WorldWideScience

Sample records for energy consumption scenarios

  1. Fuel consumption from vehicles of China until 2030 in energy scenarios

    International Nuclear Information System (INIS)

    Zhang Qingyu; Tian Weili; Zheng Yingyue; Zhang Lili

    2010-01-01

    Estimation of fuel (gasoline and diesel) consumption for vehicles in China under different long-term energy policy scenarios is presented here. The fuel economy of different vehicle types is subject to variation of government regulations; hence the fuel consumption of passenger cars (PCs), light trucks (Lts), heavy trucks (Hts), buses and motor cycles (MCs) are calculated with respect to (i) the number of vehicles, (ii) distance traveled, and (iii) fuel economy. On the other hand, the consumption rate of alternative energy sources (i.e. ethanol, methanol, biomass-diesel and CNG) is not evaluated here. The number of vehicles is evaluated using the economic elastic coefficient method, relating to per capita gross domestic product (GDP) from 1997 to 2007. The Long-range Energy Alternatives Planning (LEAP) system software is employed to develop a simple model to project fuel consumption in China until 2030 under these scenarios. Three energy consumption decrease scenarios are designed to estimate the reduction of fuel consumption: (i) 'business as usual' (BAU); (ii) 'advanced fuel economy' (AFE); and (iii) 'alternative energy replacement' (AER). It is shown that fuel consumption is predicted to reach 992.28 Mtoe (million tons oil equivalent) with the BAU scenario by 2030. In the AFE and AER scenarios, fuel consumption is predicted to be 734.68 and 600.36 Mtoe, respectively, by 2030. In the AER scenario, fuel consumption in 2030 will be reduced by 391.92 (39.50%) and 134.29 (18.28%) Mtoe in comparison to the BAU and AFE scenarios, respectively. In conclusion, our models indicate that the energy conservation policies introduced by governmental institutions are potentially viable, as long as they are effectively implemented.

  2. Energy consumption in industry, 1990 - 2035 - Scenarios I to IV for various sensitivities

    International Nuclear Information System (INIS)

    Baumgartner, W.; Ebert, O.; Weber, F.

    2006-12-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a study with respect to industrial energy consumption which provided scenarios for future Swiss energy consumption. Four scenarios were elaborated: Continuation of present policy, increased co-operation between state and industry, more ambitious energy policy priorities and a scenario with even more ambitious goals - the so-called '2000 Watt Society'. For each of these scenarios several variants and a selection of sub-variants were defined, including increased prices, higher gross domestic product GDP, warmer climate and various carbon levies. The specific energy consumption of 16 different industrial sectors is examined and the effects of the various scenarios on several factors are considered. Data and results are presented in tabular and graphical form. Various measures that could influence energy consumption are listed and discussed, as are the modelling methods employed and the plausibility of the results obtained

  3. The energy consumption of traffic 1990 - 2035 - Results of scenarios I - IV

    International Nuclear Information System (INIS)

    Keller, M.

    2007-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents four scenarios concerning the development of energy consumption in the traffic sector for the period 1990 - 2035. The four scenarios - status quo, increased co-operation between the state and the economy with various energy levies, global reduction of energy consumption and, finally, scenario IV 'on the way to a 2000-Watt Society' - are briefly described. The areas examined include road, rail and air traffic as well as 'off-road' traffic. Infrastructure developments are commented on. The four scenarios are examined for various sensitivities including high gross domestic product GDP, high prices and warmer climate. Alternative fuels are looked at, as are further factors such as fuel tourism, pollutant emissions and costs. The results of the sensitivity analyses are compared and discussed and the necessary instruments are examined. This comprehensive report is completed with a comprehensive appendix

  4. The energy consumption of private households 1990 - 2035 - Results of scenarios I - IV

    International Nuclear Information System (INIS)

    Hofer, P.

    2007-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents four scenarios concerning the development of energy consumption in Swiss private households for the period 1990 - 2035. The four scenarios - status quo, increased co-operation between the state and the economy with various levies, global reduction of energy consumption and, finally, scenario IV 'on the way to a 2000-Watt Society' - are briefly described. In particular, the scenarios are examined for various sensitivities: high gross domestic product GDP, high prices and warmer climate. The results of the sensitivity analyses are compared and discussed and the necessary instruments are examined. This comprehensive report contains a large number of data-tables and graphical representations

  5. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  6. Experimental Energy Consumption of Frame Slotted ALOHA and Distributed Queuing for Data Collection Scenarios

    Directory of Open Access Journals (Sweden)

    Pere Tuset-Peiro

    2014-07-01

    Full Text Available Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC protocols, Frame Slotted ALOHA (FSA and Distributed Queuing (DQ. We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA.

  7. Experimental energy consumption of Frame Slotted ALOHA and Distributed Queuing for data collection scenarios.

    Science.gov (United States)

    Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis; Vilajosana, Xavier

    2014-07-24

    Data collection is a key scenario for the Internet of Things because it enables gathering sensor data from distributed nodes that use low-power and long-range wireless technologies to communicate in a single-hop approach. In this kind of scenario, the network is composed of one coordinator that covers a particular area and a large number of nodes, typically hundreds or thousands, that transmit data to the coordinator upon request. Considering this scenario, in this paper we experimentally validate the energy consumption of two Medium Access Control (MAC) protocols, Frame Slotted ALOHA (FSA) and Distributed Queuing (DQ). We model both protocols as a state machine and conduct experiments to measure the average energy consumption in each state and the average number of times that a node has to be in each state in order to transmit a data packet to the coordinator. The results show that FSA is more energy efficient than DQ if the number of nodes is known a priori because the number of slots per frame can be adjusted accordingly. However, in such scenarios the number of nodes cannot be easily anticipated, leading to additional packet collisions and a higher energy consumption due to retransmissions. Contrarily, DQ does not require to know the number of nodes in advance because it is able to efficiently construct an ad hoc network schedule for each collection round. This kind of a schedule ensures that there are no packet collisions during data transmission, thus leading to an energy consumption reduction above 10% compared to FSA.

  8. The energy consumption of the services and farming sectors 1990 - 2035 - Results of scenarios I - IV

    International Nuclear Information System (INIS)

    Aebischer, B.; Catenazzi, G.

    2007-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents four scenarios concerning the development of energy consumption in the services sector and for farming for the period 1990 - 2035. The four scenarios - status quo, increased co-operation between the state and the economy with various levies, global reduction of energy consumption and, finally, scenario IV 'on the way to a 2000-Watt Society' - are briefly described. In particular, the scenarios are examined for various sensitivities: high gross domestic product GDP, CO 2 levy, high prices and warmer climate. The models and methods used are examined and examples of their use are quoted. The results of the sensitivity analyses are compared and discussed and the necessary instruments are examined. This comprehensive report contains a large number of data-tables and graphical representations

  9. Rural energy survey and scenario analysis of village energy consumption: A case study in Lao People's Democratic Republic

    International Nuclear Information System (INIS)

    Mustonen, S.M.

    2010-01-01

    In developing countries, providing all citizens an access to modern forms of energy is among the central energy policy objectives, as the linkages between modern energy services and human development are widely recognized. This paper presents in a scenario analysis of rural energy consumption, how energy services in different sectors of a village economy contribute to the achievement of the UNDP Millennium Development Goals. In a rural village in Lao People's Democratic Republic, household energy demand and energy uses were surveyed immediately prior to the electrification of the village. Based on the situation preceding electrification of the village, the development of village electrification was studied by simulating the village energy system, accounting for all village energy uses but transportation. To study the potential development of electricity demand in the village, three scenarios were constructed using the LEAP model: 'residential demand', 'income generation' and 'public services'. Energy demand in each scenario was analyzed with reference to the Millennium Development Goals.

  10. The UFE Prospective scenarios for energy demand

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the French energy consumption in 2011 (final energy consumption, distribution of CO 2 emissions related to energy consumption), this Power Point presentation proposes graphs and figures illustrating UFE's prospective scenarios for energy demand. The objective is to foresee energy demand in 2050, to study the impact of possible actions on energy demand, and to assess the impact on greenhouse gas emissions. Hypotheses relate to demographic evolution, economic growth, energy intensity evolution, energy efficiency, and use transfers. Factors of evolution of energy demand are discussed: relationship between demography and energy consumption, new uses of electricity (notably with TICs), relationship between energy intensity and economic growth. Actions on demand are discussed. The results of different scenarios of technical evolution are presented

  11. Italian energy scenarios comparative evaluations

    International Nuclear Information System (INIS)

    Contaldi, Mario

    2005-01-01

    This paper reviews some representative scenarios of the evolution of the Italian primary energy consumption, updated recently. After an overview of the main macroeconomics assumptions the scenario results are cross checked at sectorial level, with a brief discussion of the underlining data and energy intensity trends. The emissions of CO 2 , SO 2 and NO x resulting from the considered scenarios are also reported and discussed [it

  12. Securing energy efficiency as a high priority. Scenarios for common appliance electricity consumption in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Foran, T. [Unit for Social and Environmental Research USER, Faculty of Social Sciences, Chiang Mai University, P.O. Box 144, Chiang Mai, 50200 (Thailand); Du Pont, P.T. [International Resources Group and Joint Graduate School of Energy and Environment, Bangkok (Thailand); Parinya, P. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Phumaraphand, N. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand)

    2010-11-15

    Between 1995 and 2008, Thailand's energy efficiency programs produced an estimated total of 8,369 GWh/year energy savings and 1,471 MW avoided peak power. Despite these impressive saving figures, relatively little future scenario analysis is available to policy makers. Before the 2008 global financial crisis, electricity planners forecasted 5-6% long-term increases in demand. We explored options for efficiency improvements in Thailand's residential sector, which consumes more than 20% of Thailand's total electricity consumption of 150 TWh/year. We constructed baseline and efficient scenarios for the period 2006-2026, for air conditioners, refrigerators, fans, rice cookers, and compact fluorescent light bulbs. We drew on an appliance database maintained by Electricity Generating Authority of Thailand's voluntary labeling program. For the five appliances modeled, the efficiency scenario results in total savings of 12% of baseline consumption after 10 years and 29% of baseline after 20 years. Approximately 80% of savings come from more stringent standards for air conditioners, including phasing out unregulated air conditioner sales within 6 years. Shifting appliance efficiency standards to current best-in-market levels within 6 years produces additional savings. We discuss institutional aspects of energy planning in Thailand that thus far have limited the consideration of energy efficiency as a high-priority resource.

  13. Pakistan energy consumption scenario and some alternate energy option

    International Nuclear Information System (INIS)

    Maher, M.J.

    1997-01-01

    Pakistan with its energy-deficient resources is highly dependent on import-oriented energy affected the economy because of repeated energy price hike on international horizon. The energy consumption pattern in Pakistan comprises about two-third in commercial energy and one-third in non-commercial forms. Most of the country's energy requirements are met by oil, gas hydro power, coal, nuclear energy and thermal power. Pakistan meets it's commercial energy requirements indigenously up to 64%. The balance of deficit of 35-40% is met through import. The consumption of various agro-residues and wood as fuel also plays a vital role. The analysis shows that emphasis needs to be placed on new and renewable resources of energy besides adopting technologies for energy conservation. Renewable energy depends on energy income and constitutes the development process. The are several renewable energy options such as biogas technology, micro-hydro power generation, direct solar energy and biomass energy conservation etc. By improving the conservation techniques as designs of solar converters, pre treating the biomass fuel, increasing the effectiveness of carbonization and pyrolysis increases the energy production. (A.B.)

  14. Italian energy scenarios: Markal model

    International Nuclear Information System (INIS)

    Gracceva, Francesco

    2005-01-01

    Energy scenarios carried out through formal models comply with scientific criteria such as internal coherence and transparency. Besides, Markal methodology allows a good understanding of the complex nature of the energy system. The business-as-usual scenario carried out through the Markal-Italy model shows that structural changes occurring in end-use sectors will continue to drive up energy consumption, in spite of the slow economic growth and the quite high energy prices [it

  15. ANCRE scenarios for energy transition. Report 2013

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie; Des Courtils, Nicolas; Hache, Emmanuel; Liegeard, Alban; Lorne, Daphne; Duplan, Jean-Luc; Kalaydjian, Francois; Heintze, Eric; Tilagone, Richard; Henriot, Stephane; Forti, Laurent; Barthelemy, Pascal; Merlen, Elisabeth; Criqui, Patrick; Mathy, Sandrine; Menanteau, Philippe; Devezeaux De Lavergne, Jean-Guy; Avril, Sophie; Cavata, Christian; Le Duigou, Alain; Le Net, Elisabeth; Marcucci-Demeure, Jeanne; Safa, Henri; Topper, Benjamin; Touboul, Francoise; Carre, Franck; Joly, Jean-Pierre; Charbit, Francoise; Mermilliod, Nicole; Mermilliod, Nicole; Le Net, Elisabeth; Teissier, Olivier; Charrue, Herve; Colonna, Paul; Legrand, Jack; Vidal, Olivier; Goffe, Bruno; Mueller, Alex; Flamant, Gilles; Allard, Francis; Most, Jean-Michel; Matarasso, Pierre; Brault, Pascal; Lemoine, Lionel; Achard, Jean-Luc; Uster, Guillaume; Delsey, Jean; Lucchese, Paul; Tadrist, Lounes; Hadjsaid, Nouredine

    2014-01-01

    This report first gives an overview of the energy system by presenting the determining factors of energy demand and of CO 2 emissions per sector (housing and office building, transport, industry, agriculture, forestry and biomass), by analysing energy systems and CO 2 emissions (energy sources, energy vectors, networks and storage, energy and CO 2 assessment for France), and by describing the guidelines of the scenarios proposed by ANCRE. The three main scenarios are characterized by a stronger sobriety, an electricity-based de-carbonation (with a variant based on nuclear and renewable energies), and diversified vectors. They are notably compared to a trend-based reference scenario. Results are discussed in terms of energy consumption (primary and final energy, consumption by the different sectors), of energy production and CO 2 emissions. Scenarios are assessed in terms of economic, environmental and societal, political and strategic criteria. Some consequences for research topics and funding are identified

  16. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    Science.gov (United States)

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  17. Scenarios for the transportation sector's energy consumption in Denmark. Focus on road transport. Documentation report; Scenarier for transportsektorens energiforbrug i Danmark. Med fokus paa vejtransporten. Dokumentationsrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hethey, J.; Kofoed-Wiuff, A.; Lindboe, H.H.

    2011-05-15

    The purpose of this project was to make a number of predictions of how the Danish energy consumption for transport purposes may evolve until 2035. The analyses include the total energy consumption for passenger and freight transport and transportation-related energy consumption in the production industry. Air and maritime transport and freight trains are not considered in the analyses. Five scenarios have been calculated, including a reference scenario, three technology scenarios (efficiency, electric vehicle, a biofuel scenario), and a combined scenario. For all scenarios, the development of fuel consumption is calculated and CO{sub 2} emissions both locally and totally are presented. The analyses show that the total energy consumption and total CO{sub 2} emission had a peak in 2007, after which the already registered decrease is likely to continue. This continued decline happens in spite of continued growth in transport services, primarily due to the assumed and expected development of more fuel-efficient cars. (ln)

  18. Energy consumption: Past, present, future

    Science.gov (United States)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  19. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  20. Using energy scenarios to explore alternative energy pathways in California

    International Nuclear Information System (INIS)

    Ghanadan, Rebecca; Koomey, J.G.

    2005-01-01

    This paper develops and analyzes four energy scenarios for California that are both exploratory and quantitative. The business-as-usual scenario represents a pathway guided by outcomes and expectations emerging from California's energy crisis. Three alternative scenarios represent contexts where clean energy plays a greater role in California's energy system: Split Public is driven by local and individual activities; Golden State gives importance to integrated state planning; Patriotic Energy represents a national drive to increase energy independence. Future energy consumption, composition of electricity generation, energy diversity, and greenhouse gas emissions are analyzed for each scenario through 2035. Energy savings, renewable energy, and transportation activities are identified as promising opportunities for achieving alternative energy pathways in California. A combined approach that brings together individual and community activities with state and national policies leads to the largest energy savings, increases in energy diversity, and reductions in greenhouse gas emissions. Critical challenges in California's energy pathway over the next decades identified by the scenario analysis include dominance of the transportation sector, dependence on fossil fuels, emissions of greenhouse gases, accounting for electricity imports, and diversity of the electricity sector. The paper concludes with a set of policy lessons revealed from the California energy scenarios

  1. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Energy consumption and CO2 emissions in Iran, 2025

    International Nuclear Information System (INIS)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-01-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO 2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO 2 emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO 2 emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO 2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO 2 emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO 2 emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  3. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  4. Modelling Electrical Energy Consumption in Automotive Paint Shop

    Science.gov (United States)

    Oktaviandri, Muchamad; Safiee, Aidil Shafiza Bin

    2018-03-01

    Industry players are seeking ways to reduce operational cost to sustain in a challenging economic trend. One key aspect is an energy cost reduction. However, implementing energy reduction strategy often struggle with obstructions, which slow down their realization and implementation. Discrete event simulation method is an approach actively discussed in current research trend to overcome such obstructions because of its flexibility and comprehensiveness. Meanwhile, in automotive industry, paint shop is considered the most energy consumer area which is reported consuming about 50%-70% of overall automotive plant consumption. Hence, this project aims at providing a tool to model and simulate energy consumption at paint shop area by conducting a case study at XYZ Company, one of the automotive companies located at Pekan, Pahang. The simulation model was developed using Tecnomatix Plant Simulation software version 13. From the simulation result, the model was accurately within ±5% for energy consumption and ±15% for maximum demand after validation with real system. Two different energy saving scenarios were tested. Scenario 1 was based on production scheduling approach under low demand situation which results energy saving up to 30% on the consumption. Meanwhile scenario 2 was based on substituting high power compressor with the lower power compressor. The results were energy consumption saving of approximately 1.42% and maximum demand reduction about 1.27%. This approach would help managers and engineers to justify worthiness of investment for implementing the reduction strategies.

  5. vNet Zero Energy for Radio Base Stations- Balearic Scenario

    DEFF Research Database (Denmark)

    Sabater, Pere; Mihovska, Albena Dimitrova; Pol, Andreu Moia

    2016-01-01

    The Balearic Islands have one of the best telecommunications infrastructures in Spain, with more than 1500 Radio Base Stations (RBS) covering a total surface of 4.991,66 km². This archipelago has high energy consumption, with high CO2 emissions, due to an electrical energy production system mainly...... based on coal and fossil fuels which is not an environmentally sustainable scenario. The aim of this study is to identify the processes that would reduce the energy consumption and greenhouse gas emissions, designing a target scenario featuring "zero CO2 emissions" and "100% renewable energies" in RBS....... The energy costs, CO2 emissions and data traffic data used for the study are generated by a sample of RBS from the Balearic Islands. The results are shown in terms of energy performance for a normal and net zero emissions scenarios....

  6. Agriculture energy prospective by 2030: scenarios and action patterns; Prospective Agriculture Energie 2030: scenarios et pistes d'action

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper presents and comments the main results of a work-group focused on the evolution of agriculture in France in relationship with the new energetic context. Four scenarios have been defined, corresponding to different energetic, but also social, political and economic contexts by 2030. The first one corresponds to a severe energy crisis with an emergence of regional governance. The second one corresponds to a high volatility of energy prices, an increased easing of restrictions on trade, and a decrease of public supports and subsidies for agriculture. The third one corresponds to a strong reduction of the use of phyto-sanitary products in agriculture, a continuous urban sprawl, and the prevalence of road transport. The fourth one corresponds to agriculture respectful of the environment and a good management of energy consumption. Direct and indirect energy consumptions are assessed for the four scenarios. Some general and operational objectives are thus identified

  7. Energy consumption and CO{sub 2} emissions in Iran, 2025

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, Maryam [Department of Banking and Finance, Multimedia University (Malaysia); Bekri, Mahmoud [Economic and Statistic Institute, Karlsruhe Institute of Technology (Germany)

    2017-04-15

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO{sub 2} emissions. A system dynamic model was developed in this study to model the energy consumption and CO{sub 2} emission trends for Iran over 2000–2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO{sub 2} emissions in 2025 will reach 985 million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO{sub 2} emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO{sub 2} emission outlines. - Highlights: • Creation of an energy consumption model using system dynamics. • The effect of different policies on energy consumption and emission reductions. • An ascending trend for the environmental costs caused by CO{sub 2} emissions is observed. • An urgent need for energy saving and emission reductions in Iran.

  8. Assessing the Sustainability of EU Timber Consumption Trends: Comparing Consumption Scenarios with a Safe Operating Space Scenario for Global and EU Timber Supply

    Directory of Open Access Journals (Sweden)

    Meghan O’Brien

    2017-12-01

    Full Text Available The growing demand for wood to meet EU renewable energy targets has increasingly come under scrutiny for potentially increasing EU import dependence and inducing land use change abroad, with associated impacts on the climate and biodiversity. This article builds on research accounting for levels of primary timber consumption—e.g., toward forest footprints—and developing reference values for benchmarking sustainability—e.g., toward land use targets—in order to improve systemic monitoring of timber and forest use. Specifically, it looks at future trends to assess how current EU policy may impact forests at an EU and global scale. Future demand scenarios are based on projections derived and adapted from the literature to depict developments under different scenario assumptions. Results reveal that by 2030, EU consumption levels on a per capita basis are estimated to be increasingly disproportionate compared to the rest of the world. EU consumption scenarios based on meeting around a 40% share of the EU renewable energy targets with timber would overshoot both the EU and global reference value range for sustainable supply capacities in 2030. Overall, findings support literature pointing to an increased risk of problem shifting relating to both how much and where timber needed for meeting renewable energy targets is sourced. It is argued that a sustainable level of timber consumption should be characterized by balance between supply (what the forest can provide on a sustainable basis and demand (how much is used on a per capita basis, considering the concept of fair shares. To this end, future research should close data gaps, increase methodological robustness and address the socio-political legitimacy of the safe operating space concept towards targets in the future. A re-use of timber within the economy should be supported to increase supply options.

  9. Energy consumption projection of Nepal: An econometric approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Østergaard, Poul A.; Dalgaard, Tommy

    2014-01-01

    In energy dependent economies, energy consumption is often linked with the growth in Gross Domestic Product (GDP). Energy intensity, defined herewith, as the ratio of the total primary energy consumption (TPE) to the GDP, is a useful concept for understanding the relation between energy demand...... and economic development. The scope of this article is to assess the future primary energy consumption of Nepal, and the projection is carried out along with the formulation of simple linear logarithmic energy consumption models. This initiates with a hypothesis that energy consumption is dependent...... with the national macro-economic parameters. To test the hypothesis, nexus between energy consumption and possible determinant variables are examined. Status of energy consumption between the period of 1996 and 2009, and for the same period, growth of economic parameters are assessed. Three scenarios are developed...

  10. Peak energy consumption and CO2 emissions in China

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Xu, Yan; Hu, Zheng; Zhao, Changhong; Xiong, Minpeng; Guo, Jingsheng

    2014-01-01

    China is in the processes of rapid industrialization and urbanization. Based on the Kaya identity, this paper proposes an analytical framework for various energy scenarios that explicitly simulates China's economic development, with a prospective consideration on the impacts of urbanization and income distribution. With the framework, China's 2050 energy consumption and associated CO 2 reduction scenarios are constructed. Main findings are: (1) energy consumption will peak at 5200–5400 million tons coal equivalent (Mtce) in 2035–2040; (2) CO 2 emissions will peak at 9200–9400 million tons (Mt) in 2030–2035, whilst it can be potentially reduced by 200–300 Mt; (3) China's per capita energy consumption and per capita CO 2 emission are projected to peak at 4 tce and 6.8 t respectively in 2020–2030, soon after China steps into the high income group. - Highlights: • A framework for modeling China's energy and CO 2 emissions is proposed. • Scenarios are constructed based on various assumptions on the driving forces. • Energy consumption will peak in 2035–2040 at 5200–5400 Mtce. • CO 2 emissions will peak in 2030–2035 at about 9300 Mt and be cut by 300 Mt in a cleaner energy path. • Energy consumption and CO 2 emissions per capita will peak soon after China steps into the high income group

  11. Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis

    International Nuclear Information System (INIS)

    Travesset-Baro, Oriol; Gallachóir, Brian P.Ó.; Jover, Eric; Rosas-Casals, Marti

    2016-01-01

    This paper presents a model which estimates current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, the scenario analysis explores the most uncertain future aspects which can cause important variability in the results with respect to the Reference scenario and provides a broad estimate of potential energy savings related to different policy strategies. - Highlights: •A private car energy model is built using aggregated available data. •Andorra's current car fleet energy consumption is estimated and forecasted to 2050. •Potential energy savings have been estimated using sensitivity and scenario analysis.

  12. Scenarios Analysis of the Energies’ Consumption and Carbon Emissions in China Based on a Dynamic CGE Model

    Directory of Open Access Journals (Sweden)

    Yuanying Chi

    2014-01-01

    Full Text Available This paper investigates the development trends and variation characteristics of China’s economy, energy consumption and carbon emissions from 2007 to 2030, and the impacts on China’s economic growth, energy consumption, and carbon emissions under the carbon tax policy scenarios, based on the dynamic computable general equilibrium (CGE model. The results show that during the simulation period, China’s economy will keep a relatively high growth rate, but the growth rate will slow down under the benchmark scenario. The energy consumption intensity and the carbon emissions intensity per unit of Gross Domestic Product (GDP will continually decrease. The energy consumption structure and industrial structure will gradually optimize. With the economic growth, the total energy consumption will constantly increase, and the carbon dioxide emissions are still large, and the situation of energy-saving and emission-reduction is still serious. The carbon tax is very important for energy-saving and emission-reduction and energy consumption structure optimization, and the effect of the carbon tax on GDP is small. If the carbon tax could be levied and the enterprise income tax could be reduced at the same time, the dual goals of reducing energy consumption and carbon emissions and increasing the GDP growth can be achieved. Improving the technical progress level of clean power while implementing a carbon tax policy is very meaningful to optimize energy consumption structure and reduce the carbon emissions, but it has some offsetting effect to reduce energy consumption.

  13. Sustainable energy-economic-environmental scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-31

    IIASA's Environmentally Compatible Energy Strategies (ECS) Project has proposed a quantitative 'working definition' of sustainable development E3 (energy-economic-environmental) scenarios. ECS has proposed four criteria for sustainability: economic growth is sustained throughout the time horizon; socioeconomic inequity among world regions is reduced over the 21st century; reserves-to-production (R/P) ratio for exhaustible primary energy resources do not decline; and long-term environmental stress is mitigated. Using these criteria, 40 long-term E3 scenarios generated by ECS models were reviewed and analyzed. Amongst the conclusions drawn were: slow population growth or stabilization of global population appears to be prerequisite for sustainable development; economic growth alone does not guarantee a sustainable future; carbon intensities of total primary energy must decrease faster than the historical trend; strategies for fossil fuel consumption must aim at non-decreasing R/P ratios; and carbon emissions must be near or below today's levels at the end of this century. The analysis of sustainable development scenarios is an important step towards formulating long-term strategies aimed at climate stabilization. 6 figs., 1 tab.

  14. Coupling model of energy consumption with changes in environmental utility

    International Nuclear Information System (INIS)

    He Hongming; Jim, C.Y.

    2012-01-01

    This study explores the relationships between metropolis energy consumption and environmental utility changes by a proposed Environmental Utility of Energy Consumption (EUEC) model. Based on the dynamic equilibrium of input–output economics theory, it considers three simulation scenarios: fixed-technology, technological-innovation, and green-building effect. It is applied to analyse Hong Kong in 1980–2007. Continual increase in energy consumption with rapid economic growth degraded environmental utility. First, energy consumption at fixed-technology was determined by economic outcome. In 1990, it reached a critical balanced state when energy consumption was 22×10 9 kWh. Before 1990 (x 1 9 kWh), rise in energy consumption improved both economic development and environmental utility. After 1990 (x 1 >22×10 9 kWh), expansion of energy consumption facilitated socio-economic development but suppressed environmental benefits. Second, technological-innovation strongly influenced energy demand and improved environmental benefits. The balanced state remained in 1999 when energy consumption reached 32.33×10 9 kWh. Technological-innovation dampened energy consumption by 12.99%, exceeding the fixed-technology condition. Finally, green buildings reduced energy consumption by an average of 17.5% in 1990–2007. They contributed significantly to energy saving, and buffered temperature fluctuations between external and internal environment. The case investigations verified the efficiency of the EUEC model, which can effectively evaluate the interplay of energy consumption and environmental quality. - Highlights: ► We explore relationships between metropolis energy consumption and environmental utility. ► An Environmental Utility of Energy Consumption (EUEC) model is proposed. ► Technological innovation mitigates energy consumption impacts on environmental quality. ► Technological innovation decreases demand of energy consumption more than fixed technology scenario

  15. Household pathway selection of energy consumption during urbanization process in China

    International Nuclear Information System (INIS)

    Sun, Chuanwang; Ouyang, Xiaoling; Cai, Hongbo; Luo, Zhichao; Li, Aijun

    2014-01-01

    Highlights: • Energy consumption patterns have long-term impacts on energy demand. • We explore determinants and structure of household energy consumption. • Tobit and OLS models are adopted to explore factors influencing energy expenditure. • Residential energy consumption in 2030 is evaluated using scenario analysis. - Abstract: China’s growing energy demand is driven by urbanization. Facing the problem of energy scarcity, residential energy consumption is a crucial area of energy conservation and emissions reduction. Household energy consumption patterns, which are characterized by effects of “path lock-in”, have long-term impacts on China’s energy demand. Based on the survey data, this paper explores factors that influence household energy consumption and analyzes the structure of residential energy consumption in China. Based on the results of analysis of variance (ANOVA), this paper applies the Tobit and Ordinary Least Squares (OLS) models to investigate impacts of variables of “the tiered pricing for household electricity (TPHE)”, “solar energy usage”, “automobile ownership”, “rural or urban areas”, “household income” and “city scale” on the residential energy expenditure. In addition, household energy consumption is estimated under different scenarios including improving the utilization of solar energy, rise in energy prices and the increase in automobile ownership. Residential energy consumption in 2030 is evaluated by simulating different models for urban development. Policy recommendations are suggested for China’s urban development strategy, new energy development and household pathway selection of energy consumption

  16. ASSESSMENT AND DECISION MAKING SCENARIO OF CARBON EMISSION IN SUGAR INDUSTRY BASED ON ENERGY CONSUMPTION USING SYSTEM DYNAMICS

    Directory of Open Access Journals (Sweden)

    CHAIRUL SALEH

    2016-04-01

    Full Text Available This research is conducted to assess and create some scenarios in the sugar industry, which aimed to decrease the production of CO2 emissions in PT Madubaru. In this research, the assessment of CO2 emission is based on the energy consumption used in supply chain activities during the production period in 2014. The problem faced in this research is the used of energy for transportation and production in a complex condition. Thus, simulation modeling based on system dynamic has been proposed to build the assessment model and create a scenario. The result shows that PT Madubaru produces around 174,246,500 kg in 171 days or during the production period in 2014. It means that the amount of CO2 emission in a day is around 1,018,985 kg. Two scenarios haves been developeded in order to reduce CO2 emissions. First, changing the old type boiler with the new one by increasing 155% fuel efficiency. This scenario is proven to reduce the amount of CO2 by 44% or become 98,800,400 kg. Second, eliminating the use of lorry which reduce the 0.2% of CO2 emission or equal to 387,600 kg.

  17. Agriculture energy prospective by 2030: scenarios and action patterns

    International Nuclear Information System (INIS)

    2010-01-01

    This paper presents and comments the main results of a work-group focused on the evolution of agriculture in France in relationship with the new energetic context. Four scenarios have been defined, corresponding to different energetic, but also social, political and economic contexts by 2030. The first one corresponds to a severe energy crisis with an emergence of regional governance. The second one corresponds to a high volatility of energy prices, an increased easing of restrictions on trade, and a decrease of public supports and subsidies for agriculture. The third one corresponds to a strong reduction of the use of phyto-sanitary products in agriculture, a continuous urban sprawl, and the prevalence of road transport. The fourth one corresponds to agriculture respectful of the environment and a good management of energy consumption. Direct and indirect energy consumptions are assessed for the four scenarios. Some general and operational objectives are thus identified

  18. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  19. Energy consumption: energy consumption in mainland Norway

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-25

    The purpose of this report is to describe trends in energy consumption in mainland Norway, with an emphasis on key trends within the largest consumer groups. We also explain common terms and concepts in the field of energy consumption. Finally, we look at forecasts for future energy consumption, produced by bodies outside NVE. Total final energy consumption in mainland Norway in 2009 was 207 TWh. The most important end-user groups are households, service industries, manufacturing industry and transport. In addition, the energy sector in mainland Norway consumed 15 TWh. Energy consumed in the energy sector is not considered as final consumption, as the energy is used to produce new energy products. The long-term trend in energy consumption in mainland Norway is that fuel in the transport sector and electricity for the energy sector increases, while energy consumption in other sectors flattens out. The main reason for an increased use of fuel in the transport sector is the rise in the number of motorised machinery and vehicles in mainland Norway. This has caused a rise in gasoline and diesel consumption of 75 per cent since 1976. The petroleum sector is the largest consumer of energy within the energy sector in mainland Norway, and electricity from onshore to platforms in the North Sea and to new shore side installations has led to a rise in electricity consumption from 1 TWh in 1995 to 5 TWh in 2009. The energy consumption in households showed flat trend from 1996 to 2009, after many years of growth. The main reasons are a warmer climate, higher energy prices, the use of heats pumps and more energy-efficient buildings. In the service industries, the growth in energy consumptions has slightly decreased since the late 1990s, for much the same reasons as for households. In manufacturing industries the energy consumption have flatten out mainly due to the closure of energy-intensive businesses and the establishment of new more energy-efficient businesses. Electricity is

  20. Scenario analysis of energy-based low-carbon development in China.

    Science.gov (United States)

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. Copyright © 2014. Published by Elsevier B.V.

  1. Energy scenario - environmental concerns and some options for the future

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saradhi, I.V.

    2002-01-01

    There is a strong link between energy consumption, particularly in the form of electricity, and economic well being. The substantial increase in energy consumption in the coming decades is expected to be driven principally by the developing world. However it is also well recognized that care should be taken to ensure that the increased energy consumption should not be at the cost of the environment. Of particular concern is the Green House Gas emissions. Reduction of GHGs will call for careful planning and appropriate choice of the energy mix. The expected Global/Indian energy scenario in the coming decades, the associated GHG emissions and some possible options to limit them are presented and discussed in the paper. (author)

  2. Energy Consumption and Greenhouse Gas Emission Evaluation Scenarios of Mea Fah Luang University

    Directory of Open Access Journals (Sweden)

    Laingoen Onn

    2016-01-01

    Full Text Available In Thailand, quantity of the educational institutes building shared one fourth of commercial building. Among the energy consumption and conservation in the building in Thailand are mostly study in typical office and resident building. Mea Fah Luang University (MFU was selected to represent the educational institutes building where located in the northern part of Thailand. The average temperature in the northern is lower than other parts of Thailand. This study was firstly collected the data about quantity and behaviour of energy consumption in MFU based on the energy audit handbook. Although MFU is located in the northern of Thailand. The highest energy consumption is in the part of air condition. When the energy efficiency appliances and energy conservation building are implemented, the cost of energy will be saved around 15,867,960 Baht. Furthermore, the greenhouse gas emission is also reduced about 72.01 kg CO2, equivalent/m2/year.

  3. Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Gumerman, Etan; Marnay, Chris

    2005-09-07

    For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios were mostly identical. The only major

  4. The 2 oC scenario-A sustainable world energy perspective

    International Nuclear Information System (INIS)

    Krewitt, Wolfram; Simon, Sonja; Graus, Wina; Teske, Sven; Zervos, Arthouros; Schaefer, Oliver

    2007-01-01

    A target-oriented scenario of future energy demand and supply is developed in a backcasting process. The main target is to reduce global CO 2 emissions to around 10 Gt/a in 2050, thus limiting global average temperature increase to 2 o C and preventing dangerous anthropogenic interference with the climate system. A 10-region energy system model is used for simulating global energy supply strategies. A review of sector and region-specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The 2 o C scenario shows that renewable energy could provide as much as half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO 2 emissions, while at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%

  5. Modeling and analysis of long-term energy scenarios for sustainable strategies of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Senshaw, Dereje Azemraw

    2014-04-15

    from 1,313 PJ in 2010. Nevertheless, the energy intensity is expected to decrease gradually across the three scenarios, from 65MJ/$ in base year (2010) to 22, 20 and 13 MJ/$ in 2050 for BAU, Scenario 1 and Scenario 2 respectively. Importantly, under Scenario 2, the energy intensity will decrease with an average annual rate of 3,9%. Certainly, Scenario 2 has the largest capability of energy savings. The per capita primary energy consumption in Scenario 2 is the highest (at annual rate of 4.1%) and followed by Scenario 1 (3.3%) over the period. With respect to energy intensity, energy diversity and per capita consumption, BAU scenario shows is the least preferred option with highest risks related to security and diversity of supply. In Scenario 2, the proportion of oil consumption will decrease to 7.4%, i.e., lower than the values of 17.72% and 11.5% for the BAU and Scenario 1, respectively. The demand for non-conventional renewables is expected to increase significantly in all three scenarios from around 1% in 2010, to 11% 23% and 36.6% for the BAU scenario, Scenario 1 and Scenario 2 respectively over the period of 2010-2050. Overall, under Scenario 2, the degree of diversification in the total energy requirement would increase and gradually will become environmentally friendly in Ethiopia, with rapid growth in the use of alternative clean energy. The absolute CO{sub 2} emissions under the three scenarios from 2010 to 2050 will slightly increase due to the stronger economic development, which still stay within the limits of an ambitious climate change mitigation policy. Nevertheless, Scenario 2 has the lowest CO{sub 2} emission intensity, followed by the Scenario 1 and BAU scenarios. By 2050 the CO{sub 2} emissions intensities of BAU, Scenario 1 and Scenario 2 will reach 0.1, 0.08 and 0.05 kg CO{sub 2} per US$ of GDP, respectively. Overall, the results of analysis demonstrate that the alternative scenarios (Scenario 1 and Scenario 2) would result in a sustainable energy

  6. Modeling and analysis of long-term energy scenarios for sustainable strategies of Ethiopia

    International Nuclear Information System (INIS)

    Senshaw, Dereje Azemraw

    2014-04-01

    1,313 PJ in 2010. Nevertheless, the energy intensity is expected to decrease gradually across the three scenarios, from 65MJ/$ in base year (2010) to 22, 20 and 13 MJ/$ in 2050 for BAU, Scenario 1 and Scenario 2 respectively. Importantly, under Scenario 2, the energy intensity will decrease with an average annual rate of 3,9%. Certainly, Scenario 2 has the largest capability of energy savings. The per capita primary energy consumption in Scenario 2 is the highest (at annual rate of 4.1%) and followed by Scenario 1 (3.3%) over the period. With respect to energy intensity, energy diversity and per capita consumption, BAU scenario shows is the least preferred option with highest risks related to security and diversity of supply. In Scenario 2, the proportion of oil consumption will decrease to 7.4%, i.e., lower than the values of 17.72% and 11.5% for the BAU and Scenario 1, respectively. The demand for non-conventional renewables is expected to increase significantly in all three scenarios from around 1% in 2010, to 11% 23% and 36.6% for the BAU scenario, Scenario 1 and Scenario 2 respectively over the period of 2010-2050. Overall, under Scenario 2, the degree of diversification in the total energy requirement would increase and gradually will become environmentally friendly in Ethiopia, with rapid growth in the use of alternative clean energy. The absolute CO 2 emissions under the three scenarios from 2010 to 2050 will slightly increase due to the stronger economic development, which still stay within the limits of an ambitious climate change mitigation policy. Nevertheless, Scenario 2 has the lowest CO 2 emission intensity, followed by the Scenario 1 and BAU scenarios. By 2050 the CO 2 emissions intensities of BAU, Scenario 1 and Scenario 2 will reach 0.1, 0.08 and 0.05 kg CO 2 per US$ of GDP, respectively. Overall, the results of analysis demonstrate that the alternative scenarios (Scenario 1 and Scenario 2) would result in a sustainable energy transitions that

  7. Mediterranean energy transition: 2040 scenario. Executive summary

    International Nuclear Information System (INIS)

    Ben Jannet Allal, Houda; Guarrera, Lisa; Karbuz, Sohbet; Menichetti, Emanuela; Lescoeur, Bruno; El Agrebi, Hassen; Harrouch, Hamdi; Campana, Dominique; Greaume, Francois; Bedes, Christelle; Bolinches, Christine; Meraud, Thierry; Tappero, Denis; Bosseboeuf, Didier; Lechevin, Bruno; Abaach, Hassan; Damasiotis, Markos; Darras, Marc; Hajjaji, Mourad; Keramane, Abdenour; Khalfallah, Ezzedine; Mourtada, Adel; Osman, Nejib

    2016-06-01

    The stakes of embarking upon a Mediterranean Energy Transition is essential for countries from both shores of the Mediterranean, especially taking into account the increasing demographics (+105 million by 2040) and the fast growing energy demand in an increasingly constrained context both in terms of energy availability and environmental impacts of conventional energy sources uses. There is a huge, but yet untapped, potential for energy efficiency and renewable energy sources, especially in the South Mediterranean region. By improving energy efficiency and deploying renewables on a large scale, the Mediterranean region would reduce tensions on energy security for importing countries, improve opportunities for exporting ones and reduce energy costs and environmental damages for the whole region. Embarking on an energy transition path will also help improve social welfare in the region and contribute to job creation, among other positive externalities. OME regularly conducts prospective works to 2040, assessing the impact of prolonging current energy trends. Under this Business-As-Usual or so-called 'Conservative' Scenario the situation would evolve critically on all counts over the next 25 years: doubling of energy demand and tripling of electricity consumption, soaring infrastructure and import bills (+443 GW to be installed and doubling of the fossil-fuel imports) and a critical rise in carbon emissions (+45%). Such a scenario, based essentially on fossil fuels, would put further strain on the environment and exacerbate geopolitical tensions in the region. A change of energy trajectory is therefore necessary for all Mediterranean countries to help change current trends and to increase efforts promoting energy efficiency and renewable energies. In this context, MEDENER and OME, based on the 2030-2050 visions of ADEME and the prospective tools of OME, have decided to jointly investigate a Mediterranean Energy Transition Scenario, an ambitious scenario that

  8. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of

  9. EnerFuture: Long Term Energy Scenarios 'Understanding our energy future'. Key graphs and analysis, Enerdata - Global Energy Forecasting

    International Nuclear Information System (INIS)

    2011-01-01

    Enerdata analyses 4 future energy scenarios accounting for 2 economic growth assumptions combined with 2 alternative carbon emission mitigation policies. In this study, a series of analyses supported by graphs assess the energy consumption and intensity forecasts in emerging and developed markets. In particular, one analysis is dedicated to energies competition, including gas, coal and renewable energies. (authors)

  10. Projection of U.S. forest sector carbon sequestration under U.S. and global timber market and wood energy consumption scenarios, 2010-2060

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This study provides a modeling framework to examine change over time in U.S. forest sector carbon inventory (in U.S. timberland tree biomass and harvested wood products) for alternative projections of U.S. and global timber markets, including wood energy consumption, based on established IPCC/RPA scenarios. Results indicated that the U.S. forest sector’s projected...

  11. Forecast of the energy final consumption for Minas Gerais State

    International Nuclear Information System (INIS)

    Almeida, P.E.F. de; Bechtlufft, P.C.T.; Araujo, M.E.A.; Vasconcelos, E.C.; Las Casas, H.B. de; Monteiro, M.A.G.

    1990-01-01

    This paper is included among the activities of the Energy Planning of Minas Gerais State and presents a forecast of the energy final consumption for the State up to year 2010. Two Scenarios are presented involving brazilian economy's evolution, the State's demography and its sectors: residential, services, transportation, agriculture and cattle-breeding and industry. Finally, it shows two forecast on energy final consumption for Minas Gerais State. (author)

  12. World Energy Scenarios 2050: Impact of the Energy Governance Models to the Future of the European Energy Sector

    International Nuclear Information System (INIS)

    Kisel, E.

    2014-01-01

    World Energy Council has explored the impact of two extreme governance models of energy sector to the global economic and climate developments. Scenario 'Jazz' describes the world, where investments in the energy markets are made by the companies on the purely economic basis. Scenario 'Symphony' describes the world, where decisions about the energy investments are made by the governments. It appears that in case of Scenario 'Jazz' we would reach lower energy prices, but it would also bring along higher and wider consumption of energy, and much higher environmental impact. In case of Scenario 'Symphony' energy prices would be somewhat higher, but environmental and energy efficiency would deliver better results, and there will be more energy-poor people around the world. It can also be observed, that resulting energy mixes of these two scenarios are very different. When Scenario 'Jazz' would leave the share of fossil fuels nearly to the current levels, then Scenario 'Symphony' supports strongly development of Solar and Carbon Capture, Utilisation and Sequestration Technologies. The modelling was also made separately for different regions of the world, the results for Europe can be observed from the report as well. This provides a fruit for thought about the role of the governments in the implementation of the EU 2030 Energy and Climate Strategy. The presentation would describe shortly the methodology of the study, clarifies the assumptions of the scenarios and highlights the main outcomes of the study in for the world and for European energy sector. (author).

  13. Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China

    International Nuclear Information System (INIS)

    Liu Wei; Li Hong

    2011-01-01

    Fossil energy subsidies reform would be an effective way to improve the energy consumption structure; however, the reform needs to be assessed comprehensively beforehand as it would exert uncertain impacts on economy, society and environment. In this paper, we use price-gap approach to estimate the fossil energy subsidies of China, then establish CGE model that contains pollutant emissions accounts and CO 2 emissions account to stimulate the fossil energy subsidies reform under different scenarios, and the environmental economic analysis concept is introduced to monetize the pollutant reduction benefits. Furthermore, we analyze the possibility and scope of improving the energy consumption structure from the perspective of technical and economic analysis. Analytical results show that the energy consumption structure could be improved by different extent by removing coal or oil subsidies, while the economic and social indexes will be influenced distinctively. Meanwhile, the effects of cutting coal subsidies are more feasible than that of cutting oil subsidies overall. It is recommended to implement fossil energy subsidies gradually, cut the coal first and then cut oil subsidies successively. - Research highlights: → This paper estimates the scale of fossil energy subsidies of China in 2007 with price-gap approach. → We establish a Social Accounting Matrix and a CGE model extended with pollutant accounts. → We simulate the impacts of removing or cutting subsidies under three different scenarios. → We discuss the possibility and potential of improving energy consumption structure.

  14. Impacts of high energy prices on long-term energy-economic scenarios for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krey, V.; Markewitz, P. [Research Center Juelich, Inst. of Energy Res., Systems Analysis and Technology Evaluation, Juelich (Germany); Horn, M. [DIW Berlin, Berlin (Germany); Matthes, C.; Graichen, V.; Harthan, R.O.; Repenning, J. [Oeko-Institut, Berlin (Germany)

    2007-05-15

    Prices of oil and other fossil fuels on global markets have reached a high level in recent years. These levels were not able to be reproduced on the basis of scenarios and prognoses that were published in the past. New scenarios, based on higher energy price trajectories, have appeared only recently. The future role of various energy carriers and technologies in energy-economic scenarios will greatly depend on the level of energy prices. Therefore, an analysis of the impact of high energy prices on long-term scenarios for Germany was undertaken. Based on a reference scenario with moderate prices, a series of consistent high price scenarios for primary and secondary energy carriers were developed. Two scenarios with (i) continuously rising price trajectories and (ii) a price shock with a price peak during the period 2010-15 and a subsequent decline to the reference level are analysed. Two types of models have been applied in the analysis. The IKARUS energy systems optimisation model covers the whole of the German energy system from primary energy supply down to the end-use sectors. Key results in both high price scenarios include a replacement of natural gas by hard coal and renewable energy sources in electricity and heat generation. Backstop technologies like coal liquefaction begin to play a role under such conditions. Up to 10% of final energy consumption is saved in the end-use sectors, with the residential and transport sector being the greatest contributors. Even without additional restrictions, CO{sub 2} emissions significantly drop in comparison to the reference scenario. The ELIAS electricity investment analysis model focuses on the power sector. In the reference scenario with current allocation rules in the emissions trading scheme, the CO{sub 2} emissions decrease relatively steadily. The development is characterised by the phaseout of nuclear energy which is counterweighted by the increase of renewable. In the high price scenario, the CO{sub 2

  15. The energy consumption of private households 1990 - 2035 - Results of scenarios I - IV; Der Energieverbrauch der Privaten Haushalte, 1990 - 2035. Ergebnisse der Szenarien I bis IV und der zugehoerigen Sensitivitaeten BIP hoch, Preise hoch und Klima waermer

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, P.

    2007-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents four scenarios concerning the development of energy consumption in Swiss private households for the period 1990 - 2035. The four scenarios - status quo, increased co-operation between the state and the economy with various levies, global reduction of energy consumption and, finally, scenario IV 'on the way to a 2000-Watt Society' - are briefly described. In particular, the scenarios are examined for various sensitivities: high gross domestic product GDP, high prices and warmer climate. The results of the sensitivity analyses are compared and discussed and the necessary instruments are examined. This comprehensive report contains a large number of data-tables and graphical representations

  16. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berkeley, Pam M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  17. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as well as appliances and other electrical components used in the modeled homes....

  18. Energy consumption of mobile communication systems; Energieverbrauch der mobilen Kommunikation - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Corliano, A.; Hufschmid, M.

    2008-02-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on a research project that was concerned with the energy consumption of the infrastructure necessary to provide mobile communication services. The measurement and analysis of the energy consumption of the infrastructure was an essential part of this research project. Furthermore, future scenarios and their impact on energy consumption are discussed. The results of the research work are presented and the correlation between power requirements and the data traffic encountered at GSM and UMTS base stations is analysed. Furthermore, measurements that were conducted to determine the power consumption of different network elements are discussed. Finally, alternatives for further action and recommendations for improvements in the energy consumption of such installations are formulated.

  19. Energy scenarios for European passenger transport in the year 2030

    Energy Technology Data Exchange (ETDEWEB)

    Rienstra, S.A.; Nijkamp, P. [Systems and Control Group, Faculty of Mechanical and Marine Engineering, Delft University of Technology, Delft (Netherlands)] Smokers, R.T.M. [ECN Policy Studies, Petten (Netherlands)

    1995-11-01

    In this paper four energy scenarios for West-European passenger transport are developed. To start with, the present transport system as a baseline case is described and analysed. Next, for each scenario it is outlined how the passenger transport system may look like in terms of the use of various existing and future transport technologies and the corresponding modal split. Based on this information, expected energy consumption features of the various transport modes are described, data on the present fuel supply and electricity generation system are provided, and estimations of the future energy system are given. Then, the energy consumption and CO2 emissions associated with the future passenger transport systems are calculated and these impacts are compared with the current system. The conclusion is that a large-scale reduction of CO2 emissions is possible in several ways, but that each option will cause many problems because drastic policy measures will have to be introduced, which may affect economic growth and the lifestyles of individuals. 4 figs., 11 tabs., 22 refs.

  20. Emissions reduction scenarios in the Argentinean Energy Sector

    International Nuclear Information System (INIS)

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; Falzon, James; Calvin, Katherine

    2016-01-01

    In this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO_2 emission savings of the energy sector in Argentina over the 2010–2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic cost of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO_2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO_2 price leverages additional investments in hydropower. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO_2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts an 11.3% reduction. The main reasons for this difference include varying assumptions about technology cost and availability, CO_2 storage capacity, and the ability to import bioenergy. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. In terms of technology

  1. Scenarios for a urban energy transition. Actors, regulations, technologies

    International Nuclear Information System (INIS)

    Debizet, Gilles; Blanco, Sylvie; Buclet, Nicolas; Forest, Fabrice; Gauthier, Caroline; La Branche, Stephane; Menanteau, Philippe; Schneuwly, Patrice; Tabourdeau, Antoine

    2016-01-01

    Cities concentrate populations, consumptions, levers of actions, and are places of various experiments for energy transition. This book aims at giving an overview of possible scenarios of development of renewable energies in urban context. It is based on interviews of actors of the energy, building and urban planning sectors by researchers in town planning, management, technology, political and economic sciences. The authors examine what would occur if large companies would manage entire quarters, if local authorities would supervise production and supply, if the State would take control of all fields of action again, or if consumer cooperatives would exchange energy and pool productions. In its different chapters, the book presents four scenarios of energy coordination in urban context by 2040, discuss energy transition in urban spaces, discuss the perspectives of evolution towards more autonomous cities and quarters from an energetic point of view, and discuss business models and urban energetic innovations

  2. A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry

    International Nuclear Information System (INIS)

    Ansari, Nastaran; Seifi, Abbas

    2012-01-01

    Iron and steel industry is the most energy intensive industrial sector in Iran. Long time subsidized energy has led to low energy efficiency in this industry. The sudden subsidy reform of energy prices in Iran is expected to have a great impact on steel production and energy consumption. A system dynamics model is presented in this paper to analyze steel demand, production and energy consumption in an integrated framework. A co-flow structure is used to show how subsidy reform affects energy consumption in the long run. The main focus of this paper is on direct and indirect natural gas consumption in the steel industry. Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient way for steel making. The energy consumption in steel industry is estimated under various steel production and export scenarios while taking into account new energy prices to see the outlook of possible energy demand in steel industry over next 20 years. For example it is shown that under reference production scenario, potential reduction in gas consumption forced by complete removal of energy subsidy and utilizing scrap could lead to 85 billion cubic meters of gas saving over the next 20 years. -- Highlights: ► We develop a system dynamics model to analyze steel demand, production and energy consumption in Iran. ► Various scenarios have been simulated to see the energy demand of Iranian steel industry over the next 20 years. ► A co-flow structure is used to show how subsidy reform would affect energy consumption in the long run. ► A co-flow structure has been built into the SD model to formulate consumers' behavior in response to energy prices. ► Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient alternative for steel making.

  3. Sustainable energy prices and growth. Comparing macroeconomic and backcasting scenarios

    International Nuclear Information System (INIS)

    Ahlroth, Sofia; Hoejer, Mattias

    2007-01-01

    How do results from the sustainability research world of backcasting relate to the macroeconomic scenarios used for policy evaluation and planning? The answer is that they do not, mostly - they come from different scientific traditions and are not used in the same contexts. Yet they often deal with the same issues. We believe that much can be gained by bringing the two systems of thinking together. This paper is a first attempt to do so, by making qualitative comparisons between different scenarios and highlighting benefits and limitations to each of them. Why are the pictures we get of the energy future so different if we use a macroeconomic model from when using a backcasting approach based on sustainable energy use? It is evident that the methods for producing those two kinds of scenarios differ a lot, but the main reason behind the different results are found in the starting points rather than in the methods. Baseline assumptions are quite different, as well as the interpretations and importance attached to signals about the future. In this paper, it is discussed how those two types of scenarios differ and how they approach issues such as energy prices and growth. The discussion is based on a comparison between Swedish economic and sustainability scenarios. The economic scenarios aim at being forecasts of the future and are used as decision support for long-term policies. But are the assumptions in the economic scenarios reasonable? The sustainability scenarios are explicitly normative backcasting scenarios. They do not take the issue of growth and consumption fully into account. Could they be developed in this respect? The comparison between the scenarios is also used to look closer at the issue of energy prices in a society with sustainable energy use. One of the questions raised is if a low energy society calls for high energy prices. Moreover, the effects of tradable permits versus energy taxes is analysed in the context of how energy use could be kept low

  4. 2050 pathway to an active renewable energy scenario for Jiangsu province

    DEFF Research Database (Denmark)

    Hong, Lixuan; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    emphasis on improving its energy efficiency and utilizing its renewable resources in the future. This paper presents the integrated energy pathway for Jiangsu during its social and economic transformation until 2050. EnergyPLAN is the chosen energy system analysis tool, since it accounts for all sectors...... of the energy system that needs to be considered when integrating large-scale renewable energy. A Current Policy Scenario (CPS) based on current energy policies and an Ambitious Policy Scenario (APS) based on large-scale integration of renewable energy and ambitious measures of energy efficiency improvement......In 2009, Jiangsu province of China supplied 99.6 percent of its total energy consumption with fossil fuels, of which 82 percent was imported from other provinces and countries. With rising energy demand, frequent energy shortages, and increasing pollution, it is essential for Jiangsu to put more...

  5. Towards greener data centres, 2012-2015. Trends in energy consumptions, renewable energy and CO2 emissions in various scenarios; Vergroenen datacenters 2012-2015. Ontwikkeling van energiegebruik, hiernieuwbare energie en CO2-emissies bij verschillende scenario's

    Energy Technology Data Exchange (ETDEWEB)

    Afman, M.R.; Wielders, L.M.L.; De Buck, A.

    2012-03-15

    CE Delft has conducted a study on the potential for reducing the CO2 emissions of Dutch data centres. It was carried out for the development organisation Hivos, which is appealing to these centres to make an active effort to reduce their energy consumption and CO2 emissions. The study estimates the total power consumption of Dutch data centres at 1.6 TWh, equivalent to the consumption of 450,000 households. In a business-as-usual scenario consumption is predicted to rise substantially, to 2.1 TWh in 2015, equivalent to the consumption of 600,000 households and 2% of aggregate Dutch consumption. There is plenty of scope for the data centre industry to operate more sustainably and reduce its CO2 emissions: (1) a pivotal first step is to reduce energy consumption by improving energy efficiency. The City of Amsterdam now has energy efficiency standards in place for data centres, and if these were to hold for centres outside Amsterdam, too, a 20% reduction is energy consumption could be achieved, equivalent to the consumption of 85,000 households. Since many of the measures concerned are already cost-effective, numerous steps are already being taken in this direction; (2) the most effective way to improve the sustainability profile with respect to energy use is for data centres to invest in more renewable energy capacity, either themselves or in collaboration with other parties, passing on additional costs to customers. This will not only lead to a real decline in CO2 emissions, but also send out a clear signal. Simply purchasing 'green power' on the market, while being a far cheaper option, does not lead to cuts in carbon emissions. There is less green power available with an environmental 'Milieukeur' certificate and besides helping make consumers more environmentally aware it can also have an indirect political effect. A quite different option that does lead to carbon cuts is to offset emissions by funding renewable energy projects, in the

  6. Modelling long term energy consumption of French residential sector - improving behavioral realism and simulating ambitious scenarios

    International Nuclear Information System (INIS)

    Allibe, Benoit

    2012-01-01

    This thesis aims to integrate components of an economic model of the behaviors of households in a technological model of French residential sector energy consumption dynamics and to analyze the consequences of this integration on the results of long-term residential energy consumption simulations (2030-2050). The results of this work highlight significant differences between the actual household space heating energy consumptions and those estimated by engineering models. These differences are largely due to the elasticity of thermal comfort demand to thermal comfort price. Our improved model makes it possible to conjointly integrate the concepts of price elasticity and rebound effect (the increase in energy service level following an improvement in energy performance of the equipment providing the service) in a daily behavior model. Regarding space heating consumption, the consequences of this behavioral adaptation - combined with some technical defects - are a significant reduction of the technical and behavioral energy saving potentials (while effective daily use of energy is generally lower than predicted by engineering models) at a national level. This implies that mid and long-term national energy policy targets (a 38% drop in primary energy consumption by 2020 and a reduction in greenhouse gas emissions by a factor of 4 by 2050 compared to the 1990 level) will be harder to reach than previously expected for the residential sector. These results also imply that a strong reduction in carbon emissions cannot be achieved solely through the diffusion of efficient technologies and energy conservation behavior but also requires to significantly lower the average carbon content of residential space heating energy through the generalized use of wood energy. The second issue addressed in this thesis is the influence of the resolution of a techno-economic model (i.e. its ability to represent the various values that a variable can have within the modeled system) on its

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. Electrical appliance energy consumption control methods and electrical energy consumption systems

    Science.gov (United States)

    Donnelly, Matthew K [Kennewick, WA; Chassin, David P [Pasco, WA; Dagle, Jeffery E [Richland, WA; Kintner-Meyer, Michael [Richland, WA; Winiarski, David W [Kennewick, WA; Pratt, Robert G [Kennewick, WA; Boberly-Bartis, Anne Marie [Alexandria, VA

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  9. Energy sources consumption: end uses, efficiency and productivity

    International Nuclear Information System (INIS)

    Martin, J.M.

    2005-01-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  10. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios

    International Nuclear Information System (INIS)

    Martin-Gorriz, B.; Soto-García, M.; Martínez-Alvarez, V.

    2014-01-01

    Global warming is leading to a water resources decrease in the Mediterranean basin, where future farming resilience depends on incorporating alternative water sources and improving water-energy use efficiency. This paper assesses water and energy consumption when natural water sources are partially replaced by desalinated sea water. Initially, energy consumption, water supply and GHG (greenhouse gas) emissions were recorded for the current farming practices in SE (southeast) Spain. The results of our study indicate that citrus orchards have the lowest energy consumption and GHG emissions. Annual vegetables were the least energy efficient crops. Subsequently, two alternative water supply scenarios were analysed, in which the reduction of natural water resources associated to climate change was compensated with desalinated sea water. The use of 16.8% of desalinated seawater would increase energy consumption by 32.4% and GHG emissions by 19.6%, whereas for the use of 26.5% of desalinated seawater such increases would amount to 50.0% and 30.3%, respectively. Therefore maintaining irrigated agriculture in water-stressed regions by incorporating high energy demanding non-traditional water sources could negatively contribute to combat global warming. - Highlights: • Water supply, energy consumption and GHG (greenhouse gas) emissions in irrigated agriculture are very connected. • The use of desalinated sea water will increase the energy consumption, and GHG emissions will rise. • The use of non-traditional water resources enhances global warming processes. • Citrus orchards are the less sensitive crop to alternative water supplied scenarios. • Artichoke is the most sensitive crop to alternative water supplied scenarios

  11. Exploring energy consumption and demand in China

    International Nuclear Information System (INIS)

    Fan, Ying; Xia, Yan

    2012-01-01

    China has been experiencing industrialization and urbanization since reform and opening of its economy in 1978. Energy consumption in the country has featured issues such as a coal-dominated energy mix, low energy efficiency and high emissions. Thus, it is of great importance to explore the factors driving the increase in energy consumption in the past two decades and estimate the potential for decreasing energy demands in the future. In this paper a hybrid energy input–output model is used to decompose driving factors to identify how these factors impact changes in energy intensity. A modified RAS approach is applied to project energy requirements in a BAU scenario and an alternative scenario. The results show that energy input mix, industry structure and technology improvements have major influences on energy demand. Energy demand in China will continue to increase at a rapid rate if the economy develops as in the past decades, and is projected to reach 4.7 billion tce in 2020. However, the huge potential for a decrease cannot be neglected, since growth could be better by adjusting the energy mix and industrial structure and enhancing technology improvements. The total energy demand could be less than 4.0 billion tce in 2020. -- Highlights: ► In this paper a hybrid energy input–output model is used to decompose driving factors to China’s energy intensity change. ► A modified RAS approach is applied to project energy requirements in China. ► The results show that energy input mix, industry structure and technology improvements have major influences on energy demand. ► Energy demand in China will reach 4.7 billion ton in 2020 if the economy develops as in the past decades. ► There is a huge potential for a decrease of energy demand by adjusting the energy mix and industrial structure and enhancing technology improvements.

  12. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  13. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  14. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-09-01

    Full Text Available A typical application scenario of remote wireless sensor networks (WSNs is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  15. 2050 pathway to an active renewable energy scenario for Jiangsu province

    International Nuclear Information System (INIS)

    Hong, Lixuan; Lund, Henrik; Mathiesen, Brian Vad; Möller, Bernd

    2013-01-01

    In 2009, Jiangsu province of China supplied 99.6 percent of its total energy consumption with fossil fuels, of which 82 percent was imported from other provinces and countries. With rising energy demand, frequent energy shortages, and increasing pollution, it is essential for Jiangsu to put more emphasis on improving its energy efficiency and utilizing its renewable resources in the future. This paper presents the integrated energy pathway for Jiangsu during its social and economic transformation until 2050. EnergyPLAN is the chosen energy system analysis tool, since it accounts for all sectors of the energy system that needs to be considered when integrating large-scale renewable energy. A current policy scenario (CPS) based on current energy policies and an ambitious policy scenario (APS) based on large-scale integration of renewable energy and ambitious measures of energy efficiency improvement are proposed. The two energy pathways are modeled and compared in terms of technology combination, non-fossil fuel shares of primary energy supply, socioeconomic costs, and CO 2 emissions. The insights from these pathways can provide valuable input for Jiangsu's future energy policies. - Highlights: ► An integrated energy pathway is designed for Jiangsu province by 2050. ► A current policy scenario and an ambitious policy scenario are modeled and assessed. ► The ambitious policy scenario can help stabilize CO 2 emissions and achieve better economy. ► The next 5–10 years would be a key period for Jiangsu's energy system transition. ► Several policy suggestions have been proposed.

  16. DGEMP-OE (2008) Energy Baseline Scenario. Synthesis report

    International Nuclear Information System (INIS)

    2008-01-01

    the CAS scenarios relies primarily on 2000 data, despite the existence of sufficiently complete statistics through to 2005. The DGEMP on the other hand used a study by the BIPE (Office for Economic Information and Forecasting) provided by the SESP, the Ministry for Ecology, Energy, Sustainable Development and Spatial Planning's economic statistics and forecasting department. On the basis of the study's macro-economic projections of the French economy to 2020, the DGEMP was able to re-evaluate the prospects for activity in the industrial and tertiary sectors. In several respects (e.g. supply security, CO 2 emissions, energy efficiency), the baseline scenario proposed here is clearly not a scenario conducive to satisfying French energy policy objectives. This is not a surprising conclusion in that it implies the need to implement new policies and measures in addition to those already in place or approved. In particular, this scenario would lead to importing 66 billion cubic meters of gas (59 Mtoe) in 2020 and 78 billion cubic meters (70 Mtoe) in 2030, compared with the present 44 billion cubic meters. In addition to the resulting CO 2 emissions, the near doubling of gas imports would pose a twofold problem as to the geographic origin of the gas imported (under appropriate supply contracts) and the infrastructure (LNG terminals, gas pipelines) required to transport it. Finally, the baseline scenario is of course a long way from achieving the Community targets, whether for CO 2 emissions, projected to rise continually until 2020 and then even faster until 2030 (due to transport and electric power generation), or for the share of renewable energy in the energy mix. In that regard, the share of renewable energy in 'enlarged' final energy consumption, as it is described in the 'energy and climate change package', would grow to 13.4% in 2020 (versus 23% in the Commission's burden sharing proposal) and to 13.7% in 2030, compared with the 10.3% share observed in 2006

  17. Transportation energy scenario analysis technical report No. 1: examination of four existing scenarios. [Projections for 1985, 1995, 2010, and 2025

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, M. J.; LaBelle, S. J.; Millar, M.; Walbridge, E. W.

    1978-03-01

    This project aims to provide the DOE Division of Transportation Energy Conservation (TEC) with a long-range forecasting framework in which to evaluate potential changes to the U.S. Transportation system. This initial report examines four existing, but diverse, 50-year scenarios of the future. It describes the scenarios and summarizes the changes in the major transportation system variables that would occur through the year 2025 in each scenario. Projections of variables of interest to TEC are explored, including passenger or ton miles and energy consumption. Each is reported for 1985, 1995, 2010, and 2025 under four scenarios: success, moderate economic growth, energy crisis, and transformation. The philosophy of this project is that the transportation system must support future lifestyles; by examining potential future lifestyles the required transportation system changes can be deduced. The project: (a) develops a set of scenarios that span likely futures; (b) describes the lifestyles in each scenario in order; (c) determines the characteristics of the transportation system supporting those lifestyles; (d) indicates transportation technologies and policies necessary in that system; and (e) derives the energy characteristics of that system. The implications of the four existing scenarios are examined with emphasis on current TEC electric-vehicle development. This preliminary investigation will be followed by detailed-scenario building (modifying existing scenarios or developing new ones) and generation of lifestyles and transportation system demands under each of the scenarios. This work will be reported in October 1978.

  18. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-09-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Effects of Domestic Energy Consumption on Urban Development Using System Dynamics

    Science.gov (United States)

    Saryazdi, M. D.; Homaei, N.; Arjmand, A.

    2018-05-01

    In developed countries, people have learned to follow efficient consumption patterns, while in developing countries, such as Iran, these patterns are not well executed. A large amount of energy is almost consumed in buildings and houses and though the consumption patterns varies in different societies, various energy policies are required to meet the consumption challenges. So far, several papers and more than ten case studies have worked on the relationship between domestic energy consumption and urban development, however these researches did not analyzed the impact of energy consumption on urban development. Therefore, this paper attempts to examine the interactions between the energy consumption and urban development by using system dynamics as the most widely used methods for complex problems. The proposed approach demonstrates the interactions using causal loop and flow diagrams and finally, suitable strategies will be proposed for urban development through simulations of different scenarios.

  20. Italian energy scenarios comparative evaluations; Scenari energetici italiani a confronto

    Energy Technology Data Exchange (ETDEWEB)

    Contaldi, Mario [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici-APAT, Roma (Italy)

    2005-09-15

    This paper reviews some representative scenarios of the evolution of the Italian primary energy consumption, updated recently. After an overview of the main macroeconomics assumptions the scenario results are cross checked at sectorial level, with a brief discussion of the underlining data and energy intensity trends. The emissions of CO{sub 2}, SO{sub 2} and NO{sub x} resulting from the considered scenarios are also reported and discussed. [Italian] Questo articolo riporta alcuni dei piu rappresentativi ed aggiornati scenari di evoluzione dei consumi energetici primari italiani. Dopo un esame delle principali variabili macroeconomiche i risultati degli scenari sono esaminati a livello di settore, con una breve discussione delle principali variabili utilizzate. Infine sono state anche esaminate le emissioni di CO{sub 2}, SO{sub 2} e NO{sub x} risultanti dai diversi scenari e le possibili conseguenze sul piano normativo.

  1. Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Deyun Wang

    2018-04-01

    Full Text Available Natural gas consumption has increased with an average annual growth rate of about 10% between 2012 and 2017. Total natural gas consumption accounted for 6.4% of consumed primary energy resources in 2016, up from 5.4% in 2012, making China the world’s third-largest gas user. Therefore, accurately predicting natural gas consumption has become very important for market participants to organize indigenous production, foreign supply contracts and infrastructures in a better way. This paper first presents the main factors affecting China’s natural gas consumption, and then proposes a hybrid forecasting model by combining the particle swarm optimization algorithm and wavelet neural network (PSO-WNN. In PSO-WNN model, the initial weights and wavelet parameters are optimized using PSO algorithm and updated through a dynamic learning rate to improve the training speed, forecasting precision and reduce fluctuation of WNN. The experimental results show the superiority of the proposed model compared with ANN and WNN based models. Then, this study conducts the scenario analysis of the natural gas consumption from 2017 to 2025 in China based on three scenarios, namely low scenario, reference scenario and high scenario, and the results illustrate that the China’s natural gas consumption is going to be 342.70, 358.27, 366.42 million tce (“standard” tons coal equivalent in 2020, and 407.01, 437.95, 461.38 million tce in 2025 under the low, reference and high scenarios, respectively. Finally, this paper provides some policy suggestions on natural gas exploration and development, infrastructure construction and technical innovations to promote a sustainable development of China’s natural gas industry.

  2. Evaluating options for sustainable energy mixes in South Korea using scenario analysis

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2013-01-01

    To mitigate greenhouse gas emissions, coal-fired electricity infrastructure needs to be replaced by low-carbon electricity generation options. Here we examine a range of possible alternative scenarios for sustainable electricity generation in South Korea, considering both physical and economic limits of current technologies. The results show that South Korea cannot achieve a 100% renewable energy mix and requires at least 55 GW of backup capacity. Given that constraint, we modelled seven scenarios: (i) the present condition, (ii) the First National Electricity Plan configuration, (iii) renewable energy (including 5 GW photovoltaic) with fuel cells or (iv) natural gas backup, (v) maximum renewable energy (including 75 GW photovoltaic) with natural gas, (vi) maximum nuclear power, and (vii) nuclear power with natural gas. We then quantify levelised cost of electricity, energy security, greenhouse gas emissions, fresh water consumption, heated water discharge, land transformation, air pollutant emissions, radioactive waste disposal, solid waste disposal and safety issues for each modelled mix. Our analysis shows that the maximum nuclear power scenario yields the fewest overall negative impacts, and the maximum renewable energy scenario with fuel cells would have the highest negative impacts. - Highlights: ► Due to physical limits of renewable sources, renewable energy cannot provide total electricity consumption in South Korea. ► A massive expansion of solar power will act to save only a small amount of backup fuel at greatly increased costs. ► A huge supply of natural gas capacity is essential, due to the absence of feasible large-scale energy storage. ► A pathway to maximize renewable energy causes more environmental and economic disadvantages than the status quo. ► Maximizing nuclear power is the most sustainable option for South Korea

  3. Energy consumption and energy prices

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    Data are presented on energy consumption and energy prices related to a number of OECD (Organisation for Economic Co-operation and Development) lands covering the period 1951-1990. The information sources are described and the development of energy consumption and prices in Denmark are illustrated in relation to these other countries. The energy intensity (the relation between energy consumption and the gross national product) is dealt with. Here it is possible to follow development during the whole post-war period. It is generally understood that Denmark saved large amounts of energy after 1973-74 but, taken over the whole post-war period, savings and decline in energy-gross national product relations are less dramatic compared to conditions in other OECD countries. Energy coefficients or elasticities show the relative rise in consumption compared to the relative rise in gross national product (growth rate). This is shown to be typically unstable and an eventual connection with the amount of energy price increase and/or the growth rate of the national economy is considered. Results of Granger causuality tests on energy consumption, national income and energy prices are presented. Effective energy prices were very low in Denmark up to 1970 when they suddenly began to increase. Since the oil crisis Denmark's energy consumption has fallen whereas the other countries have used rather more energy than before. Effective promotion of energy savings must be seen in relation to the fact that the 1970 basis level of energy consumption and intensity was unusually high. The high effective energy prices have also encouraged energy savings in Denmark. (AB)

  4. Multicriteria Spatial Decision Support Systems for Future Urban Energy Retrofitting Scenarios

    Directory of Open Access Journals (Sweden)

    Patrizia Lombardi

    2017-07-01

    Full Text Available Nowadays, there is an increasing concern about sustainable urban energy development taking into account national priorities of each city. Many cities have started to define future strategies and plans to reduce energy consumption and greenhouse gas emissions. Urban energy scenarios involve the consideration of a wide range of conflicting criteria, both socio-economic and environmental ones. Moreover, decision-makers (DMs require proper tools that can support their choices in a context of multiple stakeholders and a long-term perspective. In this context, Multicriteria Spatial Decision Support Systems (MC-SDSS are often used in order to define and analyze urban scenarios since they support the comparison of different solutions, based on a combination of multiple factors. The main problem, in relation to urban energy retrofitting scenarios, is the lack of appropriate knowledge and evaluation criteria. The latter are crucial for delivering and assessing urban energy scenarios through a MC-SDSS tool. The main goal of this paper is to analyze and test two different methods for the definition and ranking of the evaluation criteria. More specifically, the paper presents an on-going research study related to the development of a MC-SDSS tool able to identify and evaluate alternative energy urban scenarios in a long-term period perspective. This study refers to two Smart City and Communities research projects, namely: DIMMER (District Information Modeling and Management for Energy Reduction and EEB (Zero Energy Buildings in Smart Urban Districts.

  5. Needs for Flexibility in Energy Systems Caused by the Increasing Share of Variable Renewable Energy Generation in 2020, 2030 and 2050 Scenarios

    DEFF Research Database (Denmark)

    Koivisto, Matti Juhani; Sørensen, Poul Ejnar; Maule, Petr

    scenarios are the baseline scenarios from3. Variable renewable energy generation is analysed using the CorWind tool developed at DTU Wind Energya. In addition to analysing VRE generation, the variability of net load (electricity consumption subtracted by VRE generation) is analysed. Compared to 2014...... consumption). However, there is always some probability that the aggregate VRE generation is zero, so the highest possible net load is determined by peak consumption. This may raise questions considering the incentives to hold enough other generation capacity to meet the rare peak net load. Compared...... to the hourly ramp rates in consumption, the increasing VRE generation increases the ramp rates in the aggregate net load only moderately in the future scenarios; STD of the net load ramp rate in 2050 is expected to be 14% higher than in 2014. However, while ramp rates in consumption happen usually at well...

  6. The analysis of the impacts of energy consumption on environment and public health in China

    International Nuclear Information System (INIS)

    Wang, Yu

    2010-01-01

    The emission parameters and expose-response functions of some pollutants, such as sulphur dioxide (SO 2 ) and Inhalable Particulate Matter (PM10), were introduced to calculate the emission caused by energy consumption in various sectors and regions in China under different scenarios. The impacts of economic growth, population, and technology progress on energy consumption and on the environment were also analyzed. Finally, the economic value of public health damage caused by the changes of pollutants' concentration related to energy consumption under various scenarios, different regions and sectors in China was analyzed. The results show that the PM-10 and SO 2 emissions and consequent health damage will increase significantly in the next 12 years. Thus, energy efficiency, population, economy, and urbanization are the main factors to be considered in this system.

  7. Interpreting energy scenarios

    Science.gov (United States)

    Iyer, Gokul; Edmonds, James

    2018-05-01

    Quantitative scenarios from energy-economic models inform decision-making about uncertain futures. Now, research shows the different ways these scenarios are subsequently used by users not involved in their initial development. In the absence of clear guidance from modellers, users may place too much or too little confidence in scenario assumptions and results.

  8. The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050

    International Nuclear Information System (INIS)

    Dai, Hancheng; Masui, Toshihiko; Matsuoka, Yuzuru; Fujimori, Shinichiro

    2012-01-01

    This paper explores how China’s household consumption patterns over the period 2005–2050 influence the total energy demand and carbon dioxide (CO 2 ) emissions in two baseline scenarios, and how it influences carbon prices as well as the economic cost in the corresponding carbon mitigation scenarios. To this end we first put forward two possible household consumption expenditure patterns up to 2050 using the Working–Leser model, taking into account total expenditure increase and urbanization. For comparison, both expenditure patterns are then incorporated in a hybrid recursive dynamic computable general equilibrium model. The results reveal that as income level increases in the coming decades, the direct and indirect household energy requirements and CO 2 emissions would rise drastically. When household expenditure shifts from material products and transport to service-oriented goods, around 21,000 mtce of primary energy and 45 billion tons of CO 2 emissions would be saved over the 45-year period from 2005 to 2050. Moreover, carbon prices in the dematerialized mitigation scenario would fall by 13% in 2050, thus reducing the economic cost. - Highlights: ► Propose two household expenditure patterns considering income rise and urbanization. ► Much energy and CO 2 emissions would be saved in low-carbon consumption scenario. ► Carbon prices would reduce a lot in low-carbon consumption scenario.

  9. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  10. Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China

    Directory of Open Access Journals (Sweden)

    Hansi Liu

    2017-10-01

    Full Text Available In this paper, we used the life-cycle analysis (LCA method to evaluate the energy consumption and greenhouse gas (GHG emissions of natural gas (NG distributed generation (DG projects in China. We took the China Resources Snow Breweries (CRSB NG DG project in Sichuan province of China as a base scenario and compared its life cycle energy consumption and GHG emissions performance against five further scenarios. We found the CRSB DG project (all energy input is NG can reduce GHG emissions by 22%, but increase energy consumption by 12% relative to the scenario, using coal combined with grid electricity as an energy input. The LCA also indicated that the CRSB project can save 24% of energy and reduce GHG emissions by 48% relative to the all-coal scenario. The studied NG-based DG project presents major GHG emissions reduction advantages over the traditional centralized energy system. Moreover, this reduction of energy consumption and GHG emissions can be expanded if the extra electricity from the DG project can be supplied to the public grid. The action of combining renewable energy into the NG DG system can also strengthen the dual merit of energy conservation and GHG emissions reduction. The marginal CO2 abatement cost of the studied project is about 51 USD/ton CO2 equivalent, which is relatively low. Policymakers are recommended to support NG DG technology development and application in China and globally to boost NG utilization and control GHG emissions.

  11. LTE UE Energy Saving by Applying Carrier Aggregation in a HetNet Scenario

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Wang, Hua; Mogensen, Preben

    2013-01-01

    In this work it is examined if downlink Carrier Aggregation (CA) can be used to save UE energy. A dual-receiver LTE release 10 UE is compared with a single-receiver LTE release 8 UE. The models are based on scaling of an existing LTE release 8 UE power model. The energy consumption of the UEs...... is examined in a Heterogeneous Network scenario consisting of macro and small cells. The unexpected conclusion is that CA UEs can save energy, compared to LTE release 8 UEs, if they, depending on cell load, experience a throughput gain of 20%. However if the UE throughput is unaltered the energy consumption...

  12. Analysis of Energy Consumption for Ad Hoc Wireless Sensor Networks Using a Bit-Meter-per-Joule Metric

    Science.gov (United States)

    Gao, J. L.

    2002-04-01

    In this article, we present a system-level characterization of the energy consumption for sensor network application scenarios. We compute a power efficiency metric -- average watt-per-meter -- for each radio transmission and extend this local metric to find the global energy consumption. This analysis shows how overall energy consumption varies with transceiver characteristics, node density, data traffic distribution, and base-station location.

  13. The energy consumption of traffic 1990 - 2035 - Results of scenarios I - IV; Der Energieverbrauch des Verkehrs 1990 - 2035. Ergebnisse der Szenarien I bis IV und der zugehoerigen Sensitivitaeten 'BIP hoch', 'Preise hoch' und 'Klima waermer'

    Energy Technology Data Exchange (ETDEWEB)

    Keller, M.

    2007-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents four scenarios concerning the development of energy consumption in the traffic sector for the period 1990 - 2035. The four scenarios - status quo, increased co-operation between the state and the economy with various energy levies, global reduction of energy consumption and, finally, scenario IV 'on the way to a 2000-Watt Society' - are briefly described. The areas examined include road, rail and air traffic as well as 'off-road' traffic. Infrastructure developments are commented on. The four scenarios are examined for various sensitivities including high gross domestic product GDP, high prices and warmer climate. Alternative fuels are looked at, as are further factors such as fuel tourism, pollutant emissions and costs. The results of the sensitivity analyses are compared and discussed and the necessary instruments are examined. This comprehensive report is completed with a comprehensive appendix

  14. World Energy Scenarios: Composing energy futures to 2050

    International Nuclear Information System (INIS)

    Frei, Christoph; Whitney, Rob; Schiffer, Hans-Wilhelm; Rose, Karl; Rieser, Dan A.; Al-Qahtani, Ayed; Thomas, Philip; Turton, Hal; Densing, Martin; Panos, Evangelos; Volkart, Kathrin

    2013-01-01

    The World Energy Scenarios: Composing energy futures to 2050 is the result of a three-year study conducted by over 60 experts from nearly 30 countries, with modelling provided by the Paul Scherrer Institute. The report assesses two contrasting policy scenarios, the more consumer driven Jazz scenario and the more voter-driven Symphony scenario with a key differentiator being the ability of countries to pass through the Doha Climate Gateway. The WEC scenarios use an explorative approach to assess what is actually happening in the world now, to help gauge what will happen in the future and the real impact of today's choices on tomorrow's energy landscape. Rather than telling policy-makers and senior energy leaders what to do in order to achieve a specific policy goal, the WEC's World Energy Scenarios allow them to test the key assumptions that decision-makers decide to better shape the energy of tomorrow This document includes the French and English versions of the executive summary and the English version of the full report

  15. Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks

    Science.gov (United States)

    Christina E. Canter; Zhangcai Qin; Hao Cai; Jennifer B. Dunn; Michael Wang; D. Andrew Scott

    2017-01-01

    The GHG emissions and fossil energy consumption associated with producing potential biomass sup­ply in the select BT16 scenarios include emissions and energy consumption from biomass production, harvest/collection, transport, and pre-processing activities to the reactor throat. Emissions associated with energy, fertilizers, and...

  16. A novel cost based model for energy consumption in cloud computing.

    Science.gov (United States)

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  17. Simulation of embedded systems for energy consumption estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, S.

    2009-07-01

    Technology developments in semiconductor fabrication along with a rapid expansion of the market for portable devices, such as PDAs and mobile phones, make the energy consumption of embedded systems a major problem. Indeed the need to provide an increasing number of computational intensive applications and at the same time to maximize the battery life of portable devices can be seen as incompatible trends. System simulation is a flexible and convenient method for analyzinging and exploring the performance of a system or sub-system. At the same time, the increasing use of computational intensive applications strengthens the need to maximize the battery life of portable devices. As a consequence, the simulation of embedded systems for energy consumption estimation is becoming essential in order to study and explore the influence of system design choices on the system energy consumption. The original publications presented in the second part of this thesis propose several frameworks for evaluating the effects of particular system and software architectures on the system energy consumption. From a software point of view Java and C based applications are studied, and from a hardware perspective systems using general purpose processor and heterogeneous platforms with dedicated hardware accelerators are analyzed. Papers 1 and 2 present a framework for estimating the energy consumption of an embedded Java Virtual Machine and show how an accurate energy consumption model of Java opcodes can be obtained. Paper 3 evaluates the cost-effectiveness of Forward Error Correction algorithms in terms of energy consumption and demonstrates that a substantial energy saving is achievable in a DVB-H receiver when a FEC algorithm is used for file downloading scenarios. Paper 4 and 5 present the simulation of heterogeneous platforms and point out the drawback of different mechanisms used to synchronize a hardware accelerator used as a peripheral device. Paper 6 shows that the use of a multi

  18. Divide by 4 the emissions: the Negatep scenario; Diviser par 4 nos rejets: le scenario Negatep

    Energy Technology Data Exchange (ETDEWEB)

    Acket, C.; Bacher, P

    2007-01-15

    The Negatep scenario is proposed in the framework of the french energy policy, aiming to divide by 4 the CO{sub 2} emissions for 2050. After an evaluation of the today situation concerning the energy consumption and needs, the scenario proposes some ways of energy conservation in different sectors, other energy sources in place of the fossil fuels, the energy needs by sectors. The last part of the document provides the main consumption posts, the CO{sub 2} releases and the approach. (A.L.B.)

  19. Kyoto Protocol Objectives in Croatia Energy Planning: Nuclear Scenario

    International Nuclear Information System (INIS)

    Duic, N.; Bogdan, Z.; Juretic, F.; Zeljko, M.

    2002-01-01

    Croatia as an Annex I country of the United Nations Framework Convention on Climate Change (UNFCCC) and a country that has pledged in the Annex B of the Kyoto Protocol to reduce its greenhouse gases (GHG) emissions by 5% from the pre-transition level by the budget period 2008-12, will have to envisage a new energy strategy. Compared to the energy consumption collapse in some transitional countries like Russia and Ukraine, Croatia has passed through a relatively limited long term reduction of GHG emissions since 1990 because of higher efficiency of its pre-transition economy. It is expected that in case of business as usual scenario it will breach the Kyoto target in 2003 since the demand for energy will be high, especially as the income continues to rise, particularly in domestic use for heating, for transport and for electricity generation. Several scenarios of developing energy system are compared from the point of view of GHG emissions. The energy sector that will most probably be the most influenced by the UNFCCC objectives is electricity generation. Several scenarios are compared. The cost-effective scenario expects a mixture of coal and gas fired power plants to be built to satisfy the new demand and to replace the old power plants that are being decommissioned. More Kyoto friendly scenario envisages the construction of mostly nuclear power plants in the future, while decommissioning the old ones as planned, and is compared to the others from the GHG emissions point of view. The conclusion is that by measures tackling only electricity generation it will not be possible to keep GHG emission under the Kyoto target level, but that choosing the nuclear option might reduce significantly the cost of compliance. (author)

  20. Energy scenarios for Colombia - Environmental Aspects

    International Nuclear Information System (INIS)

    Smith, Ricardo A; Vesga A, Daniel R; Boman, Ulf

    2000-01-01

    The planning unit of the Colombian ministry of energy -UPME -has done an energy scenario project for Colombia with a 20-year horizon (vision year 2020) in this project the scenario methodology was used in a systemic way involving a great number of local and international energy experts. As a result four energy scenarios were designed and in all of them the possible evolution of all energy was analyzed. In this article a description of the used methodology is presented with the developed scenarios. Also a discussion of the long-range future environmental considerations in the energy sector, taking into account the developed scenarios, is presented. Finally some conclusions and recommendations are presented

  1. The energy consumption of the services and farming sectors 1990 - 2035 - Results of scenarios I - IV; Der Energieverbrauch der Dienstleistungen und der Landwirtschaft, 1990 - 2035. Ergebnisse der Szenarien I bis IV und der zugehoerigen Sensitivitaeten BIP hoch, Preise hoch und Klima waermer

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, B.; Catenazzi, G.

    2007-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents four scenarios concerning the development of energy consumption in the services sector and for farming for the period 1990 - 2035. The four scenarios - status quo, increased co-operation between the state and the economy with various levies, global reduction of energy consumption and, finally, scenario IV 'on the way to a 2000-Watt Society' - are briefly described. In particular, the scenarios are examined for various sensitivities: high gross domestic product GDP, CO{sub 2} levy, high prices and warmer climate. The models and methods used are examined and examples of their use are quoted. The results of the sensitivity analyses are compared and discussed and the necessary instruments are examined. This comprehensive report contains a large number of data-tables and graphical representations

  2. Energy-saving decomposition and power consumption forecast: The case of liaoning province in China

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.X.; Zhao, Y.S.; Wang, Y.J. [School of Business Administration, North China Electric Power University, Zhu Xin Zhuang, Bei Nong Lu No. 2, Changping District, Beijing (China); Zhang, S.L. [Finance Department, Nanning Power Supply Bureau, Xingguang Street No. 43, Nanning, Guangxi Autonomous Region (China); Li, F.R. [University of Bath, Bath, BA2 7AY (United Kingdom)

    2011-01-15

    To achieve sustainable development of the society, the People's Republic of China (PRC) proposed in its 11th Five-Year Plan for National Economic and Social Development Program a shift in energy-saving target of decreasing energy intensity by 20% in 2010 compared with that of 2005. Liaoning province is one of the oldest industrial bases in China. Policymakers are often confronted with problems relating to adjustment in the development pattern as a means to secure steady economic growth. The power industry is a fundamental energy industry; it plays an important role in realizing of energy-saving targets. Based on the input-output model, this paper sets extensive, planning and 20% energy-saving scenarios in order to analyze energy-saving and power consumption situations for Liaoning by 2010. Through extensive simulations, the levels of energy-saving and power demand under different scenarios are obtained. Results from the analysis show that under the premises of adjusting the ratio of investment and consumption, optimizing products structure, and improving energy use efficiency, it is possible to achieve the proposed energy-saving target. Liaoning's power consumption can maintain a stable growth trend in the future. The percentage of electricity to the total energy use can also increase to 16% in 2010. (author)

  3. U. K. surface passenger transport sector. Energy consumption and policy options for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Maltby, D; Monteath, I G; Lawler, K A

    1978-12-01

    Forecasts of U.K. energy consumption in this sector for four future scenarios based on different economic growth rates, energy prices, and energy conservation policies, show that by the year 2000, private transport will probably account for 76-94% of total energy consumption in surface passenger transport. A 33% increase in the average miles-per-gallon fuel consumption through technological improvements in private vehicles, conversion of private vehicles to diesel oil, additional fuel taxation equivalent to 25 or 50% fuel price increase, a 10% reduction in average car engine size (encouraged by taxation), and changes in public transport technology offer energy savings of about 20, 5-10, 6.3 or 12.5, 2-4, and 2%, respectively. There is considerable uncertainty about the outcome of these options.

  4. EnerFuture Energy Scenarios to 2035 'Understanding our Energy Future'. Key graphs and analysis, Enerdata - Global Energy Forecasting - February 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The EnerFuture service provides projections to 2035 of energy supply and demand across the world, powered by the POLES model, to help you with what to expect in the energy industry in the mid-term. Our energy forecasting team have developed three key energy scenarios (Balance, Emergence and Renaissance) to illustrate possible futures. Balance scenario: Balance provides an outlook of the energy system up to 2035 based on current policies and trends. Sustained growth of China and other emerging countries is a powerful driver of global energy demand, but confirmed energy policy commitments in several regions play a key role in controlling the pace of growth. However, non-coordinated policies result in soaring CO_2 emissions across the world and energy prices rise. Emergence scenario: This scenario explores the implications of more stringent climate policies, with more ambitious efforts on energy efficiency, initiatives to phase out fossil fuel subsidies and a real emergence of renewable technologies. Europe goes beyond its -20% targets by 2020, and the OECD and emerging countries meet their Copenhagen objectives. Following this, a new green deal is launched to reduce world emissions by a factor of 2 by 2050. Renaissance scenario: With strong efforts in the exploitation and production of unconventional oil and gas resources, the world encounters a fossil fuels renaissance with the appearance of new key actors and ultimately new geopolitical configurations changing the energy independence of several countries. For climate efforts, this new paradigm leads to progressively weaker policies. Further analysis and key findings are available here: - Increasing economic activity and wealth drives energy consumption, in a balance between energy prices and innovation; - As Non-OECD exceeds OECD oil demand, massive financial flows underlie the shifts in global oil trade; - Optimistic resource assumptions and moderate production costs would lead to an oil production Renaissance

  5. Energy scenarios for the 21. century

    International Nuclear Information System (INIS)

    Lauerman, V.

    2002-01-01

    The Canadian Energy Research Institute (CERI) has adopted a scenario approach in developing its energy outlook to 2025. These scenarios can be used in developing strategies to optimize opportunities and avoid the dangers that often accompany the more deterministic approach to forecasting. The scenarios are not predictions, but are instead feasible outcomes for the future. They encompass 5 major areas of uncertainty for the world energy market through 2025 that impact energy demand and fuel mix. These include the economy, technology, energy policy, resource availability, and market structure. The drivers for the energy scenarios are the environment, demography, economics, culture geopolitics and technology. The paper referred to the world energy market, the OECD energy markets, the non-OECD energy markets and the FSU energy markets under 3 energy scenarios including: (1) the material world in which the new economy drives the global economy, (2) a very dark Orwellian world in which there is a rise in terrorism and a breakdown in international cooperation, and (3) a utopia in which the major powers become increasingly serious about achieving sustainable development. 22 refs., 48 figs

  6. Technology versus demand regulation - strategic modelling of transport, land use and energy scenarios

    International Nuclear Information System (INIS)

    Pfaffenbichler, Paul C.; Shepherd, Simon

    2007-01-01

    Scarcity of oil supply is seen as one of the biggest future threats to our society. The recently finished EU-funded research project STEPs (Scenarios for the Transport System and Energy Supply and their Potential Effects) had the objective to develop, compare and assess possible scenarios for the transport system and the energy supply of the future taking into account the effects on the environment as well as economic and social viability. Two energy supply scenarios, one with and one without scarcity of oil supply, form the basis of STEPs. Furthermore two different policies are suggested to tackle the problem of scarcity of oil: a technology driven strategy and a demand regulation based strategy. This paper presents the application of these scenarios and strategies to the strategic Systems Dynamics model MARS (Metropolitan Activity Relocation Simulator) covering the metropolitan area of Edinburgh. Scenario indicators like car ownership, fleet composition and fuel resource costs were provided by the European model ASTRA and the world energy market model POLES. The first part of the paper summarises the scenarios and strategies in detail. The second part describes briefly some basics of Systems Dynamics as well as the main mechanisms underlying the model MARS. Finally the results of the scenario simulations are presented. The main outcome is that a demand regulation policy is more effective in reducing the consumption of non-renewable energy resources than a technology driven policy

  7. Model for calculating regional energy use, industrial production and greenhouse gas emissions for evaluating global climate scenarios

    International Nuclear Information System (INIS)

    Vries, H.J.M. de; Olivier, J.G.J.; Wijngaart, R.A. van den; Kreileman, G.J.J.; Toet, A.M.C.

    1994-01-01

    In the integrated IMAGE 2.0 model the 'Energy-Industry System' is implemented as a set of models to develop global scenarios for energy use and industrial processes and for the related emissions of greenhouse gases on a region specific basis. The Energy-Economy model computes total energy use, with a focus on final energy consumption in end-use sectors, based on economic activity levels and the energy conservation potential (end-use approach). The Industrial Production and Consumption model computes the future levels of activities other than energy use, which lead to greenhouse gas emissions, based on relations with activities defined in the Energy-Economy model. These two models are complemented by two emissions models, to compute the associated emissions by using emission factors per compound and per activity defined. For investigating energy conservation and emissions control strategy scenarios various techno-economic coefficients in the model can be modified. In this paper the methodology and implementation of the 'Energy-Industry System' models is described as well as results from their testing against data for the period 1970-1990. In addition, the application of the models is presented for a specific scenario calculation. Future extensions of the models are in preparation. 59 refs., 17 figs., 21 tabs

  8. The 'Europe, Territories' project of energy transition(s) in Europe: comparative analysis of scenarios, of their territorial application, and of their social-economic impacts. Phase 1. Analysis of national scenarios in Germany, Austria, Denmark and Switzerland

    International Nuclear Information System (INIS)

    Chatelin, Stephane; Marignac, Yves; Besnard, Manon; Letz, Thomas; Rialhe, Anne

    2016-01-01

    This report reports an identification and an analysis of different scenarios of energy transition elaborated in different European countries (Germany, Austria, Denmark, Switzerland), and is a required preliminary step for the 'Europe-Territories' project implemented by the NegaWatt association. The report justifies the selection of these countries and, for each country, the selection of a specific scenario as several scenarios were available for each country. It discusses available data, identifies missing data and reports the search for additional data. Then, it reports the comparison between noticed trajectories, European objectives and retained scenarios. More precisely, and for each of the four countries and for France, it analyses the share of renewable energies in final energy consumption, and the evolution of final energy consumption. For each national scenario, it presents various aspects which can be, depending on the country, framework and method, major focuses, implementation, results, economic benefits, scenario assessment, energy production and demand. It proposes a comparative analysis of the studied national scenarios in terms of objectives and methodology, of energy demand and of energy production. It finally analyses trajectories on the short and on the long term. Some more detailed presentations of national scenarios are given in appendix

  9. The Low-Carbon Transition toward Sustainability of Regional Coal-Dominated Energy Consumption Structure: A Case of Hebei Province in China

    Directory of Open Access Journals (Sweden)

    Xunmin Ou

    2017-07-01

    Full Text Available CO2 emission resulted from fossil energy use is threatening human sustainability globally. This study focuses on the low-carbon transition of Hebei’s coal-dominated energy system by estimating its total end-use energy consumption, primary energy supply and resultant CO2 emission up to 2030, by employing an energy demand analysis model based on setting of the economic growth rate, industrial structure, industry/sector energy consumption intensity, energy supply structure, and CO2 emission factor. It is found that the total primary energy consumption in Hebei will be 471 and 431 million tons of coal equivalent (tce in 2030 in our two defined scenarios (conventional development scenario and coordinated development scenario, which are 1.40 and 1.28 times of the level in 2015, respectively. The resultant full-chain CO2 emission will be 1027 and 916 million tons in 2030 in the two scenarios, which are 1.24 and 1.10 times of the level in 2015, respectively. The full-chain CO2 emission will peak in about 2025. It is found that the coal-dominated situation of energy structure and CO2 emission increasing trend in Hebei can be changed in the future in the coordinated development scenario, in which Beijing-Tianjin-Hebei area coordinated development strategy will be strengthened. The energy structure of Hebei can be optimised since the proportion of coal in total primary energy consumption can fall from around 80% in 2015 to below 30% in 2030 and the proportions of transferred electricity, natural gas, nuclear energy and renewable energy can increase rapidly. Some specific additional policy instruments are also suggested to support the low-carbon transition of energy system in Hebei under the framework of the coordinated development of Beijing-Tianjin-Hebei area, and with the support from the central government of China.

  10. Energy scenarios: a prospective outlook

    International Nuclear Information System (INIS)

    Salomon, Thierry; Claustre, Raphael; Charru, Madeleine; Sukov, Stephane; Marignac, Yves; Fink, Meike; Bibas, Ruben; Le Saux, Gildas

    2011-01-01

    A set of articles discusses the use of energy scenarios: how useful they can be to describe a possible future and even to gather the involved actors, how they have been used in France in the past (for planning or prediction purposes, with sometimes some over-assessed or contradictory results, without considering any decline of nuclear energy, or by setting an impossible equation in the case of the Grenelle de l'Environnement), how the scenario framework impacts its content (depending on the approach type: standard, optimization, bottom-up, top-down, or hybrid). It also discusses the issue of choice of hypotheses on growth-based and de-growth-based scenarios, outlines how energy saving is a key for a sustainable evolution. Two German scenarios regarding electricity production (centralisation or decentralisation) and French regional scenarios for Nord-Pas-de-Calais are then briefly discussed

  11. Energy Consumption Database

    Science.gov (United States)

    Consumption Database The California Energy Commission has created this on-line database for informal reporting ) classifications. The database also provides easy downloading of energy consumption data into Microsoft Excel (XLSX

  12. Energy Savings through Site Renewal in an HSPA/LTE Network Evolution Scenario

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben

    Mobile network operators are committing themselves to reduce the energy consumption of their networks. However, the expected growth in traffic and the upgrades required to sustain this growth pose a serious question on whether these targets are achievable. Through a case study, this paper looks a...... to just 12%. In some cases, when a less aggressive traffic growth is assumed, the energy savings are enough to balance any increase in energy. In a best case scenario, where all sites are replaced when new equipment is available, energy savings close to 40% are achievable....... at how the energy consumption of a mobile network is likely to develop over a period of nine years, considering the evolution of an existing HSPA layer into a multi-layered (HSPA+LTE) network. Besides, this study also considers four different equipment versions released throughout the years, which...... are introduced in the network based on a replacement strategy. In addition, the two most modern sites are assumed to be configured with remote radio head. In comparison to the reference case which leads to an increase in energy consumption of almost 200%, considering these site upgrades can limit the increase...

  13. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  14. Energy scenarios for New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Harris, G. S.; Ellis, M. J.; Scott, G. C.; Wood, J. R.

    1977-10-15

    Three energy scenarios have been formulated for New Zealand. They concentrate on those aspects of society which have a direct bearing on energy, emphasizing three important issues: major shifts in society's values in relation to material wealth, pollution, and resources. The scenarios make assumptions that certain overall social conditions would prevail so that all decisions of government, the private sector, and individuals would be governed by the requirement to conform to the scenario theme in a way not possible under existing social and political conditions. The 3 scenarios are known as Continuation, Low New Zealand Pollution, and Limited Growth.

  15. Divide by 4 the emissions: the Negatep scenario

    International Nuclear Information System (INIS)

    Acket, C.; Bacher, P.

    2007-01-01

    The Negatep scenario is proposed in the framework of the french energy policy, aiming to divide by 4 the CO 2 emissions for 2050. After an evaluation of the today situation concerning the energy consumption and needs, the scenario proposes some ways of energy conservation in different sectors, other energy sources in place of the fossil fuels, the energy needs by sectors. The last part of the document provides the main consumption posts, the CO 2 releases and the approach. (A.L.B.)

  16. Scenarios of future energy intensities

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In this chapter, the authors present scenarios of potential change in energy intensities in the OECD countries and in the Soviet Union. These scenarios are meant to illustrate how intensities might evolve over the next 20 years given different conditions with respect to energy prices, energy-efficiency policies, and other key factors. Changes in intensity will also be affected by the rates of growth and stock turnover in each sector. They have not tried to forecast how activity levels and structure will evolve. However, the OECD scenarios assume a world in which GDP averages growth in the 2-3%/year range, with some differences among countries. For the Soviet Union, the degree and pace of intensity decline will be highly dependent on the success of the transition to a market economy; each scenario explicitly envisions a different degree of success. They have not constructed comparable scenarios for the developing countries. The scenarios presented in this chapter do not predict what will happen in the future. They believe, however, that they illustrate a plausible set of outcomes if energy prices, policies, programs, and other factors evolve as described in each case. With higher energy prices and vigorous policies and programs, intensities in the OECD countries in 2010 could be nearly 50% less on average than the level where trends seem to be point. In the former Soviet Union, a combination of rapid, successful economic reform and extra effort to improve energy efficiency might result in average intensity being nearly 40% less than in a slow reform case. And in the LDCs, a mixture of sound policies, programs, and energy pricing reform could also lead to intensities being far lower than they would be otherwise. 8 refs., 10 figs., 1 tab

  17. Effects of stochastic energy prices on long-term energy-economic scenarios

    International Nuclear Information System (INIS)

    Krey, Volker; Martinsen, Dag; Wagner, Hermann-Josef

    2007-01-01

    In view of the currently observed energy prices, recent price scenarios, which have been very moderate until 2004, also tend to favor high future energy prices. Having a large impact on energy-economic scenarios, we incorporate uncertain energy prices into an energy systems model by including a stochastic risk function. Energy systems models are frequently used to aid scenario analysis in energy-related studies. The impact of uncertain energy prices on the supply structures and the interaction with measures in the demand sectors is the focus of the present paper. For the illustration of the methodological approach, scenarios for four EU countries are presented. Including the stochastic risk function, elements of high energy price scenarios can be found in scenarios with a moderate future development of energy prices. In contrast to scenarios with stochastic investment costs for a limited number of technologies, the inclusion of stochastic energy prices directly affects all parts of the energy system. Robust elements of hedging strategies include increasing utilization of domestic energy carriers, the use of CHP and district heat and the application of additional energy-saving measures in the end-use sectors. Region-specific technology portfolios, i.e., different hedging options, can cause growing energy exchange between the regions in comparison with the deterministic case. (author)

  18. The IIASA'83 scenario of energy development

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1984-01-01

    The prospects for natural gas as a major source of energy supply are good. Spurred by the energy crises of the 'seventies, recent exploration for gas resources as well as technological advances in deep drilling have enhanced the picture of gas as a plentiful fossil resource. Technological improvements in transporting gas over large distances, as piped gas and as a liquid, suggest the strong possibility of gas as an important commodity in energy trade. In addition, gas is a high quality and relatively clean fuel, which is especially attractive in today's world of environmental concern for pollution emissions from energy combustion. Such developments led to the design of the IIASA'83 Scenario of Energy Development, which explored the techno-economic feasibility of the expanded use of gas in energy systems. The work drew on the findings of the IIASA global energy analysis, documented in 'Energy in a Finite World'. All countries of the world were covered in the quantitative analysis, grouped regionally by similarity in energy resources and economic structure and not necessarily on the basis of geographic proximity. The period studied was necessarily the next half century, from 1980 to 2030, in view of the inertia in technological and economic systems and this constraint on the development of energy infrastructures. Global primary energy consumption increases some twofold from 10 TW.a/a to 21.9 TW.a/a over the next 50 years, while economic output globally grows some threefold. The breakdown of global primary energy consumption indicates an absolute increase in the use of all primary energy sources over the study period, with fossil fuels continuing to supply the lion's share of primary energy. The buildup of non-fossil energy sources to global supply levels by 2030 is likely to be constrained by the high capital investments required at a period of modest economic growth and by the sociopolitical controversy surrounding the use of some of these technologies. (author)

  19. Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica Oprea

    2018-01-01

    Full Text Available Although in 2012 the European Union (EU has promoted energy efficiency in order to ensure a gradual 20% reduction of energy consumption by 2020, its targets related to energy efficiency have increased and extended to new time horizons. Therefore, in 2016, a new proposal for 2030 of energy efficiency target of 30% has been agreed. However, during the last years, even if the electricity consumption by households decreased in the EU-28, the largest expansion was recorded in Romania. Taking into account that the projected consumption peak is increasing and energy consumption management for residential activities is an important measure for energy efficiency improvement since its ratio from total consumption can be around 25–30%, in this paper, we propose an informatics solution that assists both electricity suppliers/grid operators and consumers. It includes three models for electricity consumption optimization, profiles, clustering and forecast. By this solution, the daily operation of appliances can be optimized and scheduled to minimize the consumption peak and reduce the stress on the grid. For optimization purpose, we propose three algorithms for shifting the operation of the programmable appliances from peak to off-peak hours. This approach enables the supplier to apply attractive time-of-use tariffs due to the fact that by flattening the consumption peak, it becomes more predictable, and thus improves the strategies on the electricity markets. According to the results of the optimization process, we compare the proposed algorithms emphasizing the benefits. For building consumption profiles, we develop a clustering algorithm based on self-organizing maps. By running the algorithm for three scenarios, well-delimited profiles are obtained. As for the consumption forecast, highly accurate feedforward artificial neural networks algorithm with backpropagation is implemented. Finally, we test these algorithms using several datasets showing their

  20. Geothermal energy in the world energy scenario

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    This paper reports on the world energy consumption between 1960 and 1984 from primary energy sources (coal, natural gas, oil, hydropower, nuclear energy) and the same in percentages from 1925. This highlights the diminishing role of coal and the increased consumption of gas and oil. The latter has stabilized around 42% of the total after the drop in demand resulting from the oil crisis of 1973. The world energy consumption has then been divided into industrialized and developing countries. It appears that the latter, with a population equal to 68% of the total world population, consumed 23% of the world energy in 1982. Furthermore, the consumption figures show that the demand for domestic energy is much smaller in developing countries, and it is well-known that domestic energy consumed is one of the parameters used to assess standard of living. The total installed electric capacity throughout the world is then reported, divided between developed and developing countries, showing that the latter consumed 11% of all the electricity generated in the world in 1981. The world installed electric power of geothermal origin at the end of 1985 is shown, along with estimates for 1990. Geothermal energy represents 0.2% of the world electric power. This is obviously a small figure and indicates that geothermal energy plays a minor role on the world energy scene. However, if we distinguish between industrialized and developing countries, we can observe that, with their currently limited electrical consumption but good geothermal prospects, the developing countries could achieve quite a significant contribution to their total electric energy from that of geothermal origin, increasing at the moment from 3 to 19%. Finally, a comparison is made between electricity generating costs of different sources, showing that geothermal energy is competitive. A table illustrates the world evolution in installed geothermal capacity from 1950 to 1985. The non-electric uses of geothermal energy

  1. Energy scenarios for Colombia: process and content

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ricardo A. [National Univ. of Colombia, Escuela de Geosciencias y Medio Ambiente, Medellin (Colombia); Vesga, Daniel R.A. [Unidad de Planeacion Minero Energetica, Bogota (Colombia); Cadena, Angela I. [Los Andes Univ., School of Engineering, Bogota (Colombia); Boman, Ulf [Kairos Future AB, Stockholm (Sweden); Larsen, Erik [Cass Business School, London (United Kingdom); Dyner, Isaac [Universidad Nacional de Colombia, Energy Inst., Medellin (Colombia)

    2005-02-01

    This paper presents the approach undertaken, and the four energy scenarios that have been developed, to support long term energy policy in Colombia. The scenarios were constructed with emphasis on maximum interaction between stakeholders in the Colombian energy sector. The process directly involved over 120 people. The scenarios were developed as strategic support tools for the Energy and Mining Planning Unit (UPME), which is the Colombian institution in charge of developing the country's energy strategies and National Energy Policy. The methodology employed is presented, followed by a detailed description of each of the four scenarios. (Author)

  2. Comparison of future energy scenarios for Denmark

    DEFF Research Database (Denmark)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate...... Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy...

  3. DGEMP-OE (2008) Energy Baseline Scenario. Synthesis report; Scenario energetique de reference DGEMP-OE(2008). Rapport de synthese

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    ;reference' at national level. - Finally, the MEDEE energy demand model applied in the CAS scenarios relies primarily on 2000 data, despite the existence of sufficiently complete statistics through to 2005. The DGEMP on the other hand used a study by the BIPE (Office for Economic Information and Forecasting) provided by the SESP, the Ministry for Ecology, Energy, Sustainable Development and Spatial Planning's economic statistics and forecasting department. On the basis of the study's macro-economic projections of the French economy to 2020, the DGEMP was able to re-evaluate the prospects for activity in the industrial and tertiary sectors. In several respects (e.g. supply security, CO{sub 2} emissions, energy efficiency), the baseline scenario proposed here is clearly not a scenario conducive to satisfying French energy policy objectives. This is not a surprising conclusion in that it implies the need to implement new policies and measures in addition to those already in place or approved. In particular, this scenario would lead to importing 66 billion cubic meters of gas (59 Mtoe) in 2020 and 78 billion cubic meters (70 Mtoe) in 2030, compared with the present 44 billion cubic meters. In addition to the resulting CO{sub 2} emissions, the near doubling of gas imports would pose a twofold problem as to the geographic origin of the gas imported (under appropriate supply contracts) and the infrastructure (LNG terminals, gas pipelines) required to transport it. Finally, the baseline scenario is of course a long way from achieving the Community targets, whether for CO{sub 2} emissions, projected to rise continually until 2020 and then even faster until 2030 (due to transport and electric power generation), or for the share of renewable energy in the energy mix. In that regard, the share of renewable energy in 'enlarged' final energy consumption, as it is described in the 'energy and climate change package', would grow to 13.4% in 2020 (versus 23% in the

  4. Elaborating SRES scenarios for nuclear energy

    International Nuclear Information System (INIS)

    McDonald, Alan; Riahi, Keywan; Rogner, Hans-Holger

    2003-01-01

    The objective of this paper is identifying mid-century economic targets for nuclear energy. The first step is to describe what the mid-century energy market might look like: the major competitors for nuclear energy, what products are in demand, how much of each, where is growth greatest, and so forth. The mechanism for systematically describing the future market is scenario building. The starting point is the scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. SRES developed four narrative story lines, each representing a different coherent set of demographic, social, economic, technological, and environmental developments. For each story line several different scenarios were developed by six international modelling teams, resulting in 40 scenarios grouped in the 4 story lines. For three of the story lines this paper uses a single marker scenario representative of central tendencies within the scenario family. For the fourth story line the authors chose the scenario that assumes that advances in non-fossil technologies - renewable, nuclear, and high-efficiency conservation technologies - make them most cost-competitive. (BA)

  5. Scenario Development for Sustainable Food Consumption

    DEFF Research Database (Denmark)

    Reisch, Lucia; Farsang, Andrea; Jégou, Francois

    Over the last few decades, considerable changes in food consumption – such as eating habits, dietary changes, availability and accessability of food – have taken place. These are mainly due to an increase in productivity of the food sector, a greater diversity in product choices and a decrease in...... public procurement 3. shorter distance and closer relations between producers and consumers 4. community gardens and urban gardening 5. food trade placed in local squares 6. energy conscious and efficient food consumption....

  6. The Greenpeace 2013 scenario for energy transition

    International Nuclear Information System (INIS)

    Cormier, Cyrille; Teske, Sven

    2013-01-01

    After a synthesis of the Greenpeace scenario for energy transition, this report presents the French current energy landscape: structure of the energy system, greenhouse gas emissions and nuclear risks, main social and economic challenges, and search for a political ambition (from the Grenelle de l'Environnement to the current debate on energy). Then, after having outlined that energy transition must be decided now, the report presents the scenario hypotheses: studies used to develop the scenario, macro-economic and technical-economic hypotheses. The scenario is then presented in terms of possible trajectory, of energy demand (global evolution per sector), of energy production (electricity, heat, mobility), and of CO 2 assessment and nuclear wastes. Scenarios are compared in social and economic terms, more particularly in terms of investments in electricity and heat production systems, of electricity production costs and electricity bill, of energy independence, and of jobs in the electricity and heat sectors

  7. Baseline projections of transportation energy consumption by mode: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  8. Shell energy scenarios to 2050

    International Nuclear Information System (INIS)

    2008-01-01

    Shell developed two scenarios that describe alternative ways the energy future may develop. In the first scenario (Scramble) policymakers pay little attention to more efficient energy use until supplies are tight. Likewise, greenhouse gas emissions are not seriously addressed until there are major climate shocks. In the second scenario (Blueprints) growing local actions begin to address the challenges of economic development, energy security and environmental pollution. A price is applied to a critical mass of emissions giving a huge stimulus to the development of clean energy technologies, such as carbon dioxide capture and storage, and energy efficiency measures. The result is far lower carbon dioxide emissions. Both these scenarios can help Shell to test their strategy against a range of possible developments over the long-term. However, according to Shell, the Blueprints' outcomes offer the best hope for a sustainable future, whether or not they arise exactly in the way described. However, with the right combination of policy, technology and commitment from governments, industry and society globally, Shell believes it can be realized. But achieving the targets will not be easy, and time is short. Clear thinking, huge investment, and effective leadership are required

  9. Prediction of electric energy consumption in Cuba for the period 2000-2015

    International Nuclear Information System (INIS)

    Garcia Rodirguez, B

    1999-01-01

    This paper consists on a prediction of the growth in electric energy consumption in Cuba, for the period 2000-2015 and with respect to 1990, it also considers the specific features of the National Electroenergetic System. Validated Guidelines in accordance with the Delphi method, which incorporates the basis characteristics considered by international programs for these predictions, were used for this purpose. From the analysis of the behaviour in power consumption of the different consumers and of the expected changes in them according to the expected scenarios, a prediction on the growth in the demand of electric energy is made

  10. Determinants of household energy consumption in India

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Krey, Volker; Pachauri, Shonali; Riahi, Keywan

    2010-01-01

    Improving access to affordable modern energy is critical to improving living standards in the developing world. Rural households in India, in particular, are almost entirely reliant on traditional biomass for their basic cooking energy needs. This has adverse effects on their health and productivity, and also causes environmental degradation. This study presents a new generic modelling approach, with a focus on cooking fuel choices, and explores response strategies for energy poverty eradication in India. The modelling approach analyzes the determinants of fuel consumption choices for heterogeneous household groups, incorporating the effect of income distributions and traditionally more intangible factors such as preferences and private discount rates. The methodology is used to develop alternate future scenarios that explore how different policy mechanisms such as fuel subsidies and micro-financing can enhance the diffusion of modern, more efficient, energy sources in India.

  11. Determinants of household energy consumption in India

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); TKK Helsinki University of Technology, Espoo (Finland); Krey, Volker; Pachauri, Shonali; Riahi, Keywan [International Institute for Applied Systems Analysis, Laxenburg (Austria)

    2010-10-15

    Improving access to affordable modern energy is critical to improving living standards in the developing world. Rural households in India, in particular, are almost entirely reliant on traditional biomass for their basic cooking energy needs. This has adverse effects on their health and productivity, and also causes environmental degradation. This study presents a new generic modelling approach, with a focus on cooking fuel choices, and explores response strategies for energy poverty eradication in India. The modelling approach analyzes the determinants of fuel consumption choices for heterogeneous household groups, incorporating the effect of income distributions and traditionally more intangible factors such as preferences and private discount rates. The methodology is used to develop alternate future scenarios that explore how different policy mechanisms such as fuel subsidies and micro-financing can enhance the diffusion of modern, more efficient, energy sources in India. (author)

  12. Energy consumption declined in 1993

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    On presenting the energy consumption figures for 1993 the Minister for Economic Affairs of Baden-Wuerttemberg Dieter Spoeri (SPD) spoke of the eternal task of saving energy. In his view the slight decline in energy consumption from 1992 to 1993 should not be interpreted as a greater willingness to save energy; its main cause is rather to be seen in the course of the economy. According to estimations, total energy consumption fell 0.5% and electricity consumption 1.0% from 1992 to 1993. The economy on the other hand, still a decisive factor in energy consumption, is estimated to have declined 3% during that period. In the ten years from 1983 to 1993 total energy consumption in the Land rose an average annual 1.8% while electricity consumption kept astride with the economy with an average annual rise 2.7%, he said. (orig./HP) [de

  13. Scenario analysis of energy saving and CO_2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector

    International Nuclear Information System (INIS)

    Wakiyama, Takako; Kuramochi, Takeshi

    2017-01-01

    This paper assesses to what extent CO_2 emissions from electricity in the residential sector can be further reduced in Japan beyond its post-2020 mitigation target (known as “Intended Nationally Determined Contribution (INDC)”). The paper examines the reduction potential of electricity demand and CO_2 emissions in the residential sector by conducting a scenario analysis. Electricity consumption scenarios are set up using a time-series regression model, and used to forecast the electricity consumption patterns to 2030. The scenario analysis also includes scenarios that reduce electricity consumption through enhanced energy efficiency and energy saving measures. The obtained results show that Japan can reduce electricity consumption and CO_2 emissions in the residential sector in 2030 more than the Japanese post-2020 mitigation target indicates. At the maximum, the electricity consumption could be reduced by 35 TWh, which contributes to 55.4 MtCO_2 of emissions reduction in 2030 compared to 2013 if the voluntarily targeted CO_2 intensity of electricity is achieved. The result implies that Japan has the potential to ratchet up post-2020 mitigation targets discussed under the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). - Highlights: • Further reduction of electricity consumption is possible beyond Japan's post-2020 mitigation target. • Energy saving efforts by households and incentives to reduce electricity demands are required. • Improvement of CO_2 intensity from electricity is a key factor in the reduction of CO_2 emissions.

  14. The industrial energy consumption in 1999

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Danish industrial energy consumption in 1999 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 1999 based on each group of branches and energy category, the energy consumption in 1997 for each group of branches and the percentage distribution on energy category, and the fuel and energy consumption of motor vehicles in 1999 based on each group of branches. (SM)

  15. Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

    International Nuclear Information System (INIS)

    Smekens, K.; Van der Zwaan, B.

    2004-03-01

    Geological carbon sequestration seems one of the promising options to address, in the near term, the global problem of climate change, since carbon sequestration technologies are in principle available today and their costs are expected to be affordable. Whereas extensive technological and economic feasibility studies rightly point out the large potential of this 'clean fossil fuel' option, relatively little attention has been paid so far to the detrimental environmental externalities that the sequestering of CO2 underground could entail. This paper assesses what the relevance might be of including these external effects in long-term energy planning and scenario analyses. Our main conclusion is that, while these effects are generally likely to be relatively small, carbon sequestration externalities do matter and influence the nature of future world energy supply and consumption. More importantly, since geological carbon storage (depending on the method employed) may in some cases have substantial external impacts, in terms of both environmental damage and health risks, it is recommended that extensive studies are performed to quantify these effects. This article addresses three main questions: (1) What may energy supply look like if one accounts for large-scale CO2 sequestration in the construction of long-term energy and climate change scenarios; (2) Suppose one hypothesizes a quantification of the external environmental costs of CO2 sequestration, how do then these supposed costs affect the evolution of the energy system during the 21st century; (3) Does it matter for these scenarios whether carbon sequestration damage costs are charged directly to consumers or, instead, to electricity producers?

  16. The net employment impact of energy transition in France: An input-output analysis of the 'negaWatt' scenario

    International Nuclear Information System (INIS)

    Quirion, Philippe

    2013-04-01

    We study the impact on employment in France of the implementation of the energy transition scenario built by negaWatt (2011), which provides a massive development of energy savings (through measures of sufficiency and energy efficiency) and renewable energy between 2012 and 2050. Compared to 2010, this scenario results in a halving of CO 2 emissions from energy sources in France in 2030 and a division by 16 in 2050, without capture and storage of CO 2 , without implementation of new nuclear power plant and closing existing plants after 40 years of operation at maximum. We calculate the effect on employment of the implementation of this scenario compared to a baseline scenario that extends recent developments and considers the policies already decided. The method used to calculate the effect on employment of each scenario is to calculate the cost of the main technical and organizational options used, to allocate these costs among the 118 branches of the French economy and multiply these costs by the employment content of each branch. The latter is estimated by input-output analysis, which enables the recording of jobs generated by the production of all inputs. One of two scenarios being more expensive than the other, one must take into account the negative effect on employment of funding such costs. For this, it is assumed that this additional cost is borne by households and that they decrease their consumption accordingly by the same amount. This avoids biasing the results in favour of the most expensive scenario. The implementation of negaWatt scenario leads to a positive effect on employment, on the order of 240 000 full-time equivalent jobs in 2020 and 630,000 in 2030. We study the sensitivity of results to assumptions on prices of imported energy, the evolution of labour productivity, the distribution of costs between households and governments, and finally the consumption-savings decision. The effect on employment is largely positive in all cases. (author)

  17. The reference energy scenario of the DGEMP for 2030,there's many a slip twixt the cup and the lip; Le scenario energetique de reference de la DGEMP pour 2030, ou il y a loin de la coupe aux levres

    Energy Technology Data Exchange (ETDEWEB)

    Acket, C.; Nifenecker, H

    2008-05-15

    The authors discuss the energy reference scenario for 2030, proposed by the DGEMP. This scenario is published every 4 years. It represents the french energy situation in 2030, if no new energy policy was decided, in particularly no new measure from the Grenelle of the environment. The scenario supposes also no energy crisis in the fossil fuels supply and the fuels prices. In this topic, the objective of a contribution of 20% of renewable energies in the final energy consumption, seems possible. (A.L.B.)

  18. Effect of energy taxes on energy consumption

    International Nuclear Information System (INIS)

    Johnsen, T.A.

    1991-01-01

    The energy consumption and taxation in Norway is described in addition to some of the consequences of this taxation on the energy market. Modelling of energy demand is dealt with. It is concluded that the influence of energy taxation on energy consumption is dependent on market conditions for individual energy products. This thesis is elaborated. (AB)

  19. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  20. Household energy consumption and expenditures, 1990

    International Nuclear Information System (INIS)

    1993-01-01

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide

  1. (Un)certainty in climate change impacts on global energy consumption

    Science.gov (United States)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  2. The digital society: A scenario for the energy transition by 2072

    International Nuclear Information System (INIS)

    Maizi, Nadia; Assoumou, Edi; Le Gallic, Thomas

    2017-01-01

    This forward-looking exercise focuses on the energy transition and the compatibility of a society where digital technology has been deployed with France's goal of 'carbon neutrality' by 2072. If we are not careful, climate programs might be compromised owing to the energy needed for information and communications technology. On the supply side, what digital techniques and objects are being designed to address climate problems? On the demand side, what lifestyle trends will this technology trigger in a 'digital society', and what impact will they have on energy consumption? Beyond the results of the scenario imagined herein, it is worthwhile examining a range of decision-making tools for laying out the pathways we would like to take

  3. Future energy demand in Laos. Scenario alternatives for development

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J.; Kouphokham, K.; Panula-Ontto, J. [and others

    2012-07-01

    Energy production in Laos is still dominated by traditional fuels. Fuelwood in the main source of energy and most of the energy is consumed at households for cooking. Increase in the number of cars and motorbikes is rapidly increasing the use of imported petroleum products. Electrification is one of the central targets of the Lao government. The electrification rate has increased fast in Laos and in the year 2010 over 70 % households had electricity supply. The target is to have 90 % access to electricity by the year 2020. The World Bank regards the electrification of Lao PDR to be a success story. This paper deals with the present and future energy consumption in Laos. First the historical trends of energy use in different sectors are analysed. The future scenarios are constructed using LaoLinda model. Four different future alternative development paths are analysed using the model results. The energy use data source for the analysis is from the Ministry of Energy and Mines (MEM) of Lao PDR. Economic and other data is from the Department of Statistics of Lao PDR.

  4. Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems.

    Science.gov (United States)

    Cecconet, Daniele; Zou, Shiqiang; Capodaglio, Andrea G; He, Zhen

    2018-09-15

    Nitrate contamination of groundwater is a mounting concern for drinking water production due to its healthy and ecological effects. Bioelectrochemical systems (BES) are a promising method for energy efficient nitrate removal, but its energy consumption has not been well understood. Herein, we conducted a preliminary analysis of energy consumption based on both literature information and multiple assumptions. Four scenarios were created for the purpose of analysis based on two treatment approaches, microbial fuel cells (MFCs) and controlled biocathodic denitrification (CBD), under either in situ or ex situ deployment. The results show a specific energy consumption based on the mass of NO 3 - -N removed (SEC N ) of 0.341 and 1.602 kWh kg NO 3 - -N -1 obtained from in situ and ex situ treatments with MFCs, respectively; the main contributor was the extraction of the anolyte (100%) in the former and pumping the groundwater (74.8%) for the latter. In the case of CBD treatment, the energy consumption by power supply outcompeted all the other energy items (over 85% in all cases), and a total SEC N of 19.028 and 10.003 kWh kg NO 3 - -N -1 were obtained for in situ and ex situ treatments, respectively. The increase in the water table depth (from 10 to 30 m) and the decrease of the nitrate concentration (from 25 to 15 mg NO 3 - -N) would lead to a rise in energy consumption in the ex situ treatment. Although some data might be premature due to the lack of sufficient information in available literature, the results could provide an initial picture of energy consumption by BES-based groundwater treatment and encourage further thinking and analysis of energy consumption (and production). Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Global energy scenarios, climate change and sustainable development

    International Nuclear Information System (INIS)

    Nakicenovic, Nebojsa

    2003-01-01

    Energy scenarios provide a framework for exploring future energy perspectives, including various combinations of technology options and their implications. Many scenarios in the literature illustrate how energy system developments may affect global change. Examples are the new emissions scenarios by the Intergovernmental Panel on Climate Change (IPCC) and the energy scenarios by the World Energy Assessment (WEA). Some of these scenarios describe energy futures that are compatible with sustainable development goals; such as improved energy efficiencies and the adoption of advanced energy supply technologies. Sustainable development scenarios are also characterized by low environmental impacts (at local, regional and global scales) and equitable allocation of resources and wealth. They can help explore different transitions toward sustainable development paths and alternative energy perspectives in general. The considerable differences in expected total energy requirements among the scenarios reflect the varying approaches used to address the need for energy services in the future and demonstrate effects of different policy frameworks, changes in human behavior and investments in the future, as well as alternative unfolding of the main scenario driving forces such as demographic transitions, economic development and technological change. Increases in research, development and deployment efforts for new energy technologies are a prerequisite for achieving further social and economic development in the world. Significant technological advances will be required, as well as incremental improvements in conventional energy technologies. In general, significant policy and behavioral changes will be needed during the next few decades to achieve more sustainable development paths and mitigate climate change toward the end of the century. (au)

  6. The industrial energy consumption in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The statistics present the industry's energy consumption and composition, and the development from 1973 to 2003. In this period the composition of the energy consumption has changed considerably: a decrease in the consumption of liquid fuels and an increase in the consumption of natural gas and electric power. The energy consumption in the Danish industry decreased with almost 9 % from 2001 to 2003. This relatively large decrease was mainly due to the closing down of a steel factory. In the wood industry the energy consumption decreased with 36 % from 2001 to 2003, while the energy consumption in the electronics industry increased. (ln)

  7. Investigation the Effects of Operation Methods on Energy Consumption in Agricultural Water Pumping Stations

    Directory of Open Access Journals (Sweden)

    M. DelfanAzari

    2017-01-01

    Full Text Available Introduction: The energy crisis has led the world toward the reduction of energy consumption. More than 70 percent of the energy in agriculture sector is used by pumps. In our country, there is no clear standard and guideline and also no adequate supervision for the design, selection, installation and operation of pumping systems appropriate to the circumstances and needs. Consequently, these systems operate with low efficiency and high losses of energy. While more than 20 percent of the world's electricity is consumed by pumps, average pumping efficiency is less than 40%. So evaluation of pumping stations and providing some solutions to increase efficiency and pumping system’s life time and to reduce energy consumption can be an effective in optimization of energy consumption in the country. The main reasons for the low efficiency of pumping systems comparing to potential efficiency are using unsuitable techniques for flow control, hydraulic and physical changes of pumping system during the time, using pumps or motors with low efficiency and poor maintenance. Normally the amount of flow is not constant over the time in a pumping system and needed flow rate is changed at different times. Designing of pumping system should be responsible for peak requirements as well as it must suggest the suitable flow control method to achieve least energy losses for minimum flow requirements. Also one of the main capabilities to reduce energy consumption in pumping stations is improving the flow control method. Using the flow control valves and bypass line with high energy losses is very common. While the use of variable speed pumps (VSPs that supply water requirement with sufficient pressure and minimum amount of energy, is limited due to lack of awareness of designers and (or high initial costs. Materials and Methods: In this study, the operation of the pumping stations under four scenarios (for discharge control in a drip irrigation system was analyzed

  8. Household energy consumption and expenditures 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  9. Future nuclear energy scenarios for Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Van Heek, A.

    2010-01-01

    Nuclear energy is back on the agenda worldwide. In order to prepare for the next decades and to set priorities in nuclear R and D and investment, market share scenarios are evaluated. This allows to identify the triggers which influence the market penetration of future nuclear reactor technologies. To this purpose, scenarios for a future nuclear reactor park in Europe have been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options taken, e.g. introduction date of Gen-III (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, level of reprocessing, and so forth. The assessment was undertaken using the DANESS code which allows to provide a complete picture of mass-flow and economics of the various nuclear energy system scenarios. The analyses show that the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. Furthermore, the analyses highlight the triggers influencing the choice between different nuclear energy deployment scenarios. In addition, a dynamic assessment is made with regard to manpower requirements for the construction of a future nuclear fleet in the different scenarios. (authors)

  10. Economic assessment of energetic scenarios

    International Nuclear Information System (INIS)

    Grandjean, Alain; Bureau, Dominique; Schubert, Katheline; Henriet, Fanny; Maggiar, Nicolas; Criqui, Patrick; Le Teno, Helene; Baumstark, Luc; Crassous, Renaud; Roques, Fabien

    2013-09-01

    This publication gathers contributions proposed by different members of the Economic Council for a Sustainable Development (CEDD) on the issue of energy transition, and more precisely on scenarios elaborated with respect to energy transition. A first set of contributions addresses models of energy transition (assessment of scenario costs to reach a factor 4; the issue of de-carbonation of energy consumption; study of ELECsim, a tool to highlight costs of scenarios of evolution of the electric power system). The second part addresses arbitrations and choice assessment (the importance of social and economic impacts of scenarios; challenges related to the joint definition of the discount rate and of the evolution of carbon value in time; the issue of assessment of the integration of renewable energies into the power system)

  11. Does trade liberalization effect energy consumption?

    International Nuclear Information System (INIS)

    Ghani, Gairuzazmi M.

    2012-01-01

    The effect of trade liberalization on the environment can be directly linked to energy consumption, because energy consumption and production are the underlying cause of most pollutants that harm the environment. The descriptive statistics show that average annual growth of energy consumption per capita after trade liberalization varies among countries; hence it is a possibility that the effect of trade liberalization is conditional on factors other than liberalization per se. The regression results show that trade liberalization per se does not affect the growth of energy consumption of the developing countries analyzed, but its interaction with capital per labor reduces the growth of energy consumption as capital per labor increases. However, the effect is only significant after a certain minimum threshold level capital per labor is reached. On the other hand, economic growth increases energy consumption and its effect is not conditioned on trade liberalization. These two different effects mean that, with regards to energy consumption, countries at a higher level of economic development are more likely to reap the benefit of liberalization relative to less developed countries. - Research highlights: ► This paper examines the effect of trade liberalization on energy consumption. ► Developed countries are more likely to reap the benefit of trade liberalization. ► Growth of energy consumption after trade liberalization varies among countries. ► Interaction of capital per labor with liberalization reduces energy consumption.

  12. Baseline scenarios of global environmental change

    International Nuclear Information System (INIS)

    Alcamo, J.; Kreileman, G.J.J.; Bollen, J.C.; Born, G.J. van den; Krol, M.S.; Toet, A.M.C.; Vries, H.J.M. de; Gerlagh, R.

    1996-01-01

    This paper presents three baseline scenarios of no policy action computed by the IMAGE2 model. These scenarios cover a wide range of coupled global change indicators, including: energy demand and consumption; food demand, consumption, and production; changes in land cover including changes in extent of agricultural land and forest; emissions of greenhouse gases and ozone precursors; and climate change and its impacts on sea level rise, crop productivity and natural vegetation. Scenario information is available for the entire world with regional and grid scale detail, and covers from 1970 to 2100. (author)

  13. The industrial energy consumption in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The Danish industrial energy consumption in 2001 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 2001 based on each group of branches and energy category, and the emission of CO 2 . (LN)

  14. Renewable energy scenario in India: Opportunities and challenges

    Science.gov (United States)

    Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav

    2016-10-01

    Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources

  15. The negaWatt 2011 scenario

    International Nuclear Information System (INIS)

    2016-03-01

    This article presents the approach adopted for the negaWatt scenario and its obtained results. It is based on sobriety (energy savings), on energy efficiency, and on the use of renewable energies. After having outlined the different reasons for an energy transition (increasing energy consumption, critics and risks related to nuclear energy, and high potential of renewable energies), the scenario is presented with its main principles. The scenario identifies possibilities ranging from half to two thirds of energy saving in the different energy consuming sectors. The building sector is presented as a major issue. The transport is described as a sector to be addressed on the long term. The necessary change of the industry sector is highlighted. The agriculture sector is presented as being at the heart of transition. Energy usages are to become sober, efficient and renewable. The scenario is based on a high rate development of renewable energies, while fossil energies are to become marginal, nuclear is to be progressively and reasonably given up, and networks are to become compatible to ensure the scenario success. Thus, the scenario demonstrates the feasibility of a 100 pc sustainable assessment for primary energy, complies with stakes and objectives by 2050. The cost of energy transition is briefly discussed

  16. Energy consumption 2005 with Danish industry

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The energy consumption in the Danish industries decreased with 4% from 2003 to 2005. The consumption of liquid fuels and district heat decreased with 27% and 21%, respectively. The consumption of solid fuels increased with 13%. The aim of the statistics is to elucidate the industry's energy consumption and its composition. The statistics present the development in the industry from 1973 to 2005, in which period the composition of the energy consumption has changed significantly. Especially, consumption of liquid fuels has decreased and consumption of gas and electricity has increased. (ln)

  17. 1999 world energy consumption (ENERDATA)

    International Nuclear Information System (INIS)

    Martin, J.M.

    2000-01-01

    Here is given a compilation of detailed statistical tables on various aspects of world energy production and consumption over the years 1994 to 1999. The present tables indicate the production, trade and consumption of crude oil, liquefied natural gas, oil products, natural gas, coal, lignite, electric power; the energy balance for the year 1999; the total energy consumption in European Union, Western Europe, North America, Japan and Pacific, CIS and Central Europe, Latin America, Asia, Middle East and Africa for the years 1994 to 1999. The CO 2 emissions for these countries are also given. These data are an extraction of the energy statistics yearbook, ENERDATA, June 2000. They are commented by Mr J.M. Martin. According to ENERDATA, the 1999 world energy consumption stagnates. (O.M.)

  18. Energy Consumption vs. Energy Requirement

    Science.gov (United States)

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  19. The relationship among energy prices and energy consumption in China

    International Nuclear Information System (INIS)

    Yuan, Chaoqing; Liu, Sifeng; Wu, Junlong

    2010-01-01

    The pricing mechanism for energy is not in line with the international standards, because the energy prices are controlled by the government partly or completely in China. Chinese government made a lot of efforts to improve the pricing mechanism for energy. The relations between Chinese energy prices and energy consumption are the foundations to reform the mechanism. In this paper, the relations between Chinese energy consumption and energy prices are researched by cointegration equations, impulse response functions, granger causality and variance decomposition. The cointegration relations among energy prices, energy consumption and economic outputs show that higher energy price will decrease energy consumption in Chinese industrial sectors but will not reduce the economic output in the long run. The cointegration relation between energy price and household energy consumption shows that higher energy price will decrease household energy consumption in the long run and increase it in the short run. So Chinese government should deepen the reform of pricing mechanism for energy, and increase the energy prices reasonably to save energy. (author)

  20. Energy sources consumption: end uses, efficiency and productivity; La consommation des sources d'energie: utilisations finales, efficacite et productivite

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.M. [Institut d' Economie et de Politique de l' Energie (CNRS- UPMF), 38 - Grenoble (France)

    2005-07-01

    This document analyzes the impact of the choices made by all actors, from the energy producers to the process and infrastructure designers and the end users, in the evolution of energy consumptions. Some very little improvements made in the energy efficiency of appliances can become equivalent to the production of several oil fields or power plants at the world scale. More efficient energy uses will not replace the additional productions but they must be considered together to be compared. The energy files are first analyzed as a whole in order to show the hidden field of energy choices. In this framework, users, designers and fitters have to face very different choices because they consider efficiency improvements under different aspects: scientifical, technical, economical and social (public information and habits). These differences in efficiency uses have a time and spatial impact on the growth of energy consumption. The economical and social factors influence the collective way to consume energy and are expressed by the energy intensity of the economic activity. The last part of this document analyzes the influence of this notion on the world energy consumption scenarios at the 2050 prospects. (J.S.)

  1. Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households

    Science.gov (United States)

    Yu, Biying; Wei, Yi-Ming; Kei, Gomi; Matsuoka, Yuzuru

    2018-02-01

    Population dynamics has been acknowledged as a key concern for projecting future emissions, partly because of the huge uncertainties related to human behaviour. However, the heterogeneous shifts of human behaviour in the process of demographic transition are not well explored when scrutinizing the impacts of population dynamics on carbon emissions. Here, we expand the existing population-economy-environment analytical structure to address the above limitations by representing the trend of demographic transitions to small-family and ageing society. We specifically accommodate for inter- and intra-life-stage variations in time allocation and consumption in the population rather than assuming a representative household, and take a less developed province, Sichuan, in China as the empirical context. Our results show that the demographic shift to small and ageing households will boost energy consumption and carbon emissions, driven by the joint variations in time-use and consumption patterns. Furthermore, biased pictures of changing emissions will emerge if the time effect is disregarded.

  2. Assessment of Alternative Scenarios for CO2 Reduction Potential in the Residential Building Sector

    Directory of Open Access Journals (Sweden)

    Young-Sun Jeong

    2017-03-01

    Full Text Available The South Korean government announced its goals of reducing the country’s CO2 emissions by up to 30% below the business as usual (BAU projections by 2020 in 2009 and 37% below BAU projections by 2030 in 2015. This paper explores the potential energy savings and reduction in CO2 emissions offered by residential building energy efficiency policies and plans in South Korea. The current and future energy consumption and CO2 emissions in the residential building were estimated using an energy–environment model from 2010 to 2030. The business as usual scenario is based on the energy consumption characteristic of residential buildings using the trends related to socio-economic prospects and the number of dwellings. The alternative scenarios took into account energy efficiency for new residential buildings (scenario I, refurbishment of existing residential buildings (scenario II, use of highly efficient boilers (scenario III, and use of a solar thermal energy system (scenario IV. The results show that energy consumption in the residential building sector will increase by 33% between 2007 and 2030 in the BAU scenario. Maximum reduction in CO2 emissions in the residential building sector of South Korea was observed by 2030 in scenario I. In each alternative scenario analysis, CO2 emissions were 12.9% lower than in the business as usual scenario by the year 2030.

  3. Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet

    Science.gov (United States)

    Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si

    2018-02-01

    In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.

  4. Energy utilities and environment-related energy services in the year 2008. Scenario study

    International Nuclear Information System (INIS)

    1999-05-01

    Insight is given into of the developments in the sector energy distribution companies and the consequences for the demand for energy services. Next, an overview is given of which energy services should be developed to meet the changed needs of the market. Three scenarios have been set up and are discussed in this brochure: (1) a Steady State scenario (unchanged policy of energy distribution companies); (2) Alliance scenario (strategic cooperation between energy distribution companies and retailers and installation businesses); and (3) Autonomous Development scenario (energy distribution companies develop and offer new services)

  5. Energy consumption development 1980 - 2020 - a historical development, driving forces and projections; Energibruksutvikling 1980 - 2020 - historisk utvikling, drivkrefter og fremskrivninger

    Energy Technology Data Exchange (ETDEWEB)

    Espegren, Kari Aamodt; Rosenberg, Eva; Fidje, Audun

    2005-10-01

    The Institute for Energy Technology has on commission from the Norwegian Water Resources and Energy Directorate studied the development in the energy consumption in the period 1980 - 2020 and the energy use development towards 2020. With the historical developments in the various sectors, the Ministry of Finance projections and dialogs with firms and industries as basis various basic scenarios for the development in the energy consumption towards 2020 are made. The total end energy utilisation in a stationary sector would be approx. 151 Twh in 2001. In the basis scenario this will increase with 10 % to 167 Twh in 2020. The largest increase would be in the service sector with approx. 9 Twh net energy. In the household sector the increase would be approx. Twh while in the industrial sector about 1.5 Twh. Analysis carried out with the MARKAL model shows that it would be macro conomically profitable to implement energy conservation measures corresponding to 19 Twh in 2020. The composition of the energy carriers would be somewhat altered in 2020 compared to 2001. The oil consumption would particularly be reduced while the use of gas, bio nergy and district heating would increase.

  6. Analysis of long-term energy scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.

    1998-09-01

    When addressing the role of fusion energy in the 21. century, the evaluation of possible future structures in the electricity market and the energy sector as a whole, can be a useful tool. Because fusion energy still needs demonstration, commercialized fusion energy is not likely to be a reality within the next few decades. Therefore long-term scenarios are needed describing the energy markets, which fusion energy eventually will be part of. This report performs an analysis of two of the most detailed existing long-term scenarios describing possible futures of the energy system. The aim is to clarify the frames in which the future development of the global energy demand, as well as the structure of the energy system can be expected to develop towards the year 2100. (au) 19 refs.

  7. Energy consumption trends in Lithuania

    International Nuclear Information System (INIS)

    Galinis, A.; Miskinis, V.

    2000-01-01

    The paper describes some problems related to integration into EU, current state of the Lithuania economy and energy sector and changes in energy consumption during transition period. It provides and analysis of the main indicators of energy consumption, such as the ratio of primary energy consumption to Gross Domestic Product (GDP), primary and final energy intensity and others based on estimates of Purchasing Power Parity. The paper also discusses problems arising at evaluation of economical and energy indices for the countries in transition and compares them with those existing in other countries of Central and Eastern Europe and in Western countries. It shows uneven tendencies of energy intensity occurring under transitions in Lithuania and other Baltic States. (author)

  8. Energy transition: from national scenarios to European policies

    International Nuclear Information System (INIS)

    Mathieu, Mathilde

    2013-01-01

    This thesis aims at seeing how an analysis of national scenarios of energy transition may contribute to the elaboration of European energy and climate policies. The author first identifies the characteristics of energy scenarios, and the relationship between a scenario considered as an object on the one hand, and a vision for the long term on the other hand. She proposes an analysis framework which enables a comparative analysis of scenarios in order to identify stakes and challenges for the future European policy. In the second part, the author presents three examples (Germany, United Kingdom and France) and discusses their political context and adopted scenarios. After an overview of existing European energy and climate policies, the results of the analysis are given for two specific sectors: transports and electricity

  9. 2005 primary energy consumption in Germany

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    According to preliminar calculations by the Arbeitsgemeinschaft Energiebilanzen (Working Party on Energy Balances, AGEB), the consumption of an aggregate 486 million TCE of primary energy resources in Germany last year was 1.3% below the level of the year before. Energy consumption was influenced by both the high level of prices and the development of the economy. Hardly any influence was attributable to the level of temperatures, which was largely unchanged compared to the figure of the year before. Oil consumption in 2005 in Germany dropped by nearly 2% to 174.8 million TCE. On the whole, oil with its 36% share in the energy balance remained by far the most important energy resource in Germany. Natural gas consumption of 110.4 million TCE was at the level of the year before. Its share in the primary energy balance rose slightly to 22.7%. Hard coal, because of lower use in power plants and the decline in iron making, showed a 4.6% drop in consumption to 62.8 million TCE. In this way, hard coal contributed 13% to total energy consumption. Lignite consumption dropped by 3.2% to 54.4 million TCE as a result of lower deliveries to power plants. Its 11.2% share in the total consumption of primary energy continued to make lignite the most important domestic energy resource. More than 90% of the lignite produced is used for electricity generation. The contribution to primary energy consumption of nuclear power dropped by more than 2% to 60.7 million TCE. Hydroelectric plants and wind power plants increased their contribution by 3.6%. The contribution to primary energy consumption made by all renewable energy resources rose to 4.6%. AGEB evaluates statistics of all areas of the power economy on the basis of standard criteria in order to combine these data in a comprehensive picture. Since 1994, the energy balances for Germany have been compiled by DIW on behalf of AGEB. (orig.)

  10. Energy consumption trends in Hawaii

    International Nuclear Information System (INIS)

    Kaya, Abidin; Yalcintas, Melek

    2010-01-01

    This study begins with a review of energy consumption by end-use sector in Hawaii. Then, the energy generated from renewable energy sources is analyzed between 1991 and 2006. The results show that while geothermal is a considerable source of renewable energy on the Island of Hawaii (also known as Big Island), fossil fuel is the main energy source in the State of Hawaii. The energy intensity index for the State of Hawaii is then calculated by dividing energy consumption per capita by the income per capita. The calculated energy intensity index reveals that energy consumption is directly controlled by per capita income. The results also indicate that the energy intensity index increases over time despite positive developments in energy efficient technologies. In the second part of the paper, the effect of the tourism industry on energy usage in the State of Hawaii is analyzed. The results show that tourism volume, measured in terms of tourist arrival numbers, does not change the energy consumption directly. However, a change in tourism volume does affect per capita income within a few months to a year. In the last part of the study, the energy efficiency index of Hawaii is compared with consumption averages for the US, California and the most energy efficient country in Europe, Denmark. The comparison shows that Hawaii lags behind California and Denmark in terms of energy efficiency. The comparison also shows that an increase in energy efficiency corresponds to an increase in per capita income across the board, which is in agreement with a recent report published by the American Physical Society.

  11. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage.

    Science.gov (United States)

    Naujokienė, Vilma; Šarauskis, Egidijus; Lekavičienė, Kristina; Adamavičienė, Aida; Buragienė, Sidona; Kriaučiūnienė, Zita

    2018-06-01

    The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO 2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO 2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control

  12. Energy consumption and conservation, evaluation

    International Nuclear Information System (INIS)

    Acket, C.

    2006-04-01

    The energy consumption is increasing of more than 1% each year. It is necessary to slow down this growth and much better to inverse it. Observing the main consumption posts, energy saving is possible at short dated for the residential sector and medium and long dated for the transports and the industry. Anyway the individual behaviors are essential. The author presents the situation for each posts, providing data on the energy consumption and saving and recommendations. (A.L.B.)

  13. Scheduling home-appliances to optimize energy consumption

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana

    In order to optimize the energy consumption, energy demand peaks should be avoided, and energy consumption should be smoothly distributed over time. This can be achieved by setting a maximum energy consumption per user’s household. In other words, the overall consumption of the user’s appliances...

  14. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  15. The world energy consumption in 2005

    International Nuclear Information System (INIS)

    Lapillonne, B.

    2006-01-01

    Based on Enerdata 2005 data, this analysis presents the situation of the world energy consumption in 2005, the electric power consumption per region and production per source, the consumption increase for each energy source and the petroleum and gas consumption increase. (A.L.B.)

  16. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  17. Water withdrawal and consumption reduction analysis for electrical energy generation system

    Science.gov (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  18. Trade and energy consumption in the Middle East

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2011-01-01

    Over the past 30 years many economies have experienced large increases in economic trade, income and energy consumption. This brings up an interesting question. How do increases in trade affect energy consumption? This study uses panel cointegration data estimation techniques to examine the impact of trade on energy consumption in a sample of 8 Middle Eastern countries covering the period 1980 to 2007. Short-run dynamics show Granger causality from exports to energy consumption, and a bi-directional feedback relationship between imports and energy consumption. Long run elasticities estimated from FMOLS show that a 1% increase in per capita exports increases per capita energy consumption by 0.11% while a one percent increase in per capita imports increases per capita energy consumption by 0.04%. These results are important in establishing that increased trade affects energy demand in the Middle East in both the short and long-run. This has implications for energy policy and environmental policy. - Research Highlights: → Trade affects energy consumption in Middle Eastern economies. → Short-run causality runs from exports to energy consumption. → There is a short-run feedback relationship between energy consumption and imports. → In the long-run a 1% increase in per capita exports increases per capita energy consumption by 0.11%. → In the long-run a 1% increase in per capita imports increases per capita energy consumption by 0.04%.

  19. Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal

    International Nuclear Information System (INIS)

    Tolon-Becerra, A.; Lastra-Bravo, X.; Botta, G.F.

    2010-01-01

    A 20% reduction in the consumption of energy is one of the main goals of the European Union's (EU) 20/20/20 Energy Strategy. But the uniform application of this overall goal to all of the countries is neither fair nor equitable, as it does not take into consideration the characteristics of the energy system in each Member State. This article therefore proposes a nonlinear distribution methodology with objective, dynamic goals for reducing gross inland energy consumption, according to the context and characteristics of each member state. We hope it will open discussion on how these overall goals can be weighted. Then we analyse the situation of the energy indicators related to energy efficiency in the reference year (2005) used by the EU for reaching its goal of reducing the gross inland consumption by 20% by 2020, and its progress from 1996 to 2007. Finally, the methodology proposed is applied to the year 2020 on the NUTS0 territorial level, that is, to members of the EU, according to the EUROSTAT Nomenclature of Territorial Units for Statistics (NUTS). Weighting is done based on energy intensity, per capita gross inland consumption and per capita energy intensity in two scenarios, the EU-15 and EU-27.

  20. Scenarios of the long term evolution of the energy sector. Energy needs, choices and possibilities: Shell's scenarios for 2050. The long-term evolution of the energy sector. A vision of the 2020-2050 energy mix. Phase dynamics analysis of energy demand scenarios

    International Nuclear Information System (INIS)

    Chevallier, B.; Appert, O; Bauquis, P.R.; Alba, P.

    2002-01-01

    This dossier comprises 4 articles dealing with energy scenarios. The first article presents the prospective studies carried out by the Shell group which lead to the construction of two scenarios entitled: 'dynamics as usual' and 'the spirit of the coming age'. Both scenarios foresee an explosion of the primary energy demand for the coming next 50 years (multiplied by a factor of 2 to 2.8 with respect to 2000) with a decline of hydrocarbons for the benefit of gas and renewable energies (including bio-fuels), while nuclear and coal will still represent a quarter of our needs. However, the main uncertainty remains the demographic expansion during the next 50 years. The second article presents the energy models and projections of the IEA for the long-term evolution of the energy sector (petroleum, gas, coal, renewable energy and uranium resources) and the main uncertainties of these projections (economic growth, environmental policies, technological evolutions). The third article presents the agreements and divergences of the author's forecasts for 2050 with Shell's scenarios, while the last article makes a comparison between the IEA, IIASA-CME and Shell scenarios using a phase dynamics analysis. (J.S.)

  1. Modeling the Greek energy system: Scenarios of clean energy use and their implications

    International Nuclear Information System (INIS)

    Roinioti, Argiro; Koroneos, Christopher; Wangensteen, Ivar

    2012-01-01

    The Greek energy system is one of the most carbon intensive energy systems in Europe. Hydrocarbons and solid fuels (lignite) cover over 80% of the final energy demand. The main objective of this work is to build energy scenarios for the future – with a focus on the electricity production system – and explore how these scenarios are reflected in economic, environmental terms and in terms of energy efficiency. The main tool which is used in the scenario analysis is LEAP (Long range Energy Alternatives Planning System). The scenarios are essentially the result of developing “storylines” driven by the uncertainties which cannot be controlled by the analysts or decision makers, and technical and non-technical options the analyst or decision maker may choose from. A set of uncertainties is considered as a possible future or storyline, and one or more options can be selected as a possible strategy. The combination of a storyline and a specific strategy gives a scenario. The main uncertainties for the Greek energy system are identified and various technical options are explored. Rather than using a model which leads to optimum strategies from a set of alternatives, the model in use will apply different strategies. - Highlights: ► A demand-driven approach was used to build energy scenarios for the Greek interconnected system. ► Each Scenario consists of a possible future and a strategy. ► High RES penetration will decrease CO 2 emissions but it will also increase capital cost. ► Carbon intensity is reduced in all the scenarios.

  2. World Energy Scenarios to 2050: the Europe Region

    International Nuclear Information System (INIS)

    Weeda, E.

    2006-01-01

    The topic of this paper is an overview of the Energy Policy Scenarios to 2050 study objectives, with emphasis on The Report for the Europe Region. The study is focused on achievement of the 3A's global energy goal (Accessibility, Availability, and Acceptability) by using various policy scenarios. The heart of the study will therefore be Policy Scenarios postulated within the context of two dimensions of government policy uncertainty. One with the dimension indicating whether the world is heading towards increased globalism and co-operation between governments and/or business and industry, or more towards bilateralism and nationalism outside global governance institutions. As outcomes, there is particularly described each of the four predicted scenarios: L'Europe des Patries, Fortress Europe, Confident Europe and Trailer Europe considering five main common indicators: political context, energy security, market forces/competition, environment/climate change, and energy mix/energy technology.(author)

  3. Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption

    Science.gov (United States)

    Peter J. Ince; Andrew D. Kramp; Kenneth E. Skog; Do-il Yoo; V. Alaric Sample

    2011-01-01

    This paper describes an approach to modeling U.S. forest sector market and trade impacts of expansion in domestic wood energy consumption under hypothetical future U.S. wood biomass energy policy scenarios. The U.S. Forest Products Module (USFPM) was created to enhance the modeling of the U.S. forest sector within the Global Forest Products Model (GFPM), providing a...

  4. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  5. The role of fusion power in energy scenarios. Proposed method and review of existing scenarios

    International Nuclear Information System (INIS)

    Lako, P; Ybema, J.R.; Seebregts, A.J.

    1998-04-01

    The European Commission wishes more insight in the potential role of fusion energy in the second half of the 21st century. Therefore, several scenario studies are carried out in the so-called macro-task Long Term Scenarios to investigate the potential role of fusion power in the energy system. The main contribution of ECN to the macro-task is to perform a long term energy scenario study for Western Europe with special focus on the role of fusion power. This interim report gives some methodological considerations for such an analysis. A discussion is given on the problems related to the long time horizon of the scenario study such as the forecast of technological innovations, the selection of appropriate discount rates and the links with climate change. Key parameters which are expected to have large effects on the role and cost-effectiveness are discussed in general terms. The key parameters to be varied include level and structure of energy demand, availability and prices of fossil energy, CO2 reduction policy, discount rates, cost and potential of renewable energy sources, availability of fission power and CO2 capture and disposal and the cost and the maximum rate of market growth of fusion power. The scenario calculations are to be performed later in the project with the help of an existing cost minimisation model of the Western European energy system. This MARKAL model is briefly introduced. The results of the model calculations are expected to make clear under which combinations of scenario parameters fusion power is needed and how large the expected financial benefits will be. The present interim report also gives an evaluation of existing energy scenarios with respect to the role of fusion power. 18 refs

  6. Energy consumptions per sector; Les consommations d'energie par secteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document presents the energy consumption data of France per energy type and sector of use in the form of tables and graphics for the last decade and sometimes before: 1 - residential and tertiary sector: energy consumption per energy source, energy consumption per use (coal, heavy and domestic fuels, natural gas, LPG (butane, propane), electricity), comparison of the share of each energy source between 1973 and 2003, 20 years of space heating data in main dwellings (1982-2002), district heating networks from 1987 to 1997; 2 - transportation sector: fuel consumption of individual cars in France (1990-2003, 1990-2002, 1990-2001, 1987-1999), some indicators about the energy consumption in transports in France (2000-2001); 3 - industry sector: consumption of fuel substitutes in the cement industry in 2001, importance and limitations. (J.S.)

  7. State energy data report 1992: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  8. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  9. Energy consumption and stocks of energy-converting artefacts

    International Nuclear Information System (INIS)

    Bladh, Mats

    2012-01-01

    The development of total energy consumption is important in a world with limited resources. It is the result of two basic tendencies working in opposite directions: growth in number and in use (such as more cars and driving more) and improvements in energy efficiency (such as more fuel-efficient engines). Since the 1970s growth of energy consumption has slowed down in Sweden. This means that increasing supply has been counteracted by measures improving overall energy efficiency to a larger degree than before. How can long-term development in energy consumption be analysed? This paper proposes a focus on stocks of energy-converting artefacts as a tool for such analyses. In order to show the fruitfulness of this approach, historical data on cars, dwellings and lamps in Sweden are used. Results from the cases in this paper show considerable gains of efficiency in fuel consumption in private cars and heating efficiency in multi-dwelling houses. Demographic factors are important for the outcome. The approach seems to promise a way to analyse energy efficiency that captures both promoting and counteracting factors at both the micro and macro level. - Highlights: ► Growth of energy consumption slowed down in the 1970s, a break in the long-run trend. ► Balance between growth and efficiency factors changes over time and areas of use. ► Savings in heating were not taken back, while those for cars were. ► Focus on stocks of artefacts is a promising tool for analyses. ► Incremental changes within existing stocks can be as big as radical changes.

  10. Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES

    International Nuclear Information System (INIS)

    Comodi, G.; Cioccolanti, L.; Gargiulo, M.

    2012-01-01

    This work presents three 25-year energy scenarios developed with the TIMES model generator for Pesaro, a seaside municipality in central Italy. It evaluates the effectiveness of local-scale energy policies in three sectors: households, transport, and the public sector (PS). Since the local energy demand is affected by summer tourism, seasonal consumption by holiday homes was also studied. Three scenarios were hypothesized: Business as Usual (BAU), Exemplary Public Sector (EPS), and Exemplary Municipality (EM). The EPS scenario models the exemplary role that recent European directives attribute to the PS in setting energy efficiency and technology penetration targets for itself; the EM scenario extends these targets to the household sector. In particular, the study underscores the potential of micro-cogeneration technologies in achieving local environmental targets, even though their diffusion would involve an increase in local energy consumption due to internalization of the primary energy used to produce electricity, which would no longer be wholly imported from outside municipal boundaries. The study provides information to local decision-makers by estimating the cost of implementing a number of energy policies. Finally, the study discusses the adequacy of TIMES as a tool to analyse municipal-scale scenarios. - Highlights: ► The main sectors investigated are transportation, household, and public sector. ► To account of touristic season holyday homes are modelled separately. ► Energy efficiency and renewables can help to highly reduce local consumptions. ► Micro-chp increases local consumption internalizing electricity self-production. ► Provide an insight on the adequacy of the use of TIMES at municipal scale.

  11. Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model

    International Nuclear Information System (INIS)

    Druckman, A.; Jackson, T.

    2008-01-01

    Devising policies for a low carbon society requires a careful understanding of energy consumption in different types of households. In this paper, we explore patterns of UK household energy use and associated carbon emissions at national level and also at high levels of socio-economic and geographical disaggregation. In particular, we examine specific neighbourhoods with contrasting levels of deprivation, and typical 'types' (segments) of UK households based on socio-economic characteristics. Results support the hypothesis that different segments have widely differing patterns of consumption. We show that household energy use and associated carbon emissions are both strongly, but not solely, related to income levels. Other factors, such as the type of dwelling, tenure, household composition and rural/urban location are also extremely important. The methodology described in this paper can be used in various ways to inform policy-making. For example, results can help in targeting energy efficiency measures; trends from time series results will form a useful basis for scenario building; and the methodology may be used to model expected outcomes of possible policy options, such as personal carbon trading or a progressive tax regime on household energy consumption

  12. RESGen: Renewable Energy Scenario Generation Platform

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Pinson, Pierre

    2016-01-01

    studies remains. Consequently, our aim here is to propose an open-source platform for space-time probabilistic forecasting of renewable energy generation (wind and solar power). This document covers both methodological and implementation aspects, to be seen as a companion document for the open......-source scenario generation platform. It can generate predictive densities, trajectories and space-time interdependencies for renewable energy generation. The underlying model works as a post-processing of point forecasts. For illustration, two setups are considered: the case of day-ahead forecasts to be issued......Space-time scenarios of renewable power generation are increasingly used as input to decision-making in operational problems. They may also be used in planning studies to account for the inherent uncertainty in operations. Similarly using scenarios to derive chance-constraints or robust...

  13. Household energy and consumption and expenditures, 1990

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990

  14. Energy Consumption Model and Measurement Results for Network Coding-enabled IEEE 802.11 Meshed Wireless Networks

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Rasmussen, Ulrik Wilken; Hundebøll, Martin

    2012-01-01

    This paper presents an energy model and energy measurements for network coding enabled wireless meshed networks based on IEEE 802.11 technology. The energy model and the energy measurement testbed is limited to a simple Alice and Bob scenario. For this toy scenario we compare the energy usages...... for a system with and without network coding support. While network coding reduces the number of radio transmissions, the operational activity on the devices due to coding will be increased. We derive an analytical model for the energy consumption and compare it to real measurements for which we build...... a flexible, low cost tool to be able to measure at any given node in a meshed network. We verify the precision of our tool by comparing it to a sophisticated device. Our main results in this paper are the derivation of an analytical energy model, the implementation of a distributed energy measurement testbed...

  15. Examination of the conditions of a broadening of the general tax for polluting activities to the intermediate energy consumptions, examination of the conditions of exoneration and attenuation for the energy uses in the industry

    International Nuclear Information System (INIS)

    Beaulinet, M.

    2000-05-01

    This document examines the conditions for a broadening of the general tax on polluting activities to the intermediate energy consumptions in order to reinforce the fight against greenhouse effect and to better master the energy consumption. It analyses the characteristics of each energy source with respect to the principle of a taxation of the consumptions. Finally, several scenarios are analyzed to show the advantage and drawbacks of such a system. A first evaluation and a preliminary tariffing are given. (J.S.)

  16. TRUE multi-annual energy planning

    International Nuclear Information System (INIS)

    Bringault, Anne; Cormier, Cyrille; Arditi, Maryse

    2016-01-01

    A multi-annual energy planning (PPE) has been introduced by the French government to transcribe the objectives of the law on energy transition into evolutions for energy consumption and production for different periods (2016-2018 and 2019-2023). This publication first indicates various assessments for these periods regarding energy consumption, electricity consumption, fossil energy consumption, renewable energy production, the share of electric renewable energies, and the decrease of the nuclear share. These objectives are then discussed with respect to different scenarios, and notably a reference scenario

  17. Residential Energy Consumption Survey: Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  18. Energy Beverage Consumption Among Naval Aviation Candidates.

    Science.gov (United States)

    Sather, Thomas E; Delorey, Donald R

    2016-06-01

    Since the debut of energy beverages, the consumption of energy beverages has been immensely popular with young adults. Research regarding energy beverage consumption has included college students, European Union residents, and U.S. Army military personnel. However, energy beverage consumption among naval aviation candidates in the United States has yet to be examined. The purpose of this study was to assess energy beverage consumption patterns (frequency and volume) among naval aviation candidates, including attitudes and perceptions regarding the benefits and safety of energy beverage consumption. A 44-item survey was used to assess energy beverage consumption patterns of 302 students enrolled in the Aviation Preflight Indoctrination Course at Naval Air Station Pensacola, FL. Results indicated that 79% of participants (N = 239) reported consuming energy beverages within the last year. However, of those who reported consuming energy beverages within the last year, only 36% (N = 85) reported consuming energy beverages within the last 30 d. Additionally, 51% (N = 153) of participants reported no regular energy beverages consumption. The majority of participants consumed energy beverages for mental alertness (67%), mental endurance (37%), and physical endurance (12%). The most reported side effects among participants included increased mental alertness (67%), increased heart rate (53%), and restlessness (41%). Naval aviation candidates appear to use energy drinks as frequently as a college student population, but less frequently than expected for an active duty military population. The findings of this study indicate that naval aviation candidates rarely use energy beverages (less than once per month), but when consumed, they use it for fatigue management.

  19. Global Energy Scenarios to 2040. Understanding our energy future - 2016 Edition

    International Nuclear Information System (INIS)

    2016-01-01

    The energy world is in rapid evolution, driven in particular by policy developments (like the INDCs agreed at COP-21) but also economic, geopolitical, technological as well as social considerations. Enerdata regularly produces scenario based energy outlooks to analyze and forecast the supply and demand of energy commodities, energy prices, as well as the impact of climate change and energy policies on energy markets and their consequences for the energy industry. After the COP-21 in Paris, Enerdata has again done such an exercise. The Ener-Blue scenario provides an outlook of energy systems up to 2040 based on the achievement of the 2030 targets defined in the INDCs as announced at the COP-21. Ener-Green explores the implications of more stringent energy and climate policies to limit the global temperature increase at around 1.5-2 deg. C by the end of the century. Finally, Ener-Brown describes a world with abundant fossil fuel resource and durably low energy prices, affecting the entire energy system over a long period. These different scenarios explore the consequences on energy supply and demand, energy mix, energy prices by fuel and region, as well as the implications on climate issues. In the Ener-Blue scenario, the future energy mix remains dominated by fossil fuels, but INDCs planned policies regarding climate mitigation, energy efficiency and renewable energy sources lead to a diversification towards other sources of energy. Among others, the EU successfully achieves its triple objective of its climate and energy package, while China and India expand their renewable capacities to achieve their renewable targets. Within this international context of climate coordinated policies, CO_2 emission growth slows down. However, the efforts defined in INDCs are not ambitious enough to limit the increase of the average global temperature to 2 deg. C in 2050, but these efforts are compatible with 3-4 deg. C objective. In the Ener-Green scenario, there is a clear

  20. Energy scenario analysis Enova-IFE; Energiscenarioanalyser Enova-IFE

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt

    2009-11-15

    Institute for Energy Technology has made a projection of energy use in stationary sector of Norway up to 2050 and by the use of the Norwegian MARKAL model analyzed various scenarios. Total increase demand in stationary sectors by 6 TWh, or 4% to 2020 and by 29 TWh or 16% for 2050, which increase primarily comes in the buildings. Scenarios are analyzed to show the long-term potential given the various operating parameters. An important scenario that is analyzed, the fulfillment of renewable directive. In 2005, the renewable share in Norway about 61%. In the analysis it is assumed that the renewable share to be 75% as of 2020. Implementation of energy efficiency will have a crucial role to increase the renewable share, and efficiency contributes with 26 TWh in the base scenario. What percentage of energy efficiency measures are really implemented will have a great impact on how much renewable electricity to be produced, or how much more bio-energy that must be used, in order to achieve the goal of renewable directive. (AG)

  1. Annual Energy Review 1999

    Energy Technology Data Exchange (ETDEWEB)

    Seiferlein, Katherine E. [USDOE Energy Information Administration (EIA), Washington, DC (United States)

    2000-07-01

    A generation ago the Ford Foundation convened a group of experts to explore and assess the Nation’s energy future, and published their conclusions in A Time To Choose: America’s Energy Future (Cambridge, MA: Ballinger, 1974). The Energy Policy Project developed scenarios of U.S. potential energy use in 1985 and 2000. Now, with 1985 well behind us and 2000 nearly on the record books, it may be of interest to take a look back to see what actually happened and consider what it means for our future. The study group sketched three primary scenarios with differing assumptions about the growth of energy use. The Historical Growth scenario assumed that U.S. energy consumption would continue to expand by 3.4 percent per year, the average rate from 1950 to 1970. This scenario assumed no intentional efforts to change the pattern of consumption, only efforts to encourage development of our energy supply. The Technical Fix scenario anticipated a “conscious national effort to use energy more efficiently through engineering know-how." The Zero Energy Growth scenario, while not clamping down on the economy or calling for austerity, incorporated the Technical Fix efficiencies plus additional efficiencies. This third path anticipated that economic growth would depend less on energy-intensive industries and more on those that require less energy, i.e., the service sector. In 2000, total energy consumption was projected to be 187 quadrillion British thermal units (Btu) in the Historical Growth case, 124 quadrillion Btu in the Technical Fix case, and 100 quadrillion Btu in the Zero Energy Growth case. The Annual Energy Review 1999 reports a preliminary total consumption for 1999 of 97 quadrillion Btu (see Table 1.1), and the Energy Information Administration’s Short-Term Energy Outlook (April 2000) forecasts total energy consumption of 98 quadrillion Btu in 2000. What energy consumption path did the United States actually travel to get from 1974, when the scenarios were drawn

  2. Uncertainty analysis of energy consumption in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Trine Dyrstad

    1997-12-31

    This thesis presents a comprehensive study of an energy estimation model that can be used to examine the uncertainty of predicted energy consumption in a dwelling. The variation and uncertainty of input parameters due to the outdoor climate, the building construction and the inhabitants are studied as a basis for further energy evaluations. The occurring variations of energy consumption in nominal similar dwellings are also investigated due to verification of the simulated energy consumption. The main topics are (1) a study of expected variations and uncertainties in both input parameters used in energy consumption calculations and the energy consumption in the dwelling, (2) the development and evaluation of a simplified energy calculation model that considers uncertainties due to the input parameters, (3) an evaluation of the influence of the uncertain parameters on the total variation so that the most important parameters can be identified, and (4) the recommendation of a simplified procedure for treating uncertainties or possible deviations from average conditions. 90 refs., 182 figs., 73 tabs.

  3. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  4. Canada's energy future : reference case and scenarios to 2030

    International Nuclear Information System (INIS)

    2007-01-01

    Energy is essential to the comfort and economic prosperity of Canadians. This report highlighted some of the issues that Canada faces with respect to its energy future. The report focused on emerging trends in energy supply and demand, and examined various energy futures that may be available to Canadians up to the year 2030. Three different scenarios were presented: (1) a continuing trends scenario; (2) a triple E scenario in which economic, environmental and energy objectives are balanced; and (3) a fortified islands scenario in which security concerns were coupled with international unrest and protectionist governments. The report determined that energy demand will remain a function of population and economic growth. Automobiles will continue to rely on fossil fuels. Energy efficiency will improve in relation to the effectiveness of government policies, and a move towards natural gas alternatives will occur. However, fossil fuels will remain a dominant source of energy supply. Oil sands production grew in all 3 of the evaluated scenarios. It is expected that total natural gas production will decline and imports of liquefied natural gas (LNG) will increase. In all 3 scenarios greenhouse gas (GHG) emissions increased or only slightly declined. A full spectrum of GHG mitigation strategies will need to be implemented so that Canada can meet its target of a 20 per cent reduction in GHGs by 2020. It was concluded that effective policies are needed to optimize Canada's multiple objectives of economic growth, environment sustainability, and development of energy resources. 6 tabs., 118 figs

  5. Hypercoagulability after energy drink consumption.

    Science.gov (United States)

    Pommerening, Matthew J; Cardenas, Jessica C; Radwan, Zayde A; Wade, Charles E; Holcomb, John B; Cotton, Bryan A

    2015-12-01

    Energy drink consumption in the United States has more than doubled over the last decade and has been implicated in cardiac arrhythmias, myocardial infarction, and even sudden cardiac death. We hypothesized that energy drink consumption may increase the risk of adverse cardiovascular events by increasing platelet aggregation, thereby resulting in a relatively hypercoagulable state and increased risk of thrombosis. Thirty-two healthy volunteers aged 18-40 y were given 16 oz of bottled water or a standardized, sugar-free energy drink on two separate occasions, 1-wk apart. Beverages were consumed after an overnight fast over a 30-min period. Coagulation parameters and platelet function were measured before and 60 min after consumption using thrombelastography and impedance aggregometry. No statistically significant differences in coagulation were detected using kaolin or rapid thrombelastography. In addition, no differences in platelet aggregation were detected using ristocetin, collagen, thrombin receptor-activating peptide, or adenosine diphosphate-induced multiple impedance aggregometry. However, compared to water controls, energy drink consumption resulted in a significant increase in platelet aggregation via arachidonic acid-induced activation (area under the aggregation curve, 72.4 U versus 66.3 U; P = 0.018). Energy drinks are associated with increased platelet activity via arachidonic acid-induced platelet aggregation within 1 h of consumption. Although larger clinical studies are needed to further address the safety and health concerns of these drinks, the increased platelet response may provide a mechanism by which energy drinks increase the risk of adverse cardiovascular events. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Energy Threshold Hypothesis for Household Consumption

    International Nuclear Information System (INIS)

    Ortiz, Samira; Castro-Sitiriche, Marcel; Amador, Isamar

    2017-01-01

    A strong positive relationship among quality of life and electricity consumption at impoverished countries is found in many studies. However, previous work has presented that the positive relationship does not hold beyond certain electricity consumption threshold. Consequently, there is a need of exploring the possibility for communities to live with sustainable level of energy consumption without sacrificing their quality of life. The Gallup-Healthways Report measures global citizen’s wellbeing. This paper provides a new outlook using these elements to explore the relationships among actual percentage of population thriving in most countries and their energy consumption. A measurement of efficiency is computed to determine an adjusted relative social value of energy considering the variability in the happy life years as a function of electric power consumption. Adjustment is performed so single components don’t dominate in the measurement. It is interesting to note that the countries with the highest relative social value of energy are in the top 10 countries of the Gallup report.

  7. Energy consumptions of households in 2012

    International Nuclear Information System (INIS)

    Denjean, Mathias

    2015-06-01

    Based on results of a survey, this publication comments data presented under the form of tables and graphs and related to the energy consumption by French households during 2012. It addresses expenses and consumptions for individual housing and for a flat in collective building, analyses the energy consumption with respect to surface in the case of individual housing, discusses the influence of dwelling age on consumption, the influence of geographical location in France, the influence o the residence status (owner or renter), and the influence of dwelling occupation (hours per day), and the distribution of the type of consumed energy (electricity, gas, oil, LPG, wood, other) and the money spent on these different energies. The type of energy is also related to the residence status, to the housing type (house or flat), to the flat surface, to the housing type and age, to the geographical location

  8. Energy consumption and economic growth on the focus on nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Filiz [Sakarya Univ., Sakarya (Turkey). Dept. of Financial Econometric; Pektas, Ali Osman [Bahcesehir Univ., Istanbul (Turkey). Dept. of Civil Engineering; Ozkan, Omer [Istanbul Medeniyet Univ. (Turkey). Dept. of Civil Engineering

    2017-01-15

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  9. Energy consumption and economic growth on the focus on nuclear energy

    International Nuclear Information System (INIS)

    Ozkan, Filiz; Pektas, Ali Osman; Ozkan, Omer

    2017-01-01

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  10. Energy catastrophes and energy consumption

    International Nuclear Information System (INIS)

    Davis, G.

    1991-01-01

    The possibility of energy catastrophes in the production of energy serves to make estimation of the true social costs of energy production difficult. As a result, there is a distinct possibility that the private marginal cost curve of energy producers lies to the left or right of the true cost curve. If so, social welfare will not be maximized, and underconsumption or overconsumption of fuels will exist. The occurrence of energy catastrophes and observance of the market reaction to these occurrences indicates that overconsumption of energy has been the case in the past. Postulations as to market reactions to further energy catastrophes lead to the presumption that energy consumption levels remain above those that are socially optimal

  11. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  12. MEGASTAR: The meaning of growth. An assessment of systems, technologies, and requirements. [methodology for display and analysis of energy production and consumption

    Science.gov (United States)

    1974-01-01

    A methodology for the display and analysis of postulated energy futures for the United States is presented. A systems approach methodology including the methodology of technology assessment is used to examine three energy scenarios--the Westinghouse Nuclear Electric Economy, the Ford Technical Fix Base Case and a MEGASTAR generated Alternate to the Ford Technical Fix Base Case. The three scenarios represent different paths of energy consumption from the present to the year 2000. Associated with these paths are various mixes of fuels, conversion, distribution, conservation and end-use technologies. MEGASTAR presents the estimated times and unit requirements to supply the fuels, conversion and distribution systems for the postulated end uses for the three scenarios and then estimates the aggregate manpower, materials, and capital requirements needed to develop the energy system described by the particular scenario.

  13. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    International Nuclear Information System (INIS)

    Soerensen, B.; Meibom, P.; Kuemmel, B.

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  14. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B; Meibom, P [Technical Univ. of Denmark, Lyngby (Denmark); Kuemmel, B [Royal Agricultural and Veterinary Univ., Tastrup (Denmark)

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  15. Divisia amount and price index for energy consumption

    International Nuclear Information System (INIS)

    Bentzen, J.

    1993-01-01

    In connection with the calculation of total energy consumption related to aggregation of the individual fuel's combustion values, an alternative to Btu aggregation (combustion value measurement), designated the ''Divisia index'', is presented. This represents an economic measure for energy consumption. The Divisia index is demonstrated in relation to total national energy consumption and total energy consumption within the Danish housing sector and also with regard to the estimation of price and income elasticity within energy demand. It is only possible to utilize the Divisia index in relation to the last 20 years, which is the period where energy consumption has stagnated. The question of possible irreversible effects on energy consumption caused by large variations in energy prices is discussed. It is suggested that the reaction to a fall in prices is different and less significant than is the case with price rises. In the long term, results point at a reasonably high price elasticity within energy demand. (AB) (22 refs.)

  16. Realisable scenarios for a future electricity supply based 100% on renewable energies

    International Nuclear Information System (INIS)

    Czisch, G.; Giebel, G.

    2007-01-01

    In view of the resource and climate problems, it seems obvious that we must transform our energy system into one using only renewable energies. But questions arise how such a system should be structured, which techniques should be used and, of course, how costly it might be. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity supply for Europe and its closer Asian and African neighbourhood. The resulting scenarios are based on a broad data basis of the electricity consumption and for renewable energies. A linear optimisation determines the best system configuration and temporal dispatch of all components. The outcome of the scenarios can be considered as being a scientific breakthrough since it proves that a totally renewable electricity supply is possible even with current technology and at the same time is affordable for our national economies. In the conservative base case scenario, wind power would dominate the production spread over the better wind areas within the whole supply area, connected with the demand centres via HVDC transmission. The transmission system, furthermore, powerfully integrates the existing storage hydropower to provide for backup co-equally assisted by biomass power and supported by solar thermal electricity. The main results of the different scenarios can be summarized as follows: 1) A totally renewable electricity supply for Europe and its neighbourhood is possible and affordable. 2) Electricity import from non-European neighbour countries can be a very valuable and substantial component of a future supply. 3) Smoothing effects by the use of sources at locations in different climate zones improve the security of the supply and reduce the costs. 4) A large-scale co-operation of many different countries opens up for the possibility to combine the goals of development policy and climate politics in a multilateral win-win strategy. To aid implementation, an international extension

  17. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  18. State Energy Data Report, 1991: Consumption estimates

    International Nuclear Information System (INIS)

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA's energy models

  19. Energy consumption of the households 1960-1996

    International Nuclear Information System (INIS)

    Bentzen, J.; Engsted, T.

    1999-01-01

    During the 1960s energy consumption of Danish households increased relatively fast, but the oil price shocks of the 1970s and subsequent energy policy changes reversed this development towards stagnation in energy consumption in the recent decades. Using time series data covering the period 1960-1996 the final energy consumption of the residential sector is analysed in the framework of co-integration and error-correction modelling. The long run income and price elasticities are found to be 1.17 and -0.85, respectively, but in the short run energy prices seem to influence consumption less as only income and the weather conditions appear significantly in the short run dynamics of the estimated error-correction model. (au)

  20. Energy consumption and economic development after the energy price increases of 1973

    International Nuclear Information System (INIS)

    Danielewski, J.

    1993-01-01

    The interdependence between energy consumption and economic development are highlighted in this research, which focuses on energy price rises between 1973 and 1989. Three groups of countries are identified, developing and developed market economies and centrally planned economies. Two areas of interdependence are examined, firstly the dynamic relationship between primary energy consumption growth and real economic growth and secondly the static relationship between primary energy consumption and national income. In the period under review, developing market economies reacted most strongly to higher energy prices, with lower energy consumption while maintaining real growth in the Gross Domestic Product. However developing countries and centrally planned economies increased their energy consumption per unit of national income although the rate of increase slowed after 1975. (UK)

  1. Energy drink consumption and marketing in South Africa.

    Science.gov (United States)

    Stacey, Nicholas; van Walbeek, Corné; Maboshe, Mashekwa; Tugendhaft, Aviva; Hofman, Karen

    2017-12-01

    Energy drinks are a fast-growing class of beverage containing high levels of caffeine and sugar. Advertising and marketing have been key to their growth in South Africa. This paper documents trends in energy drink consumption and energy drink advertising, and examines the relationship between exposure to energy drink advertising and consumption. Logistic regressions were estimated of categories of energy drink consumption on individual characteristics, as well as exposure to energy drink advertising. Exposure to advertising is measured by reported viewing of channels high in energy drink advertising. Energy drink consumption in South Africa is higher among younger, wealthier males. Spending on energy drink advertising is mostly focused on television. Targeted channels include youth, sports and general interest channels. Viewers of channels targeted by energy drink advertisers have higher odds of any and moderate levels of energy drinks consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Understanding change and continuity in residential energy consumption

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2011-01-01

    of material consumer goods in practice theory. Case studies on household energy consumption are used as an empirical basis for these discussions. Looking at household energy consumption through the theoretical lens of practice theory necessitates discussion on whether energy consumption should be viewed......Practice theory has recently emerged within consumer studies as a promising approach that shifts focus from the individual consumer towards the collective aspects of consumption and from spectacular and conspicuous dimensions of consumption towards routine and mundane aspects of consumption...

  3. Quantification of variables that affect energy consumption

    International Nuclear Information System (INIS)

    Warren, C.S.

    1993-01-01

    Facility energy consumption is the summation of a number of contributory factors, caused by equipment that uses energy in response to demands placed by the user and according to its particular design. While energy efficiency improvements usually concentrate on individual parts or systems, overall energy consumption is analyzed by examining the use of specific fuels. Because independent variables effect the consumption of these fuels, accurate comparisons of a facility's energy consumption for time-measured periods must include these effects. In many cases, it is possible to determine and quantify the effects of one or more of the independent variables through a statistically valid regression analysis of the data. The regression model can be linear, or be dependent on other functions such as powers, time lead or lag, or exponential. The most common model is linear, but other dependencies are often encountered. Regression analyses are not difficult to accomplish, and are included as one of the tools in most spreadsheet software. The analyses provide the energy manager with a means to better understand the energy consumption of his/her facility

  4. Calculations of energy consumption in ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kreslins, Andris; Ramata, Anna [Riga Technical University (Latvia)], e-mail: kreslins@rbf.rtu.lv, email: Anna.Ramata@rtu.lv

    2011-07-01

    Energy cost is an important economic factor in the food industry production process. With the rising price of energy, a reduction in energy consumption would greatly impact production and the end product. The aim of this study was to develop a methodology for optimizing energy consumption. A comparison between a traditional ventilation system and a mechanical system was carried out; the necessary enthalpy for heating the air supply and thermal energy consumption were calculated and compared for both systems during the heating season, from October to April, using climatological data for Latvia. Results showed that energy savings of 46% to 87% can be achieved by applying the methodology in the design of industrial buildings; in addition, a well-designed ventilation system increases the workers' productivity. This study presented a methodology which can optimize energy consumption in the food industry sector.

  5. Selecting the group method of data handling as one of the most perspective algorithmes for building a predictive model of petroleum consumption in the system of energy balance of Ukraine

    Directory of Open Access Journals (Sweden)

    Trachuk A.R.

    2017-06-01

    Full Text Available This paper deals with issues of petroleum consumption in Ukraine. The dynamics of consumption of petroleum is analysed and proposed guidelines for the efficient production, consumption and import of petroleum in Ukraine. Constructed and developed predictive models of petroleum consumption in Ukraine through the use of modern software and using the group method of data handling, which allowed building adequate predictive models of petroleum consumption in the system of Ukraine’s energy balance. Researched and forecasted scenarios of petroleum consumption in the Ukraine. The problem of efficient use of energy resources is critical for sustainable economic development against the backdrop of energy saving national economy depends on energy imports, on the one hand, and rising prices for these resources. The basic foundation of the formation energy system of Ukraine is to build forecasting scenarios for different types of energy and different criteria for effective use of energy resources. Solving this problem is not only with ensuring energy security, but also with the level of development of regions of Ukraine and ensuring quality of life. Prediction of petroleum consumption in Ukraine today is an extremely important issue of strategic importance since conducted through analysis and building predictive models will be possible to develop guidelines for the efficient production and consumption of petroleum across Ukraine as a whole.

  6. Dividing by four CO2 releases due to energy: the Negatep scenario

    International Nuclear Information System (INIS)

    Acket, C.; Bacher, P.

    2011-01-01

    The Negatep scenario aims at dividing CO 2 releases by 4, which means, more or less, dividing the consumption of fossil energies by the same factor, in order to comply with the French 2005 energy act. After a description of the situation in 2006, of trends, and a recall of the objectives defined by the 'Grenelle de l'Environnement' regarding energy savings and renewable energies, the authors show that reaching such a reduction requires to: decrease to nearly zero oil and gas in the residential and tertiary sectors, reduce significantly the use of oil in the transport sector, reduce significantly the use of fossil fuels in industry, increase massively the share of electricity in the energy mix, maintain the share of nuclear in the electricity generation and, as long as the storage of electricity is not developed, limit the share of intermittent energies to a level compatible with that of gas turbines. The study shows that the proposed measures can fulfill the objectives for 2020 proposed by the 'Grenelle de l'Environnement'

  7. State energy data report 1996: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  8. State energy data report 1996: Consumption estimates

    International Nuclear Information System (INIS)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA's energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs

  9. Sector review of UK higher education energy consumption

    International Nuclear Information System (INIS)

    Ward, Ian; Ogbonna, Anthony; Altan, Hasim

    2008-01-01

    The UK education and education-related services are said to be one of the fastest-growing export earners in recent years and are known to have had significant impacts at the micro- and macro-levels of the UK. This review looks at energy consumption of this fast growing sector. It concentrates on the energy consumption patterns of the funded higher education institutions in the UK. The findings indicate energy consumption in the sector has been on the increase in the 6 years up to 2006; rising by about 2.7% above the 2001 consumption levels. This increase is, however, not evenly spread across the entire sector. The high energy-consuming institutions appear to be increasing their net consumption, relative to other institutions. Gross internal area, staff and research student full-time equivalent were found to have highest correlation with energy consumption across the sector and may be used as proxy indicators for energy consumption as well as the targets of interventions

  10. Thermal comfort and building energy consumption implications – A review

    International Nuclear Information System (INIS)

    Yang, Liu; Yan, Haiyan; Lam, Joseph C.

    2014-01-01

    Highlights: • We review studies of thermal comfort and discuss building energy use implications. • Adaptive comfort models tend to have a wider comfort temperature range. • Higher indoor temperatures would lead to fewer cooling systems and less energy use. • Socio-economic study and post-occupancy evaluation of built environment is desirable. • Important to consider future climate scenarios in heating, cooling and power schemes. - Abstract: Buildings account for about 40% of the global energy consumption and contribute over 30% of the CO 2 emissions. A large proportion of this energy is used for thermal comfort in buildings. This paper reviews thermal comfort research work and discusses the implications for building energy efficiency. Predicted mean vote works well in air-conditioned spaces but not naturally ventilated buildings, whereas adaptive models tend to have a broader comfort temperature ranges. Higher indoor temperatures in summertime conditions would lead to less prevalence of cooling systems as well as less cooling requirements. Raising summer set point temperature has good energy saving potential, in that it can be applied to both new and existing buildings. Further research and development work conducive to a better understanding of thermal comfort and energy conservation in buildings have been identified and discussed. These include (i) social-economic and cultural studies in general and post-occupancy evaluation of the built environment and the corresponding energy use in particular, and (ii) consideration of future climate scenarios in the analysis of co- and tri-generation schemes for HVAC applications, fuel mix and the associated energy planning/distribution systems in response to the expected changes in heating and cooling requirements due to climate change

  11. Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings

    International Nuclear Information System (INIS)

    Gaglia, Athina G.; Balaras, Constantinos A.; Mirasgedis, Sevastianos; Georgopoulou, Elena; Sarafidis, Yiannis; Lalas, Dimitris P.

    2007-01-01

    Comprehensive information and detailed data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector. This paper elaborates the approach used to determine the potential energy conservation in the Hellenic NR building stock. A major obstacle that had to be overcome was the need to make suitable assumptions for missing detailed primary data. A qualitative and quantitative assessment of scattered national data resulted in a realistic assessment of the existing NR building stock and energy consumption. Different energy conservation scenarios and their impact on the reduction of CO 2 emissions were evaluated. Accordingly, the most effective energy conservation measures are: addition of thermal insulation of exposed external walls, primarily in hotels and hospitals; installation of energy efficient lamps; installation of solar collectors for sanitary hot water production, primarily in hotels and health care; installation of building management systems in office/commercial and hotel buildings; replacement of old inefficient boilers; and regular maintenance of central heating boilers

  12. Intelligent analysis of energy consumption in school buildings

    International Nuclear Information System (INIS)

    Raatikainen, Mika; Skön, Jukka-Pekka; Leiviskä, Kauko; Kolehmainen, Mikko

    2016-01-01

    Highlights: • Electricity and heating energy consumptions of six school buildings were compared. • Complex multivariate data was analysed using modern computational methods. • Variation in electricity consumption cost is considerably low between study schools. • District heating variation is very slight in two new study schools. • District heating cost describes energy efficiency and state of building automation. - Abstract: Even though industry consumes nearly half of total energy production, the relative share of total energy consumption related to heating and operating buildings is growing constantly. The motivation for this study was to reveal the differences in electricity use and district heating consumption in school buildings of various ages during the working day and also during the night when human-based consumption is low. The overall aim of this study is to compare the energy (electricity and heating) consumption of six school buildings in Kuopio, Eastern Finland. The selected school buildings were built in different decades, and their ventilation and building automation systems are also inconsistent. The hourly energy consumption data was received from Kuopion Energia, the local energy supply company. In this paper, the results of data analysis on the energy consumption in these school buildings are presented. Preliminary results show that, generally speaking, new school buildings are more energy-efficient than older ones. However, concerning energy efficiency, two very new schools were exceptional because ventilation was on day and night in order to dry the building materials in the constructions. The novelty of this study is that it makes use of hourly smart metering consumption data on electricity and district heating, using modern computational methods to analyse complex multivariate data in order to increase knowledge of the buildings’ consumption profiles and energy efficiency.

  13. Energy perspectives of the France by 2020-2050. Energy scenario

    International Nuclear Information System (INIS)

    2007-09-01

    The aim of the working group was to realize quantitative approaches of the french energy system by 2020-2050 supporting the reflexions of the Energy Commission. The presented scenario are not prevision of the future. They just allow, in function of the hypothesis and the models used, to establish an approach of the consequences in term of the final energy demand. Two simulation tools were used and described in the chapter 3: Medpro-Poles and Markal-Times. The scenario are analyzed in the chapters 4 and 5. Results allow to see how the proposed measures are sufficient to reach in France the main objectives proposed by the european union. (A.L.B.)

  14. Minimum energy consumption process synthesis for energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ping, Jia [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Fang, Wang; Shu-Guang, Xiang; Xin-Sun, Tan; Fang-Yu, Han [Institute for Petroleum and Chemical Industry, Qingdao University of Science and Technology, Qingdao 266042, Shandong (China)

    2008-05-15

    The paper presents a synthesis strategy for the chemical processes with energy saving. The concept of minimum energy consumption process (MECP) is proposed. Three characteristics of MECP are introduced, including thermodynamic minimum energy demand, energy consumption efficiency and integration degree. These characteristics are evaluated according to quantitative thermodynamic analysis and qualitative knowledge rules. The procedure of synthesis strategy is proposed to support the generation of MECP alternatives, which combine flowsheet integration and heat integration. The cases studies will focus on how integration degrees of a process affect the energy-saving results. The separation sequences of the hydrodealkylation of toluene (HDA) process and ethanol distillation process as case studies are used to illustrate. (author)

  15. State energy data report 1993: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  16. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    Science.gov (United States)

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  17. Wood energy x 2 - Scenario for the development of wood energy use in Switzerland

    International Nuclear Information System (INIS)

    2004-01-01

    This study for the Swiss Agency for the Environment, Forests and Landscapes (SAEFL) and the Swiss wood-energy association (Holzenergie Schweiz) presents the results of a scenario-study that examined if, and under what conditions, doubling the use of wood energy in Switzerland could help reach carbon dioxide reduction targets. Two scenarios are presented that are based on high and low rates of growth for the number of automatic wood-chipping or pellets-fired installations. For both scenarios, figures are presented on the amount of wood used and the heating energy generated. The political and financial prerequisites for the scenarios are discussed and other boundary conditions are defined. The report draws conclusions from the study of the two scenarios and summarises the political action deemed necessary

  18. Long distance bioenergy logistics. An assessment of costs and energy consumption for various biomass energy transport chains

    International Nuclear Information System (INIS)

    Suurs, R.

    2002-01-01

    In order to create the possibility of obtaining an insight in the key factors of the title system, a model has been developed, taking into account different production systems, pretreatment operations and transport options. Various transport chains were constructed, which were subjected to a sensitivity analysis with respect to factors like transport distance, fuel prices and equipment operation times. Scenarios are analysed for Latin-America and Europe for which the distinguishing parameters were assumed to be the transport distances and biomass prices. For both regions the analysis concerns a situation where ship transports are applied for a coastal and for an inland biomass supply. For European biomass a train transport was considered as well. In order to explore possibilities for improvement, the effects of these variables on costs and energy consumption within a chain, were assessed. Delivered biomass can be converted to power or methanol. Model results are as follows: Total costs for European bioenergy range from 11.2-21.2 euro/GJ MeOH for methanol and 17.4-28.0 euro/GJ e for electricity. For Latin-America, costs ranges are 11.3-21.8 euro/GJ MeOH for methanol and 17.4-28.7 euro/GJ e for electricity. The lower end of these ranges is represented by transport chains that are characterised by the use of high density energy carriers such as logs, pellets or liquid fuels (these are the most attractive for all scenarios considered). The transport of chips should be avoided categorically due to their low density and high production costs. Transport chains based on the early production of liquid energy carriers such as methanol or pyrolysis oil seem to be promising alternatives as well. With respect to energy consumption, the transport of chips is highly unfavourable for the same reasons as stated above. The use of pelletizing operations implies a high energy input, however due to energy savings as a result of more efficient transport operations, this energy loss is

  19. Macro-economic and energy scenarios for Japan through the long-term

    International Nuclear Information System (INIS)

    Mankin, Shuichi

    1986-03-01

    As one of studies and systems analyses on the role of VHTR and process heat utilization in future energy systems, long-term macro economic and energy scenarios of Japan until the year 2030 have been generated. This paper presents,; 1) the outline of the long-term macro econometric model and the energy system dynamics model by which these scenarios were generated, 2) back grounds and prospects on future societies of Japan and exogeneous assumptions for calculations, and 3) macro energy and economic scenarios generated. Reflecting the present economic prospects, these scenarios are seemed to be of extremely low-growth type, however, the role of VHTR and its energy systems could be prospected clealy to play a large and important role within these scenario regions. Basic philosophies of scenario generations are also mentioned in this paper. (author)

  20. Energy consumption for different greenhouse constructions

    Energy Technology Data Exchange (ETDEWEB)

    Djevic, M.; Dimitrijevic, A. [Department for Agricultural Engineering, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade (RS)

    2009-09-15

    In this paper the influence of greenhouse construction on energy efficiency in winter lettuce production was estimated for four different double plastic covered greenhouses in Serbia region. Plastic coverings were introduced in this region as a mean of making the plant production more energy efficient. Additionally, as a means of lowering energy consumption, tunnel structures were proposed. In order to see whether the greenhouse structure influences energy consumption, four different double plastic covered greenhouses. Two tunnel types, 9 x 58 m and 8 x 25 m, one gutter-connected structure and multi-span plastic covered greenhouse. The gutter-connected structure was 2 x 7 m wide and 39 m long while the multi-span structure was 20 x 6.4 m wide and 42 m long. On the basis of lettuce production output and the energy input, specific energy input, energy output-input ratio and energy productivity were estimated. Results show that the lowest energy consumption was obtained for multi-span greenhouse, 9.76 MJ/m{sup 2}. The highest energy consumption was obtained in tunnel, 9 x 58 m, 13.93 MJ/m{sup 2}. The highest value for output-input ratio was calculated for multi-span greenhouse (0.29), followed by gutter-connected greenhouse (0.21), tunnel 9 x 58 m (0.17) and tunnel, 8 x 25 m (0.15). Results also show that energy productivity can be higher if multi-span greenhouse structures are used. (author)

  1. Scenario Testing of the Energy and Environmental Performance of “The Glasgow House”

    Directory of Open Access Journals (Sweden)

    Tim Sharpe

    2014-09-01

    Full Text Available This paper describes the results from a 12-month study of two prototype low energy dwellings built for Glasgow Housing Association (GHA. The houses are intended for mainstream and social tenure within Glasgow and contain a range of energy reducing features including one house with a thermally heavy clay block wall and one house using a conventional timber frame and both houses have sunspaces, Mechanical Ventilation with Heat Recovery (MVHR, solar thermal system and low energy lighting. The dwellings have been subject to an innovative monitoring strategy by MEARU, whereby test occupants (students recruited from the School of Architecture have been asked to inhabit the buildings for six two-week periods using occupancy ‘scripts’ that determine their internal behaviour. The scenarios thus simulate varying patterns of occupancy in both houses simultaneously and the performance of the houses can then been compared. Indications are that although the clay block house had a poorer thermal performance, it did have other qualitative advantages, and consumption differences could be eliminated by exploiting the thermal mass. The performance of the active systems, including the MVHR system, was found to be problematic, and specific scenarios were undertaken to explore the implications of this.

  2. Environmental degradation, energy consumption, population growth ...

    African Journals Online (AJOL)

    Based on the result, there is no evidence of unidirectional causality running from CO2 emissions and energy consumption to economic growth and strong unidirectional causality running from CO2 emissions, energy consumption and economic growth to population growth was found. The long run and short run estimates ...

  3. Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis

    International Nuclear Information System (INIS)

    Xu Jinhua; Fleiter, Tobias; Eichhammer, Wolfgang; Fan Ying

    2012-01-01

    We analyze the change of energy consumption and CO 2 emissions in China's cement industry and its driving factors over the period 1990–2009 by applying a log-mean Divisia index (LMDI) method. It is based on the typical production process for clinker manufacturing and differentiates among four determining factors: cement output, clinker share, process structure and specific energy consumption per kiln type. The results show that the growth of cement output is the most important factor driving energy consumption up, while clinker share decline, structural shifts mainly drive energy consumption down (similar for CO 2 emissions). These efficiency improvements result from a number of policies which are transforming the entire cement industry towards international best practice including shutting down many older plants and raising the efficiency standards of cement plants. Still, the efficiency gains cannot compensate for the huge increase in cement production resulting from economic growth particularly in the infrastructure and construction sectors. Finally, scenario analysis shows that applying best available technology would result in an additional energy saving potential of 26% and a CO 2 mitigation potential of 33% compared to 2009. - Highlights: ► We analyze the energy consumption and CO 2 emissions in China's cement industry. ► The growth of cement output is the most important driving factor. ► The efficiency policies and industrial standards significantly narrowed the gap. ► Efficiency gains cannot compensate for the huge increase in cement production. ► The potentials of energy-saving of 26% and CO 2 mitigation of 33% exist based on BAT.

  4. Global risks from energy consumption

    International Nuclear Information System (INIS)

    von Hippel, F.

    1983-01-01

    A discussion of some of the global risks associated with current and frequently proposed future levels of consumption of energy from oil, coal, fission, fusion, and renewable sources points out the the dangers are serious and relatively near term. These include world war over Persian Gulf oil, climate change due to the buildup of atmospheric carbon dioxide, the accelerated proliferation of nuclear weapons, and competition between food and energy for land and water. The author urges placing a greater emphasis on how we use energy and how to reduce energy waste. At the levels of consumption which economically justified levels of energy efficiency could bring about, enough flexibility could develop in our choice of a future energy-supply mix to dramatically reduce the associated global risks. 47 references, 3 figures

  5. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per

    2012-01-01

    Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...... for the dynamic thermal behaviour of buildings. However, for air flow and energy consumption it is found to be much more significant due to less “damping”. Probabilistic methods establish a new approach to the prediction of building energy consumption, enabling designers to include stochastic parameters like...

  6. Renewable energy consumption and income in emerging economies

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2009-01-01

    Increased economic growth and demand for energy in emerging economies is creating an opportunity for these countries to increase their usage of renewable energy. This paper presents and estimates two empirical models of renewable energy consumption and income for a panel of emerging economies. Panel cointegration estimates show that increases in real per capita income have a positive and statistically significant impact on per capita renewable energy consumption. In the long term, a 1% increase in real income per capita increases the consumption of renewable energy per capita in emerging economies by approximately 3.5%. Long-term renewable energy per capita consumption price elasticity estimates are approximately equal to -0.70.

  7. PARADOX OF ALTERNATIVE ENERGY CONSUMPTION: LEAN OR PROFLIGACY?

    Directory of Open Access Journals (Sweden)

    Eliza Safina

    2017-12-01

    Full Text Available Consumption of alternative energy resources is conventionally considered as an implement of lean management, main target of which is use of renewable (in terms of exhaustibility energy resources. However, when it comes to actual consumption of alternative energy resources, the contradiction is arisen between , the caused need of economy of non-renewable energy resources and rational environmental management and "providence" which is caused by cost reduction of energy consumption. What is the factual providence, how substantial is the dilemma between environmental friendliness and cost effectiveness in matters of energy savings, what is the significance of alternative energy consumption in countries with different economic types, what should balanced solution in energy mentioned issues are contemplated in current article.

  8. Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States

    International Nuclear Information System (INIS)

    Ackerman, Frank; Fisher, Jeremy

    2013-01-01

    Water is required for energy supply, and energy is required for water supply, creating problems as demand for both resources grows. We analyze this “water–energy nexus” as it affects long-run electricity planning in the western United States. We develop four scenarios assuming: no new constraints; limits on carbon emissions; limits on water use; and combined carbon and water limits. We evaluate these scenarios through 2100 under a range of carbon and water prices. The carbon-reducing scenarios become cost-effective at carbon prices of about $50–$70 per ton of CO 2 , moderately high but plausible within the century. In contrast, the water-conserving scenarios are not cost-effective until water prices reach thousands of dollars per acre-foot, well beyond foreseeable levels. This is due in part to the modest available water savings: our most and least water-intensive scenarios differ by less than 1% of the region's water consumption. Under our assumptions, Western electricity generation could be reshaped by the cost of carbon emissions, but not by the cost of water, over the course of this century. Both climate change and water scarcity are of critical importance, but only in the former is electricity generation central to the problem and its solutions. - Highlights: • We model long-run electricity supply and demand for the western United States. • We evaluate the costs of carbon-reducing and water-conserving scenarios. • Carbon-reducing scenarios become cost-effective at carbon prices of $50–70 per ton CO 2 . • Water-conserving scenarios are only cost-effective above $4000/acre-foot of water. • Electricity planning is central to climate policy, but much less so to water planning

  9. Future waste treatment and energy systems – examples of joint scenarios

    International Nuclear Information System (INIS)

    Münster, M.; Finnveden, G.; Wenzel, H.

    2013-01-01

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project

  10. Energy Consumption of Fast Ferries in Danish Domestic Transport

    DEFF Research Database (Denmark)

    Petersen, Morten Steen; Jørgensen, Kaj

    1997-01-01

    Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark.......Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark....

  11. Scenario comparisons of gasification technology using energy life cycle assessment for bioenergy recovery from rice straw in Taiwan

    International Nuclear Information System (INIS)

    Shie, J.L.; Lee, C.H.; Chen, C.S.; Lin, K.L.; Chang, C.Y.

    2014-01-01

    Highlights: • The energy balances of potential gasification technology and limitation boundary are evaluated. • The transportation and pre-treatment are the greatest parts of energy use. • Every technology process has positive energy benefits at all on-site pre-treatment cases. • The optimal ranges of transportation distance and treatment capacity are suggested. • The optimal technology from the tendency model is addressed. - Abstract: This study uses different scenarios to evaluate, by means of energy life-cycle assessments (ELCAs), the energy balance of potential gasification technology and limitation boundaries in Taiwan. Rice straw is chosen as the target material in this study because it is the most significant agriculture waste in Taiwan. Energy products include syngas (CO + H 2 ), methane, carbon dioxide and carbon black residue. The scenarios simulate capacities of 50,000–200,000 tons/year. The distances of collection and transportation are calculated by a circular area 50–100 km in diameter. Also, the on-site and off-site pretreatments of rice straw are evaluated. For this optimum scenario case, the average of the total input energy for the assessed systems is about 15.9% of the average output energy; the value of the net energy balance (NEB) is 0.841. Every technological process has positive energy benefits at all on-site scenario cases. As the capacity is increased, the energy consumption required for transportation increases and the values of the energy indicators decrease. According to the limitation boundaries from the tendency model at on-site cases, the suggested transportation distance and treatment capacity are below 114.72 km and 251,533 tons/year, respectively, while the energy return on investment (EROI) value is greater than 1

  12. Uncertainty of Energy Consumption Assessment of Domestic Buildings

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Simonsen, A.

    2009-01-01

    In order to assess the influence of energy reduction initiatives, to determine the expected annual cost, to calculate life cycle cost, emission impact, etc. it is crucial to be able to assess the energy consumption reasonably accurate. The present work undertakes a theoretical and empirical study...... of the uncertainty of energy consumption assessment of domestic buildings. The calculated energy consumption of a number of almost identical domestic buildings in Denmark is compared with the measured energy consumption. Furthermore, the uncertainty is determined by means of stochastic modelling based on input...... to correspond reasonably well; however, it is also found that significant differences may occur between calculated and measured energy consumption due to the spread and due to the fact that the result can only be determined with a certain probability. It is found that occupants' behaviour is the major...

  13. Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking

    International Nuclear Information System (INIS)

    Benichou, Léo; Mayr, Sebastian

    2014-01-01

    Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  14. Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking

    Energy Technology Data Exchange (ETDEWEB)

    Benichou, Léo, E-mail: leo.benichou@theshiftproject.org [The Shift Project, Paris (France); Mayr, Sebastian, E-mail: communication@theshiftproject.org [Paris School of International Affairs, Sciences Po., Paris (France)

    2014-01-13

    Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  15. Can urban rail transit curb automobile energy consumption?

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    With the rapid development of China's economy and the speed of urbanization, China's automobile sector has experienced rapid development. The rapid development of the automobile sector has increased energy consumption. According to the results of this paper, automobile energy consumption accounted for about 10.73% of total energy consumption in China in 2015, about 3.6 times the proportion a decade ago. With the deterioration of urban traffic conditions, relying on expanding the amount of vehicles and city road network cannot solve the problem. Urban rail transit is energy-saving and less-polluting, uses less space, has large capacity, and secure. Urban rail transit, according to the principle of sustainable development, is a green transportation system and should be especially adopted for large and medium-sized cities. The paper uses the binary choice model (Probit and Logit) to analyze the main factors influencing the development of rail transit in Chinese cities, and whether automobile energy consumption is the reason for the construction of urban rail transit. Secondly, we analyze the influence of urban rail transit on automobile energy consumption using DID model. The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly, with continuous impact in the second year. - Highlights: • Investigate the main factors influencing the building of rail transit for Chinese cities. • Analyze the influence of urban rail transit on automobile energy consumption by DID model. • The results indicate that the construction of urban rail traffic can restrain automobile energy consumption significantly.

  16. A survey of energy drink and alcohol mixed with energy drink consumption.

    Science.gov (United States)

    Magnezi, Racheli; Bergman, Lisa Carroll; Grinvald-Fogel, Haya; Cohen, Herman Avner

    2015-01-01

    Energy drink consumption among youth is increasing despite recommendations by the American Academy of Pediatrics to eliminate consumption by youth. This study provides information on consumption of energy drinks and alcohol mixed with energy drinks (AmED) in a sample of Israeli youth and how consumer knowledge about the risks affects consumption rates. The study was conducted in three Tel Aviv public schools, with a total enrollment of 1,253 students in grades 8 through 12. Among them, 802 students completed a 49-item questionnaire about energy drink and AmED consumption, for a 64 % response rate Non-responders included 451 students who were absent or refused to participate. All students in the same school were administered the questionnaire on the same day. Energy drinks are popular among youth (84.2 % have ever drunk). More tenth through twelfth grade students consumed energy drinks than eighth and ninth grade students. Students who began drinking in elementary school (36.8 %) are at elevated risk for current energy drink (P consumption (OR 1.925; 95 %CI 1.18-3.14). The association between current AmED consumption and drinking ED at a young age is important. Boys and those who start drinking early have a greater risk of both ED and AmED consumption. The characteristics of early drinkers can help increase awareness of potential at-risk youth, such as junior and senior high school students with less educated or single parents. Risks posed by early use on later energy drink and AmED consumption are concerning. We suggest that parents should limit accessibility. Increased knowledge about acceptable and actual amounts of caffeine in a single product might decrease consumption.

  17. Intermediate steps towards the 2000 W society in Switzerland: An energy-economic scenario analysis

    International Nuclear Information System (INIS)

    Schulz, Thorsten F.; Kypreos, Socrates; Barreto, Leonardo; Wokaun, Alexander

    2008-01-01

    In the future, sustainable development under the umbrella of the 2000 W society could be of major interest. Could the target of the 2000 W society, i.e. a primary energy per capita (PEC) consumption of 2000 W, be realized until 2050? Various combinations of PEC and CO 2 targets are tested, and the additional costs to be paid by the society are estimated. The assessment is carried out with the Swiss MARKAL model, a bottom-up energy-system model projecting future technology investments for Switzerland. The analysis reveals that the 2000 W society should be seen as a long-term goal. For all contemplated scenarios, a PEC consumption of 3500 W per capita (w/cap) is feasible in the year 2050. However, strong PEC consumption targets can reduce CO 2 emissions to an equivalent of 5% per decade at maximum. For stronger CO 2 emission reduction goals, corresponding targets must be formulated explicitly. At an oil price of 75 US$ 2000 /bbl in 2050, the additional (cumulative, discounted) costs to reach a 10% CO 2 reduction per decade combined with a 3500 W per capita target amount to about 40 billion US$ 2000 . On the contrary, to reach pure CO 2 reduction targets is drastically cheaper, challenging the vision of the 2000 W society

  18. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    Science.gov (United States)

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  19. Nuclear energy consumption and economic growth in nine developed countries

    International Nuclear Information System (INIS)

    Wolde-Rufael, Yemane; Menyah, Kojo

    2010-01-01

    This article attempts to test the causal relationship between nuclear energy consumption and real GDP for nine developed countries for the period 1971-2005 by including capital and labour as additional variables. Using a modified version of the Granger causality test developed by Toda and Yamamoto (1995), we found a unidirectional causality running from nuclear energy consumption to economic growth in Japan, Netherlands and Switzerland; the opposite uni-directional causality running from economic growth to nuclear energy consumption in Canada and Sweden; and a bi-directional causality running between economic growth and nuclear energy consumption in France, Spain, the United Kingdom and the United States. In Spain, the United Kingdom and the USA, increases in nuclear energy consumption caused increases in economic growth implying that conservation measures taken that reduce nuclear energy consumption may negatively affect economic growth. In France, Japan, Netherlands and Switzerland increases in nuclear energy consumption caused decreases in economic growth, suggesting that energy conservation measure taken that reduce nuclear energy consumption may help to mitigate the adverse effects of nuclear energy consumption on economic growth. In Canada and Sweden energy conservation measures affecting nuclear energy consumption may not harm economic growth.

  20. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  1. Output, renewable energy consumption and trade in Africa

    International Nuclear Information System (INIS)

    Ben Aïssa, Mohamed Safouane; Ben Jebli, Mehdi; Ben Youssef, Slim

    2014-01-01

    We use panel cointegration techniques to examine the relationship between renewable energy consumption, trade and output in a sample of 11 African countries covering the period 1980–2008. The results from panel error correction model reveal that there is evidence of a bidirectional causality between output and exports and between output and imports in both the short and long-run. However, in the short-run, there is no evidence of causality between output and renewable energy consumption and between trade (exports or imports) and renewable energy consumption. Also, in the long-run, there is no causality running from output or trade to renewable energy. In the long-run, our estimations show that renewable energy consumption and trade have a statistically significant and positive impact on output. Our energy policy recommendations are that national authorities should design appropriate fiscal incentives to encourage the use of renewable energies, create more regional economic integration for renewable energy technologies, and encourage trade openness because of its positive impact on technology transfer and on output. - Highlights: • We examine the relationship between renewable energy consumption, trade and output in African countries. • There is a bidirectional causality between output and trade in both the short and long-run. • In the short-run, there is no causality between renewable energy consumption and trade or output. • In the long-run, renewable energy consumption and trade have a statistically significant positive impact on output. • African authorities should encourage trade openness because of its positive impact on technology transfer and on output

  2. For an ambitious policy of mastery of energy consumptions. The 2010 national energy prospects; Pour une politique ambitieuse de maitrise des consommations d'energie. Les perspectives energetiques nationale a 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Thirty years ago, after the first petroleum shock, France started to implement an energy mastery policy. The evolutions established during these three decades with respect to the international context and to the public policies implemented with more or less perseverance, allow to work out a status of the results obtained. This document is shared into 5 parts. Part 1 presents the main energy and environmental data for France since 1970: energy consumption, CO{sub 2} emissions, energy intensity and carbon, energy savings; and the future prospects of CO{sub 2} emissions, of primary energy market shares, and of power production from renewable energy sources by 2010-2020, according to different scenarios. Parts 2 to 5 make the same analysis for the different sectors: industry, agriculture, residential and tertiary sector, and transportation sector, respectively, and stresses on the actions to be implemented for a better mastery of the energy consumptions in each sector. (J.S.)

  3. Energy Consumption Management of Virtual Cloud Computing Platform

    Science.gov (United States)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  4. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    Science.gov (United States)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  5. Future waste treatment and energy systems – examples of joint scenarios

    DEFF Research Database (Denmark)

    Münster, Marie; Finnveden, G.; Wenzel, H.

    2013-01-01

    of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future......Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects......, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types...

  6. Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation

    International Nuclear Information System (INIS)

    Baležentis, Tomas; Streimikiene, Dalia

    2017-01-01

    Highlights: • Two advanced optimization models were applied for EU energy policy scenarios development. • Several advanced MCDA were applied for energy policy scenarios ranking: WASPAS, ARAS, TOPSIS. • A Monte Carlo simulation was applied for sensitivity analysis of scenarios ranking. • New policy insights in terms of energy scenarios forecasting were provided based on research conducted. - Abstract: Integrated Assessment Models (IAMs) are omnipresent in energy policy analysis. Even though IAMs can successfully handle uncertainty pertinent to energy planning problems, they render multiple variables as outputs of the modelling. Therefore, policy makers are faced with multiple energy development scenarios and goals. Specifically, technical, environmental, and economic aspects are represented by multiple criteria, which, in turn, are related to conflicting objectives. Preferences of decision makers need to be taken into account in order to facilitate effective energy planning. Multi-criteria decision making (MCDM) tools are relevant in aggregating diverse information and thus comparing alternative energy planning options. The paper aims at ranking European Union (EU) energy development scenarios based on several IAMs with respect to multiple criteria. By doing so, we account for uncertainty surrounding policy priorities outside the IAM. In order to follow a sustainable approach, the ranking of policy options is based on EU energy policy priorities: energy efficiency improvements, increased use of renewables, reduction in and low mitigations costs of GHG emission. The ranking of scenarios is based on the estimates rendered by the two advanced IAMs relying on different approaches, namely TIAM and WITCH. The data are fed into the three MCDM techniques: the method of weighted aggregated sum/product assessment (WASPAS), the Additive Ratio Assessment (ARAS) method, and technique for order preference by similarity to ideal solution (TOPSIS). As MCDM techniques allow

  7. A 'must-go path' scenario for sustainable development and the role of nuclear energy in the 21st century

    International Nuclear Information System (INIS)

    Jeong, Hae-Yong; Kim, Young-In; Lee, Yong-Bum; Ha, Kwi-Seok; Won, Byung-Chool; Lee, Dong-Uk; Hahn, Dohee

    2010-01-01

    An increase in the world population has accelerated the consumption of fossil fuels and deepened the pollution of global environment. As a result of these human activities, it is now difficult to clearly guarantee the sustainable future of humankind. An intuitional 'must-go path' scenario for the sustainable development of human civilization is proposed by extrapolating the human historical data over 30 years between 1970 and 2000. One of the most important parameters in order to realize the 'must-go path' scenario is the sustainability of energy without further pollution. In some countries an expanded use of nuclear energy is advantageous to increase sustainability, but fast reactor technology and closed fuel cycle have to be introduced to make it sustainable. In other countries, the development of cost-effective renewable energy, and the clean use of coal and oil are urgently needed to reduce pollution. The effect of fast nuclear reactor technology on sustainability as an option for near-term energy source is detailed in this paper. More cooperation between countries and worldwide collaboration coordinated by international organizations are essential to make the 'must-go path' scenario real in the upcoming 20 or 30 years.

  8. Occupant behavior and energy consumption in dwellings: An analysis of behavioral models and actual energy consumption in the dutch housing stock

    Directory of Open Access Journals (Sweden)

    Merve Bedir

    2017-11-01

    Full Text Available Much is known about the increasing levels of energy consumption and environmental decay caused by the built environment. Also, more and more attention is shown to the energy consumption of dwellings, from the early design stage until the occupants start living in them. The increasing complexity of building technologies, the occupants’ preferences, and their needs and demands make it difficult to achieve the aimed energy consumption levels. The goal of reducing the energy consumption of dwellings and understanding the share of occupant behavior in it form the context of this research. Several studies have demonstrated the ‘energy performance gap’ between the calculated and the actual energy consumption levels of buildings, and have explored the reasons for it. The energy performance gap is either caused by calculation drawbacks, uncertainties of modeling weather conditions, construction defects regarding air tightness and insulation levels, or by occupant behavior. This research focuses on the last aspect, i.e. analyzing the relationship between occupant behavior and energy consumption in dwellings, understanding the determinants of energy consumption, and finding occupants’ behavioral patterns. There are several dimensions of occupant behavior and energy consumption of dwellings: dwelling characteristics including the energy and indoor comfort management systems, building envelope, lighting and appliances; occupant characteristics including the social, educational and economical; and actual behavior, including the control of heating, ventilation and lighting of spaces, and appliance use, hot water use, washing, bathing, and cleaning. Attempting to understand this complexity asks for a methodology that covers both quantitative and qualitative methods; and both cross-sectional and longitudinal data collection, working interdisciplinary among the domains of design for sustainability, environmental psychology, and building and design

  9. What Trajectory for Energy Transition? The Genealogy of the Energy Transition Law and its Positioning with regard to Pre-existing Scenarios

    International Nuclear Information System (INIS)

    Criqui, Patrick

    2014-01-01

    The many lively debates that preceded -and still fuel- discussion of the 'Energy Transition and Green Growth' bill attest to the importance of that law for many French citizens and economic actors. Without going back over the debate on the feasibility or realism of the law's objectives, to which Futuribles contributed through its web site in late September, it is possible to put these matters into some perspective, as Patrick Criqui does here, by reminding us of the genealogy of the bill and the various future scenarios that were developed during the French National Debate on Energy Transition of 2013 before the bill passed into law. Criqui reminds us of the possible scenarios discussed, grouped as they were around four major energy trajectories: 'Energy-saving', 'Efficiency', 'Diversity' and 'Decarbonization'. Among these, the most important sources of divergence were over the level of reduction of energy consumption by 2050 and the relative parts to be played by nuclear power and renewable energies. Basing himself on the target figures included in the bill, Patrick Criqui identifies the image of the future towards which, on the face of it, the law points -namely, the 'Efficiency' trajectory- even if, as he very rightly emphasizes, its implementation will definitely be a dynamic affair, incorporating the various adaptations that might turn out to be necessary between now and 2050. (author)

  10. Online-based energy auditing and incentive mechanisms to reduce domestic energy consumption

    OpenAIRE

    Lossin, Felix; Staake, Thorsten; Fleisch, Elgar

    2014-01-01

    Domestic energy consumption accounts for about 20-30% of total energy use in western countries [1], [2]. On the level of single households, however, energy consumption tends to vary greatly. This is particularly due to differences regarding behavior and decisions made by individuals. For example, heating and ventilation behavior, the intensity of the use of electrical appliances and hot water, as well as home insulation and weatherization provisions affect total energy consumption. Therefore,...

  11. Energy consumption and income. A semiparametric panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Van, Phu [BETA, CNRS and Universite de Strasbourg, 61 avenue de la Foret Noire, F-67085 Strasbourg (France)

    2010-05-15

    This paper proposes a semiparametric analysis for the study of the relationship between energy consumption per capita and income per capita for an international panel dataset. It shows little evidence for the existence of an environmental Kuznets curve for energy consumption. Energy consumption increases with income for a majority of countries and then stabilizes for very high income countries. Neither changes in energy structure nor macroeconomic cycle/technological change have significant effect on energy consumption. (author)

  12. Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects

    International Nuclear Information System (INIS)

    Yu Biying; Junyi Zhang; Fujiwara, Akimasa

    2012-01-01

    It is expected that the residential location choice and household energy consumption behavior might correlate with each other. Besides, due to the existence of self-selection effects, the observed inter-relationship between them might be the spurious result of the fact that some unobserved variables are causing both. These concerns motivate us to (1) consider residential location choice and household energy consumption behavior (for both in-home appliances and out-of-home cars) simultaneously and, (2) explicitly control self-selection effects so as to capture a relatively true effect of land-use policy on household energy consumption behavior. An integrated model termed as joint mixed Multinomial Logit-Multiple Discrete-Continuous Extreme Value model is presented here to identify the sensitivity of household energy consumption to land use policy by considering multiple self-selection effects. The model results indicate that land-use policy do play a great role in changing Beijing residents’ energy consumption pattern, while the self-selection effects cannot be ignored when evaluating the effect of land-use policy. Based on the policy scenario design, it is found that increasing recreational facilities and bus lines in the neighborhood can greatly promote household's energy-saving behavior. Additionally, the importance of “soft policy” and package policy is also emphasized in the context of Beijing. - Highlights: ► Representing residential choice and household energy consumption behavior jointly. ► Land use policy is found effective to control the household energy use in Beijing. ► Multiple self-selection effects are posed to get the true effect of land use policy. ► Significant self-selection effects call an attention to the soft policy in Beijing. ► The necessity of package policy on saving Beijing residents’ energy use is confirmed.

  13. uFLIP: Understanding the Energy Consumption of Flash Devices

    DEFF Research Database (Denmark)

    Bjørling, Matias; Bonnet, Philippe; Bouganim, Luc

    2010-01-01

    Understanding the energy consumption of flash devices is important for two reasons. First, energy is emerging as a key metric for data management systems. It is thus important to understand how we can reason about the energy consumption of flash devices beyond their approximate aggregate...... consumption (low power consumption in idle mode, average Watt consumption from the data sheets). Second, when measured at a sufficiently fine granularity, the energy consumption of a given device might complement the performance characteristics derived from its response time profile. Indeed, background work...... which is not directly observable with a response time profile appears clearly when energy is used as a metric. In this paper, we discuss the results from the {uFLIP} benchmark applied to four different {SSD} devices using both response time and energy as metric....

  14. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  15. Development of German energy consumption: A deterministic study of energy-relevant customer groups

    International Nuclear Information System (INIS)

    Baumert, M.

    1994-01-01

    A detailed study of the characteristic features of group-specific energy consumption was conducted (identification of the factors determining energy consumption of the productive sector, private households and private mobility demand). The question of who shall determine energy consumption in the future is analysed. This question is answered in a demand-specific study of consumption patterns and -effects. (orig./UA) [de

  16. Rogeaulito: a world energy scenario modeling tool for transparent energy system thinking

    Directory of Open Access Journals (Sweden)

    Léo eBenichou

    2014-01-01

    Full Text Available Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  17. Energy savings in drastic climate change policy scenarios

    International Nuclear Information System (INIS)

    Isoard, Stephane; Wiesenthal, Tobias

    2005-01-01

    This paper reports a climate change policy scenario compatible with long-term sustainable objectives set at EU level (6th Environment Action Plan). By setting ambitious targets for GHG emissions reduction by 2030, this normative scenario relies on market-based instruments and flexible mechanisms. The integrated policy that is simulated (i.e. addressing energy, transport, agriculture and environmental impacts) constitutes a key outlook for the next 5-year report of the European Environment Agency (EEA). This scenario highlights what it would take to drastically curb EU GHG emissions and how much it might cost. The findings show that such a 'deep reduction' climate policy could work as a powerful catalyst for (1) substantial energy savings, and (2) promoting sustainable energy systems in the long term. The implications of this policy lever on the energy system are many-fold indeed, e.g. a substantial limitation of total energy demand or significant shifts towards energy and environment-friendly technologies on the supply side. Clear and transparent price signals, which are associated with market-based instruments, appear to be a key factor ensuring sufficient visibility for capital investment in energy efficient and environment-friendly options. Finally it is suggested that market-based policy options, which are prone to lead to win-win situations and are of particular interest from an integrated policy-making perspective, would also significantly benefit from an enhanced energy policy framework

  18. Energy technology perspectives - scenarios and strategies to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-03

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  19. State energy data report 1994: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  20. State energy data report 1994: Consumption estimates

    International Nuclear Information System (INIS)

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA's energy models. Division is made for each energy type and end use sector. Nuclear electric power is included

  1. Feasibility study on the potential of development of renewable energies for the ZAC de l'Horloge in Romainville. Study of opportunities in renewable energies and definition of energy supply scenarios. Analysis and comparison of energy supply scenarios

    International Nuclear Information System (INIS)

    2011-12-01

    A first report proposes an overview of available renewable energy sources (geothermal, solar, and wind energy, green electricity, methanization, wood energy, waste water valorisation, connection to an existing heat network). For each of them, it presents a resource assessment, a discussion of constraints, or, should the occasion occur an overview of local providers (for wood), or an assessment of different options (small and large wind energy installations). It also presents demands made by existing sites on the studied area and at its neighbourhood. Energy supply scenarios are briefly defined. The second report proposes an analysis and a comparison of these scenarios. After a presentation of hypotheses and methodology, scenarios are presented in terms of energy needs, energy production and its relationship with the performance of positive energy buildings, adequacy with resource. Beside a reference scenario, these scenarios are named Dogger, Biomass, Wood, Clustered sectors. Comparison is performed in terms of energetic, economic and environmental assessments

  2. Projection of fossil fuels consumption in the Venezuelan electricity generation industry

    International Nuclear Information System (INIS)

    Vidoza, Jorge A.; Gallo, Waldyr L.R.

    2016-01-01

    This study presents a prospective analysis on the impacts of recent efficient energy policies application in Venezuela, integrating both oil production and electricity supply to assess energy resources balance in a quantitative manner. A special focus is given to main fossil fuels used in the electric power industry; natural gas, diesel oil and fuel oil. Four scenarios were proposed, ranging from a low-economy-growth/low-efficiency scenario to an optimist high-economy-growth/high-efficiency scenario. Efficiency effects are more notorious for high-economy-growth case, fuel consumption for electricity generation reduces 38% for natural gas, 12% for diesel and 29% for fuel oil, in the established time period. Deficits in oil and gas Venezuelan production were also determined, deficits are highly affected by economical forecasting, and by fuel smuggling in Venezuelan borders. Results showed the high importance of energy efficiency policies development for Venezuela, in order to reduce fossil fuel domestic consumption to allocate them in a more profitable market. - Highlights: • We made a prospective analysis on efficient energy policies impacts in Venezuela. • Reduced fuel consumption was obtained for efficient scenarios. • Current energy regulations are not enough to encourage energy efficiency. • Hydroelectricity projects need more promotion to have deeper impacts.

  3. A 'business-as-usual' energy scenario for France at the 2020 vista

    International Nuclear Information System (INIS)

    Giraud, P.N.

    2000-01-01

    A 'business-as-usual' energy scenario is the most probable scenario where the energy demand follows the trends of the past and where no new energy policy is implemented. This work is a complement to the three contrasted energy scenarios built in 1998 by the 'Energy 2010-2020' prospective group of the French general commission of national development. The scenario built in this study is only a reference which allows the measure the efforts made to reach political goals. The main conclusion of this scenario is the increase of the CO 2 emissions under the double effect of the economic growth and of the cessation of the nuclear program which becomes non-competitive with respect to the gas prices and actualization rates retained in the scenario. The main constraint of the energy future is incontestably the necessary fight against the greenhouse effect. (J.S.)

  4. Forecast of oil price and consumption in the short term under three scenarios: Parabolic, linear and chaotic behaviour

    International Nuclear Information System (INIS)

    Gori, F.; Ludovisi, D.; Cerritelli, P.F.

    2007-01-01

    The paper examines the evolution of price and consumption of oil in the last decades to construct a relationship between them. Then the work considers three possible scenarios of oil price: parabolic, linear and chaotic behaviour, to predict the evolution of price and consumption of oil up to December 2003

  5. Energy consumption and conservation in food retailing

    International Nuclear Information System (INIS)

    Tassou, S.A.; Ge, Y.; Hadawey, A.; Marriott, D.

    2011-01-01

    The total annual CO 2 emissions associated with the energy consumption of the major retail food outlets in the UK amount to around 4.0 MtCO 2 . The energy consumption and emissions from supermarkets varies widely and can depend on many factors such as the type and size of the store, business and merchandising practices and refrigeration and environmental control systems used. This paper provides energy consumption data of a sample of 2570 retail food stores from a number of major retail food chains in the UK. The sample covers all major store categories from convenience stores to hypermarkets and includes approximately 30% of the total number of stores in the UK having a net sales area more than 280 m 2 . The data show a wide variability of energy intensity even within stores of the same retail chain. A power law can be used to describe the variation of the average electrical energy intensity of the stores in the sample with sales area. If the electrical intensity of the stores above the average is reduced to the average by energy conservation measures, annual energy savings of the order of 10% or 840 GWh can be achieved representing 355,000 tonnes annual reduction in CO 2 emissions. The paper also discusses the major energy consuming processes in retail food stores and identifies opportunities for energy savings. - Research highlights: → Energy consumption by supermarkets in the UK is significant and a wide variability exists between stores of similar size. → Energy conservation measures to reduce energy consumption of individual stores to the average can produce a0% energy savings. → Significant opportunities for energy savings exist from the integration of HVAC and refrigeration equipment.

  6. Energy saving and CO2 mitigation through restructuring Jordan's transportation sector: The diesel passenger cars scenario

    International Nuclear Information System (INIS)

    Al-Hinti, I.; Al-Ghandoor, A.; Akash, B.; Abu-Nada, E.

    2007-01-01

    The transportation sector is responsible for 37% of the total final energy consumption in Jordan, with passenger cars taking a share of 57% in this sector. Improvement of the energy efficiency of the transportation sector can help in alleviating socio-economic pressures resulting from the inflating fuel bill and in lowering the relatively high CO 2 emission intensity. Current legislations mandate that all passenger cars operating in Jordan are to be powered with spark ignition engines using gasoline fuel. This paper examines potential benefits that can be achieved through the introduction of diesel cars to the passenger cars market in Jordan. Three scenarios are suggested for implementation and investigated with a forecasting model on the basis of local and global trends over the period 2007-2027. It is demonstrated that introducing diesel passenger cars can slow down the growth of energy consumption in the transportation sector resulting in significant savings in the national fuel bill. It is also shown that this is an effective and feasible option for cutting down CO 2 emissions

  7. Scenarios of socio-economic and energy development of the country up to 2010

    International Nuclear Information System (INIS)

    Tsvetanov, P.

    1990-01-01

    The scenarios description is given as the first stage of a procedure of an energy-economy interrelations dynamics study, the other two stages being the formulation and the analysis of the development variants. The scenarios reflect quantitatively the policies and the international conditions for the socio-economic, energy demand and energy supply developments of the country. Two economic development scenarios ('high' - official macroeconomic views and 'low' - economic restructuring and decrease of energy intensity) hierarchically preside over the two corresponding energy demand scenarios of different technological evolutions ('traditional' and 'energy efficiency' oriented one) in the industry, the transport and the domestic and services sectors. Four energy supply system scenarios follow, corresponding to different approaches in the development of the energy conversion technologies and energy carriers, thus constituting a scenario tree of the studies. 16 refs., 2 figs., 7 tab., 1 ann. (R.Ts.)

  8. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Science.gov (United States)

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... consumption, but instead calculate the energy use rate (kWh/100 lbs Ice) by dividing the energy consumed...

  9. Future air conditioning energy consumption in developing countries and what can be done about it: the potential of efficiency in the residential sector

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Letschert, Virginie E. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory (United States)

    2007-07-01

    The dynamics of air conditioning are of particular interest to energy analysts, both because of the high energy consumption of this product, but also its disproportionate impact on peak load. This paper addresses the special role of this end use as a driver of residential electricity consumption in rapidly developing economies. Recent history has shown that air conditioner ownership grows more rapidly than economic growth in warm-climate countries. In 1990, less than a percent of urban Chinese households owned an air conditioner; by 2003 this number rose to 62 %. The evidence suggests a similar explosion of air conditioner use in many other countries is not far behind. Room air conditioner purchases in India are currently growing at 20 % per year, with about half of these purchases attributed to the residential sector. This paper draws on two distinct methodological elements to assess future residential air conditioner 'business as usual' electricity consumption by country/region and to consider specific alternative 'high efficiency' scenarios. The first component is an econometric ownership and use model based on household income, climate and demographic parameters. The second combines ownership forecasts and stock accounting with geographically specific efficiency scenarios within a unique analysis framework (BUENAS) developed by LBNL. The efficiency scenario module considers current efficiency baselines, available technologies, and achievable timelines for development of market transformation programs, such as minimum efficiency performance standards (MEPS) and labeling programs. The result is a detailed set of consumption and emissions scenarios for residential air conditioning.

  10. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  11. Energy strategy and mitigation potential in energy sector of the Russian federation

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  12. Energy consumption and energy saving : their evolution in Spain and other countries

    International Nuclear Information System (INIS)

    Serrano Martinez, F.

    1995-01-01

    The article shows the development of energy consumption since the seventies in three main energy consuming sectors: industry, residential services and transport. While the energy intensity and consumption in the industrial sector have considerably decreased- taking 100 as index in 1973, this was 68 in 1988-in the other sectors, the increase of comfort in houses and business offices, as well as the number or automobiles, have made consumption in these sectors increase despite the efforts made in the improvement of return of installations and reduction of cars consumption. In the industry, large energy savings coincide with remarkable technological innovations and for the future, the achieved savings and future trends, as well as conditions for the energy saving, are analyzed for the rest of the sectors. (Author)

  13. SO2 emission scenarios of eastern China

    International Nuclear Information System (INIS)

    Qi, L.; Hao, J.; Lu, M.

    1995-01-01

    Under the National Key Project in Eighth Five-year Plan, a study was carried out on forecasting SO 2 emission from coal combustion in China, with a special emphasis on the eastern area. 3 scenarios, i.e. 'Optimistic', 'Pessimistic' and 'Business as Usual' scenarios were developed trying to cover changing scale of coal consumption and SO 2 emission from 1990 to 2020. A 'Top-down' approach was employed, and coal consumption elasticity was defined to project future economic growth and coal consumption. SO 2 emission scenarios were outlined, based on coal consumption, estimated sulfur content level and prospective SO 2 control situation. Emission level for each 1 degree longitude x 1 degree latitude grid cell within eastern China was also estimated to show geographical distribution of SO 2 sources. The results show that SO 2 emission in China will increase rapidly, if the current situation for energy saving and SO 2 control is maintained without improvement; measures enhanced reasonably with economic growth could stop further increase of emission by 2010. Realization of more encouraging objective to keep emission at even below 1990 level needs, however, more stringent options. The share of eastern China in the country's total emission would increase until 2000, while the general changing tendency would principally follow the scenarios of the whole country. 4 refs., 5 figs., 1 tab

  14. Energy Consumption Management in Design

    NARCIS (Netherlands)

    Smit, Jaap

    1997-01-01

    A survey of the basic issues in low power design is presented, including techniques for the analysis of energy consumption in the early design phase of analog and digital circuits. The concept of energy complexity will be introduced in conjunction with techniques for parameterized energy management.

  15. Flexible Energy Consumption in Smart House's

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2012-01-01

    the consumer have to use the energy when it is available. The main electrical energy consumer in a modern society is buildings and private homes. The amount of electrical energy used in this sector is about 70% of the total electricity consumption. Because of that buildings and private homes has to play...... an automatic and inteligente house control system that maximize the consumption exibility based on the energy users behavior with out aection the living comfort. This behavior is of course dierent from household to household, because of that it is nessasary include an adaptive behavior prediction system...

  16. Energy consumption characteristics of Guatemalan households

    International Nuclear Information System (INIS)

    Mansilla, C.; Moscoso, M.R.

    1991-01-01

    The sectoral consumption pattern in Guatemala has shown that the residential sector is the major energy consumer. It accounts for 68.9 per cent of total consumption, followed by the transportation sector with 16.6 per cent, and the industrial sector with 9.3 per cent. Because of the importance of the household sector in the national energy balance, the Energy Planning Project carried out a nationwide household survey in 1985 to estimate energy-use patterns. This paper focusses on the findings from the analysis of the 2,500 forms completed during that survey. 4 figs, 1 tab

  17. Energy consumption for shortcuts to adiabaticity

    Science.gov (United States)

    Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.

    2017-08-01

    Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.

  18. Actual energy consumption in dwellings. The effect of energy performance regulations and occupant behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Santin, O.

    2010-10-19

    Residential buildings have continuously improved in energy efficiency, partly as a consequence of the introduction of energy regulations in many countries. Although better thermal properties and systems efficiency have lowered energy consumption for space heating in recent decades, substantial differences in energy consumption in similar dwellings are still being observed. These differences in consumption are thought to be caused by differences in occupancy patterns, by quality of construction and by rebound effects. This research addresses the effect of energy performance regulations and occupant behavior on energy consumption for space and water heating in dwellings built after the introduction of the energy performance regulations in the Netherlands. The results of this research show that improving the energy efficiency of buildings alone is not enough to decrease that energy consumption. The large differences found in the use of dwellings indicate that, especially in energy efficient houses, occupant behavior provides an opportunity for further reductions in the energy consumption for space heating which could boost the efforts to conserve energy worldwide.

  19. What scenario studies tell about security of energy supply in Europe

    International Nuclear Information System (INIS)

    Lako, P.; Jansen, J.C.

    2001-06-01

    A technical fact-finding study on security of energy supply has been performed from the European point of view and from the point of view of the Netherlands. A brief assessment is presented of fossil fuel resources. Based on data from the United States Geological Survey (USGS) and other literature, the reserves/production ratio of conventional and unconventional oil is estimated at approximately 200 years. Based on the same USGS data, the reserves/production ratio of conventional natural gas is estimated at 190 years. The unconventional gas resources are extremely large. However, environmental damage has to be prevented. The amount of recoverable resources will remain a question mark for the time being. The world's proved recoverable coal reserves amount to a reserves/production ratio of 230 years. All in all, oil remains a strategic fossil fuel, whereas the supply of natural gas seems to be more well-balanced and the supply of coal is more secure than both of oil and gas. The so-called Shared analysis project, performed by a number of research institutes in the EU, gives useful points of departure for energy policy formulation. However, the results of notably the reference scenario and to a lesser extent its variants in terms of primary energy use, CO2 emissions, and the EU's import dependence for fossil fuels have to be regarded carefully. A similar picture arises from IEA's World Energy Outlook 2000. The 'Out-look' gives due attention to OECD Europe's dependence on imported oil and gas. The share of oil imports is due to rise from 32% in 1990 to 80% in 2020. Due to a projected steady growth of gas consumption, import dependence with respect to natural gas is due to rise from 34% in 1997 to about 65% in 2020. In the scenarios developed by CPB, in collaboration with AVV, ECN, and RIVM, in 1997, the share of natural gas in total primary energy demand is projected to increase to 50-55% in all of the scenarios. In the most energy intensive scenarios, natural gas is

  20. State energy data report 1995 - consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  1. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The Design Energy Consumption shall be calculated by modeling the Proposed Design using the same methods...

  2. EVALUATION OF ENERGY CONSUMPTION IN AGRO-INDUSTRIAL WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    2016-07-01

    Full Text Available Energy consumption during waste water treatment is a very important factor affecting food industry plants. Apart from highly efficient treatment of dairy and meat sewage, a low energy consumption is required in order to lower its costs. During the research period parameters of raw and treated sewage were tested (BOD, COD, N-total, P-total. Also, the energy consumption from selected processes as well as total consumption were measured. Indicators of energy consumption per m3 and removed load were calculated. It was found that biological treatment and aeration played the main role in energy consumption in both objects. It was respectively 40 and 47% for Bielmlek and JBB plants. The second biggest energy consuming stage of treatment in both objects was sludge processing. Energy required to process excessive sludge equaled 30% of the total energy usage in both plants. Energy consumption factors related to hydraulic flow gave results in the range from 2,05 to 3,3 kWhm-3 and from 2,72 to 3,23 kWhm-3 for Bielmlek and JBB plants respectively. The research will be continued in order to optimize energy consumption while retaining high efficiency treatment in food industry WWTPs. Finally a mathematical model will be prepared for optimizing energy consumption in food industry WWTPs.

  3. Energy consumption modeling during dairy sewage pretreatment

    Directory of Open Access Journals (Sweden)

    Dąbrowski Wojciech

    2017-01-01

    Full Text Available The research was conducted in a dairy WWTP located in north-eastern Poland with the average flow of 546 m3d-1 and PE 11500 in 2016. Energy consumption was measured with the help of Lumel 3-phase network parameter transducers installed within the plant. The modeling was conducted based on the quantity and quality of raw sewage, after its screening, averaging and dissolved air flotation. The following parameters were determined: BOD5, COD. N-total and P-total. During the research period. 15 measurement series were carried out. Pollution loads removed in primary treatment varied from 167.0 to 803.5 kgO2d-1 and 1205.9 to 10032 kgO2d-1 for BOD5 and COD respectively. The energy consumption share during dairy pretreatment in relation to the total energy consumption was in the range from 13.8 to 28.5% with the mean value of 18.7% during the research period. Energy consumption indicators relating to removed pollution loads for primary treatment were established with the mean values of 0.74 and 0.83 kWhkg-1d-1 for BOD5 and COD respectively. An attempt was made to determine the influence of raw sewage characteristics and pretreatment efficiency on energy consumption of the object. A model of energy consumption during pretreatment was estimated according to the experimental data obtained in the research period. It was modeled using the linear regression model and principal component analysis.

  4. Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption

    International Nuclear Information System (INIS)

    Doytch, Nadia; Narayan, Seema

    2016-01-01

    This study examines the link between foreign direct investment (FDI) and energy demand. FDI is a source of financing that allows businesses to grow. At the same time, FDI can be a source of innovation that promotes energy efficiency. Existing evidence on the impact of aggregate FDI inflows on energy consumption is scarce and inconclusive. In the current study, we disaggregate FDI inflows into mining, manufacturing, total services, and financial services components and examine the impact of these FDI flows on renewable – and non-renewable industrial energy – sources for 74 countries for the period 1985–2012. We employ a Blundell–Bond dynamic panel estimator to control for endogeneity and omitted variable biases in our panels. The results point broadly to an energy consumption-reducing effect with respect to non-renewable sources of energy and an energy consumption-augmenting effects with respect to renewable energy. We find that these effects vary in magnitude and significance by sectoral FDI. - Highlights: • FDI generally discourages the use of unclean energy. • Economic growth promotes non-renewable energy consumption. • Service FDI save energy and encourage the switch to renewable energy. • Mining FDI to low and lower middle-income panels save energy. • These results are mainly consistent with the FDI halo effect.

  5. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  6. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  7. Total energy consumption in Finland increased by one percent

    International Nuclear Information System (INIS)

    Timonen, L.

    2000-01-01

    The total energy consumption in Finland increased by less than a percent in 1999. The total energy consumption in 1999 was 1310 PJ corresponding to about 31 million toe. The electric power consumption increased moderately by 1.6%, which is less than the growth of the gross national product (3.5%). The final consumption of energy grew even less, only by 0.5%. Import of electric power increased by 19% in 1999. The import of electric power was due to the availability of low-priced electric power on the Nordic electricity markets. Nuclear power generation increased by 5% and the consumption of wood-based fuels by 3%. The increment of the nuclear power generation increased because of the increased output capacity and good operability of the power plants. Wind power production doubles, but the share of it in the total energy consumption is only about 0.01%. The peat consumption decreased by 12% and the consumption of hydroelectric power by 15%. The decrease in production of hydroelectric power was compensated by an increase import of electric power. The consumption of fossil fuels, coal, oil and natural gas remained nearly the same as in 1998. The gasoline consumption, however, decreased, but the consumption of diesel oil increased due to the increased road transport. The share of the fossil fuels was nearly half of the total energy consumption. The consumption of renewable energy sources remained nearly the same, in 23% if the share of peat is excluded, and in 30% if the share of peat is included. Wood-based fuels are the most significant type of renewable fuels. The share of them in 1999 was over 80% of the total usage of the renewable energy sources. The carbon dioxide emissions in Finland decreased in 1999 by 1.0 million tons. The total carbon dioxide emissions were 56 million tons. The decrease was mainly due to the decrease of the peat consumption. The final consumption of energy increased by 0.5%, being hence about 1019 PJ. Industry is the main consumer of energy

  8. Innovative method of RES integration into the regional energy development scenarios

    International Nuclear Information System (INIS)

    Klevas, Valentinas; Biekša, Kestutis; Murauskaitė, Lina

    2014-01-01

    Scarcity or abundance of energy resources usually depends on physical and geographical conditions in the region. However, the energy flow in the region also depends on the efficient use of energy resources, the consumption rate of energy and the possibility to use local renewable and non-renewable energy resources. Production, distribution and the use of energy resources in the region are the challenges for central and local government, business and social service, customers and other stakeholders. Development of regional energy economy should be optimized according to the available energy flow in the region using a network system analysis method, which provides solutions for developing sustainable energy economy models. The network system analysis method enables to optimize the use of local and renewable resources at the regional level and reveals available local energy resources. An efficient use of available regional resources and the use of renewable energy sources (RES) should be the main goals for the development of regional energy system. RES can compete with traditional fossil fuel with the condition that all hidden aspects are revealed. The network system analysis method enables to indicate energy flows in the region as well as indicate pros and cons of using renewable energy technologies. - Highlights: • RES integration into the regional energy development scenarios is done. • Innovative process network system (PNS) analysis method is used. • PNS method is used to optimize the use of local and renewable resources. • Analysis of energy flow in region using PNS method is done

  9. Development of Optimal Stressor Scenarios for New Operational Energy Systems

    Science.gov (United States)

    2017-12-01

    OPTIMAL STRESSOR SCENARIOS FOR NEW OPERATIONAL ENERGY SYSTEMS by Geoffrey E. Fastabend December 2017 Thesis Advisor: Alejandro S... ENERGY SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Geoffrey E. Fastabend 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...developed and tested simulation model for operational energy related systems in order to develop better stressor scenarios for acceptance testing

  10. Phasing out nuclear in Germany: scenarios of energy policy

    International Nuclear Information System (INIS)

    Knopf, Brigitte; Pahle, Michael; Kondziella, Hendrik; Goetz, Mario; Bruckner, Thomas; Edenhofer, Ottmar; Stark, Hans; Rittelmeyer, Yann-Sven; Wissmann, Nele; Vitasse, Thomas

    2012-02-01

    After the German decision taken in 2011 to phase out nuclear, the authors analyse different scenarios of energy transition, and study the consequences of this phasing out in terms of energy needs provided by fossil fuel plants, of electricity price for households and for industries, and of CO 2 emissions. Independently from the development of renewable energies, the different effects of gas and coal plants replacing nuclear energy have been calculated and compared, and other possible scenarios have been explored. The author also discuss requirements in terms of governance for grid development, for a coordinated European policy of energy and climate, and for transparency and scientific follow-up

  11. Energy perspectives 2035 - Volume 2, scenarios I to IV

    International Nuclear Information System (INIS)

    Kirchner, A.

    2007-01-01

    This comprehensive report published by the Swiss Federal Office of Energy (SFOE) takes a look at the four scenarios concerning future developments in Swiss energy supply policy. The four complex scenarios include variants entitled 'business as usual', 'increased co-operation', 'new priorities' and 'on the way to a 2000-Watt society'. These scenarios deal with the development of energy demand and electricity offerings in Switzerland for the period 1990 to 2035. They are reviewed in the light of various sensitivity factors. These sensitivity factors include a high GDP, oil prices of 50 US-dollars per barrel and a warmer climate. The report presents the results of the model calculations made. First of all, the report takes a look at the motivation and aims behind the work and discusses the modelling methods, system limits and conventions used and the possibilities offered by the perspectives as well as the limits encountered. The four scenarios are then presented and discussed in detail. Implementation variants in the private, services, industrial and traffic sectors are discussed and various electricity supply variants are presented, as are the associated environmental issues involved. The scenarios are compared with each other and pricing and security of supply issues are discussed. Finally, a short synopsis of the scenarios is presented and decision criteria are discussed as are implementation instruments. Ethical dilemmas and the risks involved are noted

  12. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  13. Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector

    International Nuclear Information System (INIS)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2014-01-01

    Highlights: • Use ISEEM to evaluate energy and emission reduction in U.S. Iron and Steel sector. • ISEEM is a new bottom-up optimization model for industry sector energy planning. • Energy and emission reduction includes efficiency measure and international trading. • International trading includes commodity and carbon among U.S., China and India. • Project annual energy use, CO 2 emissions, production, and costs from 2010 to 2050. - Abstract: Using the ISEEM modeling framework, we analyzed the roles of energy efficiency measures, steel commodity and international carbon trading in achieving specific CO 2 emission reduction targets in the U.S iron and steel sector from 2010 to 2050. We modeled how steel demand is balanced under three alternative emission reduction scenarios designed to include national energy efficiency measures, commodity trading, and international carbon trading as key instruments to meet a particular emission restriction target in the U.S. iron and steel sector; and how production, process structure, energy supply, and system costs change with those scenarios. The results advance our understanding of long-term impacts of different energy policy options designed to reduce energy consumption and CO 2 emissions for U.S. iron and steel sector, and generate insight of policy implications for the sector’s environmentally and economically sustainable development. The alternative scenarios associated with 20% emission-reduction target are projected to result in approximately 11–19% annual energy reduction in the medium term (i.e., 2030) and 9–20% annual energy reduction in the long term (i.e., 2050) compared to the Base scenario

  14. Energy consumption, political regime and economic growth in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Adams, Samuel; Klobodu, Edem Kwame Mensah; Opoku, Eric Evans Osei

    2016-01-01

    In this paper, we examine the relationship between energy consumption and economic growth, and how democracy moderates this relationship using panel data of 16 sub-Saharan African (SSA) countries for the period 1971–2013. Employing a panel vector autoregressive model (PVAR) in a generalized method of moments (GMM) framework, the findings support the feedback hypothesis for energy consumption and growth. Second, the interaction variable (energy consumption and democracy) is positively and significantly related to economic growth, supporting the view that democracy moderates the energy consumption and growth nexus. Further, the results provide strong evidence of a uni-directional relationship from trade openness to energy consumption. Additionally, impulse responses and variance decompositions also confirm positive feedback relationships between energy consumption and economic growth, energy prices and economic growth. - Highlights: •Feedback exists between energy consumption and economic growth. •Democracy moderates the energy consumption and growth nexus. •positive feedback between energy prices and economic growth. •Uni-directional relationship from openness to energy consumption.

  15. Changing practices of energy consumption

    DEFF Research Database (Denmark)

    Christensen, Toke Haunstrup; Friis, Freja; Skjølsvold, Tomas Moe

    2017-01-01

    to produce hydrogen for transport use), whereas others emphasise the role of individual consumers. The latter approach is dominant within the smart grid vision. In this paper, we explore implications of smart grid technologies in households for the everyday practices related to electricity consumption...... (microgeneration) influence the everyday practices? What kind of influence does the combination of PVs with other “smart” energy technologies have on everyday practices and electricity consumption patterns? A specific focus is on the time patterns of households’ energy consumption. The analysis is based...... settlement scheme (hourly versus annual net metering) and the trial context play a role. Also, the study finds a broader interest in increasing the level of self-sufficiency through combining PVs with home batteries. Finally, the paper discusses a distinct (male) gendering in relation to who is most actively...

  16. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  17. Low energy consumption vortex wave flow membrane bioreactor.

    Science.gov (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  18. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  19. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance

  20. Household vehicles energy consumption 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  1. The use of physical indicators for industrial energy demand scenarios

    International Nuclear Information System (INIS)

    Schenk, Niels J.; Moll, Henri C.

    2007-01-01

    Scientific information on the size and nature of the threat of climate change is needed by politicians in order to weight their decisions. Computerised models are extremely useful tools to quantify the long-term effects of current policies. This paper describes a new modelling approach that allows formulation of industrial energy demand projections consistent with the assumptions for scenario drivers such as GDP and population. In the model, a level of industrial production is used as a key variable, and we define it in physical units, rather than in monetary units. The aim of this research is to increase insights that come with long-term energy demand scenarios. This research clearly shows that physical indicators provide additional insights in scenario analysis. The use of physical indicators instead of monetary indicators seems to affect the energy scenarios significantly. The differences with monetary indicators are larger in developing regions than in OECD regions. We conclude that an integrated energy and materials approach reveals developments that are hardly visible using a monetary approach. Moreover, this research shows the potential and benefits of the use of physical indicators for scenario development. (author)

  2. ENERGY CONSUMPTION AND REAL GDP IN IRAN

    Directory of Open Access Journals (Sweden)

    Ali Akbar Naji Meidani

    2014-01-01

    Full Text Available As one of the most important production factors and one of the most urgent final products, energy has a special position in the growth and development of the country. This paper examines the causal relationship between Real GDP and energy consumption in various economic sectors including (household and commercial, industry, transportation and agriculture sectors for Iran during 1967–2010 using the time series technique known as the Toda-Yamamoto method. Moreover, an error correction model is also estimated so that the results of these two methods are compared. We found a strong unidirectional causality from energy consumption in industry sector to real gross domestic product. Energy consumption in industry sector can observably promote the development of economy.

  3. Energy efficient refrigeration and flexible power consumption in a smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.; Larsen, Lars F.S. (Danfoss Refrigeration and A/C Controls, Nordborg (Denmark)); Halvgaard, R.; Bagterp Joergensen, J. (Technical Univ. of Denmark (DTU). DTU Informatics, Kgs. Lyngby (Denmark))

    2011-05-15

    Refrigeration and heating systems consume substantial amounts of energy worldwide. However, due to the thermal capacity there is a potential for storing 'coldness' or heat in the system. This feature allows for implementation of different load shifting and shedding strategies in order to optimize the operation energywise, but without compromising the original cooling and indoor climate quality. In this work we investigate the potential of such a strategy and its ability to significantly lower the cost related to operating systems such as supermarket refrigeration and heat pumps for residential houses. With modern Economic Model Predictive Control (MPC) methods we make use of weather forecasts and predictions of varying electricity prices to apply more load to the system when the thermodynamic cycle is most efficient, and to consume larger shares of the electricity when the demand and thereby the prices are low. The ability to adjust power consumption according to the demands on the power grid is a highly wanted feature in a future Smart Grid. Efficient utilization of greater amounts of renewable energy calls for solutions to control the power consumption such that it increases when an energy surplus is available and decreases when there is a shortage. This should happen almost instantly to accommodate intermittent energy sources as e.g. wind turbines. We expect our power management solution to render systems with thermal storage capabilities suitable for flexible power consumption. The aggregation of several units will contribute significantly to the shedding of total electricity demand. Using small case studies we demonstrate the potential for utilizing daily variations to deliver a power efficient cooling or heating and for the implementation of Virtual Power Plants in Smart Grid scenarios. (Author)

  4. Deciding the Future: Energy Policy Scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    This WEC study is bottom-up regional view of our energy future focusing on policies to ensure energy sustainability. Experts from five regions and all energy domains worked together to produce four different scenarios to predict how differing levels of cooperation and government involvement would affect the energy future of the world.

  5. Energy Efficiency Road Mapping in Three Future Scenarios for Lao PDR

    Directory of Open Access Journals (Sweden)

    Hajime Sasaki

    2013-09-01

    Full Text Available Climate change, pollution, and energy insecurity are among the greatest problems of our time. These problems are no longer issues in particular countries but international issues. Several framework conventions on these issues are now in place throughout the world, and developing countries are no exception. Energy efficiency is one of the important issues for developing countries. Lao PDR is one such country. This paper proposes a technology roadmap and policy recommendations for Lao PDR with consideration given to a wide range of economic and social impacts of prospective technologies. For the implementation of technology assessment in the formulation of an energy efficiency roadmap, we first elaborate the social and economic conditions of Lao PDR through preliminary research and field research, and then design three scenarios for a future Lao PDR. These three scenarios are as follows: 1. The "Poverty Reduction" scenario is for electrification rate improvement; 2. The "Industrial Creation" scenario is for stable domestic energy supply; and 3. The "GMS Integration" scenario is for the acquisition of foreign exchange by energy export.

  6. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  7. Scenario analysis of the new energy policy for Taiwan's electricity sector until 2025

    International Nuclear Information System (INIS)

    Chen, Fung-Fei; Chou, Seng-Cho; Lu, Tai-Ken

    2013-01-01

    For this study, we constructed the following three case scenarios based on the Taiwanese government's energy policy: a normal scenario, the 2008 “Sustainable Energy Policy Convention” scenario, and the 2011 “New Energy Policy” scenario. We then employed a long-term Generation Expansion Planning (GEP) optimization model to compare the three case scenarios' energy mix for power generation for the next å15 years to further explore their possible impact on the electricity sector. The results provide a reference for forming future energy policies and developing strategic responses. - Highlights: • We constructed three case scenarios based on the Taiwan government's energy policy. • We employed a long-term Generation Expansion Planning optimization model. • A significant gap exists between the carbon reduction target and baseline. • The carbon reduction target requires a holistic resolution needed taking seriously

  8. An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Ouémé catchment in Benin

    Directory of Open Access Journals (Sweden)

    S. Giertz

    2006-01-01

    Full Text Available This paper presents an interdisciplinary scenario analysis to assess the influence of global and regional change on future water availability and water consumption in the Upper Ouémé catchment in central Benin. For the region three development scenarios were evolved. These scenarios are combined with climate change scenarios based on the IPCC (Intergovernmental Panel on Climate Change. In the mo-delling approach the quantification of the land use/land cover change is performed by the cellular automata model CLUE-S. The future climate scenarios are computed with the regional climate model REMO driven by the global ECHAM model. Using this data different land use and climate change scenarios can be calculated with the conceptual hydrological model UHP-HRU to assess the effects of global changes on the future water availability in Benin. To analyse the future water availability also the water consumption has to be taken into account. Due to high population growth an increase in water need in the future is expected for the region. To calculate the future household water consumption data from a regional survey and demographic projections are used. Development of the water need for animal husbandry is also considered. The first test run of the modelling approach was performed for the development scenario 'business as usual' combined with the IPCC scenario B2 for the year 2025. This test demonstrates the applicability of the approach for an interdisciplinary scenario analysis. A continuous run from 2000–2025 will be simulated for different scenarios as soon as the input data concerning land use/land cover and climate are available.

  9. Consumption of fuels and energy in the coking industry and ways of reducing consumption

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, Yu.S.; Tsel' ik, M.P.; Belkina, T.V. (Khar' kovskii Nauchno-Issledovatel' skii Uglekhimicheski Institut (USSR))

    1989-08-01

    Coking plants in the USSR consume 4,000 million kWh electric energy, 100 million GJ heat energy and 35,000 million m{sup 3} gaseous fuels per year. Structure of energy consumption is the following: 68% gaseous fuels, 24% steam and 8% electric energy. Processes of coal preparation, crushing, mixing, coking and quenching are analyzed from the point of view of energy consumption. The following methods for reducing energy consumption are discussed: using the FM-25 flotation machines for flotation of coking coal slurries, briquetting the whole coal charge for coking, optimization of air supply rates for combustion of gases used for coke oven heating, use of control systems for coke oven heating considering coal charge density, waste heat utilization from quenching. 4 refs.

  10. Hydrogen energy network start-up scenario

    International Nuclear Information System (INIS)

    Weingartner, S.; Ellerbrock, H.

    1994-01-01

    Hydrogen is widely discussed as future fuel and energy storage medium either to replace conventional fuels for automobiles, aircrafts and ships or to avoid the necessity of bulky battery systems for electricity storage, especially in connection with solar power systems. These discussions however started more than 25 years ago and up to now hydrogen has failed to achieve a major break-through towards wider application as energy storage medium in civil markets. The main reason is that other fuels are cheaper and very well implemented in our daily life. A study has been performed at Deutsche Aerospace in order to evaluate the boundary conditions, either political or economical, which would give hydrogen the necessary push, i.e. advantage over conventional fuels. The main goal of this study was to identify critical influence factors and specific start-up scenarios which would allow an economical and practically realistic use of hydrogen as fuel and energy medium in certain niche markets outside the space industry. Method and major results of this study are presented in detail in the paper. Certain niche markets could be identified, where with little initial governmental support, either by funding, tax laws or legislation, hydrogen can compete with conventional fuels. This however requires a scenario where a lot of small actions have to be taken by a high variety of institutions and industries which today are not interconnected with each other, i.e. it requires a new cooperative and proactive network between e.g. energy utilities, car industries, those who have a sound experience with hydrogen (space industry, chemical industry) and last, but certainly not the least, the government. Based on the developed scenario precise recommendations are drawn as conclusions

  11. Estimates of US biomass energy consumption 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large

  12. Estimates of US biomass energy consumption 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  13. The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy

    International Nuclear Information System (INIS)

    Zou Gaolu

    2012-01-01

    To reduce its consumption of coal and oil in its primary energy consumption, China promotes the development of renewable energy resources. I have analysed the long-term relationship among China's primary energy consumption sources. Changes in coal consumption lead those in the consumption of other energy sources in the long term. Coal and oil fuels substitute for each other equally. The long-term elasticities of China's coal consumption relative to its hydroelectricity consumption were greater than one and nearly equal during the two sample periods. Therefore, increased hydroelectricity consumption did not imply a reduction in coal consumption. China holds abundant hydroelectricity, wind and, solar energy potential. China must prevent an excessive escalation of its economy and resultant energy demand to realise a meaningful substitution of coal with hydroelectricity. Moreover, China must develop and use wind and solar energy sources. Natural gas can be a good substitute for coal, given its moderate price growth and affordable price levels. - Highlights: ► Coal consumption changes lead those of other energy sources in the long term. ► Coal and oil fuels substitute for each other equally. ► Increased hydroelectricity consumption has not meant lower coal consumption. ► Wind, solar and natural gas are China's promising energy sources.

  14. Energy consumption and economic growth revisited in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Eggoh, Jude C., E-mail: comlanvi-jude.eggoh@univ-orleans.fr [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Bangake, Chrysost [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Universite d' Artois and Laboratoire EQUIPPE, Lille 1, FSES, 59655 Villeneuve d' Ascq Cedex (France); Rault, Christophe [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Toulouse Business School (France)

    2011-11-15

    The aim of this paper is to provide new empirical evidence on the relationship between energy consumption and economic growth for 21 African countries over the period from 1970 to 2006, using recently developed panel cointegration and causality tests. The countries are divided into two groups: net energy importers and net energy exporters. It is found that there exists a long-run equilibrium relationship between energy consumption, real GDP, prices, labor and capital for each group of countries as well as for the whole set of countries. This result is robust to possible cross-country dependence and still holds when allowing for multiple endogenous structural breaks, which can differ among countries. Furthermore, we find that decreasing energy consumption decreases growth and vice versa, and that increasing energy consumption increases growth, and vice versa, and that this applies for both energy exporters and importers. Finally, there is a marked difference in the cointegration relationship when country groups are considered. - Highlights: > We assess the energy consumption and economic growth nexus in 21 African countries. > There exists a long-run relationship between energy consumption and economic growth. > This result is robust to cross-country dependence and for structural breaks. > Our findings finally support the feedback hypothesis of bidirectional causality.

  15. Analysis of a Residential Building Energy Consumption Demand Model

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2011-03-01

    Full Text Available In order to estimate the energy consumption demand of residential buildings, this paper first discusses the status and shortcomings of current domestic energy consumption models. Then it proposes and develops a residential building energy consumption demand model based on a back propagation (BP neural network model. After that, taking residential buildings in Chongqing (P.R. China as an example, 16 energy consumption indicators are introduced as characteristics of the residential buildings in Chongqing. The index system of the BP neutral network prediction model is established and the multi-factorial BP neural network prediction model of Chongqing residential building energy consumption is developed using the Cshap language, based on the SQL server 2005 platform. The results obtained by applying the model in Chongqing are in good agreement with actual ones. In addition, the model provides corresponding approximate data by taking into account the potential energy structure adjustments and relevant energy policy regulations.

  16. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  17. Analysis of Long-term Energy and Carbon Emission Scenarios for India

    International Nuclear Information System (INIS)

    Rajesh, N.; Kapshe, M.; Shukla, P.R.; Garg, A.; Rana, A.

    2003-01-01

    In the coming years India faces great challenges in energy and environment. The path of development chosen by India, upon which lies the future growth of energy and emission trajectories, would be greatly influenced by technological developments both within and outside the country, economic cooperation between countries, and global cooperation in limiting greenhouse gas emissions. This paper discusses the integrated modeling system used for developing and analyzing the long-term trajectories and presents results for the scenarios developed. In the context of ongoing market reforms two scenarios - accelerated and decelerated reforms - are developed depicting fast and slow progress in energy sector reforms compared to expectations in the baseline scenario. Accelerated market reforms would spur improvements in technological efficiencies. Reforms would lower investment risks in India, thereby stimulating increased levels of foreign direct investment. On the other hand in decelerated reform scenario economic growth is lower than that in the base case, there is low access to capital, and technological improvements lag behind those in the base case. In another scenario we assume specific policy interventions for penetration of renewable technologies over the baseline scenario, for promotion and accelerated deployment of renewable energy technologies over and above the baseline assumptions. A scenario with carbon (c) constraints has also been developed and the results discussed

  18. Local and regional low carbon scenarios methodology, challenges and opportunities

    International Nuclear Information System (INIS)

    2010-01-01

    In its first part, this report discusses the emergence of local climate and energy policy in Europe, the implementation of nationally imposed but regionally anchored energy scenarios (i.e. in France, the Climate Air Energy Regional Schemes or SRCAE). Then it addresses the methodological and political aspects of local and regional low emission scenarios: methodologies and typologies of energy scenarios, ways to define an appropriate emission reduction and energy consumption objective, ways to deal with emission or carbon gaps, ways to make local emission inventories, ways to gather local data, ways to deal with special emission sources, ways to assess and develop local energy efficiency and renewable energy potentials, ways to take energy sufficiency into account, and the evolution from energy autonomy to 100% renewable energy territories. The last part addresses the issues of stake holder and citizen participation in the definition of long term strategies

  19. A novel method for energy harvesting simulation based on scenario generation

    Science.gov (United States)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  20. Cities and Energy Consumption: a Critical Review

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2017-12-01

    Full Text Available The relationship between cities and energy consumption has been of great interest for the scientific community for over twenty years. Most of the energy consumption, indeed, occurs in cities because of the high concentration of human activities. Thus, cities are responsible for a big share of carbon dioxide emissions (CO2. However, the debate on this topic is still open, mainly because of the heterogeneity of published studies in the selection, definition and measurement of the urban features influencing energy consumption and CO2 emissions, as well as in the choice of the energy sectors to be considered, in the territorial scale of analysis, and in the geographical distribution of the sample. Therefore, the goal of this research is to systematize and compare the approach, methodology and results of the relevant literature on the relationship between cities and energy consumption over the last twenty years. Furthermore, this critical review identifies the knowledge gap between what is known and what is still under debate and, based on that, it proposes a conceptual framework that will help to outline a new direction for future research and support local policy makers in the definition of strategies and actions that can effectively reduce urban energy use and CO2 emissions.

  1. CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India

    International Nuclear Information System (INIS)

    Jayanthakumaran, Kankesu; Verma, Reetu; Liu Ying

    2012-01-01

    In order to prevent the destabilisation of the Earth's biosphere, CO 2 emissions must be reduced quickly and significantly. The causes of CO 2 emissions by individual countries need to be apprehended in order to understand the processes required for reducing emissions around the globe. China and India are the two largest transitional countries and growing economies, but are in two entirely different categories in terms of structural changes in growth, trade and energy use. CO 2 emissions from the burning of fossil fuels have significantly increased in the recent past. This paper compares China and India using the bounds testing approach to cointegration and the ARDL methodology to test the long- and short-run relationships between growth, trade, energy use and endogenously determined structural breaks. The CO 2 emissions in China were influenced by per capita income, structural changes and energy consumption. A similar causal connection cannot be established for India with regard to structural changes and CO 2 emissions, because India's informal economy is much larger than China's. India possesses an extraordinarily large number of micro-enterprises that are low energy consumers and not competitive enough to reach international markets. Understanding these contrasting scenarios is prerequisite to reaching an international agreement on climate change affecting these two countries. - Highlights: ► The bounds testing approach to cointegration and the ARDL methodology were used to test CO 2 emissions–energy consumption–income–international trade nexus in China and India. ► The CO 2 emissions in China were influenced by structural changes and associated energy consumption, income and foreign trade. ► A similar causal connection (structural change) cannot be established in India. ► Understanding these contrasting scenarios is prerequisite to reaching an international agreement on climate change affecting these countries.

  2. Energy drink consumption among young adults in Denmark

    DEFF Research Database (Denmark)

    Friis, Karina; Lasgaard, Mathias Kamp; Larsen, Finn Breinholt

    2015-01-01

    -demographic factors and health behaviour with energy drink consumption among young adults (16-24 years) in Denmark. Methods The study is based on a public health survey from 2010 (n = 3923). Multiple logistic regression analyses were used to analyse the association between weekly consumption of energy drink...... and the potential explanatory factors of interest. Results In total, 15.8 % of the young adults drink energy drinks on a weekly basis. Men have higher odds of weekly energy drink consumption than women. The study also shows that young age, being employed and having a low educational level are associated with weekly...

  3. Economic growth and energy consumption in Algeria: a causality analysis

    International Nuclear Information System (INIS)

    Cherfi, S.

    2011-01-01

    The purpose of this study is to review the causal link in the Granger sense, between energy consumption and economic growth in Algeria, to determine its implications for economic policy. The analysis was done based on Granger static and causality tests using statistical data on per capita primary energy consumption and gross domestic product per inhabitant in Algeria, over the 1965-2008 period. The results of the survey show that there is, in Algeria, a strong link between energy consumption per inhabitant and GDP per inhabitant. The results also suggest the lack of a long term impetus (no co-integration) between energy consumption and economic growth. In addition, there is a one-way causal link between GDP and energy consumption, i.e. the prior GDP data provides a better forecast of energy consumption level, but not the contrary. In other words, GDP explains consumption, not the contrary. (author)

  4. The Relationship Between Energy Consumption and Economic ...

    African Journals Online (AJOL)

    As evidenced from the study, causality runs from energy consumption to economic growth. Energy consumption in Nigeria is mainly based on the use of fossil fuels which is non-renewable. Therefore, in order to actualize its vision of becoming one of the 20th largest economies in the World by the year 2020, government ...

  5. Energy Drink Consumption Practices of Young People in Bahrain.

    Science.gov (United States)

    Nassaif, Maryam M; Alobed, Ghufran J J; Alaam, Noor A A; Alderrazi, Abdulla N; Awdhalla, Muyssar S; Vaithinathan, Asokan G

    2015-01-01

    Energy drink (ED) consumption is becoming increasingly popular among young Bahrainis, who may be unaware of the health risks associated with ED consumption. To date, there have been few publications on the consumption of ED in Bahrain, particularly among adolescents. This study seeks to fill a gap in the literature on energy drink consumption practices of Bahraini adolescents. Data were collected using a previously established European Food Safety Authority questionnaire. Cross-sectional analyses were conducted on a convenience sample of 262 Bahraini students aged 10 to 18 years. Most participants consumed energy drinks 2 to 3 times per week and consumed two or more cans at a time. Eighty percent of partcipants preferred energy drinks with sugar. Participants in the older age group and higher educational level consumed more ED. The majority (57%) consumed ED at home with friends as part of socialization. Notably, 60% of the parents of the respondents have not consumed energy drinks. Prominent reasons for consumption of energy drinks included: taste (40%), energy (30%), stay awake (13%), augment concentration (4%), and enhance sports performance (6%). Energy drink consumption is a popular socialization activity among adolescents of Bahrain. The potential health risks necessitates the need for novel health promotion strategies and advocacy efforts for healthy hydration practices.

  6. Understanding the spectrum of domestic energy consumption: Empirical evidence from France

    International Nuclear Information System (INIS)

    Belaïd, Fateh

    2016-01-01

    This article focuses on residential energy consumption in France. Using a bottom-up statistical approach, this analysis explores determinants of household energy consumption using data from the most recent National Housing Survey. The primary objective is to tease out the impacts of various factors on the domestic energy consumption spectrum across different population groups. The aim of this approach is to neutralize conventional factors affecting energy consumption (age of house, total area, etc.) to finely analyze the impact of other determinants including those relating to household characteristics and other control variables. First, we define homogeneous consumption groups of households by using multivariate statistical techniques, namely the Multiple Correspondence Analysis and Ascending Hierarchical Classification. Second, we use standard OLS regression to explore the effects of various factors on domestic energy consumption among homogeneous groups of households. This multivariate analysis exercise has led us to identify four main consumption typologies. Results revealed that energy prices were the most important factors determining domestic energy consumption. In addition, this study showed that occupant characteristics significantly affect domestic energy use. Results of this research call for combine all efforts, multiple strategies and smart policies, to incorporate household and consumption behaviors in managing domestic energy consumption. - Highlights: •Survey data of 36,000 occupiers from France is analyzed. •Bottom-up statistical approach is used to analyze domestic energy consumption. •Occupant characteristics significantly affect domestic energy use. •The impact of households attributes varies markedly across consumption groups.

  7. A Meta Model for Domestic Energy Consumption

    Directory of Open Access Journals (Sweden)

    K.,J SREEKANTH

    2011-01-01

    Full Text Available Prediction of energy consumption particularly in micro level is of vital importance in terms of energy planning and also implementation of any Clean Development Mechanism (CDM activities that has become the order of the world today. It may be difficult to model household energy consumption using conventional methods such as time series forecasting due to many influencing factors. This paper presents a step wise regression model for forecasting domestic energy consumption based on micro level household survey data collected from Kerala, a state in southern part of India. The analysis of the data reveals significant influence of socio-economic, demographic, geographic, and family attributes upon total household energy requirements. While a wide variation in the pattern of energy requirements across the domestic sector belonging to different expenditure classes, per capita income level can be identified as the most important explanatory variable influencing variation in energy requirements. The models developed also demonstrates the influence of per capita land area, residential area among the higher income group while average age and literacy forms significant variables among the lower income group.

  8. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  9. Future demand scenarios of Bangladesh power sector

    International Nuclear Information System (INIS)

    Mondal, Md. Alam Hossain; Boie, Wulf; Denich, Manfred

    2010-01-01

    Data on the future electricity demand is an essential requirement for planning the expansion of a power system. The purpose of this study is to provide a general overview of electricity consumption in Bangladesh, forecast sector-wise electricity demand up to 2035 considering the base year 2005, and compare the results with official projections. The Long-range Energy Alternative Planning (LEAP) model with three scenarios, namely low gross domestic product (GDP) growth, average GDP growth and high GDP growth, is applied in this study. In the low to high GDP growth scenarios, the extent of industrial restructuring and technical advancement is gradually increased. The findings have significant implications with respect to energy conservation and economic development. The study also compares the projected per capita electricity consumption in Bangladesh with the historical growth in several other developing countries. Such an evaluation can create awareness among the planners of power system expansion in Bangladesh to meet the high future demand.

  10. Energy consumption and economic growth: A causality analysis for Greece

    International Nuclear Information System (INIS)

    Tsani, Stela Z.

    2010-01-01

    This paper investigates the causal relationship between aggregated and disaggregated levels of energy consumption and economic growth for Greece for the period 1960-2006 through the application of a later development in the methodology of time series proposed by Toda and Yamamoto (1995). At aggregated levels of energy consumption empirical findings suggest the presence of a uni-directional causal relationship running from total energy consumption to real GDP. At disaggregated levels empirical evidence suggests that there is a bi-directional causal relationship between industrial and residential energy consumption to real GDP but this is not the case for the transport energy consumption with causal relationship being identified in neither direction. The importance of these findings lies on their policy implications and their adoption on structural policies affecting energy consumption in Greece suggesting that in order to address energy import dependence and environmental concerns without hindering economic growth emphasis should be put on the demand side and energy efficiency improvements.

  11. Working group on the modes of a TGAP remission or decrease concerning the intermediate energy consumptions; Groupe de travail sur les modalites d'exoneration et d'attenuation d'une tgap sur les consommations intermediaires d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The french government decided to examine conditions of the application of the TGAP tax on intermediate energy consumption, in order to enforce the fight against the greenhouse effect and to better control the energy consumption. A working group has been created to examine the possibilities of the TGAP remission. This report presents the conclusions of the working group and analyses different scenario. (A.L.B.)

  12. Potential reduction of energy consumption in public university library

    Science.gov (United States)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  13. Calculating energy and labor impacts of capital readjustments due to changes in personal consumption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pleszkun, A.R.

    1979-05-01

    Previous work on the energy and labor impacts of energy-consumption policies has included the effect of respending of money saved, but not the capital implications of this respending. Here the capital effects are fully accounted for, and turn out to be negligible for a specified conservation scenario and a specified capital expansion model (..delta..C = kC). The robustness of this conclusion is discussed. The implication is that inclusion of only the respending effect is adequate for calculating energy and labor impacts and provides an accuracy to within +- 1% of the total impacts. Operationally, this result obviates the requirement for detailed and expensive calculations.

  14. In situ evaluation of water and energy consumptions at the end use level: The influence of flow reducers and temperature in baths.

    Science.gov (United States)

    Matos, C; Briga-Sá, A; Bentes, I; Faria, D; Pereira, S

    2017-05-15

    Nowadays, water and energy consumption is intensifying every year in most of the countries. This perpetual increase will not be supportable in the long run, making urgently to manage these resources on a sustainable way. Domestic consumptions of water and electric energy usually are related and it's important to study that relation, identifying opportunities for use efficient improvement. In fact, without an understanding of water-energy relations, there are water efficiency measures that may lead to unintentional costs in the energy efficiency field. In order to take full advantage of combined effect between water and energy water management methodologies, it is necessary to collect data to ensure that the efforts are directed through the most effective paths. This paper presents a study based in the characterization, measurement and analysis of water and electricity consumption in a single family house (2months period) in order to find an interdependent relationship between consumptions at the end user level. The study was carried out on about 200 baths, divided in four different scenarios where the influence of two variables was tested: the flow reducer valve and the bath temperature. Data showed that the presence of flow reducer valve decreased electric energy consumption and water consumption, but increased the bath duration. Setting a lower temperature in water-heater, decreased electric consumption, water consumption and bath duration. Analysing the influence of the flow reducer valve and 60°C temperature simultaneously, it was concluded that it had a significant influence on electric energy consumption and on the baths duration but had no influence on water consumption. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Final Energy Consumption Trends and Drivers in Czech Republic and Latvia

    Directory of Open Access Journals (Sweden)

    Zhiqian Yu

    2017-08-01

    Full Text Available This paper analyses the trends of final energy consumption in Latvia and Czech Republic. Analysis of final energy consumption during 2000-2013 period indicated the main driving forces of final energy consumption during and after world financial crisis of 2008. The paper aimed to evaluate the impact of economic activity and other factors on final energy consumption. The decomposition of the final energy consumption is assessed by analyzing effect of different drivers by the main end-users sector (industry, transport, households, agriculture, services, activity, demography, lifestyles, structural effects, energy savings etc. The results show that the reduction in final energy consumption in most EU members states before and after year 2008 can be related to the decline in energy intensities within endusers sectors. At the same time, the increase in final energy intensity after the year 2008 is attributed to expansion of energy demand sectors. Comparison of final energy consumption trends and drivers in Latvia and Czech Republic indicated that Czech Republic implemented more policies and measures in industry and tertiary sector and this provided for final energy consumption decreased and huge energy savings in these sectors.

  16. Interactive energy consumption visualization

    CSIR Research Space (South Africa)

    Lunga, D

    2014-11-01

    Full Text Available in an office building environment. The main goal is to highlight high consumptions patterns, estimate costs and savings, and recommend energy saving strategies. In its useful nature, the dashboard can provide valuable information for further programs tied...

  17. Energy consumption and energy R and D in OECD: Perspectives from oil prices and economic growth

    International Nuclear Information System (INIS)

    Leng Wong, Siang; Chia, Wai-Mun; Chang, Youngho

    2013-01-01

    We estimate the short-run and long-run elasticities of various types of energy consumption and energy R and D to changes in oil prices and income of the 20 OECD countries over the period of 1980–2010 using the Nerlove partial adjustment model (NPAM). We find negative income elasticity for coal consumption but positive income elasticity for oil and gas consumption suggesting the importance of economic growth in encouraging the usage of cleaner energy from coal to oil and gas. By introducing time dummies into the regressions, we show that climatic mitigation policies are able to promote the usage of cleaner energies. Through the dynamic linkages between energy consumption and energy R and D, we find that fossil fuel consumption promotes fossil fuel R and D and fossil fuel R and D in turn drives its own consumption. Renewable energy R and D which is more responsive to economic growth reduces fossil fuel consumption and hence fossil fuel R and D. - Highlights: • Economic growth encourages the use of cleaner forms of energy. • Economic growth promotes renewable energy R and D. • Subsidies for renewable energy R and D promote renewable energy consumption. • Fossil fuel R and D promotes fossil fuel consumption in countries with oil reserves. • Oil consumption reduces significantly with higher oil prices

  18. Exploring nuclear energy scenarios - implications of technology and fuel cycle choices

    International Nuclear Information System (INIS)

    Rayment, Fiona; Mathers, Dan; Gregg, Robert

    2014-01-01

    Nuclear Energy is recognised globally as a mature, reliable low carbon technology with a secure and abundant fuel source. Within the UK, Nuclear Energy is an essential contributor to the energy mix and as such a decision has been made to refresh the current nuclear energy plants to at least replacement of the existing nuclear fleet. This will mean the building of new nuclear power plant to ensure energy production of 16 GWe per annum. However it is also recognised that this may not be enough and as such expansion scenarios ranging from replacement of the existing fleet to 75 GWe nuclear energy capacity are being considered (see appendix). Within these energy scenarios, a variety of options are being evaluated including electricity generation only, electricity generation plus heat, open versus closed fuel cycles, Generation III versus Generation IV systems and combinations of the above. What is clear is that the deciding factor on the type and mix of any energy programme will not be on technology choice alone. Instead a complex mix of Government policy, relative cost of nuclear power, market decisions and public opinion will influence the rate and direction of growth of any future energy programme. The UK National Nuclear Laboratory has supported this work through the use and development of a variety of assessment and modelling techniques. When assessing nuclear energy scenarios, the technology chosen will impact on a number of parameters within each scenario which includes but is not limited to: - Economics, - Nuclear energy demand, - Fuel Supply, - Spent fuel storage / recycle, - Geological repository volumetric and radiological capacity, - Sustainability - effective resource utilisation, - Technology viability and readiness level. A number of assessment and modelling techniques have been developed and are described further. In particular, they examine fuel cycle options for a number of nuclear energy scenarios, whilst exploring key implications for a particular

  19. Residential energy consumption: A convergence analysis across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Aller, Carlos; Ordóñez, Javier

    2017-01-01

    The process of urbanization and the raise of living standards in China have led an increasing trend in the patterns of residential consumption. Projections for the population growth rate in urban areas do not paint a very optimistic picture for energy conservation policies. In addition, the concentration of economic activities around coastal areas calls for new prospects to be formulated for energy policy. In this context, the objective of this paper is twofold. First, we analyse the effect of the urbanization process of the Chinese economy in terms of the long-run patterns of residential energy consumption at national level. By using the concept of club convergence, we examine whether electricity and coal consumption in rural and urban areas converge to the same long-run equilibrium or whether in fact they diverge. Second, the impact of the regional concentration of the economic activity on energy consumption patterns is also assessed by source of energy across Chinese regions from 1995 to 2011. Our results suggest that the process of urbanization has led to coal being replaced by electricity in urban residential energy consumption. In rural areas, the evidence is mixed. The club convergence analysis confirms that rural and urban residential energy consumption converge to different steady-states. At the regional level, we also confirm the effect of the regional concentration of economic activity on residential energy consumption. The existence of these regional clusters converging to different equilibrium levels is indicative of the need of regional-tailored set of energy policies in China.

  20. The effect of daylight saving time options on electricity consumption of Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Karasu, Servet [Rize University, Rize Vocational School, 53100, Rize (Turkey)

    2010-09-15

    Most of the developed countries in the world use Daylight Saving Time (DST) as an energy conservation method. This study focuses on the effects of DST on electrical lighting in the buildings in Turkey. Turkey might adjust its daylight saving time to decrease energy consumption. For this purpose, five scenarios are considered and compared to status quo. The scenario with a 30-minute forward shift to single DST from April to October, stands out as the best solution to conserve electricity across the entire country. The results of the study show that maximum saving is obtained in this scenario by at least 0.7% on the consumption of lighting electricity. (author)

  1. Accuracy of past projections of US energy consumption

    International Nuclear Information System (INIS)

    O'Neill, B.C.; Desai, Mausami

    2005-01-01

    Energy forecasts play a key role in development of energy and environmental policy. Evaluations of the accuracy of past projections can provide insight into the uncertainty that may be associated with current forecasts. They can also be used to identify sources of inaccuracies, and potentially lead to improvements in projections over time. Here we assess the accuracy of projections of US energy consumption produced by the Energy Information Administration over the period 1982-2000. We find that energy consumption projections have tended to underestimate future consumption. Projections 10-13 years into the future have had an average error of about 4%, and about half that for shorter time horizons. These errors mask much larger, offsetting errors in the projection of GDP and energy intensity (EI). GDP projections have consistently been too high, and EI projection consistently too low, by more than 15% for projections of 10 years or more. Further work on the source of these sizable inaccuracies should be a high priority. Finally, we find no evidence of improvement in projections of consumption, GDP, or EI since 1982

  2. LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Suyi Kim

    2017-02-01

    Full Text Available The energy consumption of Korea’s manufacturing sector has sharply increased over the past 20 years. This paper decomposes the factors influencing energy consumption in this sector using the logarithmic mean Divisia index (LMDI method and analyzes the specific characteristics of energy consumption from 1991 to 2011. The analysis reveals that the activity effect played a major role in increasing energy consumption. While the structure and intensity effects contributed to the reduction in energy consumption, the structure effect was greater than the intensity effect. Over the periods, the effects moved in opposite directions; that is, the structure effect decreased when the intensity effect increased and vice versa. The energy consumption by each industry is decomposed into two factors, activity and intensity effects. The increase of energy consumption due to the activity effect is largest in the petroleum and chemical industry, followed by the primary metal and non-ferrous industry, and the fabricated metal industry. The decrease of energy consumption due to the intensity effect is largest in the fabricated metal industry, followed by the primary metal and non-ferrous industry, and the non-metallic industry. The energy consumption due to intensity effect in the petroleum and chemical industry has risen. To save energy consumption more efficiently for addressing climate change in this sector, industrial restructuring and industry-specific energy saving policies should be introduced.

  3. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  4. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  5. Widening the scope? How intermediary actors can shape energy consumption

    DEFF Research Database (Denmark)

    Maneschi, Davide

    2013-01-01

    This paper deals with energy consumption in the residential sector and with the implementation of measures to reduce it. While most research dealing with energy consumption has targeted factors and drivers at the individual user level, more recent works have highlighted collective aspects...... of (energy) consumption, both to explain the resilience of consumption patterns and to identify leverage points for the reduction of energy use. One understudied aspect of this discussion is the way “intermediary” actors – those actors who are neither policy makers, nor users, nor energy providers...... – influence energy consumption. This paper presents a review of the literature on intermediaries, providing an overview of their roles and contextualizing their functions in energy efficiency improvements. The review shows how the concept of intermediaries has been used in research dealing with innovation...

  6. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  7. Final Energy Consumption Trends and Drivers in Czech Republic and Latvia

    OpenAIRE

    Zhiqian Yu; Dalia Streimikiene; Tomas Balezentis; Rimantas Dapkus; Radislav Jovovic; Veselin Draskovic

    2017-01-01

    This paper analyses the trends of final energy consumption in Latvia and Czech Republic. Analysis of final energy consumption during 2000-2013 period indicated the main driving forces of final energy consumption during and after world financial crisis of 2008. The paper aimed to evaluate the impact of economic activity and other factors on final energy consumption. The decomposition of the final energy consumption is assessed by analyzing effect of different drivers by the main end-users sect...

  8. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  9. THE INFLUENCE OF AN APARTMENT POSITIONING ON ENERGY CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Marcela PRADA

    2013-06-01

    Full Text Available This work is part of the highly topical subject of global warming and energy conservation. The article contains parametric studies of energy consumption and CO² emissions for an apartment located in a block of flats, depending on its location. It was studied the energy consumption of an apartment having different cardinal orientations in the same building and of an apartment with the same position inside the building but located in different climatic zones. The case studies show the difference between the energy consumption of an apartment depending on its position, thus resulting in a few general directions for their heat insulation, so that the specific energy consumption of the apartment is below 100 kWh/m² year.

  10. URBAN FEATURES AND ENERGY CONSUMPTION AT LOCAL LEVEL

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2012-12-01

    Full Text Available There has been a growing interest in discovering the human effects on the environment and energy consumption in recent decades. It is estimated that the share of energy consumed in transportation and housing systems are around 20 and 30 percent of total energy consumption respectively. Furthermore, the residential greenhouse emissions depend on urban form and structure. This paper explores the effects of urban features on residential energy consumption at neighborhood level using data collected through household questionnaire (n=140. Two residential districts in metropolitan Shiraz, south of Iran, were selected as case study areas. Different features of two areas were compared including building density, typology, housing location, parcel size, floor area and construction materials. Ordinary linear regression was used to discover the impact of explanatory variables on energy consumption. It was found that some physical variables such as parcel size, setback and number of floors played significant roles in explaining the variances exist in energy use level. The results can be used by governmental agencies to modify land use policies and subdivision rules in hope of saving energy and achieving a sustainable community.

  11. Perspectives of energy technologies: scenarios and strategies at the 2050 vista; Perspectives des technologies de l'energie: scenarios et strategies a l'horizon 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Every two years, the International Energy Agency (IEA) publishes the 'Energy Technology Perspectives' (ETP) report which analyses the foreseeable energy scenarios and strategies at the 2050 vista and stresses on the best available technologies. For the first time, the IEA describes in this study a scenario allowing to divide by two the CO{sub 2} emissions at the world scale, i.e. compatible with the 'factor 4' scenario of industrialized countries. The study estimates the R and D needs and the necessary additional investments to meet the different tendentious and voluntaristic scenarios proposed by the IEA. This 15. session of the cycle of energy-climate conferences aimed at presenting, from the ETP 2008 study, a thorough examination of the present day situation and perspectives of existing or future 'clean' energy technologies through the analysis of several scenarios. An examination of the interpretation of these scenarios at the France and European levels is made in order to define what should be the trends of public policies and international cooperation. This document gathers the transparencies of the two presentations given during this conference. The first presentation by Pieter Boot, Director of the Office of Sustainable Energy Policy and Technology of IEA, makes a synthesis of the ETP study and presents the recommendations of the agency. The second presentation by Olivier Appert, President of the French institute of petroleum (IFP), gives a counterpoint of the first presentation by considering the financing and acceptance aspects, in particular from the French point of view. Finally a debate with the audience completes the presentations. (J.S.)

  12. Danish Sector Guide for Calculation of the Actual Energy Consumption

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard

    2016-01-01

    , the innovation network for sustainable construction, InnoBYG started work on a Danish sector guide for the calculation of actual energy consumption in relation to upgrading of buildings. The focus was to make a common guide for energy calculations that can be used by consultants performing calculations...... consumption compared with the estimated energy demand by calculation. The paper concludes that the result of an energy calculation should not be given as a single figure but rather as a spread between the best and worst case for the assumed conditions. Finally, a brief update on current actions is given...... related to the sector guide for calculation of actual energy consumption. Keywords – Energy calculations, actual energy consumption, energy perfomance...

  13. Perspectives of energy technologies: scenarios and strategies at the 2050 vista

    International Nuclear Information System (INIS)

    2008-01-01

    Every two years, the International Energy Agency (IEA) publishes the 'Energy Technology Perspectives' (ETP) report which analyses the foreseeable energy scenarios and strategies at the 2050 vista and stresses on the best available technologies. For the first time, the IEA describes in this study a scenario allowing to divide by two the CO 2 emissions at the world scale, i.e. compatible with the 'factor 4' scenario of industrialized countries. The study estimates the R and D needs and the necessary additional investments to meet the different tendentious and voluntaristic scenarios proposed by the IEA. This 15. session of the cycle of energy-climate conferences aimed at presenting, from the ETP 2008 study, a thorough examination of the present day situation and perspectives of existing or future 'clean' energy technologies through the analysis of several scenarios. An examination of the interpretation of these scenarios at the France and European levels is made in order to define what should be the trends of public policies and international cooperation. This document gathers the transparencies of the two presentations given during this conference. The first presentation by Pieter Boot, Director of the Office of Sustainable Energy Policy and Technology of IEA, makes a synthesis of the ETP study and presents the recommendations of the agency. The second presentation by Olivier Appert, President of the French institute of petroleum (IFP), gives a counterpoint of the first presentation by considering the financing and acceptance aspects, in particular from the French point of view. Finally a debate with the audience completes the presentations. (J.S.)

  14. Online prediction of battery electric vehicle energy consumption

    NARCIS (Netherlands)

    Wang, Jiquan; Besselink, Igo; Nijmeijer, Henk

    2016-01-01

    The energy consumption of battery electric vehicles (BEVs) depends on a number of factors, such as vehicle characteristics, driving behavior, route information, traffic states and weather conditions. The variance of these factors and the correlation among each other make the energy consumption

  15. Scenarios in decision-making. An application to CO2 emission reduction strategies in passenger transport

    Energy Technology Data Exchange (ETDEWEB)

    Rienstra, S.A.; Vleugel, J.M; Nijkamp, P. [Department of Social Economics, Vrije Universiteit, Amsterdam (Netherlands)] Smokers, R.T.M. [ECN Policy Studies, Petten (Netherlands)

    1995-12-01

    The usefulness of scenarios for decision-makers is analyzed. First, a theoretical introduction to the scenario methodology is presented. Next, four energy scenarios for West-European passenger transport are developed. To start with, the present transport system as a baseline case is described and analysed. For each scenario it is outlined how the passenger transport system may look like in terms of the use of various existing and future transport technologies and the corresponding modal split. Expected energy consumption features of the various transport modes are described, data on the present fuel supply and electricity generation system are presented, as well as estimations of the future energy system. The energy consumption and CO2 emissions associated with the future passenger transport systems are assessed and these impacts are compared with the current system. The conclusion is that these scenarios provide interesting policy options for decision-makers. A large-scale reduction of CO2 emissions is possible in several ways, but each way will cause many problems, since drastic policy measures will have to be introduced, which may affect economic growth and the lifestyles of individuals. 5 figs., 11 tabs., 24 refs.

  16. A cultural model of household energy consumption

    International Nuclear Information System (INIS)

    Lutzenhiser, Loren

    1992-01-01

    In this paper, we consider the development of demand-side research, from an early interest in conservation behavior to a later focus on physical, economic, psychological and social models of energy consumption. Unfortunately, none of these models account satisfactorily for measured energy consumption in the residential sector. Growing interest in the end-uses of energy (e.g. in support of load forecasting, demand-side management and least-cost utility planning), increasing international studies of energy use, and continuing work in the energy and lifestyles research tradition now support an emerging cultural perspective on household energy use. The ecological foundations of the cultural model and its applications in energy research are discussed, along with some of the analytic consequences of this approach. (author)

  17. Urban Systems and Energy Consumptions: A Critical Approach

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available City transformations are also due to the development of new energy sources, which have influenced economy and lifestyles, as well as the physical and functional organization of urban systems. Cities are the key place where it is need to act for the achievement of strategic environmental objectives, such as reducing greenhouse gas emissions and energy saving. The hard resolution of these challenges depends on several factors: their multidimensional nature, the change of the economic and settlement development model, and also the complexity of the relationships between the elements that constitute the urban systems and that affect energy consumption. According to this awareness the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R & C Axis II, from 2012 to 2015 has been developed: it is aimed at supporting local authorities in the development of strategies for the reduction of energy consumption through actions designed to change behavior (in terms of use and energy consumption and to improve the energy efficiency of equipment and infrastructure. With the goal of describing some of the results of the methodological phase of this project, this paper proposes a review of the major studies on the issue of energy consumption at the urban scale in the first section; in the second section the outcomes of the first phase of the development of the comprehension/interpretive model related to the identification of the set of physical/environmental variables at urban scale, that most affect the energy consumption, are described; the third makes a critical review of the reference scientific literature, characterised by a too sectoral approach, compared to the complexity of the topic.

  18. An overview of energy consumption of the globalized world economy

    International Nuclear Information System (INIS)

    Chen, Z.M.; Chen, G.Q.

    2011-01-01

    For the globalized world economy with intensive international trade, an overview of energy consumption is presented by an embodied energy analysis to track both direct and indirect energy uses based on a systems input-output simulation. In 2004, the total amounts of energy embodied in household consumption, government consumption, and investment are 7749, 874, and 2009 Mtoe (million tons of oil equivalent), respectively. The United States is shown as the world's biggest embodied energy importer (683 Mtoe) and embodied energy surplus receiver (290 Mtoe), in contrast to China as the biggest exporter (662 Mtoe) and deficit receiver (274 Mtoe). Energy embodied in consumption per capita varies from 0.05 (Uganda) to 19.54 toe (Rest of North America). Based on a forecast for 2005-2035, China is to replace the United States as the world's leading embodied energy consumer in 2027, when its per capita energy consumption will be one quarter of that of the United States. - Highlights: → We present an overview of global energy profile in terms of embodied energy. → The US and China are top embodied energy consumers as well as traders in 2004. → Equality issue is studied by analyzing per capita embodied energy consumption. → The US remains to be the leading energy consumer until replaced by China in 2027.

  19. Price sensitivity of residential energy consumption in Norway

    International Nuclear Information System (INIS)

    Nesbakken, R.

    1999-01-01

    The main aim of this paper is to test the stability of the results of a model which focus on the relationship between the choice of heating equipment and the residential energy consumption. The results for the income and energy price variables are of special interest. Stability in the time dimension is tested by applying the model on micro data for each of the years 1993-1995. The parameter estimates are stable within a 95% confidence interval. However, the estimated impact of the energy price variable on energy consumption was considerably weaker in 1994 than in 1993 and 1995. The results for two different income groups in the pooled data set are also subject to stability testing. The energy price sensitivity in residential energy consumption is found to be higher for high-income households than for low-income households. 19 refs

  20. Global energy futures and human development: a framework for analysis

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    2001-01-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  1. Global energy futures and human development: a framework for analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, A.D. [Lawrence Livermore National Lab., CA (United States)

    2001-07-01

    This paper explores the relationship between measures of human well-being and consumption of energy and electricity. A correlation is shown between the United Nations Human Development Index (HDI) and annual per- capita electricity consumption for 60 populous countries comprising 90% of the world population. In this correlation, HDI reaches a maximum value when electricity consumption is about 4,000 kWh per person per year, well below consumption levels for most developed countries but also well above the level for developing countries. The correlation with electricity use is better than with total primary energy use. Global electricity consumption associated with a ''Human Development Scenario'' is estimated by adding to U.S. Department of Energy projections for the year 2020 increments of additional electricity consumption sufficient to reach 4,000 kWh per capita on a country-by-country basis. A roughly constant ratio of primary energy consumption to electric energy consumption is observed for countries with high levels of electricity use, and this ratio is used to estimate global primary energy consumption in the Human Development Scenario. The Human Development Scenario implies significantly greater global consumption of electricity and primary energy than do projections for 2020 by the DOE and others. (author)

  2. Grid of the Future: Quantification of Benefits from Flexible Energy Resources in Scenarios With Extra-High Penetration of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bebic, Jovan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Hinkle, Gene [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Matic, Slobodan [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting; Schmitt, William [General Electric International, Inc., Schenectady, NY (United States). Energy Consulting

    2015-01-15

    The main objective of this study is to quantify the entitlement for system benefits attainable by pervasive application of flexible energy resources in scenarios with extra-high penetration of renewable energy. The quantified benefits include savings in thermal energy and reduction of CO2 emissions. Both are primarily a result of displacement of conventional thermal generation by renewable energy production, but there are secondary improvements that arise from lowering operating reserves, removing transmission constraints, and by partially removing energy-delivery losses due to energy production by distributed solar. The flexible energy resources in the context of this study include energy storage and adjustable loads. The flexibility of both was constrained to a time horizon of one day. In case of energy storage this means that the state of charge is restored to the starting value at the end of each day, while for load this means that the daily energy consumed is maintained constant. The extra-high penetration of renewable energy in the context of this study means the level of penetration resulting in significant number of hours where instantaneous power output from renewable resources added to the power output from baseload nuclear fleet surpasses the instantaneous power consumption by the load.

  3. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  4. A panel study of nuclear energy consumption and economic growth

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.

    2010-01-01

    This study examines the relationship between nuclear energy consumption and economic growth for sixteen countries within a multivariate panel framework over the period 1980-2005. Pedroni's (1999, 2004) heterogeneous panel cointegration test reveals there is a long-run equilibrium relationship between real GDP, nuclear energy consumption, real gross fixed capital formation, and the labor force with the respective coefficients positive and statistically significant. The results of the panel vector error correction model finds bidirectional causality between nuclear energy consumption and economic growth in the short-run while unidirectional causality from nuclear energy consumption to economic growth in the long-run. Thus, the results provide support for the feedback hypothesis associated with the relationship between nuclear energy consumption and economic growth.

  5. Exploring the relationship between energy consumption and GDP: Evidence from Croatia

    International Nuclear Information System (INIS)

    Borozan, Djula

    2013-01-01

    The main purpose of this paper is to explore the relationship between total energy consumption and real gross domestic product (GDP) covering the period between 1992 and 2010 in Croatia. The methodology employed in this paper is based on the bivariate vector autoregression (VAR) and Granger causality tests. Moreover, the impulse response function and variance decomposition analysis are employed to trace the dynamic response paths of shocks to the system. The empirical analysis shows that, when it is allowed for any deterministic component in the data, total energy consumption and real GDP are not co-integrated in the period observed. Furthermore, there is a unidirectional causality running from total energy consumption to GDP, and an impulse response to GDP caused by energy consumption, being mainly embodied in the first years. The results indicate that total energy consumption is an important component determining economic growth in Croatia and that energy conservation policy should be formulated and implemented wisely. This paper also tests the causality between real GDP and consumption of the five energy variables by using the bivariate VAR. The main implication of these tests is that individual energy forms matter when it comes to energy policy formulation. - Highlights: • There is a unidirectional causality running from energy consumption to real GDP in Croatia. • There is an impulse response to real GDP caused by energy consumption, being mainly embodied in the first years. • Energy consumption is an important component determining economic growth. • Individual energy forms matter when it comes to energy policy formulation

  6. Global transportation scenarios in the multi-regional EFDA-TIMES energy model

    International Nuclear Information System (INIS)

    Muehlich, P.; Hamacher, T.

    2009-01-01

    The aim of this study is to assess the potential impact of the transportation sector on the role of fusion power in the energy system of the 21st century. Key indicators in this context are global passenger and freight transportation activities, consumption levels of fuels used for transportation purposes, the electricity generation mix and greenhouse gas emissions. These quantities are calculated by means of the global multi-regional EFDA-TIMES energy system model. For the present study a new transportation module has been linked to the EFDA-TIMES framework in order to arrive at a consistent projection of future transportation demands. Results are discussed implying various global energy scenarios including assumed crossovers of road transportation activities towards hydrogen or electricity infrastructures and atmospheric CO 2 concentration stabilization levels at 550 ppm and 450 ppm. Our results show that the penetration of fusion power plants is only slightly sensitive to transportation fuel choices but depends strongly on assumed climate policies. In the most stringent case considered here the contribution of electricity produced by fusion power plants can become as large as about 50% at the end of the 21st century. This statement, however, is still of preliminary nature as the EFDA-TIMES project has not yet reached a final status.

  7. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    Science.gov (United States)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  8. Analysis of effecting factors on domestic refrigerators’ energy consumption in use

    International Nuclear Information System (INIS)

    Geppert, Jasmin; Stamminger, Rainer

    2013-01-01

    Highlights: • Energy consumption of refrigerators is highly sensitive to operating conditions. • Ambient temperature has the highest impact on energy consumption of refrigerator. • There is a quadratic relationship between ambient temperature and energy use. • Compartment temperature and additional heat load have a lower impact on energy use. • Under moderate conditions, measured energy use closely match Energy Label values. - Abstract: In order to determine the sensitiveness of refrigerators’ energy consumption on various operational factors reflecting real life conditions, four different refrigerators were tested in laboratory using Box–Behnken design with three variables (ambient temperature, thermostat setting position and additional heat load by storing warm food) at three different levels. The investigations show that the energy consumption of refrigerators is highly sensitive to actual operational conditions. Daily energy consumption of one and the same appliance may vary between a few watt-hours and 2000 Wh and even more, dependent on the respective operational factors. Analysis of variance (ANOVA) reveals that ambient temperature is the most influential factor on the energy consumption of a refrigerator. Energy use is also affected, to a minor degree, by internal compartment temperature and additional heat load. Test results are presented and energy consumption data are compared with values shown on the European Energy Label. Results are discussed also with regard to the question as to whether or not the Energy Label and the associated test standard are appropriate to project actual energy consumption in use

  9. Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2015-01-01

    Highlights: • Urban energy consumption was assessed from three different perspectives. • A new concept called controlled energy was developed from network analysis. • Embodied energy and controlled energy consumption of Beijing were compared. • The integration of all three perspectives will elucidate sustainable energy use. - Abstract: Energy consumption has always been a central issue for sustainable urban assessment and planning. Different forms of energy analysis can provide various insights for energy policy making. This paper brought together three approaches for energy consumption accounting, i.e., energy flow analysis (EFA), input–output analysis (IOA) and ecological network analysis (ENA), and compared their different perspectives and the policy implications for urban energy use. Beijing was used to exemplify the different energy analysis processes, and the 42 economic sectors of the city were aggregated into seven components. It was determined that EFA quantifies both the primary and final energy consumption of the urban components by tracking the different types of fuel used by the urban economy. IOA accounts for the embodied energy consumption (direct and indirect) used to produce goods and services in the city, whereas the control analysis of ENA quantifies the specific embodied energy that is regulated by the activities within the city’s boundary. The network control analysis can also be applied to determining which economic sectors drive the energy consumption and to what extent these sectors are dependent on each other for energy. So-called “controlled energy” is a new concept that adds to the analysis of urban energy consumption, indicating the adjustable energy consumed by sectors. The integration of insights from all three accounting perspectives further our understanding of sustainable energy use in cities

  10. Predicting energy consumption and savings in the housing stock: A performance gap analysis in the Netherlands

    Directory of Open Access Journals (Sweden)

    Dasa Majcen

    2016-03-01

    Full Text Available Research methods  The research used several large datasets, about dwellings theoretical energy performance, most of which were related to energy label certificates. All the datasets containing theoretical performance were merged with actual energy data. In addition to that, some were also enriched with socioeconomic and behaviour related data from Statistics Netherlands (CBS or from surveys which were designed for the purpose of this research. Simple descriptive statistics were used to compare average theoretical and actual consumptions. Advanced statistical tests were used for detecting correlations, followed by several regression analyses. In a separate scenario study, the resulting averages of both theoretical and actual consumptions were extrapolated nation-wide in order to be compared with the existing policy targets. Due to low predictive power of the variables in regression analyses, a sensitivity analysis of the theoretical gas use was performed on six assumptions made in the theoretical calculation to show how an increment in one of the assumptions affects the final theoretical gas consumption and whether this can explain the performance gap. Last but not least, longitudinal data of the social housing dwelling stock between 2010 and 2013 was analysed, focusing on dwellings that had undergone renovation. The goal was to find out whether the theoretical reduction of consumption materialised and to what extent. A comparison of the actual reduction of different renovation measures was made in order to show what renovation practices lower the consumptions most effectively. The discrepancies between actual and theoretical heating energy consumption in Dutch dwellings. Discrepancies between theoretical and actual gas and electricity consumption On average, the total theoretical primary energy use seems to be in accordance with actual primary energy consumption but when looking at more detailed data, one can see that the contribution of gas to

  11. To dare nuclear energy to find the solution of the climate issue

    International Nuclear Information System (INIS)

    2014-01-01

    This report first briefly recalls the IPCC reference scenarios which allow the global temperature increase to be limited to 2 degrees (Representative Concentration Pathway 2.6), and rely on a massive CO 2 capture and storage. Two categories of scenarios have been proposed: IMAGE by the Netherlands Environmental Assessment Agency, and MESSAGE by the Austrian International Institute for Applied System Analysis. But only the MESSAGE category limits CO 2 storage to 24 billions of tons by means of a massive development of nuclear energy between 2060 and 2100 or of a drastic decrease of energy consumption. Each category comprises three scenarios: a Supply scenario which authorizes high energy consumption, an Efficiency scenario which is also a phasing out nuclear scenario with a 45 per cent reduction of energy consumption, and an intermediate Mix scenario. This study proposes nuclear variations of the Mix and Supply scenarios, with a strong development of nuclear energy from 2020 rather than from 2060, and with a share of 60 per cent for the nuclear energy. It is then possible to considerably reduce the role of CO 2 storage

  12. Energy consumption renewable energy development and environmental impact in Algeria - Trend for 2030

    Science.gov (United States)

    Sahnoune, F.; Imessad, K.; Bouakaz, D. M.

    2017-02-01

    The study provides a detailed analysis of the energy production and consumption in Algeria and the associated CO2 emissions. Algeria is an important energy producer (oil and natural gas). The production is currently around 155 MToe. The total primary energy consumption amounted to about 58 MToe equivalent to 1.46 Toe/capita. The energy demand is still increasing, an average annual growth rate of more than 6% per year during the last decade. The growth rate for electricity production was almost twice that of the total energy consumption. In 2015, the installed capacity of the electricity generation plants reached 17.6 GW. Electricity consumption was 64.6 TWh and is expected to reach at least 75 TWh in 2020 and 130 TWh in 2030. The already high electricity demand will double by 2030. In the structure of final energy consumption, the transport sector ranks first (36%), natural gas consumption ranks second (28.5%), followed by electricity production (27.7%). By activity, the energy sector is the main source of CO2 emissions, about ¾ of the total and this sector has the most important potential for mitigation measures. CO2 emissions from this energy sector amounted to 112.2 MT CO2 as follows: 33% transport, 31% electricity production and 26% from natural gas combustion for residential use. The integration of renewable sources in the energy mix represents for Algeria a major challenge. In 2015, Algeria adopted an ambitious program for development of renewable energy. The target is to achieve 22 GW capacity of electricity from renewable by 2030 to reach a rate of 27 % of national electricity generation through renewable sources. By implementing this program, CO2 emissions of power generation will be reduced by more than 18% in 2030.

  13. Understanding energy consumption: Beyond technology and economics

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, H.; Shove, E.

    1998-07-01

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  14. Evaluating solar energy profitability: A focus on the role of self-consumption

    International Nuclear Information System (INIS)

    Chiaroni, Davide; Chiesa, Vittorio; Colasanti, Lorenzo; Cucchiella, Federica; D’Adamo, Idiano; Frattini, Federico

    2014-01-01

    Highlights: • Investment profitability for realisation of PV facilities in Italy is analysed. • Self-consumption can support the economic sustainability of photovoltaic facilities. • A survey was conducted on 750 companies operating in various stages of supply chain. • The economic feasibility of PV investment is evaluated for systems of varying sizes. • The investments are located in two areas of the country to account for different levels of insolation. - Abstract: Renewable energies have a key role in defining an energy policy based on security, independence, and sustainability. The Italian market is characterised by the absence of support mechanisms for photovoltaic sources for electricity and by a high level of maturity in the energy market. Consequently, this paper contributes to, and advances, the debate concerning self-consumption that can support the economic sustainability of photovoltaic facilities. We constructed a database to conduct an analysis. A survey was conducted among 750 companies operating in various stages of the industry supply chain. The survey collected data related to industry turnover, profitability levels, profitability margins of the business areas and employee numbers. The economic feasibility of photovoltaic investment is evaluated for systems of varying sizes (3 kW, 20 kW, 200 kW, 400 kW, and 1 MW) located in two areas of the country to account for different levels of insolation (northern and southern regions). The indicators used are net present value (NPV) and discounted payback time (DPBT). A subsequent sensitivity and scenario analysis is conducted according to the share of self-consumption, investment costs, and financial structure to examine 210 case studies

  15. Influences Energy Consumption has on Green GDP Growth in China

    Science.gov (United States)

    Hongxian, Xie

    2018-02-01

    This paper examines the relationship between China’s total energy consumption growth and GGDP growth based on the data of 1997-2016. With path analysis employed, the direct and indirect influence on GGDP growth rate exerted by several energy consumption ratios as well as the relationship among them is explored. Furtherly, the author determines how much each of these ratios contributes to GGDP. This research suggests that proportion of natural gas consumption and that of other energy consumption are the two major drivers of GGDP growth, while coal and oil consumption proportion inhibits GGDP Growth. Specifically, increasing the proportion of natural gas consumption contributes the most to GGDP growth.

  16. Energy consumption of sport halls

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The energy consumption of Finland's sports halls (ball games halls, ice hockey halls and swimming halls) represent approximately 1% of that of the country's whole building stock. In the light of the facts revealed by the energy study the potential energy saving rate in sports halls is 15-25%. The total savings would be something like FIM 30-40 million per annum, of which about a half would be achieved without energy-economic investments only by changing utilization habits and by automatic control measures. The energy-economic investments are for the most part connected with ventilation and their repayment period is from one to five years. On the basis of the energy study the following specific consumption are presented as target values: swimming halls: heat (kWh/m*H3/a)100, electricity (kWh/m*H3/a)35, water (l/m*H3/a)1000 icehockey halls (warm): heat (kWh/m*H3/a)25, electricity (kWh/m*H3/a)15, water (l/m*H3/a)200, ball games halls (multi-purpose halls): heat (kWh/m*H3/a)30, electricity (kWh/m*H3/a)25, water (l/m*H3/a)130. In the study the following points proved to be the central areas of energy saving in sports halls: 1. Flexible regulation of the temperature in sports spaces on the basis of the sport in question. 2. The ventilation of swimming halls should be adjusted in such a way that the humidity of the hall air would comply with the limit humidity curve determined by the quality of structures and the temperature of the outdoor air. 3. An ice skating hall is an establishment producing condensing energy from 8 to 9 months a year worth of approx. 100.000-150.000 Finnmarks. The development of the recovery of condensing energy has become more important. 4. The ventilation of ball games halls may account for over 50% of the energy consumption of the whole building. Therefore special attention should be paid to the optimatization of ventilation as a whole.

  17. Occupant behavior and energy consumption in dwellings : An analysis of behavioral models and actual energy consumption in the dutch housing stock

    NARCIS (Netherlands)

    Bedir, M.

    2017-01-01

    Much is known about the increasing levels of energy consumption and environmental decay caused by the built environment. Also, more and more attention is shown to the energy consumption of dwellings, from the early design stage until the occupants start living in them. The increasing complexity of

  18. The potential for quantitative sociological research on residential energy consumption in Denmark

    DEFF Research Database (Denmark)

    Hansen, Anders Rhiger

    2013-01-01

    sociological analysis into energy consumption, enabling researchers in Denmark to use information on energy consumption derived from the energy-supply companies. Furthermore, I present a preliminary research design that employs both a quantitative sociological perspective and the newly available data on actual...... energy consumption. The research design contains a descriptive analysis of how energy demand differs between different types of households. In my conclusion, I claim that quantitative sociological research on energy consumption has great potential for obtaining more knowledge on energy consumption......In this paper, I begin with a description of how a sociological perspective can be employed to understand energy consumption while taking into account that energy consumption is embedded in everyday social practices. Next, I describe how newly available data enhances the potential of quantitative...

  19. Factor Analysis of Residential Energy Consumption at the Provincial Level in China

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2014-11-01

    Full Text Available This paper analyzes the differences in the amount and the structure of residential energy consumption at the provincial level in China and identifies the hidden factors behind such differences. The econometrical analysis reveals that population, economic development level, energy resource endowment and climatic conditions are the main factors driving residential energy consumption; while the regional differences in energy consumption per capita and the consumption structure can be mainly illustrated by various economic development levels, energy resource endowments and climatic conditions. Economic development level has a significant positive impact on the proportion of gasoline consumption, whereas its impact on the proportion of electricity consumption is not notable; energy resource endowment and climatic condition indirectly affect both the proportion of electricity consumption and that of gasoline consumption, primarily through their impacts on the proportions of coal consumption and heat consumption.

  20. Monitoring and optimization of energy consumption of base transceiver stations

    International Nuclear Information System (INIS)

    Spagnuolo, Antonio; Petraglia, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six BSs (Base Transceiver Stations) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy. - Highlights: • Energy consumption and environmental parameters of a base transceiver system have been monitored. • Energy consumption is related to the air conditioning functions and to the load of telephone traffic. • Energy saving can be obtained by careful choice of cooling parameters and by turn off BS transceivers. • Energy saving parameters can be estimated by a simulation Monte Carlo method

  1. An investigation on energy consumption trend in Japan. Transportation sector

    International Nuclear Information System (INIS)

    Suzuki, Takayoshi

    2005-08-01

    Although energy consumption in the industry sector has almost been stable, energy consumption in the transportation (passenger and freight) sector has increased much after the oil crisis. The increase of energy consumption in the passenger sector can be attributed to the increase in transportation by private passenger vehicles; while the increase in the freight sector was due to the modal shift to trucks. Among transportation methods, automobiles, i.e. passenger vehicles and trucks, are now dominant in terms of energy consumption and also in terms of amount of transportation. Therefore implementing energy conservation measures relating to automobiles is very important in order to suppress the energy consumption in the transportation sector. This report summarizes the results of investigation on energy conservation measures, especially relevant to automobiles. It was found from the investigation that most promising and effective technologies or measures are promoting market penetration of vehicles satisfying ''top runner standard'', development and employment of hybrid vehicles, and introduction of vehicles with ''idling-stop'' systems. (author)

  2. Energy Revolution. A Sustainable Pathway to a Clean Energy Future for Europe. A European Energy Scenario for EU-25

    International Nuclear Information System (INIS)

    Teske, S.; Baker, C.

    2005-09-01

    Greenpeace and the Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment of the German Aerospace Center (DLR),have developed a blueprint for the EU energy supply that shows how Europe can lead the way to a sustainable pathway to a clean energy future. The Greenpeace energy revolution scenario demonstrates that phasing out nuclear power and massively reducing CO2-emissions is possible. The scenario comes close to a fossil fuels phase-out by aiming for a 80% CO2 emissions reduction by 2050.The pathway in this scenario achieves this phase-out in a relatively short time-frame without using technological options (such as 'clean coal') that are ultimately dead ends, deflecting resources from the real solutions offered by renewable energy. Whilst there are many technical options that will allow us to meet short-term EU Kyoto targets (-8% GHG by 2010), these may have limited long-term potential. The Greenpeace Energy Revolution Scenario shows that in the long run, renewable energy will be cheaper than conventional energy sources and reduce EU's dependence from world market prices from imported fossil and nuclear fuels.The rapid growth of renewable energy technologies will lead to a large investment in new technologies.This dynamic market growth will result in a shift of employment opportunities from conventional energy-related industries to new occupational fields in the renewable energy industry. Renewable energy is expected to provide about 700,000 jobs in the field of electricity generation from renewable energy sources by 2010

  3. Global Energy-Economy-Environment (E3) Scenarios to 2050 and Beyond

    International Nuclear Information System (INIS)

    Schrattenholzer, L.

    2005-01-01

    The Environmentally Compatible Energy Strategies (ECS) Program at the International Institute for Applied Systems Analysis (IIASA) develops policy-relevant global and world-regional energy perspectives. The basic premise of the ECS's research program is a global trend of d ecarbonization . Firstly, decarbonization includes a trend toward ever-greater efficiency, or ever less waste, in society's use of energy resources. Secondly, it includes a trend towards less carbon-intensive fossil fuels (e.g., from coal toward natural gas) and, further, to non-fossil fuels, especially renewable energy carriers. Technological change is generally regarded as one of the key drivers of sustained economic growth. Long-term energy scenarios developed at IIASA and elsewhere show that, depending on key assumptions on drivers such as population, economic growth and technological development, global energy development can be environmentally unsustainable. First, energy development might not lead to stabilizing greenhouse concentrations and might thus have significant negative impacts on the global climate. In addition, some, especially coal-intensive, scenarios might lead to levels of acid deposition at which significant damage to sensitive ecosystems is expected to occur in Europe and, even more so, in Asia. A continuation of the observed historical long-term trends of decarbonization, dematerialization, and energy efficiency improvements might therefore not be sufficient to achieve sustainable growth. Targeted technological development aiming at accelerating decarbonization, dematerialization, and/or efficiency improvement may be one of the most effective means for reconciling economic growth with global environmental objectives. This might require a step-up in investments in R and D and in the demonstration of technologies so as to stimulate both learning-by-searching and learning-by-doing. In this presentation, global E3 scenarios will be summarized in the following three groups: Non

  4. Analysis of global warming stabilization scenarios. The Asian-Pacific Integrated Model

    International Nuclear Information System (INIS)

    Kainuma, Mikiko; Morita, Tsuneyuki; Masui, Toshihiko; Takahashi, Kiyoshi; Matsuoka, Yuzuru

    2004-01-01

    This paper analyzes the economic and climatic impacts of the EMF 19 emission scenarios. A reference scenario, three emission scenarios targeting 550 ppmv atmospheric concentration, and three tax scenarios are analyzed. The profiles of energy consumption and economic losses of each policy scenario are compared to the reference scenario. The model also estimates that global mean temperature will increase 1.7-2.9 C in 2100, and the sea level will rise 40-51 cm, compared to the 1990 levels under the EMF scenarios. Impacts on food productivity and malaria infection are estimated to be very severe in some countries in the Asian region

  5. Circadian rhythm of energy expenditure and oxygen consumption.

    Science.gov (United States)

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  6. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  7. Comparing long term energy scenarios

    International Nuclear Information System (INIS)

    Cumo, M.; Simbolotti, G.

    2001-01-01

    Major projection studies by international organizations and senior analysts have been compared with reference to individual key parameters (population, energy demand/supply, resources, technology, emissions and global warming) to understand trends and implications of the different scenarios. Then, looking at the long term (i.e., 2050 and beyond), parameters and trends have been compared together to understand and quantify whether and when possible crisis or market turbulence might occur due to shortage of resources or environmental problems [it

  8. Energy scenarios for the nordic region towards 2035

    Energy Technology Data Exchange (ETDEWEB)

    Fidje, Audun

    2008-07-01

    This report summarizes the assumptions, methodology and main results of the MARKAL analysis of options for a sustainable energy future in the Nordic region. The work is based on the Nordic MARKAL model, which has been modified such that it may be used to analyse a large number of scenarios, typically 500 to 5000. The scenarios are developed by analysis a set of strategies and uncertainties. All these strategies and uncertainties are combined such that we generate in total 1 152 scenarios. The main purpose of generating a large number of scenarios was to facilitate for multi-criteria trade-off analysis. Overall results from this analysis show that large reductions of CO{sub 2} emissions are possible at CO{sub 2} cost below 50 EUR/t CO{sub 2} (author)

  9. Negawatt / Negatep, the cost of energy transition

    International Nuclear Information System (INIS)

    Acket, Claude; Bacher, Pierre

    2013-01-01

    Within the debate on energy transition, the Negawatt scenario predicts a strong decrease of final consumption and the end of the nuclear, whereas the Negatep scenario predicts a moderate decrease of consumption, more nuclear energy to face the challenges of low-carbon energy. Independently of the technical feasibility and social acceptance of these both opposite scenarios, this study proposes a comparative economic assessment for each expense and saving of these scenarios in different sectors (housing insulation, infrastructure works for transports, renewable heat, non-intermittent and intermittent energy, nuclear energy, biomass-based fuels, and fossil fuels). This comparison is based on two reference evolutions: a status quo (the energy situation remains the same) and 'business as usual' (growth continuity). Negawatt appears to be less expensive, but would imply a socially dangerous deterioration

  10. Exploring drivers of energy demand in Cyprus – Scenarios and policy options

    International Nuclear Information System (INIS)

    Zachariadis, Theodoros; Taibi, Emanuele

    2015-01-01

    This paper describes a new set of energy demand forecasts for the Republic of Cyprus up to the year 2040, which have been developed in support of the renewable energy roadmap that was prepared for national authorities by the International Renewable Energy Agency. The analysis takes into account national end-use data from the residential and tertiary sector that had not been exploited up to now. Four final energy demand scenarios with diverging assumptions were defined in this study, offering a wide range of possible outcomes up to 2040; in addition, four alternative scenarios were applied for sensitivity analysis. Two of these scenarios can be regarded as those continuing the trends of the recent past in Cyprus (prior to the economic and financial downturn of years 2011–2014). However, a more rigorous implementation of energy efficiency measures in buildings and transport, as defined in the fourth scenario of this study, is also realistic; despite its potential costs, it might allow Cyprus both to decrease its carbon emissions in line with the long-term EU decarbonisation targets, and to reduce its dependence on fossil fuels, thereby promoting energy efficiency as an important climate change adaptation measure. - Highlights: • Energy demand forecasts for the Republic of Cyprus up to the year 2040 are presented. • Study in the frame of renewable energy roadmap for Cyprus supported by IRENA. • Four scenarios considered, some allowing for breaks with past trends of energy use. • Rigorous implementation of energy efficiency measures is realistic. • Strong energy savings required in line with EU decarbonisation targets.

  11. A 'must-go path' scenario for sustainable development and the role of nuclear energy in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Yong; Kim, Young-In; Lee, Yong-Bum; Ha, Kwi-Seok; Won, Byung-Chool; Lee, Dong-Uk; Hahn, Dohee [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea)

    2010-04-15

    An increase in the world population has accelerated the consumption of fossil fuels and deepened the pollution of global environment. As a result of these human activities, it is now difficult to clearly guarantee the sustainable future of humankind. An intuitional 'must-go path' scenario for the sustainable development of human civilization is proposed by extrapolating the human historical data over 30 years between 1970 and 2000. One of the most important parameters in order to realize the 'must-go path' scenario is the sustainability of energy without further pollution. In some countries an expanded use of nuclear energy is advantageous to increase sustainability, but fast reactor technology and closed fuel cycle have to be introduced to make it sustainable. In other countries, the development of cost-effective renewable energy, and the clean use of coal and oil are urgently needed to reduce pollution. The effect of fast nuclear reactor technology on sustainability as an option for near-term energy source is detailed in this paper. More cooperation between countries and worldwide collaboration coordinated by international organizations are essential to make the 'must-go path' scenario real in the upcoming 20 or 30 years. (author)

  12. Greek long-term energy consumption prediction using artificial neural networks

    International Nuclear Information System (INIS)

    Ekonomou, L.

    2010-01-01

    In this paper artificial neural networks (ANN) are addressed in order the Greek long-term energy consumption to be predicted. The multilayer perceptron model (MLP) has been used for this purpose by testing several possible architectures in order to be selected the one with the best generalizing ability. Actual recorded input and output data that influence long-term energy consumption were used in the training, validation and testing process. The developed ANN model is used for the prediction of 2005-2008, 2010, 2012 and 2015 Greek energy consumption. The produced ANN results for years 2005-2008 were compared with the results produced by a linear regression method, a support vector machine method and with real energy consumption records showing a great accuracy. The proposed approach can be useful in the effective implementation of energy policies, since accurate predictions of energy consumption affect the capital investment, the environmental quality, the revenue analysis, the market research management, while conserve at the same time the supply security. Furthermore it constitutes an accurate tool for the Greek long-term energy consumption prediction problem, which up today has not been faced effectively.

  13. Mathematical modeling of the energy consumption of heated swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Le Bel, C.; Millette, J. [LTE Shawinigan, Shawinigan, PQ (Canada)

    2007-07-01

    A mathematical model was developed to estimate the water temperature of a residential swimming pool. The model can compare 2 different situations and, if local climatic conditions are known, it can accurately predict energy costs of the pool relative to the total energy consumption of the house. When used with the appropriate energy transfer coefficient and weather file, the model can estimate the water temperature of a residential swimming pool having specific characteristics, such as in-ground, above-ground, heated or non-heated. The model is suitable for determining residential loads. It can be applied to different pool types and sizes, for different water heating scenarios and different climatic regions. Data obtained from the monitoring of water temperature and electricity use of 57 residential swimming pools was used to validate the model. In addition, 5 above-ground pools were installed on the property of LTE Shawinigan to allow for a more detailed study of the parameters involved in the thermal balance of a pool. The mathematical model, based on a global heat transfer coefficient, can determine the effect of a solar blanket and the effect of water volume. 14 refs., 5 tabs., 11 figs.

  14. A social capital approach to household energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, Megan [School of Construction Management and Engineering, The Univ. of Reading (United Kingdom)

    2007-07-01

    This paper examines the concept of social capital in relation to household energy consumption in an effort to further understand social influences on energy use in the United Kingdom. The considerable focus on building science and technology notwithstanding, it is widely recognised that social factors influence energy use at the household level. Much of the research on changing behaviour has focused on influencing individual actions. Whilst promoting changes in individual behaviour is important, social level analysis provides a broader framework for understanding householder energy use. Social capital broadly refers to the social resources available through networks, social norms and associated levels of trust and reciprocity. The literature of energy, in the form of environmental protection and consumption, is investigated here with regards to social capital to determine the utility of any theoretical and empirical relationship. It is argued that insights from the associations of social and energy consumption can assist energy efficiency practitioners and researchers in understanding the broader social framework that underpins household energy use, but that more robust empirical research is necessary.

  15. Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network

    International Nuclear Information System (INIS)

    Zeng, Yu-Rong; Zeng, Yi; Choi, Beomjin; Wang, Lin

    2017-01-01

    Reliable energy consumption forecasting can provide effective decision-making support for planning development strategies to energy enterprises and for establishing national energy policies. Accordingly, the present study aims to apply a hybrid intelligent approach named ADE–BPNN, the back-propagation neural network (BPNN) model supported by an adaptive differential evolution algorithm, to estimate energy consumption. Most often, energy consumption is influenced by socioeconomic factors. The proposed hybrid model incorporates gross domestic product, population, import, and export data as inputs. An improved differential evolution with adaptive mutation and crossover is utilized to find appropriate global initial connection weights and thresholds to enhance the forecasting performance of the BPNN. A comparative example and two extended examples are utilized to validate the applicability and accuracy of the proposed ADE–BPNN model. Errors of the test data sets indicate that the ADE–BPNN model can effectively predict energy consumption compared with the traditional back-propagation neural network model and other popular existing models. Moreover, mean impact value based analysis is conducted for electrical energy consumption in U.S. and total energy consumption forecasting in China to quantitatively explore the relative importance of each input variable for the improvement of effective energy consumption prediction. - Highlights: • Enhanced back-propagation neural network (ADE-BPNN) for energy consumption forecasting. • ADE-BPNN outperforms the current best models for two comparative cases. • Mean impact value approach explores socio-economic factors' relative importance. • ADE-BPNN's adjusted goodness-of-fit is 99.2% for China's energy consumption forecasting.

  16. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  17. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  18. Energy consumption and economic development

    International Nuclear Information System (INIS)

    Tremblay, M.T.

    1994-01-01

    Speaking as an economic planner, the author of this address suggests a scenario that is rather pessimistic for the future of nuclear energy. He emphasizes that technological change will lead to economic growth, but then supposes that improvements in hydrogen energy and solar energy, combined with global competition, may lead to a fall rather than an increase in oil prices early in the next century. The 10 year lead time for bringing a nuclear station from design to commissioning makes it difficult to predict the economics of operation

  19. Energy perspectives of the France by 2020-2050. Energy scenario; Perspectives energetiques de la France a l'horizon 2020-2050. Scenarios energetiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    The aim of the working group was to realize quantitative approaches of the french energy system by 2020-2050 supporting the reflexions of the Energy Commission. The presented scenario are not prevision of the future. They just allow, in function of the hypothesis and the models used, to establish an approach of the consequences in term of the final energy demand. Two simulation tools were used and described in the chapter 3: Medpro-Poles and Markal-Times. The scenario are analyzed in the chapters 4 and 5. Results allow to see how the proposed measures are sufficient to reach in France the main objectives proposed by the european union. (A.L.B.)

  20. Regional final energy consumptions

    International Nuclear Information System (INIS)

    2011-01-01

    This report comments the differences observed between the French regions and also between these regions and national data in terms of final energy consumption per inhabitant, per GDP unit, and per sector (housing and office building, transport, industry, agriculture). It also comments the evolutions during the last decades, identifies the most recent trends

  1. Present and future energy consumption for passenger transportation in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, M.; Wolffram, U.

    1981-01-01

    Passenger transportation in Germany was investigated in order to determine real energy consumption. For typical passengers, energy consumption for overland travel and charter flights was studied. The energy needed for air traffic was compared with that for transportation overland (railway, car, bus), taking into account transportation to the airport or railway station. Transportation makes up about 17% of German primary energy consumption, i.e., road traffic 14%, railway traffic 1.6%, and air traffic 1%. Specific energy consumption (overland travel) of intercity trains, airplanes and cars is in the proportion 1.0 to 3.7 to 4.0 (1980) and is expected to be 1 to 2.4 to 3.1 by the year 2000. For holiday trips, specific energy consumption for bus, train, car and airplane travel is in the proportion 1.0 to 1.4 to 3.6 to 3.4 (1980) and is expected to be 1 to 1.4 to 2.5 to 2.9 by 2000. (ESA)

  2. Energy consumption and economic growth—New evidence from meta analysis

    International Nuclear Information System (INIS)

    Chen, Ping-Yu; Chen, Sheng-Tung; Chen, Chi-Chung

    2012-01-01

    The causal relationships between energy consumption and economic growth have given rise to much discussion but remain controversial. Alternative data sets based on different time spans, countries, energy policies and econometric approaches result in diverse outcomes. A meta analysis using a multinomial logit model with 174 samples governing the relationships between GDP and energy consumption is applied here to investigate the major factors that affect these controversial outcomes. The empirical results have demonstrated how the time spans, subject selections including GDP and energy consumption, econometric models, and tools for greenhouse gases emission reduction characteristics significantly affect these controversial outcomes. - Highlights: ► The controversial casual relationships between energy consumption and GDP are investigated. ► A meta analysis using a multinomial logit model is adopted. ► 74 studies governing the relationships between GDP and energy consumption was collected. ► The empirical results show how the probability of major factors affects such relationships.

  3. Psychological strategies to reduce energy consumption: project summary report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L J; Seligman, C; Darley, J M

    1979-06-30

    This report reviews the research conducted in connection with a project to apply psychological theory and procedures to the problems of encouraging residential energy conservation. A major part of the project involved surveys of residents' energy-related attitudes. The best (and only consistent) attitudinal predictor of residents' actual energy consumption was their attitude about thermal comfort. A number of other attitudes that could conceivably have been related to consumption, such as attitudes about the reality of the crisis, were not found to be related to consumption. Another major focus of the project was on the effectiveness of feedback (that is, giving residents information about their energy use) as an aid to residents' conservation efforts. A series of experiments demonstrated that frequent, credible energy-consumption feedback, coupled with encouragement to adopt a reasonable but difficult energy-conservation goal, could facilitate conservation. However, these studies also demonstrated that residents could not be given just any kind of information about their energy use as feedback and that even proper feedback would not lead to conservation in all households. Conditions that are crucial for the success of feedback as a conservation aid are discussed. Other studies conducted by the project looked at the effect on energy consumption of (1) a device to reduce air-conditioning waste by signalling when it is cool outside, (2) an automatic multi-setback thermostat, and (3) utility companies' average payment plans. A survey of residents' knowledge of their energy use also was conducted. 23 references.

  4. Low-energy-consumption hybrid lasers for silicon photonics

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Ran, Qijiang; Mørk, Jesper

    2012-01-01

    Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed.......Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed....

  5. On the relationship between GDP and energy consumption

    International Nuclear Information System (INIS)

    Sudarsono, B.

    1978-01-01

    The validity of a coupling between the growth in GDP and the growth in energy consumption is reviewed and its importance is discussed. The usefulness of a GDP energy consumption relationship for energy projections is investigated with particular reference to the case of Indonesia. A particular form of such a relationship is obtained for Indonesia with income elasticity decreasing as a function of time and its use is compared with other results. (author)

  6. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  7. Modeling temporal variations in global residential energy consumption and pollutant emissions

    International Nuclear Information System (INIS)

    Chen, Han; Huang, Ye; Shen, Huizhong; Chen, Yilin; Ru, Muye; Chen, Yuanchen; Lin, Nan; Su, Shu; Zhuo, Shaojie; Zhong, Qirui; Wang, Xilong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2016-01-01

    Highlights: • Space-for-time substitution was tested for seasonality of residential energy. • Regression models were developed to simulate global residential energy consumption. • Factors affecting the temporal trend in residential energy use were identified. • Climate warming will induce changes in residential energy use and emissions. - Abstract: Energy data are often reported on an annual basis. To address the climate and health impacts of greenhouse gases and air pollutants, seasonally resolved emissions inventories are needed. The seasonality of energy consumption is most affected by consumption in the residential sector. In this study, a set of regression models were developed based on temperature-related variables and a series of socioeconomic parameters to quantify global electricity and fuel consumption for the residential sector. The models were evaluated against observations and applied to simulate monthly changes in residential energy consumption and the resultant emissions of air pollutants. Changes in energy consumption are strongly affected by economic prosperity and population growth. Climate change, electricity prices, and urbanization also affect energy use. Climate warming will cause a net increase in electricity consumption and a decrease in fuel consumption by the residential sector. Consequently, emissions of CO_2, SO_2, and Hg are predicted to decrease, while emissions of incomplete combustion products are expected to increase. These changes vary regionally.

  8. ADEME energy transition scenarios. Summary including a macro-economic evaluation 2030 2050

    International Nuclear Information System (INIS)

    2014-05-01

    ADEME, the French Environment and Energy Management Agency, is a public agency reporting to the Ministry of Ecology, Sustainable Development and Energy and the Ministry of Higher Education and Research. In 2012 the agency drew up a long-term scenario entitled 'ADEME Energy Transition Scenarios 2030-2050'. This document presents a summary of the report. The full version can be viewed online on the ADEME web site. With this work ADEME offers a proactive energy vision for all stakeholders - experts, the general public, decision-makers, etc. - focusing on two main areas of expertise: managing energy conservation and developing renewable energy production using proven or demonstration-phase technologies. These scenarios identify a possible pathway for the energy transition in France. They are based on two time horizons and two separate methodologies. One projection, applicable from the present day, seeks to maximise potential energy savings and renewable energy production in an ambitious but realistic manner, up to 2030. The second exercise is a normative scenario that targets a fourfold reduction in greenhouse gas emissions generated in France by 2050, compared to 1990 levels. The analysis presented in this document is primarily based on an exploration of different scenarios that allow for the achievement of ambitious energy and environmental targets under technically, economically and socially feasible conditions. This analysis is supplemented by a macro-economic analysis. These projections, particularly for 2030, do not rely on radical changes in lifestyle, lower comfort levels or hypothetical major technological breakthroughs. They show that by using technologies and organisational changes that are currently within our reach, we have the means to achieve these long-term goals. The scenarios are based on assumptions of significant growth, both economic (1.8% per year) and demographic (0.4% a year). The 2050 scenario shows that with sustained growth, a

  9. Energy and quality of life

    International Nuclear Information System (INIS)

    Pasten, Cesar; Santamarina, Juan Carlos

    2012-01-01

    Energy is required to sustain life. A human-centered analysis of the worldwide energy situation is conducted in terms of quality of life-related variables that are affected, but not directly determined, by energy consumption. Data since 1980 show a continuous global increase in both energy consumption and quality of life, and lower population growth in countries with higher quality of life. Based on these trends, we advance non-linear energy consumption predictions and identify various plausible scenarios to optimally steer future energy demands, in order to maximize quality of life. The scenarios consider the coupling between energy consumption rate per capita, quality of life, population growth, social inequality, and governments’ energy-for-life efficiency. The results show the energy cost of increasing quality of life in the developing world, energy savings that can be realized by limiting overconsumption without impacting quality of life, and the role of governments on increasing energy-for-life efficiency and reducing social inequality. - Highlights: ► Energy consumption is inherently coupled to quality of life and population growth. ► Limiting overconsumption can keep 2040 energy consumption at 2010 levels. ► Restricting population growth has a minor effect on future energy demand. ► Social inequality reduction increases quality of life with a minor energy use. ► Increasing energy-for-life efficiency can keep 2040 energy use at 2010 levels.

  10. Energy Awareness Displays - Prototype for personalised energy consumption feedback

    NARCIS (Netherlands)

    Börner, Dirk; Storm, Jeroen; Kalz, Marco; Specht, Marcus

    2012-01-01

    Börner, D., Storm, J., Kalz, M., & Specht, M. (2012). Energy Awareness Displays - Prototype for personalised energy consumption feedback. In A. Ravencroft, S. Lindstaedt, C. D. Kloos, & D. Hernández-Leo (Eds.), 21st Century Learning for 21st Century Skills - 7th European Conference on Technology

  11. Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Masłoń Adam

    2017-01-01

    Full Text Available Wastewater treatment plants can be classified as energy-intensive facilities, as they account for up to 35 percent of municipal energy consumption. Pumps and aeration systems consume a significant portion of energy within the wastewater plants in particular. The cost of energy consumption for wastewater treatment processes reaches up to 40% of the total operating cost. In case of the WWTPs with the activated sludge systems, about 50% of energy is used for aeration and mixing purposes. At WWTPs, energy consumption is often correlated with the magnitude and type of pollutant load, which can influence the treatment methods and technologies used in the WWTP. In many cases wastewater treatment plants are operated without optimized measures for process optimization. A detailed study of the energy consumption should be executed in order to determine the optimization potential. This paper presents the energy consumption in municipal wastewater treatment plant in Rzeszów (Poland. In the year 2016, parameters of raw and treated wastewater were tested. The data related to energy consumption in plants allowed us to determine the energy intensity coefficients. Total consumption was measured. Indicators of energy consumption per cubic meter and removed load were calculated.

  12. Scenario-based analyses of energy system development and its environmental implications in Thailand

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Malla, Sunil; Liyanage, Migara H.

    2007-01-01

    Thailand is one of the fastest growing energy-intensive economies in Southeast Asia. To formulate sound energy policies in the country, it is important to understand the impact of energy use on the environment over the long-period. This study examines energy system development and its associated greenhouse gas and local air pollutant emissions under four scenarios in Thailand through the year 2050. The four scenarios involve different growth paths for economy, population, energy efficiency and penetration of renewable energy technologies. The paper assesses the changes in primary energy supply mix, sector-wise final energy demand, energy import dependency and CO 2 , SO 2 and NO x emissions under four scenarios using end-use based Asia-Pacific Integrated Assessment Model (AIM/Enduse) of Thailand. (author)

  13. Analysis of Home Energy Consumption by K-Mean

    Directory of Open Access Journals (Sweden)

    Fahad Razaque

    2017-10-01

    Full Text Available The smart meter offered exceptional chances to well comprehend energy consumption manners in which quantity of data being generated. One request was the separation of energy load-profiles into clusters of related conduct. The Research measured the resemblance between groups them together and load-profiles into clusters by k-means clustering algorithm. The cluster met, also called “Gender (Male/Female, House (Rented/Owned and customers status (Satisfied/Unsatisfied” display methods of consuming energy. It provided value information aimed at utilities to generate specific electricity charges and healthier aim energy efficiency programs. The results show that 43% extremely dissatisfied of energy customer is achieved by using energy consumption.

  14. The analysis of energy consumption of a commercial building in Tianjin, China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m 2 per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  15. Optimization of Photovoltaic Self-consumption using Domestic Hot Water Systems

    Directory of Open Access Journals (Sweden)

    Ângelo Casaleiro

    2018-06-01

    Full Text Available Electrified domestic hot water systems, being deferrable loads, are an important demand side management tool and thus have the potential to enhance photovoltaic self-consumption. This study addresses the energy and economic performance of photovoltaic self-consumption by using a typical Portuguese dwelling. Five system configurations were simulated: a gas boiler (with/without battery and an electric boiler (without demand management and with genetic and heuristic optimization. A sensitivity analysis on photovoltaic capacity shows the optimum photovoltaic sizing to be in the range 1.0 to 2.5 kWp. The gas boiler scenario and the heuristic scenario present the best levelized cost of energy, respectively, for the lower and higher photovoltaic capacities. The use of a battery shows the highest levelized cost of energy and the heuristic scenario shows the highest solar fraction (56.9%. Results also highlight the great potential on increasing photovoltaic size when coupled with electrified domestic hot water systems, to accommodate higher solar fractions and achieve lower costs, through energy management.

  16. Adapting for uncertainty : a scenario analysis of U.S. technology energy futures

    International Nuclear Information System (INIS)

    Laitner, J.A.; Hanson, D.A.; Mintzner, I.; Leonard, J.A.

    2006-01-01

    The pattern of future evolution for United States (US) energy markets is highly uncertain at this time. This article provided details of a study using a scenario analysis technique to investigate key energy issues affecting decision-making processes in the United States. Four scenarios were used to examine the driving forces and critical uncertainties that may shape United States energy markets and the economy for the next 50 years: (1) a reference scenario benchmarked to the 2002 annual energy outlook forecast, (2) abundant and inexpensive supplies of oil and gas, (3) a chaotic future beset with international conflict, faltering new technologies, environmental policy difficulties and slowed economic growth, and (4) a technology-driven market in which a variety of forces converge to reshape the energy sector. Each of the scenarios was quantified using a computable general equilibrium model known as the All Modular Industry Growth Assessment (AMIGA) model. Results suggested that the range of different outcomes for the US is broad. However, energy use is expected to increase in all 4 scenarios. It was observed that the introduction of policies to encourage capital stock turnover and accelerate the commercialization of high efficiency, low-emissions technologies may reduce future primary energy demand. The analysis also showed that lower energy prices may lead to higher economic growth. Policies introduced to improve energy efficiency and accelerate the introduction of new technologies did not appreciably reduce the prospects for economic growth. Results also suggested that lower fossil fuel prices discourage investments in energy efficiency or new technologies and may mask the task of responding to future surprises. It was concluded that an investment path that emphasizes both energy efficiency improvements and advanced energy supply technologies will provide economic growth conditions similar to the implementation of lower energy prices. 11 refs., 1 tab., 2 figs

  17. Tables of energies consumption in France

    International Nuclear Information System (INIS)

    1999-08-01

    This short paper presents the evolution of the energy consumption by sector (industry, domestic, tertiary industry, transports, agriculture and all sectors together), since 1973. It gives an abstract of a more complete book: tableaux des consommations d'energie en France; edition 1999. (A.L.B.)

  18. Influence of Occupants’ Behaviour on the Energy Consumption of Domestic Buildings

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Simonsen, A.

    2010-01-01

    The present work undertakes a theoretical and empirical study of the influence of occupants’ behaviour on energy consumption of domestic buildings. The calculated energy consumption of a number of almost identical domestic buildings in Denmark is compared with the measured energy consumption...

  19. Prediction of electric energy consumption in Cuba for the period 2000-2015; Pronostico del consumo de electricidad en Cuba durante el periodo 2000-2015

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodirguez, B [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    1999-06-01

    This paper consists on a prediction of the growth in electric energy consumption in Cuba, for the period 2000-2015 and with respect to 1990, it also considers the specific features of the National Electroenergetic System. Validated Guidelines in accordance with the Delphi method, which incorporates the basis characteristics considered by international programs for these predictions, were used for this purpose. From the analysis of the behaviour in power consumption of the different consumers and of the expected changes in them according to the expected scenarios, a prediction on the growth in the demand of electric energy is made.

  20. Energy technology perspectives: scenarios and strategies to 2050 [Russian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  1. Shell energy scenarios to 2050. Signals and Signposts. An era of volatile transitions

    International Nuclear Information System (INIS)

    2011-01-01

    For 40 years, Shell has drawn on its scenarios to enhance business decisions and its ability to respond to change. Our most recent scenarios also contributed positively to the global public debate on energy and the environment. But the financial crash, the deepest economic slump in 70 years, and a patchy and fragile recovery have changed the world dramatically. We must consider how these events may or may not have altered our energy outlooks. Signals and Signposts offers our best understanding about the changes brought by the global financial and economic crisis. Internally, we have been using Recession and Recovery scenarios since September 2008. The two outlooks (Severe-yet-Sharp and Deeper-and-Longer) have, so far, bracketed actual developments. We have also drawn on a supplementary but unlikely scenario, Depression 2.0. These scenarios continue to provide useful insights and we draw on them in this booklet. Despite the economic turbulence, the fundamental drivers and uncertainties explored in our Shell Energy Scenarios to 2050 remain fully relevant. Signals and Signposts highlights significant additional factors and should be read as a companion to our Scramble and Blueprints energy scenarios, which can be downloaded from www.shell.com/scenarios. An overview is in the Appendix.

  2. Energy consumption and information transmission in model neurons

    International Nuclear Information System (INIS)

    Torrealdea, Francisco J.; Sarasola, Cecilia; D'Anjou, Alicia

    2009-01-01

    This work deals with the problem of whether biological computation optimizes energy use in the way neurons communicate. By assigning an electrical energy function to a Hindmarsh-Rose neuron we are able to find its average energy consumption when it reacts to incoming signals sent by another neuron coupled to it by an electrical synapse. We find that there are values of the coupling strength at which the ratio of mutual information to energy consumption is maximum and, therefore, communicating at these coupling values would be energetically the most efficient option.

  3. Energy consumption and information transmission in model neurons

    Energy Technology Data Exchange (ETDEWEB)

    Torrealdea, Francisco J. [Department of Computer Science, University of the Basque Country, 20018 San Sebastian (Spain)], E-mail: francisco.torrealdea@ehu.es; Sarasola, Cecilia [Department of Physics of Materials, University of the Basque Country, 20018 San Sebastian (Spain); D' Anjou, Alicia [Department of Computer Science, University of the Basque Country, 20018 San Sebastian (Spain)

    2009-04-15

    This work deals with the problem of whether biological computation optimizes energy use in the way neurons communicate. By assigning an electrical energy function to a Hindmarsh-Rose neuron we are able to find its average energy consumption when it reacts to incoming signals sent by another neuron coupled to it by an electrical synapse. We find that there are values of the coupling strength at which the ratio of mutual information to energy consumption is maximum and, therefore, communicating at these coupling values would be energetically the most efficient option.

  4. Scenarios of energy sobriety and societal transformations. When lifestyle and society changes mean energy savings

    International Nuclear Information System (INIS)

    2013-09-01

    By using prospective energy scenarios, the objective of this study performed in the Nord-Pas-de-Calais region is to quantify energy savings induced by possible public policies or by lifestyle changes, and then to use the obtained results as tools of support to public decision, and means to make people aware of the end of an abundant and cheap oil, of the potential of solar energy, and of the benefits of energy sobriety. Four scenarios are thus defined. The first one concerns food habits, and corresponds to a more biological production, seasonal and less transformed foodstuffs, more vegetal plates, and reduced distances between producers and consumers. The second one concerns material goods: evolution towards more mutualization, re-use, and durability of products, and a reduced usage of equipment. The third one concerns buildings: the end of individual equipment and of always increasing surfaces, a modulated comfort depending on the room, and more collective organisations. The last scenario concerns displacements: less frequent displacements, shorter distances, use of soft modes, smaller vehicles, and energy saving in the use of vehicles

  5. New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Kowalski, Katharina; Stagl, Sigrid

    2007-01-01

    Increasing the contribution of renewable energy sources in heat and electricity production is a nationally and internationally acknowledged aim for sustainable development. In this context, the participatory development and appraisal of energy scenarios can be useful for enabling stakeholders to explore future energy options and for supporting the national policy discourse. The five renewable energy scenarios considered refer to Austria in the year 2020. The innovative methodology applied, which was developed as part of the ARTEMIS project, examines possible energy futures paths by combining (1) scenario development; (2) multi-criteria evaluation; and (3) a participatory process with stakeholders and energy experts on the national level. Economic, social, environmental and technological impacts as well as revealed social preferences are used for the ranking of the scenarios. Due to the paramount importance of bioenergy in Austria, special emphasis in the scenario development is put on the contribution of biomass. Two main bioenergy issues and their consideration in the ARTEMIS project are explicitly addressed in this paper: the cascadic utilisation of biomass resources and the demand for land area and land area conflicts. Overall, we demonstrate how the methodology can be applied in practice and what insights policy-makers can gain from it. We also explore the methodology's limitations, especially regarding the effort required for participatory scenario building and the availability of stakeholders

  6. Solar energy - substitute energy of the future. Energy problems all over the world. Sonne - Ersatzenergie der Zukunft. Energieprobleme in aller Welt

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Following some remarks on the current energy situation, with the focus on petroleum and nuclear energy, explanations on a wall-map are given which illustrates in simplified form the key figures of a world scenario for the year 2030 (population-energy consumption) and a solar energy balance. For the scenario, figures of the International Institute of Applied System Analysis (IIASA) were used.

  7. Energy consumption-based accounts: A comparison of results using different energy extension vectors

    OpenAIRE

    Owen, A; Brockway, P; Brand-Correa, L; Bunse, L; Sakai, M; Barrett, J

    2017-01-01

    Increasing attention has been focussed on the use of consumption-based approaches to energy accounting via input-output (IO) methods. Of particular interest is the examination of energy supply chains, given the associated risks from supply-chain issues, including availability shocks, taxes on fossil fuels and fluctuating energy prices. Using a multiregional IO (MRIO) database to calculate energy consumption-based accounts (CBA) allows analysts to both determine the quantity and source of ener...

  8. Energy consumption and quality of man's life. Chapter 1

    International Nuclear Information System (INIS)

    1998-01-01

    In Chapter 1 a dependence of public life quality showings from energy consumption value is proved. Priority of fuel-energetic complex development is grounded as well. Specific features of Kazakhstan power engineering during its integration into world economics are given. Problems of liberalization of power engineering economy are illustrated. Dependences between assessments of human potential and energy consumption level in the world and Kazakhstan are given in tabular form. In Kazakhstan under relatively stable education level index an energy consumption reduction was resulted to gross national product decrease on via capita

  9. Energy consumption quota of public buildings based on statistical analysis

    International Nuclear Information System (INIS)

    Zhao Jing; Xin Yajuan; Tong Dingding

    2012-01-01

    The establishment of building energy consumption quota as a comprehensive indicator used to evaluate the actual energy consumption level is an important measure for promoting the development of building energy efficiency. This paper focused on the determination method of the quota, and firstly introduced the procedure of establishing energy consumption quota of public buildings including four important parts: collecting data, classifying and calculating EUIs, standardizing EUIs, determining the measure method of central tendency. The paper also illustrated the standardization process of EUI by actual calculation based on the samples of 10 commercial buildings and 19 hotel buildings. According to the analysis of the frequency distribution of standardized EUIs of sample buildings and combining the characteristics of each measure method of central tendency, comprehensive application of mode and percentage rank is selected to be the best method for determining the energy consumption quota of public buildings. Finally the paper gave some policy proposals on energy consumption quota to help achieve the goal of further energy conservation. - Highlights: ► We introduce the procedure of determining energy consumption quota (ECQ). ► We illustrate the standardization process of EUI by actual calculation of samples. ► Measures of central tendency are brought into determine the ECQ. ► Comprehensive application of mode and percentage rank is the best method for ECQ. ► Punitive or incentive measures for ECQ are proposed.

  10. Consumption Behavior Analytics-Aided Energy Forecasting and Dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Kaiqing [University of Illinois Urbana-Champaign; Zhang, Jun Jason [University of Denver

    2017-08-17

    For decades, electricity customers have been treated as mere recipients of electricity in vertically integrated power systems. However, as customers have widely adopted distributed energy resources and other forms of customer participation in active dispatch (such as demand response) have taken shape, the value of mining knowledge from customer behavior patterns and using it for power system operation is increasing. Further, the variability of renewable energy resources has been considered a liability to the grid. However, electricity consumption has shown the same level of variability and uncertainty, and this is sometimes overlooked. This article investigates data analytics and forecasting methods to identify correlations between electricity consumption behavior and distributed photovoltaic (PV) output. The forecasting results feed into a predictive energy management system that optimizes energy consumption in the near future to balance customer demand and power system needs.

  11. Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock

    Directory of Open Access Journals (Sweden)

    Anna Kipping

    2017-12-01

    Full Text Available Sound estimates of future heat and electricity demand with high temporal and spatial resolution are needed for energy system planning, grid design, and evaluating demand-side management options and polices on regional and national levels. In this study, smart meter data on electricity consumption in buildings are combined with cross-sectional building information to model hourly electricity consumption within the household and service sectors on a regional basis in Norway. The same modeling approach is applied to model aggregate hourly district heat consumption in three different consumer groups located in Oslo. A comparison of modeled and metered hourly energy consumption shows that hourly variations and aggregate consumption per county and year are reproduced well by the models. However, for some smaller regions, modeled annual electricity consumption is over- or underestimated by more than 20%. Our results indicate that the presented method is useful for modeling the current and future hourly energy consumption of a regional building stock, but that larger and more detailed training datasets are required to improve the models, and more detailed building stock statistics on regional level are needed to generate useful estimates on aggregate regional energy consumption.

  12. Modeling of policies for reduction of GHG emissions in energy sector using ANN: case study-Croatia (EU).

    Science.gov (United States)

    Bolanča, Tomislav; Strahovnik, Tomislav; Ukić, Šime; Stankov, Mirjana Novak; Rogošić, Marko

    2017-07-01

    This study describes the development of tool for testing different policies for reduction of greenhouse gas (GHG) emissions in energy sector using artificial neural networks (ANNs). The case study of Croatia was elaborated. Two different energy consumption scenarios were used as a base for calculations and predictions of GHG emissions: the business as usual (BAU) scenario and sustainable scenario. Both of them are based on predicted energy consumption using different growth rates; the growth rates within the second scenario resulted from the implementation of corresponding energy efficiency measures in final energy consumption and increasing share of renewable energy sources. Both ANN architecture and training methodology were optimized to produce network that was able to successfully describe the existing data and to achieve reliable prediction of emissions in a forward time sense. The BAU scenario was found to produce continuously increasing emissions of all GHGs. The sustainable scenario was found to decrease the GHG emission levels of all gases with respect to BAU. The observed decrease was attributed to the group of measures termed the reduction of final energy consumption through energy efficiency measures.

  13. China's energy consumption under the global economic crisis: Decomposition and sectoral analysis

    International Nuclear Information System (INIS)

    Li, Fangyi; Song, Zhouying; Liu, Weidong

    2014-01-01

    It is now widely recognized that there is a strong relationship between energy consumption and economic growth. Most countries′ energy demands declined during the economic depression of 2008–2009 when a worldwide economic crisis occurred. As an export-oriented economy, China suffered a serious exports decline in the course of the crisis. However, it was found that energy consumption continued to increase. Against such a background, this paper aims to assess and explain the factors causing the growth of energy consumption in China. First, we will explain the impact of domestic final use and international trade on energy consumption by using decomposition analysis. Second, embodied energy and its variation across sectors are quantified to identify the key sectors contributing to the growth. Lastly, the policy implications for long-term energy conservation are discussed. The results show that the decline in exports was one of the driving forces for energy consumption reduction in the crisis, but that the growth of domestic demand in manufacturing and construction, largely stimulated by economic stimulus plans, had the opposite effect on energy consumption. International trade contributed to decreasing energy consumption of China during and after the crisis because the structure of exports and imports changed in this period. - Highlights: • We analyze the reasons for China's energy consumption change under the global economic crisis during 2007–2010. • Domestic final use growth, especially in construction and manufacturing of machinery and equipment, resulted in energy consumption increase. • International trade is identified as a driver of energy consumption reduction during and after the crisis. • Increasing China's share of consumption or reducing its share of investment in the GDP can reduce national energy intensity

  14. Natural gas industry in Italy. Analysis, scenarios for european union regulations

    International Nuclear Information System (INIS)

    Fazioli, R.; Ricci, A.; Valentini, A.; Baratta, R.; Battaglia, A.; Conticelli, M.; Antonioli, B.; Beccarello, M.

    2000-01-01

    Natural gas represents an energy source in strong expansion in the last years, not only in Italy but in all european countries. The forecasting and scenarios show an increasing in demand of natural gas consumption [it

  15. NodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniques

    Directory of Open Access Journals (Sweden)

    Geraldo P. R. Filho

    2014-01-01

    Full Text Available In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM, to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN. It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

  16. NodePM: a remote monitoring alert system for energy consumption using probabilistic techniques.

    Science.gov (United States)

    Filho, Geraldo P R; Ueyama, Jó; Villas, Leandro A; Pinto, Alex R; Gonçalves, Vinícius P; Pessin, Gustavo; Pazzi, Richard W; Braun, Torsten

    2014-01-06

    In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

  17. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  18. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    International Nuclear Information System (INIS)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon

    2014-01-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO 2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13–22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement. - Highlights: • We assessed long-term impacts of building codes and climate policy using GCAM. • Building energy codes would reduce Chinese building energy use by 13–22%. • The impacts of codes on building energy use vary by climate region and sub-sector

  19. Nuclear energy consumption, oil consumption and economic growth in G-6 countries: Bootstrap panel causality test

    International Nuclear Information System (INIS)

    Chu, Hsiao-Ping; Chang Tsangyao

    2012-01-01

    This study applies bootstrap panel Granger causality to test whether energy consumption promotes economic growth using data from G-6 countries over the period of 1971–2010. Both nuclear and oil consumption data are used in this study. Regarding the nuclear consumption-economic growth nexus, nuclear consumption causes economic growth in Japan, the UK, and the US; economic growth causes nuclear consumption in the US; nuclear consumption and economic growth show no causal relation in Canada, France and Germany. Regarding oil consumption-economic growth nexus, we find that there is one-way causality from economic growth to oil consumption only in the US, and that oil consumption does not Granger cause economic growth in G-6 countries except Germany and Japan. Our results have important policy implications for the G-6 countries within the context of economic development. - Highlights: ► Bootstrap panel Granger causality test whether energy consumption promotes economic growth. ► Data from G-6 countries for both nuclear and oil consumption data are used. ► Results have important policy implications within the context of economic development.

  20. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  1. Commercial and institutional consumption of energy survey : summary report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Fecteau, V.; Hulan, I.; McNabb, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2007-06-15

    A survey was conducted on the energy consumption of Canada's commercial and institutional sectors. The primary purpose was to improve the understanding of various aspects of energy consumption in these sector and to enable Natural Resources Canada to develop programs to support institutions that seek to achieve greater energy efficiency and reduce their greenhouse gas emissions. Energy intensity data was presented by energy source and region amongst the following commercial and institutional sectors: retail trade including food and non-food; education including colleges and universities; health care including non-hospital health care and hospitals; and, accommodation and food services. Data obtained on each establishment's energy consumption and floor area were used to calculate their energy intensity ratio. In 2005, the commercial and institutional establishments consumed 1.04 billion gigajoules, nearly double the annual consumption of all private households in Ontario. The total energy intensity was 1.54 GJ per square metre. The lowest energy rating was found in social assistance establishments, while the highest energy rating was in food services and drinking places, followed by hospitals. Quebec and the Atlantic provinces had the lowest energy intensity levels, while the Prairie provinces had the highest energy intensity rate. The survey included data on the age of establishments; the energy sources used for space heating cooling and water heating; establishment spending on energy consumption; and, the use of auxiliary equipment. refs., tabs., figs.

  2. Power-based electric vehicle energy consumption model: Model development and validation

    International Nuclear Information System (INIS)

    Fiori, Chiara; Ahn, Kyoungho; Rakha, Hesham A.

    2016-01-01

    Highlights: • The study developed an instantaneous energy consumption model (VT-CPEM) for EVs. • The model captures instantaneous braking energy regeneration. • The model can be used for transportation modeling and vehicle applications (e.g. eco-routing). • The proposed model can be easily calibrated using publically available EV data. • Usages of air conditioning and heating systems reduce EV energy consumption by up to 10% and 24%, respectively. - Abstract: The limited drive range (The maximum distance that an EV can travel.) of Electric Vehicles (EVs) is one of the major challenges that EV manufacturers are attempting to overcome. To this end, a simple, accurate, and efficient energy consumption model is needed to develop real-time eco-driving and eco-routing systems that can enhance the energy efficiency of EVs and thus extend their travel range. Although numerous publications have focused on the modeling of EV energy consumption levels, these studies are limited to measuring energy consumption of an EV’s control algorithm, macro-project evaluations, or simplified well-to-wheels analyses. Consequently, this paper addresses this need by developing a simple EV energy model that computes an EV’s instantaneous energy consumption using second-by-second vehicle speed, acceleration and roadway grade data as input variables. In doing so, the model estimates the instantaneous braking energy regeneration. The proposed model can be easily implemented in the following applications: in-vehicle, Smartphone eco-driving, eco-routing and transportation simulation software to quantify the network-wide energy consumption levels for a fleet of EVs. One of the main advantages of EVs is their ability to recover energy while braking using a regenerative braking system. State-of-the-art vehicle energy consumption models consider an average constant regenerative braking energy efficiency or regenerative braking factors that are mainly dependent on the vehicle’s average

  3. Cowichan Valley energy mapping and modelling. Report 5 - Energy density mapping projections. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)

  4. The impact of state energy programs and other contextual factors on U.S. buildings energy consumption

    Science.gov (United States)

    Ofori-Boadu, Andrea N. Y. A.

    High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption

  5. Study on energy consumption of adapters and battery chargers

    International Nuclear Information System (INIS)

    Zijlstra, J.K.; Couvee, J.D.J.

    2001-04-01

    Under the authority of the Dutch Energy Agency 'Novem' industrial design and engineering office NewProducts has performed an inventory study on the energy consumption of adapters and battery chargers. Besides the energy aspects, various aspects of the adapters and chargers have been discussed: The products are classified in categories based on type of the appliance and function of the adapter; The proportions of the Dutch market of adapters and chargers and the players on this market are discussed in brief; The relevant technical background, especially with respect to the energy consumption is discussed. In general there are two types of adapters, linear and switch mode; Product specifications collected from several manufacturers are presented; To fill up the lack of data some measurements have been made of which the results are presented. Together with the product specifications this gives an overview of the performances of adapters and chargers; During the study several ideas and new developments have been found for reducing energy consumption. A remarkable conclusion is that there is no or not much attention from manufacturers or consumers for energy consumption of adapters or no-load power consumption, although there are some initiatives for reduction, e.g. the Code of Conduct on Efficiency of External Power Supplies of the European Union. Lots of linear adapters are still sold and in use, although the efficiency of the switch mode adapters is a lot better. The problem is the higher price. The switch mode adapters are being sold together with sophisticated electronic appliances. Most of the other initiatives and solutions to reduce the no-load energy consumption and improve the efficiency are also technical

  6. A 100% Renewable Energy Scenario for the Java-Bali Grid

    Directory of Open Access Journals (Sweden)

    Matthias Guenther

    2018-02-01

    Full Text Available Currently, many countries try to satisfy their energy needs with an increasing usage of renewable resources. The general motivations, with varying weighting in the different countries, are ecological reasons, concerns about energy security, and economical considerations. A for now rather theoretical question, although interesting for opening a long-term perspective, is how an energy supply from exclusively renewable energy resources could look like. This question has to be answered individually for any specific energy supply system. The present paper has the objective to present and evaluate a scenario for an electricity supply only from renewable energy resources for the Java-Bali grid. After designing a load time series for the year 2050 for the Java-Bali grid, a scenario is developed how to cover the load with electricity from renewable energy resources alone. Assumptions about the usable energy sources are made as well as assumptions about the available power plant capacity or energy potential. A specific challenge is the fact that solar energy must be the main source in such a renewable-energy based system, which comes with the need for a large storage capacity to match the power supply at any time with the load. Several possibilities are presented how to bring down the storage capacity: the increment of the installed PV capacity, the usage of bioenergy for seasonal balancing, and the complementation of the proposed short-term storage with an additional long-term storage. The study shows some of the specific challenges that a gradual transformation of the current electricity supply system on Java and Bali into a renewable-energy-based one would face and gives some hints about how to cope with these challenges. Scenarios like the one designed in this study are an important tool for decision-makers who face the task to scrutinize the consequences of choosing between different development paths.   Article History: Received: August 15th 2017

  7. Diversity in OECD energy consumption: Achievements and long-term goals

    International Nuclear Information System (INIS)

    Heal, D.W.

    1990-01-01

    Energy consumption in the industrialized world has resumed a rising trend but has been moderated by increased energy efficiency. The demand for energy is also being spread more evenly over a variety of fuels. This paper provides a measure for diversity and examines the implications for energy prices, while reiterating the long-term goal of lower energy consumption

  8. Concerned consumption. Global warming changing household domestication of energy

    International Nuclear Information System (INIS)

    Aune, Margrethe; Godbolt, Åsne Lund; Sørensen, Knut H.; Ryghaug, Marianne; Karlstrøm, Henrik; Næss, Robert

    2016-01-01

    This paper addresses possible effects of the growing focus on global warming on households’ domestication of energy and the dynamics of energy consumption by comparing data pertaining to the domestication of energy within Norwegian households from two time periods: first, 1991–1995, when climate change was given little public attention, and, second, 2006–2009, after climate change became a major public concern. In the first period, we observed that the domestication of energy resulted in an energy culture emphasizing comfort and convenience with respect to everyday life and the abundant supply of clean hydropower. In the second period, this culture seemed to have changed, making households more concerned about their energy consumption. Consumption of energy was linked to climate change, and many interviewees claimed to save energy. However, the dominant expectation was still to be able to manage everyday life in a convenient and comfortable way. Thus, climate change concerns produced some but not very radical changes in the practical domestication of energy, including energy saving. A main effect was feelings of guilt, tempered by arguments regarding why change is difficult and complaints about political inaction. Thus, public engagement with climate change issues may facilitate energy efficiency policy but to succeed, wider climate policy measures seem to be needed. - Highlights: • Increased climate change focus has affected household domestication of energy. • The changes produced concerns about energy consumption. • Some energy saving activities were reported. • Household energy cultures are less stable than anticipated. • Suggests wider climate policy measures to motivate for energy efficiency.

  9. Carbon tax scenarios and their effects on the Irish energy sector

    International Nuclear Information System (INIS)

    Di Cosmo, Valeria; Hyland, Marie

    2013-01-01

    In this paper we use annual time series data from 1960 to 2008 to estimate the long run price and income elasticities underlying energy demand in Ireland. The Irish economy is divided into five sectors: residential, industrial, commercial, agricultural and transport, and separate energy demand equations are estimated for all sectors. Energy demand is broken down by fuel type, and price and income elasticities are estimated for the primary fuels in the Irish fuel mix. Using the estimated price and income elasticities we forecast Irish sectoral energy demand out to 2025. The share of electricity in the Irish fuel mix is predicted to grow over time, as the share of carbon intensive fuels such as coal, oil and peat, falls. The share of electricity in total energy demand grows most in the industrial and commercial sectors, while oil remains an important fuel in the residential and transport sectors. Having estimated the baseline forecasts, two different carbon tax scenarios are imposed and the impact of these scenarios on energy demand, carbon dioxide emissions, and government revenue is assessed. If it is assumed that the level of the carbon tax will track the futures price of carbon under the EU-ETS, the carbon tax will rise from €21.50 per tonne CO 2 in 2012 (the first year forecasted) to €41 in 2025. Results show that under this scenario total emissions would be reduced by approximately 861,000 tonnes of CO 2 in 2025 relative to a zero carbon tax scenario, and that such a tax would generate €1.1 billion in revenue in the same year. We also examine a high tax scenario under which emissions reductions and revenue generated will be greater. Finally, in order to assess the macroeconomic effects of a carbon tax, the carbon tax scenarios were run in HERMES, the ESRI's medium-term macroeconomic model. The results from HERMES show that, a carbon tax of €41 per tonne CO 2 would lead to a 0.21% contraction in GDP, and a 0.08% reduction in employment. A higher carbon

  10. An integrated assessment of energy-water nexus at the state level in the United States: Projections and analyses under different scenarios through 2095

    Science.gov (United States)

    Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.

    2013-12-01

    Water withdrawals for thermoelectric power plants account for approximately half of the total water use in the United States. With growing electricity demands in the future and limited water supplies in many water-scarce states in the U.S., grasping the trade-off between energy and water requires an integrated modeling approach that can capture the interactions among energy, water availability, climate, technology, and economic factors at various scales. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, with 14 geopolitical regions that are further dissaggregated into up to 18 agro-ecological zones, was extended to model the electricity and water systems at the state level in the U.S. More specifically, GCAM was employed to estimate future state-level electricity generation and demands, and the associated water withdrawals and consumptions under a set of six scenarios with extensive levels of details on generation fuel portfolio, cooling technology mix, and water use intensities. The state-level estimates were compared against available inventories where good agreement was achieved on national and regional levels. We then explored the electric-sector water use up to 2095, focusing on implications from: 1) socioeconomics and growing demands, 2) the adoption of climate mitigation policy (e.g., RCP4.5 W/m2 vs. a reference scenario), 3) the transition of cooling systems, 4) constraints on electricity trading across states (full trading vs. limited trading), and 5) the adoption of water saving technologies. Overall, the fast retirement of once-through cooling, together with the gradual transition from fossil fuels dominant to a mixture of different fuels, accelerate the decline of water withdrawals and correspondingly compensate consumptive water use. Results reveal that U.S. electricity generation expands significantly as population grows

  11. The energy consumption in the ceramic tile industry in Brazil

    International Nuclear Information System (INIS)

    Ciacco, Eduardo F.S.; Rocha, Jose R.; Coutinho, Aparecido R.

    2017-01-01

    The ceramic industry occupies a prominent place in the Brazilian industrial context, representing about 1.0% in the GDP composition. On the other hand, it represent about 1.9% of all energy consumed in the country, and 5.8% of the energy consumed in the Brazilian industrial sector in 2014. Regarding the power consumption by the ceramic industry, most is derived from renewable sources (firewood), followed by use of fossil fuels, mainly natural gas (NG). This study was conducted to quantify the energy consumption in the production of ceramic tiles (CT), by means of experimental data obtained directly in the industry and at every step of the manufacturing process. The step of firing and sintering has the highest energy consumption, with approximately 56% of the total energy consumed. In sequence, have the atomization steps with 30% and the drying with 14%, of total energy consumption in the production of ceramic tiles, arising from the use of NG. In addition, it showed that the production of ceramic tiles by wet process has energy consumption four times the dry production process, due to the atomization step.

  12. Economic energy distribution and consumption in a microgrid Part 2

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    Energy management of a small scale electrical microgrid is investigated. The microgrid comprises residential houses with local renewable generation, consumption and storage units. The microgrid has the possibility of connection to the electricity grid as well to compensate energy decit of local...... power producers. The nal objective is to full the microgrid's energy demands mainly from the local electricity producers. The other objective is to manage power consumption such that the consumption cost is minimum for individual households. In this study, a hierarchical controller composed of three...... levels is proposed. Each layer from bottom to top focus on individual energy consuming units, individual buildings, and the microgrid respectively. At the middle layer, a model predictive controller is formulated to schedule the building's energy consumption using potential load exibilities. The top...

  13. Energy in Ghana: The dominance of transport in petroleum consumption

    International Nuclear Information System (INIS)

    Abeasi, K.

    1991-01-01

    The sustained provision of energy has long been recognized as one of the essential prerequisites for a country's socio-economic development. Until recently, a country's aggregate energy consumption was equated with its relative economic and developmental well-being, represented by the close correlation between gross domestic product (GDP) and per capita consumption of commercial energy. Although events of recent years, principally the swinging increases in petroleum prices and measures taken to improve the efficiency of energy use, have loosened the parallel equation of GDP with energy consumption, yet the position of energy as the bedrock of a country's development remains unshaken. 4 refs, 1 fig., 4 tabs

  14. Strategies and Tools for Eco-Efficient Local Food Supply Scenarios

    Directory of Open Access Journals (Sweden)

    Paola Caputo

    2014-01-01

    Full Text Available Considering the wide demand for daily meals, the issue of the institutional food system has become very important in highly developed societies and, also, how it affects the flow of energy and matter within a territory. This research originates from a wide multi-disciplinary project aimed at developing a self-sufficient approach to improve the institutional food system in an area of Northern Italy. Thus, the aim of this research is to give some guidelines to implement ideal scenarios of food production, processing, consumption, and waste management at the local level. To that end, the organization of the supply and demand within the local institutional food system is inquired. A methodology has been developed to analyze the main energy flows and matter related to this catering, and to outline possible optimal scenarios. This methodology also allows to analyze case studies and to formulate improvements in order to reduce their energy consumption while exploring all the steps of the supply chain (considering the Life Cycle Assessment (LCA approach. The use of quantitative indicators allows a comparison of the impacts related to the different steps characterizing the suggested scenarios. This paper presents results related to a test in the context of institutional catering in public schools.

  15. The Factors Influencing Transport Energy Consumption in Urban Areas: a Review

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available Transport energy consumption accounts for about one third of total energy consumption in EU. Despite significant advances in transport technology and fuel formulation, transport energy consumption has increased in most EU countries over the last three decades. This increase in consumption occurred as a result of factors such as higher car ownership, a growth in automobile use and an increase in vehicle distances traveled. As travel and land-use are a function of one another, it is often hypothesized that changing urban structure can result in changes in energy consumption. Understanding how different land use characteristics may influence travel behaviour and the corresponding energy consumption is crucial for planners and policy makers in order to develop strategic actions to shrink the environmental footprint of the urban transportation sector. The aim of this article is to review the current literature on the connections between land use, travel behavior and energy consumption. In particular, this paper seeks to identify the determinants of transport energy consumption in urban areas by reviewing evidence from empirical studies. To this aim, nine characteristics of land use are presented and their effects on both travel behaviour and energy use are discussed Our review shown that, in contrast to the focus on the effect of the built environment on travel, only few researchers have empirically investigated the linkage between the built environment and transportation energy use. The research described in this paper has been developed within the PON04a2_E Smart Energy Master project. It represents part of a much broader research project aimed at the development of an integrated model of urban energy efficiency.

  16. Energy memento 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This memento about energy provides a series of tables with figures relative to energy resources and uses in France, in the European Union and in the rest of the world. Content: 1 - resources, consumption and production: Main energy units, Main power units, Anglo-saxon and metric units conversion, Common units for uranium, Conversion table for uranium compounds, Lower calorific value for coals, Basic data about hydrogen, France: primary energy accountancy, Energy equivalence for natural Uranium, Energy equivalence for fossil fuels; 2 - resources: World - proved reserves of fossil fuels per geographical area at end 2013, World - most important uranium reserves, Renewable installed world capacity evolution, Europe - installed capacity for offshore wind power in the EU countries, Europe - electricity production and installed capacity from wind and photovoltaic in the EU, 3 - Consumption: Scenario of evolution of world population, World - general data for 2012, World - total primary energy supply, World - reference scenario for primary energy supply, World - final consumption of energy for 2012, World - reference scenario for final consumption of energy, Europe - general data for 2012, Europe - bio-fuel consumption for transport in the European Union in 2013, Electricity consumption per head, Final energy consumption per GDP unit, France - primary energy consumption (corrected for climate) by energy, France: final energy consumption (corrected for climate) by energy, France - final energy consumption (corrected for climate) by sector, France - two retained scenarios in the DNTE context (National debate on energetic transition), France - electricity balances, France - energy balance for 2013; 4 - Production: World - 2011 electricity installed capacities, Electricity generation from nuclear power plants by country at the end of 2013, World - electricity generation by fuel for 2012, World - electricity generation, World - reference scenario for electricity generation

  17. Factors affecting wood energy consumption by U.S. households

    Science.gov (United States)

    Nianfu Song; Francisco X. Aguilar; Stephen R. Shifley; Michael E. Goerndt

    2012-01-01

    About 23% of energy derived from woody sources in the U.S. was consumed by households, of which 70% was used by households in rural areas in 2005. We investigated factors affecting household-level wood energy consumption in the four continental U.S. regions using data from the U.S. Residential Energy Consumption Survey. To account for a large number of zero...

  18. Energy Consumption Information Services for Smart Home Inhabitants

    Science.gov (United States)

    Schwanzer, Michael; Fensel, Anna

    We investigate services giving users an adequate insight on his or her energy consumption habits in order to optimize it in the long run. The explored energy awareness services are addressed to inhabitants of smart homes, equipped with smart meters, advanced communication facilities, sensors and actuators. To analyze the potential of such services, a game at a social network Facebook has been designed and implemented, and the information about players' responses and interactions within the game environment has been collected and analyzed. The players have had their virtual home energy usage visualized in different ways, and had to optimize the energy consumption basing on their own perceptions of the consumption information. Evaluations reveal, in particular, that users are specifically responsive to information shown as a real-time graph and as costs in Euro, and are able to produce and share with each other policies for managing their smart home environments.

  19. World energy consumption 1800-2000: definitions and measurements, information sources, results

    International Nuclear Information System (INIS)

    Martin-Amouroux, Jean-Marie

    2015-10-01

    A first article discusses definitions and measurements used to assess world energy consumption, notably the differences between primary, secondary, final and useful levels. The author identifies the different sources of primary energies (endo-somatic and exo-somatic), the various measurement units, and the spatial organisation of consumption statistics (national data bases, regional consolidations). The second article comments the available sources of information and their history (existing long chronological series at the world scale before and after World War 2), presents the evolution of world energy consumption according to Palmer Putnam, indicates and comments national studies on energy consumption for very long periods (USA, UK, France, and other countries). Then the author discusses the assessment of non commercial consumptions. He mentions and comments studies performed in the USA, in France, in Italy and in other countries, and also some assessments of biomass consumption. He finally discusses the availability of statistics on the evolution of world population. The third article presents and comments results obtained for the evolution of world consumption (world consumption per source of primary energy, per region) for the evolution of energy consumption in Africa, in Northern America, in Latin America, in Asia, in Russia and Eastern Europe and in Western Europe since 1800. Tables give these evolutions for coal, oil, natural gas, electricity, and biomass

  20. Update of energy performance certificates in the residential sector and scenarios that consider the impact of automation, control and management systems: A case study of La Rioja

    International Nuclear Information System (INIS)

    López-González, Luis M.; López-Ochoa, Luis M.; Las-Heras-Casas, Jesús; García-Lozano, César

    2016-01-01

    Highlights: • A total of 9416 energy performance certificates in the residential sector were analyzed. • Approximately 40% of the energy performance certificates were incorrect. • The developed algorithms can be generalized for the remainder of Spain. • Introducing BACS and TBM systems can reduce building energy consumption by up to 26.36%. - Abstract: Energy performance certificates are considered to be tools for knowledge and energy planning in the residential sector. Although energy performance certificates describe primary energy consumption and the associated emissions of a home or building, they do not consider the influence of building automation control systems (BACS) or technical building management (TBM) systems on these parameters. The European Standard EN 15232 remedies this shortcoming and evaluates the savings in primary energy and the reduction of CO_2 emissions that can be achieved by these systems. This study investigates the energy performance certificates registered in the Autonomous Community of La Rioja and considers the policy changes in the Technical Building Code (Código Técnico de la Edificación) and, specifically, the Basic Document for Energy Saving (Documento Básico de Ahorro de Energía) (CTE-DB-HE). Due to this regulatory change, we corrected the certificates and outlined different scenarios based on the implementation of these systems in this study. These scenarios show the potential distribution of energy performance certificates and the improvements in the ratings obtained.

  1. Optimal modeling and forecasting of the energy consumption and production in China

    International Nuclear Information System (INIS)

    Xiong, Ping-ping; Dang, Yao-guo; Yao, Tian-xiang; Wang, Zheng-xin

    2014-01-01

    Energy is of fundamental importance to a nation's economy. Accurate prediction of the energy consumption and production in China can play a guiding role in making the energy consumption plan, and facilitate timely and effective decision making of energy policy. This article proposes a novel GM (gray model) (1,1) model based on optimizing initial condition according to the principle of new information priority. The optimized model and five other GM (1,1) models are applied in the modeling of China's energy consumption and production. Both the simulation and prediction accuracy of the models are compared and analyzed. We obtain the result that the optimized model has higher prediction accuracy than the other five models. Therefore, the presented optimized model is further utilized to predict China's energy consumption and production from 2013 to 2017. The result indicates that China's energy consumption and production will keep increasing and the gap between the energy production and consumption will also be increasing. Finally, we predict Iran's and Argentina's energy consumption to further prove the effectiveness of the proposed model. - Highlights: • We proposed a novel GM (1,1) model based on optimizing initial condition. • The prediction accuracy of the proposed model is better than the other models. • We used the proposed model to predict China's energy consumption and production. • The proposed model can be used to predict other countries' energy consumption

  2. Comparison and Evolution of Energy Consumption in Moroccan Agro-food Industries

    Science.gov (United States)

    El Badaoui, Meryem; Touzani, Abdellatif

    2017-06-01

    The aim of this article is to establish a comparison between the Moroccan energy consumption and the BREF the reference document on best available techniques in the food industries, then an evolution of this consumption by 2030 in order to better understand it and to define strategies to reduce energy bill. According to a survey conducted among 5000 Moroccan companies, we were able to compare the energy consumption of the agro-food industries including sugar industry, dairy industry, cereal industry; fatty substances industry and fishing industry with that of the BREF. Also an evolution of Moroccan consumption was established by 2030 using the linear regression method, and then calculated a non-negligible average annual growth rate (AAGR). The results show that the Moroccan energy consumption is adequate to that of the BREF, and an energy consumption constantly increasing by registering a non-negligible AAGR.

  3. Continuing growth for world energy consumption

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The World Energy Outlook of the global energy markets from 1971 to 2020, recently released by the International Energy Agency, is summarised. Covering demand, supply and energy prices, it provides an in-depth review of oil, gas, coal, biomass and power generation. With projections for all energy sectors, it offers a valuable insight into the development of the international energy business. The projections cover all world regions, including industrial and developing countries, and provide a comprehensive view of the main developments and issues affecting demand and supply on a global basis. The Outlook's projections have been derived from a 'reference scenario' that assumes global economic growth of more than 3% per annum, but a slowdown in population growth. Fossil-fuel prices are generally assumed to remain flat throughout the first decade of the projection period (to 2020), with oil and gas prices increasing after 2010 in response to the supply-side pressures. The scenario takes account of a range of major new policies and measures adopted in OECD countries, many of which relate to commitments under the Kyoto Protocol enacted or announced up to mid-2000. Despite the policies and measures in the OECD countries, energy-related carbon dioxide emissions will increase, averaging 2.1% per annum to 2020. This amounts to 60% increase between 1997 and 2020. Fast-growing developing countries heavily contributing to increase in carbon dioxide, as they do in global energy demand

  4. A 'business-as-usual' energy scenario for France at the 2020 vista; Un scenario energetique tendanciel pour la France a l'horizon 2020

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.N

    2000-01-01

    A 'business-as-usual' energy scenario is the most probable scenario where the energy demand follows the trends of the past and where no new energy policy is implemented. This work is a complement to the three contrasted energy scenarios built in 1998 by the 'Energy 2010-2020' prospective group of the French general commission of national development. The scenario built in this study is only a reference which allows the measure the efforts made to reach political goals. The main conclusion of this scenario is the increase of the CO{sub 2} emissions under the double effect of the economic growth and of the cessation of the nuclear program which becomes non-competitive with respect to the gas prices and actualization rates retained in the scenario. The main constraint of the energy future is incontestably the necessary fight against the greenhouse effect. (J.S.)

  5. Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050

    International Nuclear Information System (INIS)

    Kwon, Pil Seok; Østergaard, Poul Alberg

    2012-01-01

    Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical engineering perspective. The above-mentioned methodologies are compared in an evolutionary perspective to determine if the methodologies reflect the complex reality well. The results of the scenarios are also assessed within the framework of “radical technological change” in order to show which future scenario assumes more radical change within five dimensions of technology; technique, knowledge, organization, product, and profit. -- Highlights: ► Three future scenarios for Danish future in 2050 are compared. ► All of these scenarios suggest the same solutions for the future with minor differences. ► There are differences in methodologies for IDA 2050 and CEESA such as biomass, transport, and power grid. ► The contents of scenarios are assessed which scenario assume more radical technological change in the future.

  6. The world energy demand in 2005: confirmed increase in energy consumptions, despite soaring crude oil prices

    International Nuclear Information System (INIS)

    Chateau, Bertrand

    2006-01-01

    The world energy demand growth remains strong: 2004 experienced the highest growth since 19987, and brent prices had moderate impact in 2005: Very strong rise of energy consumptions despite high oil prices, Economic situation still favorable, Evolutions principally due to China. 2005 world energy consumption: 11,4 Gtoe: Asia accounts for 35% of the world energy consumption, China's weight (15%) continues to increase by one point every year (+5 points since 2000). Asia increases its pressure on the world energy growth in 2005: China accounts for almost half of the world energy consumption increase in 2005, the whole Asia accounts for 70%; The European consumption growth represents less than 5% of China's Growth; The American energy consumption decreases for the first time. 2005 world consumption by energy: With an increasing market share by 0,7 points, coal penetration increases; The oil market has lost 0,4 point, with an accelerating relative decrease; The relative weight of gas remains stable, with 21%. Energy efficiency and energy intensity of GDP: Slow-down of the world energy intensity decrease since 2001, whereas the economic growth is faster, due to changes in trends in China (increase in the recent years). Increase less sharp in China in 2005 (price effect). Energy intensity trends of GDP: Fast decrease in CIS since the recovery of the economic growth; Slow-down of the decrease in EU since 2000 and recovery in 2005 whereas the decrease has accelerated in the USA. Since 2000, the energy consumption increases less rapidly than the GDP almost everywhere, except for the Middle East. Projections until 2020: China and India could represent one third of the world energy growth, the whole of Asia more than 50%; Growth prospects for energy demand are low in the EU and CIS; America would account for 20% of the world energy growth (8% USA); In the rest of the world, high growth in Africa and in the Middle East. Gas could cover more than 40% of the world energy

  7. Building and household X-factors and energy consumption at the residential sector

    International Nuclear Information System (INIS)

    Estiri, Hossein

    2014-01-01

    Energy use in residential buildings is one of the major sources of greenhouse gas emission production from cities. Using microdata from the 2009 Residential Energy Consumption Survey (RECS), this study applies structural equation modeling to analyze the direct, indirect, and total impacts of household and building characteristics on residential energy consumption. Results demonstrate that the direct impact of household characteristics on residential energy consumption is significantly smaller than the corresponding impact from the buildings. However, accounting for the indirect impact of household characteristics on energy consumption, through choice of the housing unit characteristics, the total impact of households on energy consumption is just slightly smaller than that of buildings. Outcomes of this paper call for smart policies to incorporate housing choice processes in managing residential energy consumption. - Highlights: • Households indirectly influence residential energy use through housing choice. • Households' total impact on energy use is comparable to that of buildings. • Understanding households' indirect impact will enhance residential energy policy. • Smart energy policies are needed to target both direct and indirect effects

  8. Modeling the relationship between energy consumption and economy development in China

    International Nuclear Information System (INIS)

    Zhang, Jing; Deng, Shihuai; Shen, Fei; Yang, Xinyao; Liu, Guodong; Guo, Hang; Li, Yuanwei; Hong, Xiao; Zhang, Yanzong; Peng, Hong; Zhang, Xiaohong; Li, Li; Wang, Yingjun

    2011-01-01

    This paper investigated the empirical relationship between economy development and energy consumption by material production, nonmaterial production and household. Empirical models accounting for the key influential factors were constructed. Ordinary Least Square Regression (OLS) analysis of the official data of China for the year 1985-2007 permitted the relationship between individual energy consumption components and the corresponding coefficients to be investigated. The results showed that (1) the Unit Energy Consumption by Primary Industry (UECPI), Secondary Industry (UECSI), and Tertiary Industry (UECTI) demonstrated an inverse relationship with Gross Domestic Product (GDP); (2) a linear relationship exists between the Energy Consumption by Nonmaterial Production (ECNP) and GDP; (3) the hypotheses that there is an inverse S-shaped relationship between Unit Energy Consumption by Household (UECH) and Personal Income (PI) is valid. Based on the above findings and an analysis of China's energy policies, suggestions on China's energy policy were given in the end. -- Highlights: → Decomposed total energy consumption in three parts, branch of material produces, branch of the immaterial production, and households. → Energy consumed by branch of material produces considered the economic scale and construction. → Energy consumed by immaterial production was first referred in this article. → The relationship between energy consumed by household and GDP fits the invert-S curve, which is first referred too.

  9. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes.

    Science.gov (United States)

    Vaquerizo-Hdez, Daniel; Muñoz, Pablo; R-Moreno, María D; F Barrero, David

    2017-09-22

    Wireless Sensor Networks (WSNs) are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN). Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer) and an external microcontroller (Cortex M0+) in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA.

  10. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes

    Directory of Open Access Journals (Sweden)

    Daniel Vaquerizo-Hdez

    2017-09-01

    Full Text Available Wireless Sensor Networks (WSNs are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN. Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer and an external microcontroller (Cortex M0+ in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA.

  11. Energy consumption, energy efficiency, and consumer perceptions: A case study for the Southeast United States

    International Nuclear Information System (INIS)

    Craig, Christopher A.

    2016-01-01

    Highlights: • Interaction between climate, efficiency, and electricity consumption were examined. • 2450 state residents were surveyed about clean energy and subsidy policies. • Indirect energy efficiency costs negatively influenced electricity consumption. • Cooling degree days were positively related to electricity consumption. • Resident awareness influenced policy perceptions about clean energy and subsidies. - Abstract: This study examined the interaction between climatic variability and residential electricity consumption in a Southeast US state. Residential electricity consumers were surveyed to better understand how to diffuse positive attitudes and behaviors related to energy efficiency (EE) into households. The study found that 16.8% of the variability in residential electricity consumption for heating applications was explained by indirect EE costs. 36.6% of the variability in residential electricity consumption for cooling applications was explained by indirect EE costs and cooling degree days (CDD). A survey of 2450 residential electricity consumers was analyzed using the theory of planned behavior (TPB). Significant findings suggest that those residents are aware of utility EE programs are more likely to participate, view utility company motives more favorably, to support governmental subsidies for EE programs, and to support the use of clean energy by utility companies.

  12. Representing in-home and out-of-home energy consumption behavior in Beijing

    International Nuclear Information System (INIS)

    Yu Biying; Zhang Junyi; Fujiwara, Akimasa

    2011-01-01

    It is expected that in-home and out-of-home energy consumption behavior in a household might be correlated with each other, probably due to the existence of household budget constraints. Ownership and usage of energy-saving technologies for in-home appliances (or vehicles) might lead to the increase in out-of-home (or in-home) energy consumption. It is therefore necessary to jointly represent in-home and out-of-home energy consumption in the same modeling framework. With this consideration, we first build a new type of energy consumption model based on the Multiple Discrete-Continuous Extreme Value (MDCEV) modeling framework. Next, we conducted a questionnaire survey in Beijing in 2009 and successfully collected the information about households' energy consumption, ownership/usage of in-home appliances and vehicles, and households' and their members' attributes from 1014 households. Throughout an empirical analysis, it is confirmed that the MDCEV model is effective to simultaneously describe the in-home and out-of-home energy consumption behavior. In addition, it is revealed that a set of household and personal attributes affect the ownership and usage of in-home appliances and vehicles. Furthermore, it is shown that the unobserved factors play a much more important role in explaining energy consumption behavior than the observed attributes of households and their members. - Highlights: → Representing in-home and out-of-home energy consumption behavior jointly. → MDCEV model is built to describe household energy consumption behavior. → Log-linear competitive relationships are found among expenditures of end-uses. → Model results provide some insights about the influence of varied observed factors. → Unobserved factors are more important in explaining energy consumption behavior.

  13. Security of energy supply: Comparing scenarios from a European perspective

    International Nuclear Information System (INIS)

    Costantini, V.; Markandya, A.; Vicini, G.

    2007-01-01

    This policy compares different results from a set of energy scenarios produced by international energy experts, in order to analyse projections on increasing European external energy dependence and vulnerability. Comparison among different scenarios constitutes the basis of a critical review of existing energy security policies, suggesting alternative or complementary future actions. According to the analysis, the main risks and negative impacts in the long term could be the increasing risk of collusion among exporters due to growing dependence of industrialized countries and insufficient diversification; and a risk of demand/supply imbalance, with consequent instability for exporting regions due to insufficient demand, and lack of infrastructures due to insufficient supply. Cooperation with exporting countries enhancing investments in production capacity, and with developing countries in order to reinforce negotiation capacity of energy-importing countries seem to be the most effective policies at international level. (author)

  14. Security of energy supply: Comparing scenarios from a European perspective

    International Nuclear Information System (INIS)

    Costantini, Valeria; Gracceva, Francesco; Markandya, Anil; Vicini, Giorgio

    2007-01-01

    This paper compares different results from a set of energy scenarios produced by international energy experts, in order to analyse projections on increasing European external energy dependence and vulnerability. Comparison among different scenarios constitutes the basis of a critical review of existing energy security policies, suggesting alternative or complementary future actions. According to the analysis, the main risks and negative impacts in the long term could be the increasing risk of collusion among exporters due to growing dependence of industrialized countries and insufficient diversification; and a risk of demand/supply imbalance, with consequent instability for exporting regions due to insufficient demand, and lack of infrastructures due to insufficient supply. Cooperation with exporting countries enhancing investments in production capacity, and with developing countries in order to reinforce negotiation capacity of energy-importing countries seem to be the most effective policies at international level

  15. 2014 Navajo Nation Energy and Water Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Suzanne L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woods, Sam [Navajo Transitional Energy Company, Farmington, NM (United States)

    2017-03-31

    The Navajo Nation is the home of the largest land-based Indian reservation in the U.S., covering more than twenty-seven thousand square miles. The land in the southwestern U.S. holds an abundance of natural resources, which are intimately integrated in the history, economy, and growth of the Navajo tribe. This report aims to wholly visualize the Navajo Nation’s resources and energy and water consumption using quantitative data and systems engineering analysis. The energy and water flow chart visualizations provide structured information for tribal leaders, policymakers, and educators around energy and water system discussions, technology development opportunities, and policy decisions. The analysis of both energy and water is a first step to visualizing the interconnectedness and complexities of the energy-water-food nexus of the nation. The goal of this energy analysis was to first estimate coal resource consumption because of the considerable impact coal has on the Navajo economy, recently as much as $26 million per year in coal royalties.

  16. Contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    de Vos, Cecilia Cecilia Clementine; Hilgerink, M.P.; Buschman, H.P.J.; Holsheimer, J.; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Objective: To test the hypothesis that, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy consumption. Materials and Methods: Patients with an Itrel 3 Pulse Generator and a Pisces Quad quadripolar

  17. Financial Development, Economic Growth and Energy Consumption Nexus in Cote d’Ivoire

    Directory of Open Access Journals (Sweden)

    Diby Kassi

    2017-10-01

    Full Text Available This paper examines the relationship between financial development, economic growth and energy consumption in Cote d’Ivoire over the period 1971-2011. To do so, the study first built a synthetic indicator of financial development through the principal component analysis technique (PCA and used four energy sources such as electric power consumption, electricity production from renewable sources, electricity production from oil sources and electricity production from hydroelectric sources. Then, employing the autoregressive distributed lag (ARDL bounds testing approach to cointegration, we find that there is a long run relationship between financial development, economic growth and energy consumption sources. Furthermore, the results of the vector error correction models (VECM reveal unidirectional causality running from financial development to energy consumption sources, bidirectional causality between economic growth and energy consumption and unidirectional causality from financial development to economic growth in the long run. The mixed results are due to the use of different proxies for energy consumption. Accordingly, this paper recommends that policy makers should solicit the support of financial sector in order to solve energy problems and further the diversification of the energy consumption sources since financial development has a positive effect on energy consumption in long run. Moreover, government should develop public-private partnership (PPP to stimulate economic growth, improve the access to energy and maintain a sustainable development in Cote d’Ivoire.

  18. Low carbon and clean energy scenarios for India: Analysis of targets approach

    International Nuclear Information System (INIS)

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-01-01

    Low carbon energy technologies are of increasing importance to India for reducing emissions and diversifying its energy supply mix. Using GCAM, an integrated assessment model, this paper analyzes a targets approach for pushing solar, wind, and nuclear technologies in the Indian electricity generation sector from 2005 to 2095. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements, and expert opinions. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario, wind and nuclear technologies exceed respective targets in the long run without any subsidy push, while solar energy requires subsidy push throughout the century in order to meet its high targets. In the short run, nuclear energy also requires significant subsidy, including a much higher initial subsidy relative to solar power, which is a result of its higher targets. Under a carbon price scenario, the carbon price drives the penetration of these technologies. Still, subsidy is required — especially in the short run when the carbon price is low. We also found that pushing solar, wind, and nuclear technologies leads to a decrease in share of CCS under the carbon price scenario and biomass under both the reference and carbon price scenarios. This is because low carbon technologies compete among themselves and substitute each other, thereby enhancing the need for subsidy or carbon price, highlighting that proposed targets are not set at efficient levels. In light of contemporary debate on external costs of nuclear energy, we also assess the sensitivity of the results to nuclear technology cost. We find that higher cost significantly decreases the share of nuclear power under both the reference and carbon price scenarios.

  19. Energy Consumption Trends in Energy Scarce and Rich Countries: Comparative Study for Pakistan and Saudi Arabia

    Science.gov (United States)

    Gazder, Uneb

    2017-11-01

    Energy crisis is raising serious concerns throughout the world. There has been constant rise in energy consumption corresponding to the increase in global population. This sector affects the other pillars of national economy including industries and transportation. Because of these reasons, the traditional fossil-based energy sources are depleting rapidly, resulting in high and unstable energy prices. Saudi Arabia and Pakistan, although different from each other in terms of their economic stability and political systems, still rely heavily on the traditional fossil fuels. This paper presents the comparison of these two countries in terms of their energy consumption and factors affecting it. These factors include, but not limited to, economic development, and growth in population and other sectors such as; industries, transportation, etc. The comparison is also made with the regional and global energy consumption trends and these countries. Moreover, regression models were built to predict energy consumption till 2040 and compare the growth in this sector and share in global energy demand. Energy consumption in oil-rich countries (Saudi Arabia) has been driven through its economic development, while for energy insecure country (Pakistan) it is mainly because of population growth. It was also found that in the next two decades the share of Pakistan in the global energy demand will increase. This concludes that population growth will have more impact on energy consumption than economic growth. It could mean that the shift in energy sector would shift towards sustenance instead of using energy for commercial or industrial usage. Conference Track: Policy and Finance and Strategies

  20. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...