transition zone. Thus the Loess Plateau would become increasingly desirable for growing second-generation energy crops in this century, which could in turn contribute to soil improvement and ecological restoration of the region. (letter)

  9. Energy technology impacts on agriculture with a bibliography of models for impact assessment on crop ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, E.M.; Luxmoore, R.J.; Parzyck, D.C.

    1979-09-01

    Possible impacts of energy technologies on agriculture are evaluated, and some of the available simulation models that can be used for predictive purposes are identified. An overview of energy technologies and impacts on the environment is presented to provide a framework for the commentary on the models. Coal combustion is shown to have major impacts on the environment and these will continue into the next century according to current Department of Energy projections. Air pollution effects will thus remain as the major impacts on crop ecosystems. Two hundred reports were evaluated, representing a wide range of models increasing in complexity from mathematical functions (fitted to data) through parametric models (which represent phenomena without describing the mechanisms) to mechanistic models (based on physical, chemical, and physiological principles). Many models were viewed as suitable for adaptation to technology assessment through the incorporation of representative dose-response relationships. It is clear that in many cases available models cannot be taken and directly applied in technology assessment. Very few models of air pollutant-crop interactions were identified, even though there is a considerable data base of pollutant effects on crops.

  10. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  11. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  12. 60 changes in soil properties under alley cropping system of three ...

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-01-01

    Jan 1, 2009 ... A study to evaluate the changes in soil properties, under existing alley cropping system with three leguminous crops (Leucaena leucocephala ... of improved farming system is efficient recycling of organic materials. This exploits ... in form of violent shower of short duration. Rainfall is seasonal and defines ...

  13. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost

    2010-01-01

    Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year...

  14. Rice in cropping systems - Modelling transitions between flooded and non-flooded soil environments

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Suriadi, A.; Dobermann, A.; Bouman, B.A.M.; Timsina, J.

    2012-01-01

    Water shortages in many rice-growing regions, combined with growing global imperatives to increase food production, are driving research into increased water use efficiency and modified agricultural practices in rice-based cropping systems. Well-tested cropping systems models that capture

  15. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang

    NARCIS (Netherlands)

    Fang, B.; Wang, G.; Berg, van den M.M.; Roetter, R.P.

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China¿s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This

  16. A low-cost microcontroller-based system to monitor crop temperature and water status

    Science.gov (United States)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  17. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  18. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems

    Directory of Open Access Journals (Sweden)

    Moritz eReckling

    2016-05-01

    Full Text Available Europe’s agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2 % of the arable land and more than 70 % of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 % and 33 % and N fertilizer use by 24 % and 38 % in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22 % in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers.

  19. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  20. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  1. Suppression of soilborne pathogens in mixed cropping systems

    NARCIS (Netherlands)

    Hiddink, G.A.

    2008-01-01

    Since the green revolution, agricultural production has increased tremendously due to synthetic fertilizers, chemical crop protectants and high yielding plant varieties. However, soilborne pathogens remain yield-limiting factors in agricultural production. Hardly any sustainable solutions are

  2. Indicators of soil quality in the implantation of no-till system with winter crops.

    OpenAIRE

    NOGUEIRA, M. A.; TELLES, T. S.; FAGOTTI, D. dos S. L.; BRITO, O. R.; PRETE, C. E. C.; GUIMARÃES, M. de F.

    2014-01-01

    We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa), hairy vetch (Vicia villosa) and fodder radish (Raphanus sat...

  3. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    Science.gov (United States)

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Living Systems Energy Module

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Living Systems Energy Module, renamed Voyage from the Sun, is a twenty-lesson curriculum designed to introduce students to the major ways in which energy is important in living systems. Voyage from the Sun tells the story of energy, describing its solar origins, how it is incorporated into living terrestrial systems through photosynthesis, how it flows from plants to herbivorous animals, and from herbivores to carnivores. A significant part of the unit is devoted to examining how humans use energy, and how human impact on natural habitats affects ecosystems. As students proceed through the unit, they read chapters of Voyage from the Sun, a comic book that describes the flow of energy in story form (Appendix A). During the course of the unit, an ``Energy Pyramid`` is erected in the classroom. This three-dimensional structure serves as a classroom exhibit, reminding students daily of the importance of energy and of the fragile nature of our living planet. Interactive activities teach students about adaptations that allow plants and animals to acquire, to use and to conserve energy. A complete list of curricular materials and copies of all activity sheets appear in Appendix B.

  5. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simoes, Marcelo; Farret, Felix Alberto; Blaabjerg, Frede

    2015-01-01

    devices, and a centralized distribution control. In order to establish a small wind energy system it is important to observe the following: (i) Attending the energy requirements of the actual or future consumers; (ii) Establishing civil liabilities in case of accidents and financial losses due to shortage...... or low quality of energy; (iii) Negotiating collective conditions to interconnect the microgrid with the public network or with other sources of energy that is independent of wind resources; (iv) Establishing a performance criteria of power quality and reliability to end-users, in order to reduce costs...... and guaranteeing an acceptable energy supply. This paper discuss how performance is affected by local conditions and random nature of the wind, power demand profiles, turbine related factors, and presents the technical issues for implementing a self-excited induction generator system, or a permanent magnet based...

  6. Alternative Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    West, M.; Duckers, L.; Lockett, P.; Loughridge, B.; Peatfield, T.; White, P.

    1984-01-01

    The Coventry (Lanchester) Polytechnic Wave Energy Group has been involved in the United Kingdom wave energy research programme since its inception in 1975. Whilst the work of the group is mainly concerned with wave energy, and currently is directed towards the design of a wave energy device tailored to the needs of isolated/island communities, it has some involvement with other aspects of the alternatives. This conference, dealing with alternative energy systems and their electrical integration and utilisation was engendered by the general interest which the Polytechnic group members have in the alternatives and their use. The scope for electrical integration and utilisation is very broad. Energy for family groups may be provided in a relatively unsophisticated way which is acceptable to them. Small population centres, for example island communities relying upon diesel equipment, can reap the benefits of the alternatives through their ability to accept novel integration schemes and a flexible approach to the use of the energy available. Consumers already enjoying the benefits of a 'firm' electricity grid supply can use energy from a variety of alternative systems, via the grid, without having to modify their energy consumption habits. In addition to the domestic and industrial applications and coastal possibilities, specialist applications in isolated environments have also emerged. The Proceedings detail practical, technical and economic aspects of the alternatives and their electrical integration and utilisation.

  7. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  8. Assessing nutritional diversity of cropping systems in African villages.

    Directory of Open Access Journals (Sweden)

    Roseline Remans

    Full Text Available BACKGROUND: In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD, has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. METHODS AND FINDINGS: Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. CONCLUSION: This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are

  9. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the

  10. Energy dynamics in Populus deltoides G{sub 3} Marsh agroforestry systems in eastern India

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, O.P. [National Research Centre for Agroforestry, Jhansi (India); Das, D.K. [Rajendra Agricultural Univ., Dept. of Forestry, Bihar (India)

    2005-08-01

    Energy efficiency of Populus deltoides G{sub 3} Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the form of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure. (Author)

  11. Energy dynamics in Populus deltoides G3 Marsh agroforestry systems in eastern India

    International Nuclear Information System (INIS)

    Chaturvedi, O.P.; Das, D.K.

    2005-01-01

    Energy efficiency of Populus deltoides G 3 Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the from of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure

  12. Energy saving synergies in national energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2015-01-01

    In the transition towards a 100% renewable energy system, energy savings are essential. The possibility of energy savings through conservation or efficiency increases can be identified in, for instance, the heating and electricity sectors, in industry, and in transport. Several studies point...... to various optimal levels of savings in the different sectors of the energy system. However, these studies do not investigate the idea of energy savings being system dependent. This paper argues that such system dependency is critical to understand, as it does not make sense to analyse an energy saving...... without taking into account the actual benefit of the saving in relation to the energy system. The study therefore identifies a need to understand how saving methods may interact with each other and the system in which they are conducted. By using energy system analysis to do hourly simulation...

  13. Solar-energy drying systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)

    2009-08-15

    In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)

  14. Integration of non-food crops in rural areas with niche energy markets

    International Nuclear Information System (INIS)

    Kwant, K.W.; Heuval, E. van der; Rijk, P.J.J.

    1996-01-01

    Integration of energy-crops in the agricultural sector is hampered by a number of factors. Within the EU AIR programme a concerted action has been initiated to contribute to a better understanding of the several aspects of introducing energy corps in the rural sector. A standard methodology to assess the economic and technical viability of energy crops for three identified niche markets was developed. Technical viability of biomass production, pretreatment and conversion to energy is a necessary condition for implementation of such a project, however, it is not a sufficient condition. Non-technical constraints can either hamper or stimulate a successful introduction. Technical issues will be dealt with in other papers. This paper will, therefore concentrate on the non-technical issues. In section 2 the major issues are described. Opportunities on how to improve biomass energy introduction are provided in section 3. As a case study, the non-technical issues of a combined heat and power plant, planned to be fired on arboricultural and short rotation willow, in the municipality of Groningen in the Netherlands will be presented. The paper ends with general conclusions. (Author)

  15. The Response to P-Derived from Phosphate Rock and TSP by Crops Grown in a Simulated Crop Rotation System

    International Nuclear Information System (INIS)

    Sisworo, Elsye L; Sisworo, Widjang H; Havid-Rasjid; Syamsul-Rizal; Komarudin-Idris

    2002-01-01

    A green house experiment was carried out on a simulated crop rotation system of upland rice-soybean-mungbean to determine the effect of P-derived from different phosphate rock (PR) sources and TSP using 32 P. The data obtained reveal that all the P-sources has a significant effect on the growth of all the three crops, expressed in dry weight, % P-total and total P-uptake (mg P pot -1 ). For the P-source it was shown that % P-derived from PR/TSP and their uptake (mg P pot -1 ) was quite high, showing that the PR s applied were of good reactivity. The residue of the PR s has also still a good effect on plant growth than that of TSP. The efficiency of PR s was far below that of TSP. This apparently was due to the high rate of application, ten times the rate of TSP. (author)

  16. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  17. Electrical energy systems

    CERN Document Server

    El-Hawary, Mohamed E

    2007-01-01

    Features discussions ranging from the technical aspects of generation, transmission, distribution, and utilization to power system components, theory, protection, and the energy control center that offer an introduction to effects of deregulating electric power systems, blackouts and their causes, and minimizing their effects.

  18. Novel Developments of the MetaCrop Information System for Facilitating Systems Biological Approaches

    Directory of Open Access Journals (Sweden)

    Hippe Klaus

    2010-12-01

    Full Text Available Crop plants play a major role in human and animal nutrition and increasingly contribute to chemical or pharmaceutical industry and renewable resources. In order to achieve important goals, such as the improvement of growth or yield, it is indispensable to understand biological processes on a detailed level. Therefore, the well-structured management of fine-grained information about metabolic pathways is of high interest. Thus, we developed the MetaCrop information system, a manually curated repository of high quality information concerning the metabolism of crop plants. However, the data access to and flexible export of information of MetaCrop in standard exchange formats had to be improved. To automate and accelerate the data access we designed a set of web services to be integrated into external software. These web services have already been used by an add-on for the visualisation toolkit VANTED. Furthermore, we developed an export feature for the MetaCrop web interface, thus enabling the user to compose individual metabolic models using SBML.

  19. Controlled Drainage As Measure to Reduce Nitrate Leaching in a Wheat Cropping System

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Hvid, Søren Kolind; Thomsen, Ingrid Kaag

    2013-01-01

    for the growing crop, and nutrient exports are reduced. CD has been shown to diminish leaching losses of soluble nutrients. So far CD has only been tested for spring sown crops but widespread implementation on drained clayey soils would rely on its adaption to winter cereal production systems. A new project on CD...... applied at four winter cropped fields in Denmark investigates how effects of anaerobic conditions created by CD will affect chemical/biological processes in the submerged soil, root growth, crop production, and nutrient losses. Nitrification is expected to be retarded by wet soils during winter...

  20. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  1. The Smart Energy System

    DEFF Research Database (Denmark)

    Jurowetzki, Roman; Dyrelund, Anders; Hummelmose, Lars

    Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses on...... production, large scale solar heat, fuel cells, heat storage, waste incineration, among others, the report draws a picture of Denmark as a research and development hub for smart energy system solutions.......Copenhagen Cleantech Cluster has launched a new report, which provides an overview of Danish competencies relating to smart energy systems. The report, which is based on a questionnaire answered by almost 200 companies working with smart energy as well as a number of expert interviews, focuses...... on the synergies which are obtained through integration of the district heating and district cooling, gas, and electricity grid into a single smart energy system. Besides documenting the technology and innovation strengths that Danish companies possess particularly relating to wind, district heating, CHP...

  2. Indicators of soil quality in the implantation of no-till system with winter crops

    Directory of Open Access Journals (Sweden)

    Marco Antonio Nogueira

    Full Text Available We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa, hairy vetch (Vicia villosa and fodder radish (Raphanus sativus; sunflower (Heliantus annuus intercropped with Urochloa ruziziensis; corn (Zea mays intercropped with Urochloa; and corn; fodder radish; or wheat (Triticum aestivum as sole crops. The subplots were the years: 2008 and 2009. Determinations consisted of total organic C, labile and resistant C, total N, microbial biomass C and N, the C/N ratio of soil organic matter, and the microbial quotient (qMic, besides microbiological and biochemical attributes, assessed only in 2009. The attributes significantly changed with the winter crops, especially the multicropping of cover crops and fodder radish, as well as effect of years. Despite stimulating the microbiological/biochemical activity, fodder radish cropping decreased the soil C in the second year, likewise the wheat cropping. The multicropping of cover crops in winter is an option for management in the establishment of no-till system, which contributes to increase the concentrations of C and stimulate the soil microbiological/biochemical activity.

  3. Regional economic impacts of biomass based energy service use: A comparison across crops and technologies for East Styria, Austria

    International Nuclear Information System (INIS)

    Trink, Thomas; Schmid, Christoph; Schinko, Thomas; Steininger, Karl W.; Loibnegger, Thomas; Kettner, Claudia; Pack, Alexandra; Toeglhofer, Christoph

    2010-01-01

    Biomass action plans in many European countries seek to expand biomass heat and fuel supply, mainly to be supplied by peripheral, agricultural regions. We develop a two-plus-ten-region energy-focused computable general equilibrium (CGE) model that acknowledges land competition in analysing the sub-state local-regional economic implications of such a strategy, embedded within a global context. Our model is based on a full cost analysis of selected biomass technologies covering a range of agricultural and forestry crops, as well as thermal insulation. The local-regional macroeconomic effects differ significantly across technologies and are governed by factors such as net labour intensity in crop production. The high land intensity of agricultural biomass products crowds out conventional agriculture, and thus lowers employment and drives up land prices and the consumer price index. The regional economic results show that net employment effects are positive for all forestry based biomass energy, and also show for which agriculture based biomass systems this is true, even when accounting for land competition. When regional consumer price development governs regional wages or when the agricultural sector is in strong enough competition to the international market, positive employment and welfare impacts vanish fully for agriculture based bio-energy.

  4. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  5. Environmental performance of crop residues as an energy source for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    This paper aims to address the question, “What is the environmental performance of crop residues as an alternative energy source to fossil fuels, and whether and how can it be improved?”. In order to address the issue, we compare electricity production from wheat straw to that from coal and natural...... gas. The results on the environmental performance of straw for energy utilization and the two fossil fuel references are displayed first for different midpoint categories and then aggregated into a single score. The midpoint impact assessment shows that substitution of straw either for coal...... or for natural gas reduces global warming, non-renewable energy use, human toxicity and ecotoxicity, but increases eutrophication, respiratory inorganics, acidification and photochemical ozone. The results at the aggregate level show that the use of straw biomass for conversion to energy scores better than...

  6. PHYSICO-CHEMICAL PROPERTIES OF THE SOLID AND LIQUID WASTE PRODUCTS FROM THE HEAVY METAL CONTAMINATED ENERGY CROPS GASIFICATION PROCESS

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2017-02-01

    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  7. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduc...

  8. Soil phosphatase and urease activities impacted by cropping systems and water management

    Science.gov (United States)

    Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...

  9. Agronomic & entomological results from 7 years of dryland cropping systems research at Briggsdale, Colorado

    Science.gov (United States)

    Dryland crop production in the semi-arid Great Plains is limited by both the quantity and timing of precipitation. Sustainable dryland cropping systems maximize precipitation use efficiency by managing precipitation capture, storage, and use. Pest management approaches are also critical for efficie...

  10. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  11. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation

    NARCIS (Netherlands)

    Moeller, C.; Pala, M.; Manschadi, A.M.; Meinke, H.B.; Sauerborn, J.

    2007-01-01

    Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was

  12. The Myth of Coexistence: Why Transgenic Crops Are Not Compatible With Agroecologically Based Systems of Production

    Science.gov (United States)

    Altieri, Miguel

    2005-01-01

    The coexistence of genetically modified (GM) crops and non-GM crops is a myth because the movement of transgenes beyond their intended destinations is a certainty, and this leads to genetic contamination of organic farms and other systems. It is unlikely that transgenes can be retracted once they have escaped, thus the damage to the purity of…

  13. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jiao, Xiurong

    2017-01-01

    rotation of annual crops (maize, beet, hemp/oat, triticale, winter rye and winter rapeseed), ii) perennial crops intensively fertilised (festulolium, reed canary, cocksfoot and tall fescue), low-fertilised (miscanthus) or unfertilised (grass-legume mixtures) and iii) traditional systems (continuous...

  14. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Science.gov (United States)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  15. Long-term effects of potato cropping system strategies on soilborne diseases and soil microbial communities

    Science.gov (United States)

    Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can substantially affect soil microbial communities, and potentially reduce soilborne potato diseases and increase productivity, but long-t...

  16. The Possibilities to use Euphorbia Tirucalli as an Energy and a Rubber Crop

    Directory of Open Access Journals (Sweden)

    Patrick Van Damme

    1990-02-01

    Full Text Available Euphorbia tirucalli has been used as a source for natural rubber at different times in history, especially in southern Africa. The latex resin content is too high to guarantee a good quality product and economic production has never taken off as some had hoped. The fact that the plant is very well adapted to arid and semi arid conditions and can be grown on marginal waste lands makes it a potential energy crop which can be turned into biogas without too much investment in costly technology. The first results obtained in the laboratory and in field conditions (Senegal are very promising. The latex contains a number of interesting triterpenes which have a very high energy content and could be used in fuel production. Most of these applications have been tested or used in Africa and can offer long-term solutions for old problems, particularly in the case of renewable energy through biomass fermentation. KEY WORDS: rubber, biomass, biogas, triterpenes, energy crop

  17. Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation

    International Nuclear Information System (INIS)

    Kung, Chih-Chun; Zhang, Ning

    2015-01-01

    This study examines pyrolysis-based electricity generation and ethanol production using various crops and agricultural residuals in Taiwan. It analyzes the net economic and environmental effects within the framework of the Extended Taiwanese Agricultural Sector Model by incorporating ongoing and potential gasoline, coal and GHG (greenhouse gas) prices. The study discusses the effects of agricultural shifts, which have several important implications for the Taiwanese bioenergy development. First, the cost of collecting rice straw is much lower than the production cost of other energy crops, implying that the efficient use of agricultural waste may eventually result in positive social effects in terms of farmers' revenue, the renewable energy supply and GHG emissions offset. Second, farmers with idle land usually suffer a lower steady income. Encouraging the development of the renewable energy industry increases the demand of raw feedstocks, which involves converting the idle land into cultivation and increasing farmers' revenue. Third, agricultural waste is usually burned and emits CO_2, which accelerates the global climate shift. Approximately one third of emissions could be offset by rice straw-based bioenergy in certain cases. Turning this waste into bioenergy, which offsets net GHG emissions, has positive effects on the climate change mitigation. - Highlights: • Pyrolyzing rice straw provides considerable energy supply (max 4.68 billion kWh). • High emission offset when combined with rice straw (max 2.73 million tons). • Affordable government subsidy ($204 million a year). • Collection and transportation costs of wastes could impact the result significantly.

  18. Economic evaluation of cereal cropping systems under semiarid conditions: minimum input, organic and conventional

    OpenAIRE

    Pardo,Gabriel; Aibar,Joaquín; Cavero,José; Zaragoza,Carlos

    2009-01-01

    Cropping systems like organic farming, selling products at a higher price and promoting environmental sustainability by reducing fertilizer and pesticides, can be more profitable than conventional systems. An economic evaluation of three cropping systems in a seven year period experiment was performed, using a common rotation (fallow-barley-vetch-durum wheat) in a semi-arid rainfed field of Spain. The minimum input system included mouldboard ploughing, cultivator preparation, sowing and harve...

  19. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    ) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection......Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  20. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed......Grain legumes are widely cultivated, particularly for their dry seeds (known as pulses). Grain legumes are an important crop for a number of reasons. They are a rich source of protein and fibre, minerals and vitamins. In addition, their rapid growth and ability to fix nitrogen and improve soil...... distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...

  1. Economics of wheat based cropping systems in rainfed areas of pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  2. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    Science.gov (United States)

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  3. Evolving energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.

    1991-04-01

    This thesis presents scenarios of future energy systems, a cost-benefit analysis of measures to avoid greenhouse-gas emissions, an analysis of the effect of energy prices on end-use efficiencies and fuel choices, and an evaluation of financial-incentive programs designed to induce investments in efficient energy use. Twelve integrated energy supply/demand scenarios for the Swedish heat-and-power sector are presented to illustrate the potential for improvements in end-use efficiency and increased utilization of renewable energy sources. The results show that greenhouse-gas emissions could be reduced by 35 per cent from 1987 levels by 2010, with a net economic benefit compared to a business-as-usual scenario. A generalized methodology for calculating the net costs of reducing greenhouse-gas emissions is applied to a variety of fuel choices and energy end-use technologies. A key finding is that a combination of increased end-use efficiencies and use of renewable energy systems is required to achieve maximum cost-effective emissions reductions. End-use efficiencies and inter-fuel competition in Denmark and Sweden are compared during a time period in which real electricity prices were declining in Sweden and increasing in Denmark. Despite these different price environments, efficiencies and choices of heating fuels did not generally develop as expected according to economic theory. The influences of counter-price and non-price factors are important in understanding this outcome. Relying on prices alone injects considerable uncertainty into the energy planning process, and precludes efficiency improvements and fuel choices attainable with other mechanisms. Incentive programs can be used to promote energy-efficient technologies. Utilities in Europe have recently offered financial incentives intended to stimulate the adoption of compact-fluorescent lamps. These programs have been cost-effective in comparison to new electric supply. (au).

  4. Impact of chashma right-canal on energy-inputs and crop production in dera ismail khan

    International Nuclear Information System (INIS)

    Khan, M.A.; Rehman, A.; Singh, G.

    2005-01-01

    The main objective of the present study was to investigate the patterns of energy-consumption and their relationship with crop-production and poverty-alleviation of the farming community, before and after the completion of Chashma Right-Bank Canal (CRBC) Project. A survey was made of daily inputs of energy for crop-production operations on more than 60 crop plots of 10 farms in three villages. The selection of farms in the villages was based on the financial condition of the farmers, as judged by the main power-source (bullock or tractor) that the farmer uses on his farm. Sources of energy recorded on biweekly basis were: human labor, bullocks and tractors. Crops-yields and values of output were recorded. Energy-inputs were computed on per hectare basis by summing the energy inputs to all crop-plots. Results indicated that the use of tractors does result in a reduction of human labor-hours and bullock-energy on per hectare basis. Due to lack of a permanent source of irrigation (crops were dependent on rain and floodwater), the crop-yield in the study areas was low before CRBC improvement work. Moreover, floods also damaged the crops on some plots before harvesting; therefore the consumption of energy on both bullock-operated farms (BOF) and Tractor-Operated Farms (TOF) was very low in the 1992-93 year. Post CRBC project, during 1997-98 and 2000-2001, the farms used more energy. In 1997-98, TOF obtained higher wheat-yields than BOF. However, in 2000-2001, both BOF and TOF were using tractors as their main power source, which indirectly indicated a reduction 'in poverty. As the yields and therefore crop-values were higher on TOF than BOF, the TOF obtained higher gross margins. Cost of production was low in 1992-93, but the crop-values were also low, so the gross margins remained low. Results indicate that there will be an increase in production and a reduction in cost of production through mechanized farming, however, there will be an increase in energy

  5. Supply evaluation of a herbaceous and woody energy crop at three midwest regions

    International Nuclear Information System (INIS)

    English, B.C.; Dillivan, K.D.; Ojo, M.A.

    1994-01-01

    While substantial research has been conducted on the argronomic issues of biomass production and on the processes of converting biofuel crops into energy, little work has been completed analyzing the economic and physical impacts of biofuel production on an agriculturally based region. Acres currently devoted to traditional crops will be replaced by biomass crops if such a conversion proves to be economically attractive. These shifts could have impacts on local and regional levels of farm income, current farmland market values, commodity prices received, and the demand for and prices of farm level inputs. This paper examines the economic and physical ramifications of introducing biomass production to three Midwest regions centered in the following counties; Cass County, North Dakota, Olmsted County, Minnesota, and Orange County, Indiana. Using a regional linear programming model that maximizes net returns to producers subject to several constraints, a supply curve for biomass is developed for each of the three regions. The model predicts that at a plant gate price of $26, $40, and $52 per dry ton, biomass begins to enter into production in the Cass, Olmsted, and Orange Regions respectively. Prices of $28, $44, and $54 per dry ton of biomass are sufficient to supply a quantity necessary to operate a power plant requiring 5,000 dry tons per day in Cass, Olmsted, and Orange regions respectively. In the Olmsted and Orange regions, biomass production results in fertilizer being applied, however, in the Cass Region a slight increase in fertilizer use corresponds to biomass production

  6. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions. Copyright © 2014. Published by Elsevier Ltd.

  7. Modelling the costs of energy crops. A case study of US corn and Brazilian sugar cane

    International Nuclear Information System (INIS)

    Mejean, Aurelie; Hope, Chris

    2010-01-01

    High crude oil prices, uncertainties about the consequences of climate change and the eventual decline of conventional oil production raise the prospects of alternative fuels, such as biofuels. This paper describes a simple probabilistic model of the costs of energy crops, drawing on the user's degree of belief about a series of parameters as an input. This forward-looking analysis quantifies the effects of production constraints and experience on the costs of corn and sugar cane, which can then be converted to bioethanol. Land is a limited and heterogeneous resource: the crop cost model builds on the marginal land suitability, which is assumed to decrease as more land is taken into production, driving down the marginal crop yield. Also, the maximum achievable yield is increased over time by technological change, while the yield gap between the actual yield and the maximum yield decreases through improved management practices. The results show large uncertainties in the future costs of producing corn and sugar cane, with a 90% confidence interval of 2.9-7.2$/GJ in 2030 for marginal corn costs, and 1.5-2.5$/GJ in 2030 for marginal sugar cane costs. The influence of each parameter on these supply costs is examined. (author)

  8. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A.J.; Lopez-Martinez, J.A.; Manzano-Agugliaro, F. [Departamento de Ingenieria Rural, Universidad de Almeria, Ctra. Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain); Velazquez-Marti, B. [Departamento de Ingenieria Rural y Agroalimentaria, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    Almeria, in southeastern Spain, generates some 1,086,261 t year{sup -1} (fresh weight) of greenhouse crop (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgaris L., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.) residues. The energy potential of this biomass is unclear. The aim of the present work was to accurately quantify this variable, differentiating between crop species while taking into consideration the area they each occupy. This, however, required the direct analysis of the higher heating value (HHV) of these residues, involving very expensive and therefore not commonly available equipment. Thus, a further aim was to develop models for predicting the HHV of these residues, taking into account variables measured by elemental and/or proximate analysis, thus providing an economically attractive alternative to direct analysis. All the analyses in this work involved the use of worldwide-recognised standards and methods. The total energy potential for these plant residues, as determined by direct analysis, was 1,003,497.49 MW h year{sup -1}. Twenty univariate and multivariate equations were developed to predict the HHV. The R{sup 2} and adjusted R{sup 2} values obtained for the univariate and multivariate models were 0.909 and 0.946 or above respectively. In all cases, the mean absolute percentage error varied between 0.344 and 2.533. These results show that any of these 20 equations could be used to accurately predict the HHV of crop residues. The residues produced by the Almeria greenhouse industry would appear to be an interesting source of renewable energy. (author)

  9. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  10. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  11. A spatially based field specific crop recordkeeping system prototype ...

    African Journals Online (AJOL)

    These spatial data were prepared using ArcGIS 9.3. A database was created in Microsoft Access 2007. The database contained information on crops, fertilizers and past management. The information was linked to the spatial data table and maintained in the database. An application was developed using Visual Basic 6 in ...

  12. Energy systems transformation.

    Science.gov (United States)

    Dangerman, A T C Jérôme; Schellnhuber, Hans Joachim

    2013-02-12

    The contemporary industrial metabolism is not sustainable. Critical problems arise at both the input and the output side of the complex: Although affordable fossil fuels and mineral resources are declining, the waste products of the current production and consumption schemes (especially CO(2) emissions, particulate air pollution, and radioactive residua) cause increasing environmental and social costs. Most challenges are associated with the incumbent energy economy that is unlikely to subsist. However, the crucial question is whether a swift transition to its sustainable alternative, based on renewable sources, can be achieved. The answer requires a deep analysis of the structural conditions responsible for the rigidity of the fossil-nuclear energy system. We argue that the resilience of the fossil-nuclear energy system results mainly from a dynamic lock-in pattern known in operations research as the "Success to the Successful" mode. The present way of generating, distributing, and consuming energy--the largest business on Earth--expands through a combination of factors such as the longevity of pertinent infrastructure, the information technology revolution, the growth of the global population, and even the recent financial crises: Renewable-energy industries evidently suffer more than the conventional-energy industries under recession conditions. Our study tries to elucidate the archetypical traits of the lock-in pattern and to assess the respective importance of the factors involved. In particular, we identify modern corporate law as a crucial system element that thus far has been largely ignored. Our analysis indicates that the rigidity of the existing energy economy would be reduced considerably by the assignment of unlimited liabilities to the shareholders.

  13. Comparative energy analysis of agricultural crops used for producing ethanol and CO2 emissions

    International Nuclear Information System (INIS)

    Santos, M.A. dos

    1997-01-01

    A variety of biomass sources can be used for producing ethanol. Among these are sugar cane (Brazil), corn (USA), sweet sorghum (USA and Europe), sugar beets (Europe) and wheat (USA and Europe). The production of fuel alcohol worldwide has been analyzed from various perspectives: productivity, the competition between food and energy crops, the social and economic aspects and, more recently, the environmental dimension. Another relevant study is aimed at calculating the energy costs of the production and use of alcohol from sugar cane as compared to other primary sources for this fuel. The present analysis employs the methodology of energy balance, highlighting local conditions that influence how biomass is transformed into ethanol: technology, agricultural productivity, environmental conditions and an estimate of the carbon dioxide emissions from these different processes. (author)

  14. MINIMIZE ENERGY AND COSTS REQUIREMENT OF WEEDING AND FERTILIZING PROCESS FOR FIBER CROPS IN SMALL FARMS

    Directory of Open Access Journals (Sweden)

    Tarek FOUDA

    2015-06-01

    Full Text Available The experimental work was carried out through agricultural summer season of 2014 at the experimental farm of Gemmiza Research Station, Gharbiya governorate to minimize energy and costs in weeding and fertilizing processes for fiber crops (Kenaf and Roselle in small farms. The manufactured multipurpose unit performance was studied as a function of change in machine forward speed (2.2, 2.8, 3.4 and 4 Km/h fertilizing rates (30,45 and 60 Kg.N.fed-1,and constant soil moisture content was 20%(d.b in average. Performance of the manufactured machine was evaluated in terms of fuel consumption, power and energy requirements, effective field capacity, theoretical field capacity, field efficiency, and operational costs as a machine measurements .The experiment results reveled that the manufactured machine decreased energy and increased effective field capacity and efficiency under the following conditions: -machine forward speed 2.2Kmlh. -moisture content average 20%.

  15. Crop residues as a potential renewable energy source for Malawi's cement industry

    DEFF Research Database (Denmark)

    Gondwe, Kenneth J.; Chiotha, Sosten S.; Mkandawire, Theresa

    2017-01-01

    that the projected total energy demands in 2020, 2025 and 2030 were approximately 177 810 TJ, 184 210 TJ and 194 096 TJ respectively. The highest supply potentials were found to be in the central and southern regions of Malawi, coinciding with the locations of the two clinker plants. Crop residues could meet 45......-57% of the national total energy demand. The demand from the cement industry is only 0.8% of the estimated biomass energy potential. At an annual production of 600 000 t of clinker and 20% biomass co-firing with coal, 18 562 t of coal consumption would be avoided and 46 128 t of carbon dioxide emission reduction...

  16. Utilization of residual biochar produced from the pyrolysis of energy crops for soil enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Pilon, G.; Lavoie, J.M. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. of Chemical Engineering and Biotechnology

    2010-07-01

    Although national and international interest in the use of energy crops for the production of biofuels is increasing, it is understood that measures must be taken to ensure that the production and transportation of these energy crops does not require more energy than they provide and that the soil should not be left uncovered so as not to reduce its organic content and nutrients. In response, concerns regarding soil fertilization have increased. A technique for biomass preconversion known as pyrolysis-torrefaction involves the production of char and bio-oil from biomass. This processing method is gaining interest because the char may be useful for many applications such as a fuel, soil conditioner or carbon sequestration. An appropriate distribution of biochar applications could be potentially beneficial for the sustainability of biomass use in the imminent biomarket. In this study, biochar produced from switchgrass was prepared and characterized to verify its potential as a soil enhancer and its potential as a solid fuel. The biochar was prepared under varying reacting conditions using custom-made bench scale, batch-type fixed bed pyrolysis-torrefaction reactor. Volatiles were released by varying the residence times.

  17. The hydrological impacts of energy crop production in the UK. Final report

    OpenAIRE

    Finch, J. W.; Hall, R. L.; Rosier, P. T. W.; Clark, D. B.; Stratford, C.; Davies, H. N.; Marsh, T. J.; Roberts, J. M.; Riche, A.; Christian, D.

    2004-01-01

    This report describes the work carried out between March 2002 and January 2004 under ETSU Contract number B/CR/000783/00/00 by the Centre for Ecology and Hydrology, Wallingford. It also describes the results of measurements made by Rothamsted Research staff under a sub-contract. The objectives of this work are: 1. To determine the effects on water availability at the catchment and sub-catchment scale, of production of energy crops, across England and Wales. 2. To indicate areas where...

  18. Wind Energy Systems.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  19. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  20. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  1. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    International Nuclear Information System (INIS)

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. - Highlights: • Survey of English livestock farms determining attitudes to dedicated energy crops. • 6.3% to 7.2% of surveyed farmers would consider growing energy crops. • Limited potential for dedicated energy crops on livestock farms in England. • Livestock farmers would continue to buy straw, even at higher market prices. • Wide range of reasons given for farmers’ decisions related to energy crops

  2. Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera

    OpenAIRE

    Thuy Tuong Nguyen; David C. Slaughter; Bradley D. Hanson; Andrew Barber; Amy Freitas; Daniel Robles; Erin Whelan

    2015-01-01

    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a t...

  3. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    Science.gov (United States)

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  4. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Directory of Open Access Journals (Sweden)

    Kyalo Richard

    2017-11-01

    Full Text Available Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step. An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  5. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  6. A Spatial-Dynamic Agent-based Model of Energy Crop Introduction in Jiangsu province, China

    Science.gov (United States)

    Shu, K.; Schneider, U. A.; Scheffran, J.

    2012-12-01

    Bioenergy, as one promising option to replace a fraction of conventional fossil fuels and lower net greenhouse gas emissions, has gained many countries', in particular developing ones' attention. Their focus is mainly on the design of efficient bioenergy utilization pathways which adapt to both local geographic features and economic conditions. The establishment of a biomass production sector would be the first and pivotal component in the whole industrial chain. Several existing studies have estimated the global biomass for energy potential but arrived at very different results. One reason for the large uncertainty of biomass potential may be ascribed to the diverse nature of biomass leading to different estimates in different circumstances. Therefore, specific research at the local level is essential. Following this thought, our research conducted in the Jiangsu province, a representative region in China, will explore the spatial distribution of biomass production. The employed methodology can also be applied to other locations both in China and similar developing countries if model parameters are adequately adjusted. In this study, we analyze the local situation in the Jiangsu province focusing on the selection of new energy crops, since the cultivation of dedicated crop for energy use is still in experimental phase. We also examine the land use conflict which is especially relevant to China with more than 1.3 billion people and a severe burden on food supply. We develop an agent-based model to find the optimal spatial distribution of biomass (SDA-SDB) in Jiangsu province. Compromising data accessibility and heterogeneity of environmental factors across the province, we resolve our model at county level and consider the aggregated farming community in one county as a single agent. The aim of SDA-SDB is to simulate farmers' decision process of allocating land to either food or energy crops facing limited resources and political targets for bioenergy development

  7. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  8. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  9. Energy Storage and Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2016-12-01

    Full Text Available It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should be disregarded but that it will be needed for other purposes in the future.

  10. Wind energy systems

    International Nuclear Information System (INIS)

    Richardson, R.D.; McNerney, G.M.

    1993-01-01

    Wind energy has matured to a level of development where it is ready to become a generally accepted utility generation technology. A brief discussion of this development is presented, and the operating and design principles are discussed. Alternative designs for wind turbines and the tradeoffs that must be considered are briefly compared. Development of a wind energy system and the impacts on the utility network including frequency stability, voltage stability, and power quality are discussed. The assessment of wind power station economics and the key economic factors that determine the economic viability of a wind power plant are presented

  11. Assessment of energy return on energy investment (EROEI) of oil bearing crops for renewable fuel production

    OpenAIRE

    A. Restuccia; S. Failla; D. Longo; L. Caruso; I. Mallia; G. Schillaci

    2013-01-01

    As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested) has been used. At this aim, an...

  12. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction......N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3single bondN leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop...

  13. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    Science.gov (United States)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  14. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang.

    Science.gov (United States)

    Fang, Bin; Wang, Guang-Huo; Van, Den Berg Marrit; Roetter, Reimund

    2005-10-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China's Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology development. The approach particularly suits newly developed rice technologies with large potential of reducing nitrogen pollution and for future rice and vegetables technologies. The results showed that substantial reductions in nitrogen pollution are feasible for both types of crops.

  15. Energy farming in multiple land use : An opportunity for energy crop introduction in the Netherlands

    NARCIS (Netherlands)

    Londo, H.M.

    2002-01-01

    Concerns about climate change related to fossil fuel carbon dioxide emissions require the development of alternative energy resources. In most scenario studies on future energy supply, bio-energy is one of the dominant renewable alternatives foreseen. Apart from the use of residues and wastes, the

  16. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  17. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem.

    Directory of Open Access Journals (Sweden)

    Jiashu Chu

    Full Text Available The effect of cropping system on the distribution of organic carbon (OC and nitrogen (N in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0-40 cm at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0-20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the 0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm.

  18. Integrated cropping systems : an answer to environmental regulations imposed on nursery stock in the Netherlands

    NARCIS (Netherlands)

    Pronk, A.A.; Challa, H.

    2000-01-01

    Government regulations in the Netherlands are increasingly constraining and sometimes even banning conventional cultivation practices in nursery stock cropping systems. As a consequence, growers face problems concerning the use of manure, fertilisers and irrigation. In this study we analysed the

  19. Production versus environmental impact trade-offs for Swiss cropping systems: a model-based approach

    Science.gov (United States)

    Necpalova, Magdalena; Lee, Juhwan; Six, Johan

    2017-04-01

    There is a growing need to improve sustainability of agricultural systems. The key focus remains on optimizing current production systems in order to deliver food security at low environmental costs. It is therefore essential to identify and evaluate agricultural management practices for their potential to maintain or increase productivity and mitigate climate change and N pollution. Previous research on Swiss cropping systems has been concentrated on increasing crop productivity and soil fertility. Thus, relatively little is known about management effects on net soil greenhouse gas (GHG) emissions and environmental N losses in the long-term. The aim of this study was to extrapolate findings from Swiss long-term field experiments and to evaluate the system-level sustainability of a wide range of cropping systems under conditions beyond field experimentation by comparing their crop productivity and impacts on soil carbon, net soil GHG emissions, NO3 leaching and soil N balance over 30 years. The DayCent model was previously parameterized for common Swiss crops and crop-specific management practices and evaluated for productivity, soil carbon dynamics and N2O emissions from Swiss cropping systems. Based on a prediction uncertainty criterion for crop productivity and soil carbon (rRMSEGM). The productivity of Swiss cropping systems was mainly driven by total N inputs to the systems. The GWP of systems ranged from -450 to 1309 kg CO2 eq ha-1 yr-1. All studied systems, except for ORG-RT-GM systems, acted as a source of net soil GHG emissions with the relative contribution of soil N2O emissions to GWP of more than 60%. The GWP of systems with CT decreased consistently with increasing use of organic manures (MIN>IN>ORG). NT relative to RT management showed to be more effective in reducing GWP from MIN systems due to reduced soil N2O emissions and positive effects on soil C sequestration. GM relative to CC management was shown to be more effective in mitigating NO3

  20. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    Science.gov (United States)

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  1. “Marginal land” for energy crops: Exploring definitions and embedded assumptions

    International Nuclear Information System (INIS)

    Shortall, O.K.

    2013-01-01

    The idea of using less productive or “marginal land” for energy crops is promoted as a way to overcome the previous land use controversies faced by biofuels. It is argued that marginal land use would not compete with food production, is widely available and would incur fewer environmental impacts. This term is notoriously vague however, as are the details of how marginal land use for energy crops would work in practice. This paper explores definitions of the term “marginal land” in academic, consultancy, NGO, government and industry documents in the UK. It identifies three separate definitions of the term: land unsuitable for food production; ambiguous lower quality land; and economically marginal land. It probes these definitions further by exploring the technical, normative and political assumptions embedded within them. It finds that the first two definitions are normatively motivated: this land should be used to overcome controversies and the latter definition is predictive: this land is likely to be used. It is important that the different advantages, disadvantages and implications of the definitions are spelled out so definitions are not conflated to create unrealistic expectations about the role of marginal land in overcoming biofuels land use controversies. -- Highlights: •Qualitative methods were used to explore definitions of the term “marginal land”. •Three definitions were identified. •Two definitions focus on overcoming biomass land use controversies. •One definition predicts what land will be used for growing biomass. •Definitions contain problematic assumptions

  2. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  3. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System

    Directory of Open Access Journals (Sweden)

    Donald S. Bailey

    2017-08-01

    Full Text Available The UVI Commercial Aquaponic System is designed to produce fish and vegetables in a recirculating aquaculture system. The integration of these systems intensifies production in a small land area, conserves water, reduces waste discharged into the environment, and recovers nutrients from fish production into valuable vegetable crops. A standard protocol has been developed for the production of tilapia yielding 5 MT per annum. The production of many vegetable crops has also been studied but, because of specific growth patterns and differences of marketable product, no single protocol can be promoted. Each crop yields different value per unit area and this must be considered when selecting varieties to produce to provide the highest returns to the farmer. Variables influencing the value of a crop are density (plants/m2, yield (unit or kg, production period (weeks and unit value ($. Combining these variables to one unit, $/m2/week, provides a common point for comparison among crops. Farmers can focus production efforts on the most valuable crops or continue to produce a variety of crops meeting market demand with the knowledge that each does not contribute equally to profitability.

  4. Wellons Canada energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Wellons Canada is a British Columbia-based company that specializes in the manufacture and installation of lumber drying and energy conversion equipment. This brochure provided details of the Wellons energy system designed for oriented strand board (OSB) plants. The brochure outlined the system's scope of supply, and provided illustrations of system procedures from the initial wet fuel bin through to the electric precipitator used for air clean-up. During the process, fuel was conveyed from the bin to metering bins into combustors and through a cyclo-blast cell. Forced draft fan systems were then used to provide primary and secondary combustion air. Radiant heaters were then used. A drop-out chamber was supplied to allow for complete combustion of fuel particles and to provide a drop-out of ash. A fan was then used to deliver diluent air to maintain the set point temperature in the hot gas stream. Refractory lined hot gas ducts were used to deliver heat to the dryers. Hot gas was then drawn through a multi-cyclone collector for ash removal. Electrostatic precipitators were used to clean up emissions on a continuous operating basis. An automatic system was used to collect ash from the combustion system grates and other areas. Details of installation services provided by the company were also included. 42 figs.

  5. Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang*

    OpenAIRE

    Fang, Bin; Wang, Guang-huo; Van den berg, Marrit; Roetter, Reimund

    2005-01-01

    This work analyses the potential role of nitrogen pollution technology of crop systems of Pujiang, County in Eastern China’s Zhejiang Province, rice and vegetables are important cropping systems. We used a case study approach involving comparison of farmer practices and improved technologies. This approach allows assessing the impact of technology on pollution, is forward looking, and can yield information on the potential of on-the-shelf technology and provide opportunities for technology de...

  6. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...

  7. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oats and nitrogen catch crops. II. Effect of catch crops on nitrate leaching in autumn and winter

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    2004-01-01

    The Nitrate Directive of the European Union (EU) forces agriculture to reduce nitrate emission. The current study addressed nitrate emission and nitrate-N concentrations in leachate from cropping systems with and without the cultivation of catch crops (winter rye: Secale cereale L. and forage rape:

  8. Oil crops: requirements and possibilities for their utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, G; Schoenefeldt, J; Mehring, I [OeHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1995-12-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author) 5 refs, 4 figs, 4 tabs

  9. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.

    Directory of Open Access Journals (Sweden)

    Benjamin D Duval

    Full Text Available Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L. is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46-76 Mg dry mass · ha(-1. Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq · m(-2 over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions.

  10. Conceptual design of a bioregenerative life support system containing crops and silkworms

    Science.gov (United States)

    Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong

    2010-04-01

    This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.

  11. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  12. 21st Century's energy: Hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. Nejat; Sahin, Suemer

    2008-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the hydrogen energy system. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar-hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar-hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st century

  13. 21st century's energy: hydrogen energy system

    International Nuclear Information System (INIS)

    Veziroglu, T. N.

    2007-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal), which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. Many engineers and scientists agree that the solution to these global problems would be to replace the existing fossil fuel system by the Hydrogen Energy System. Hydrogen is a very efficient and clean fuel. Its combustion will produce no greenhouse gases, no ozone layer depleting chemicals, little or no acid rain ingredients and pollution. Hydrogen, produced from renewable energy (e.g., solar) sources, would result in a permanent energy system, which we would never have to change. However, there are other energy systems proposed for the post-petroleum era, such as a synthetic fossil fuel system. In this system, synthetic gasoline and synthetic natural gas will be produced using abundant deposits of coal. In a way, this will ensure the continuation of the present fossil fuel system. The two possible energy systems for the post-fossil fuel era (i.e., the solar hydrogen energy system and the synthetic fossil fuel system) are compared with the present fossil fuel system by taking into consideration production costs, environmental damages and utilization efficiencies. The results indicate that the solar hydrogen energy system is the best energy system to ascertain a sustainable future, and it should replace the fossil fuel system before the end of the 21st Century

  14. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  15. Recycling of Na in advanced life support: strategies based on crop production systems.

    Science.gov (United States)

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  16. Biomass in a sustainable energy system

    International Nuclear Information System (INIS)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO 2 emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO 2 reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO 2 emission reductions than transportation fuels from annual crops. Swedish CO 2 emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic value of these

  17. Biomass in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    1998-04-01

    In this thesis, aspects of an increase in the utilization of biomass in the Swedish energy system are treated. Modern bioenergy systems should be based on high energy and land use efficiency since biomass resources and productive land are limited. The energy input, including transportation, per unit biomass produced is about 4-5% for logging residues, straw and short rotation forest (Salix). Salix has the highest net energy yield per hectare among the various energy crops cultivated in Sweden. The CO{sub 2} emissions from the production and transportation of logging residues, straw and Salix, are equivalent to 2-3% of those from a complete fuel-cycle for coal. Substituting biomass for fossil fuels in electricity and heat production is, in general, less costly and leads to a greater CO{sub 2} reduction per unit biomass than substituting biomass derived transportation fuels for petrol or diesel. Transportation fuels produced from cellulosic biomass provide larger and less expensive CO{sub 2} emission reductions than transportation fuels from annual crops. Swedish CO{sub 2} emissions could be reduced by about 50% from the present level if fossil fuels are replaced and the energy demand is unchanged. There is a good balance between potential regional production and utilization of biomass in Sweden. Future biomass transportation distances need not be longer than, on average, about 40 km. About 22 TWh electricity could be produced annually from biomass in large district heating systems by cogeneration. Cultivation of Salix and energy grass could be utilized to reduce the negative environmental impact of current agricultural practices, such as the emission of greenhouse gases, nutrient leaching, decreased soil fertility and erosion, and for the treatment of municipal waste and sludge, leading to increased recirculation of nutrients. About 20 TWh biomass could theoretically be produced per year at an average cost of less than 50% of current production cost, if the economic

  18. Energy systems analysis of biogas systems; Energianalys av biogassystem

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Maria; Boerjesson, Paal

    2003-05-01

    The aim of this study was to calculate the net energy output and energy efficiency, from a life-cycle perspective and for Swedish conditions, in anaerobic digestion of various raw materials. Our calculations are based on literature reviews concerning the total primary energy input required for the production of biogas (i.e. direct and indirect energy inputs, e.g. when producing and distributing diesel fuels, electricity, fertilisers) as well as the biogas yield from various raw materials. Our analyses include handling and transportation of raw materials, operation of the biogas plants, and transportation and spreading of digested residues, as well as the biogas yield from manure, ley crops, tops and leaves of sugar beets, straw, municipal organic waste, slaughter waste, and grease separator sludge. All calculations concern individual raw materials. The net energy input required to run a biogas system (i.e. centralised biogas plant) typically corresponds to approximately 20-40% of the energy content in the produced biogas. Theoretically, the raw materials could be transported for some 200 km (manure) up to 700 km (slaughter waste) before the net energy output becomes negative. The variations in energy efficiency between studied biogas systems depend mainly on the type of raw material studied and the calculation methods used. Raw materials with high water content and low biogas yield (e.g. manure) require rather large energy inputs compared to the amount of biogas produced. Energy demanding handling of the raw materials, such as ley crops, could correspond to as much as approximately 40% of the net energy input. Varying energy efficiency in different parts of the biogas system, but most of all, changes in the biogas yield, could considerably affect the total net energy output. In general, operation of the biogas plant is the most energy demanding process in the biogas systems, corresponding to some 40-80% of the net energy input in the biogas systems. This implies

  19. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  20. Análise do consumo de energia na produção de silagem de milho em plantio direto - DOI: 10.4025/actascianimsci.v25i2.1980 Energy consumption analysis of corn silage production in non-tillage crop system- DOI: 10.4025/actascianimsci.v25i2.1980

    Directory of Open Access Journals (Sweden)

    Aloísio Torres de Campos

    2003-04-01

    Full Text Available O agroecossistema, como um meio de converter a energia solar em produtos, necessita de várias fontes de energia, dentre as quais destacam-se a dos fertilizantes, a dos defensivos agrícolas e outras. No presente trabalho, realizou-se um estudo do consumo energético envolvido na produção de milho para silagem em sistema de plantio direto, na região de São Miguel do Iguaçu, Estado do Paraná. No consumo de energia direta, os combustíveis e lubrificantes foram os maiores consumidores, representando 45,90% do total, os defensivos agrícolas foram responsáveis pelo consumo de 24,12%, enquanto que os fertilizantes, por 10,53%. Ao computar os componentes de origem fóssil, os combustíveis, os lubrificantes, os defensivos e os fertilizantes, a participação do consumo total de energia foi de 84,07%.The agricultural ecosystem as a way of converting solar energy in products needs several energy sources, among those sources stood out fertilizers, agricultural defensives and others. These inputs are derived from fossils. In the present paper, the energy consumption involved in corn silage production in a non-tillage crop system, in São Miguel do Iguaçu, State of Paraná, Brazil, was studied. In the direct energy input, fuels and lubricants were the largest consumers, representing 45.90% of the total, agricultural defensives were responsible for the consumption of 24.12% of the total, while fertilizers for 10.53% of the total consumption. By computing the fossil origin components, fuels, lubricants, defensive and fertilizers, the participation of the total consumption of energy was of 84.07%.

  1. Insect pests and their natural enemies on spring oilseed rape in Estonia : impact of cropping systems

    Directory of Open Access Journals (Sweden)

    E. VEROMANN

    2008-12-01

    Full Text Available To investigate the impact of different cropping systems, the pests, their hymenopteran parasitoids and predatory ground beetles present in two spring rape crops in Estonia, in 2003, were compared. One crop was grown under a standard (STN cropping system and the other under a minimised (MIN system. The STN system plants had more flowers than those in the MIN system, and these attracted significantly more Meligethes aeneus, the only abundant and real pest in Estonia. Meligethes aeneus had two population peaks: the first during opening of the first flowers and the second, the new generation, during ripening of the pods. The number of new generation M. aeneus was almost four times greater in the STN than in the MIN crop. More carabids were caught in the MIN than in STN crop. The maximum abundance of carabids occurred two weeks before that of the new generation of M. aeneus, at the time when M. aeneus larvae were dropping to the soil for pupation and hence were vulnerable to predation by carabids.

  2. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  3. Multiple Energy System Analysis of Smart Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2015-01-01

    thermal grids and smart gas grids, Smart Energy Systems moves the flexibility away from the fuel as is the case in current energy systems and into the system itself. However, most studies applying a Smart Energy System approach deals with analyses for either single countries or whole continents......To eliminate the use of fossil fuels in the energy sector it is necessary to transition to future 100% renewable energy systems. One approach for this radical change in our energy systems is Smart Energy Systems. With a focus on development and interaction between smart electricity grids, smart......, but it is unclear how regions, municipalities, and communities should deal with these national targets. It is necessary to be able to provide this information since Smart Energy Systems utilize energy resources and initiatives that have strong relations to local authorities and communities, such as onshore wind...

  4. Options for achieving the target of 45 MTOE from energy cropping in the EU in 2010. Danish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    Among the renewable, biomass is considered an attractive option for energy production for a number of fundamental agricultural, industrial and rural development reasons. During the last decade several types of goals and associated incentives have been set across Europe in order to enhance both the RandD of the technologies and the implementation of bioenergy schemes. In Denmark, Austria and Finland the bioenergy schemes have been proved successful, while in other EU regions, bioenergy schemes are now either beginning to be implemented or are slowly developed at small scale and pilot level. The main reasons for this slow progress are: Lack in security of supply; Non-uniform and bulky material in the form of residues and wastes; Inadequate interrelation between the agricultural and energy policies; Inefficient way of approaching the main target groups involved in the bioenergy business. Scientists and policy makers remain sceptical whether the favourable technical potential of these crops will actually serve as feedstock in already operating or newly planned bioenergy schemes. Due to the role of energy in almost all walks of life, EU policies in this area have to be considered within a wider context extending to climate change, waste disposal, agriculture, air and water policy. The report states the following recommendations: Define niche markets for energy crops per type of fuel produced; Link current residue exploitation to mainstream biomass developments; Transfer of knowledge on growing energy crops to the 10 new countries; Define the role that energy crops trade could play. The absence of any policy to encourage energy crops represents one of the main limits to their dissemination. Energy crops incentive policies are actually constrained by CAP requirements and thus heavily affected by the limits of EU agricultural policy and partly by its rural policy which is biased in favour of restricting arable land characterized by production surpluses. The promotion of

  5. Energy systems in transition

    International Nuclear Information System (INIS)

    Haefele, W.

    1989-01-01

    The principal point of the author was to discuss energy systems (ES) in transition, transition addresses the next 10-25 years, and strategy of the transition. He considers different scenarios of future development of ES. Further he presents considerations elaborated during the last years on the concept of novel horizontally integrated ES which gives promise to be at least an approximation to the desired object of no emissions. The main ideas of the concept are: to decompose and thereby clean all the primary inputs before they are brought to combustion; to develop a network combining all the primary inputs to an integrated supply structure of high absorption, buffer, and storage capacity that resembles in some way the supply and utility functions of the well established electric grid but completes it at best on the basis of mass flows; to achieve a high flexibility in supplying the final energy. The author considers the long run perspective of hydrogen, solar, and nuclear energy with respect to alternative energy sources. 6 refs, 24 figs

  6. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  7. Conventional vs. organic cropping systems: yield of crops and weeds in Mediterranean environment

    OpenAIRE

    Campiglia, Enio; Mancinelli , Roberto; Radicetti, Emanuele

    2015-01-01

    Agriculture must meet the twin challenge of feeding a growing population while simultaneously of minimizing its global environmental impacts. The organic farming, which is a system aimed at producing food with minimal harm to ecosystems, is often proposed as a possible solution. However, critics argue that organic agriculture may give lower yields and therefore more land is required in order to produce the same amount of food of the conventional farms, resulting in more widespread deforestati...

  8. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  9. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  10. An Assessment of some Fertilizer Recommendations under Different Cropping Systems in a Humid Tropical Environment

    Directory of Open Access Journals (Sweden)

    Fondufe, EY.

    2001-01-01

    Full Text Available Studies were carried out to determine the effects of four fertilizer recommendation systems (bianket recommendation, soil test recommendation, recommendation based on nutrient supplementation index and unfertilized control on five cropping systems (sole cassava, maize, melon, cassava + maize and cassava + maize + melon. The experiment was a split-plot in randomised complete block design, with fertilizer recommendation systems in main plots and cropping systems in subplots. Observations were made on plant growth and yield. Plant samples were also analyzed for N, P and K uptake. Cassava and melon gave higher yields in sole cropping than intercropping while maize yield under intercropping exceeded that under sole cropping by 17 %. Cassava root yield was significantly reduced by 24 and 35 % in cassava + maize and cassava + maize + melon plots. Fertilizer recommendation based on nutrient supplementation index (NSI gave the highest crop yield 41, 31, and 27 t/ha of maize in sole maize, maize + cassava and maize + cassava + melon and 0.6 and 0.2 t/ha of sole melon and intercropped melon respectively. Nitrogen uptake by cassava and maize was highest under NSI, but fertilizer recommendation based on soil test gave the highest crop yield and monetary returns per unit of fertilizer used.

  11. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This

  12. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... and designed a model for the future energy system of Denmark, putting emphasis on energy efficiency, CO2 reduction, and industrial development. The energy system analysis methodology includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  13. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Energy Storage Systems

    Science.gov (United States)

    Elliott, David

    2017-07-01

    As renewable energy use expands there will be a need to develop ways to balance its variability. Storage is one of the options. Presently the main emphasis is for systems storing electrical power in advanced batteries (many of them derivatives of parallel developments in the electric vehicle field), as well as via liquid air storage, compressed air storage, super-capacitors and flywheels, and, the leader so far, pumped hydro reservoirs. In addition, new systems are emerging for hydrogen generation and storage, feeding fuel cell power production. Heat (and cold) is also a storage medium and some systems exploit thermal effects as part of wider energy management activity. Some of the more exotic ones even try to use gravity on a large scale. This short book looks at all the options, their potentials and their limits. There are no clear winners, with some being suited to short-term balancing and others to longer-term storage. The eventual mix adopted will be shaped by the pattern of development of other balancing measures, including smart-grid demand management and super-grid imports and exports.

  15. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Barbara Manachini

    2009-03-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  16. Soil Quality Indicators as Affected by a Long Term Barley-Maize and Maize Cropping Systems

    Directory of Open Access Journals (Sweden)

    Anna Corsini

    2011-02-01

    Full Text Available Most soil studies aim a better characterization of the system through indicators. In the present study nematofauna and soil structure were chosen as indicators to be assess soil health as related to agricultural practices. The field research was carried out on the two fodder cropping systems continuous maize (CM, Zea mays L. and a 3-year rotation of silage-maize – silage-barley (Hordeum vulgare L. with Italian ryegrass (R3 and grain-maize maintained in these conditions for 18 years. Each crop system was submitted to two management options: 1 the high input level (H, done as a conventional tillage, 2 the low input level (L, where the tillage was replaced by harrowing and the manure was reduced by 30%. The effects of the two different cropping systems was assessed on soil nematofauna and soil physic parameters (structure or aggregate stability. Comparison was made of general composition, trophic structure and biodiversity of the nematofauna collected in both systems. Differences in nematode genera composition and distribution between the two systems were also recorded. The monoculture, compared to the three year rotation, had a negative influence on the nematofauna composition and its ecological succession. The Structural Stability Index (SSI values indicate that both the cropping systems had a negative effect on the aggregate stability. The results indicate that nematofauna can be used to assess the effects of cropping systems on soil ecosystem, and therefore be considered a good indicator of soil health to integrate information from different chemical or physical indicators.

  17. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    Science.gov (United States)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  18. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    Science.gov (United States)

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  19. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  20. Growth and energy yield when cultivating various energy crops on farming soil. Tillvaext och energiutbyte vid odling av olika energigroedor paa jordbruksmark

    Energy Technology Data Exchange (ETDEWEB)

    Thoerner, L.

    1988-03-01

    In four fields in the south of Sweden different energy crops were tested. In all trials sugar beet, barley, alfalfa, corn, sunflower and quickgrowing species of Salix (energy forest) were grown. In some of the trials broome-grass, potatoes and winter wheat were tested. One trial also included marrow-stem kale, Jerusalem artichoke and a hybride of J artichoke and sunflower. The purpose of the experiment was to illustrate the effect of increasing N-fertilizing and the effect of growing the crops in different climatic conditions. The yield varies between the crops. Some of the crops were harvested in different stages of development. The largest yields were noticed for sugar beet, corn, potatoes and energy forest. For these crops the yield was 11.5-14.5 tons of dry matter per hectare. The yield of potatoes was very large but it is figures for only one place with very good conditions. Barley, sunflower and alfalfa produced 8-10 tons of dry matter per hectare. The smaller yield depends on a short vegetation season for these crops. The year of establishment the energy forest produced about four tons of dry matter in the form of stem wood. When fully established the production has been 12-15 tons of dry matter per hectare and annum. The analysis of plant material indicates small divergences in the content of carbon and heat value.

  1. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    Science.gov (United States)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and

  3. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    Science.gov (United States)

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  4. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  5. Opportunities and challenges for harvest weed seed control in global cropping systems.

    Science.gov (United States)

    Walsh, Michael J; Broster, John C; Schwartz-Lazaro, Lauren M; Norsworthy, Jason K; Davis, Adam S; Tidemann, Breanne D; Beckie, Hugh J; Lyon, Drew J; Soni, Neeta; Neve, Paul; Bagavathiannan, Muthukumar V

    2017-11-28

    The opportunity to target weed seeds during grain harvest was established many decades ago following the introduction of mechanical harvesting and the recognition of high weed-seed retention levels at crop maturity; however, this opportunity remained largely neglected until more recently. The introduction and adoption of harvest weed seed control (HWSC) systems in Australia has been in response to widespread occurrence of herbicide-resistant weed populations. With diminishing herbicide resources and the need to maintain highly productive reduced tillage and stubble-retention practices, growers began to develop systems that targeted weed seeds during crop harvest. Research and development efforts over the past two decades have established the efficacy of HWSC systems in Australian cropping systems, where widespread adoption is now occurring. With similarly dramatic herbicide resistance issues now present across many of the world's cropping regions, it is timely for HWSC systems to be considered for inclusion in weed-management programs in these areas. This review describes HWSC systems and establishing the potential for this approach to weed control in several cropping regions. As observed in Australia, the inclusion of HWSC systems can reduce weed populations substantially reducing the potential for weed adaptation and resistance evolution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Science.gov (United States)

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  7. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  8. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  9. Nitrate leaching from sandy loam soils under a double-cropping forage system estimated from suction-probe measurements.

    NARCIS (Netherlands)

    Trindade, H.; Coutinho, J.; Beusichem, van M.L.; Scholefield, D.; Moreira, N.

    1997-01-01

    Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year)

  10. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  11. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  12. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    Science.gov (United States)

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping