WorldWideScience

Sample records for energy camera scans

  1. Scanning gamma camera

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Batter, J.F. Jr.; Stout, K.J.

    1977-01-01

    A scanning system for a gamma camera providing for the overlapping of adjacent scan paths is described. A collimator mask having tapered edges provides for a graduated reduction in intensity of radiation received by a detector thereof, the reduction in intensity being graduated in a direction normal to the scanning path to provide a blending of images of adjacent scan paths. 31 claims, 15 figures

  2. High resolution RGB color line scan camera

    Science.gov (United States)

    Lynch, Theodore E.; Huettig, Fred

    1998-04-01

    A color line scan camera family which is available with either 6000, 8000 or 10000 pixels/color channel, utilizes off-the-shelf lenses, interfaces with currently available frame grabbers, includes on-board pixel by pixel offset correction, and is configurable and controllable via RS232 serial port for computer controlled or stand alone operation is described in this paper. This line scan camera is based on an available 8000 element monochrome line scan camera designed by AOA for OEM use. The new color version includes improvements such as better packaging and additional user features which make the camera easier to use. The heart of the camera is a tri-linear CCD sensor with on-chip color balancing for maximum accuracy and pinned photodiodes for low lag response. Each color channel is digitized to 12 bits and all three channels are multiplexed together so that the resulting camera output video is either a 12 or 8 bit data stream at a rate of up to 24Megpixels/sec. Conversion from 12 to 8 bit, or user-defined gamma, is accomplished by on board user-defined video look up tables. The camera has two user-selectable operating modes; lows speed, high sensitivity mode or high speed, reduced sensitivity mode. The intended uses of the camera include industrial inspection, digital archiving, document scanning, and graphic arts applications.

  3. Whole body scan system based on γ camera

    International Nuclear Information System (INIS)

    Ma Tianyu; Jin Yongjie

    2001-01-01

    Most existing domestic γ cameras can not perform whole body scan protocol, which is of important use in clinic. The authors designed a set of whole body scan system, which is made up of a scan bed, an ISA interface card controlling the scan bed and the data acquisition software based on a data acquisition and image processing system for γ cameras. The image was obtained in clinical experiment, and the authors think it meets the need of clinical diagnosis. Application of this system in γ cameras can provide whole body scan function at low cost

  4. Using a laser scanning camera for reactor inspection

    International Nuclear Information System (INIS)

    Armour, I.A.; Adrain, R.S.; Klewe, R.C.

    1984-01-01

    Inspection of nuclear reactors is normally carried out using TV or film cameras. There are, however, several areas where these cameras show considerable shortcomings. To overcome these difficulties, laser scanning cameras have been developed. This type of camera can be used for general visual inspection as well as the provision of high resolution video images with high ratio on and off-axis zoom capability. In this paper, we outline the construction and operation of a laser scanning camera and give examples of how it has been used in various power stations, and indicate future potential developments. (author)

  5. Laser scanning camera inspects hazardous area

    International Nuclear Information System (INIS)

    Fryatt, A.; Miprode, C.

    1985-01-01

    Main operational characteristics of a new laser scanning camera are presented. The camera is intended primarily for low level high resolution viewing inside nuclear reactors. It uses a He-Ne laser beam raster; by detecting the reflected light by means of a phomultiplier, the subject under observation can be reconstructed in an electronic video store and reviewed on a conventional monitor screen

  6. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  7. A digital gigapixel large-format tile-scan camera.

    Science.gov (United States)

    Ben-Ezra, M

    2011-01-01

    Although the resolution of single-lens reflex (SLR) and medium-format digital cameras has increased in recent years, applications for cultural-heritage preservation and computational photography require even higher resolutions. Addressing this issue, a large-format cameras' large image planes can achieve very high resolution without compromising pixel size and thus can provide high-quality, high-resolution images.This digital large-format tile scan camera can acquire high-quality, high-resolution images of static scenes. It employs unique calibration techniques and a simple algorithm for focal-stack processing of very large images with significant magnification variations. The camera automatically collects overlapping focal stacks and processes them into a high-resolution, extended-depth-of-field image.

  8. PhC-4 new high-speed camera with mirror scanning

    International Nuclear Information System (INIS)

    Daragan, A.O.; Belov, B.G.

    1979-01-01

    The description of the optical system and the construction of the high-speed PhC-4 photographic camera with mirror scanning of the continuously operating type is given. The optical system of the camera is based on the foursided rotating mirror, two optical inlets and two working sectors. The PhC-4 camera provides the framing rate up to 600 thousand frames per second. (author)

  9. Image-scanning measurement using video dissection cameras

    International Nuclear Information System (INIS)

    Carson, J.S.

    1978-01-01

    A high speed dimensional measuring system capable of scanning a thin film network, and determining if there are conductor widths, resistor widths, or spaces not typical of the design for this product is described. The eye of the system is a conventional TV camera, although such devices as image dissector cameras or solid-state scanners may be used more often in the future. The analog signal from the TV camera is digitized for processing by the computer and is presented to the TV monitor to assist the operator in monitoring the system's operation. Movable stages are required when the field of view of the scanner is less than the size of the object. A minicomputer controls the movement of the stage, and communicates with the digitizer to select picture points that are to be processed. Communications with the system are maintained through a teletype or CRT terminal

  10. Distributing functionality in the Drift Scan Camera System

    International Nuclear Information System (INIS)

    Nicinski, T.; Constanta-Fanourakis, P.; MacKinnon, B.; Petravick, D.; Pluquet, C.; Rechenmacher, R.; Sergey, G.

    1993-11-01

    The Drift Scan Camera (DSC) System acquires image data from a CCD camera. The DSC is divided physically into two subsystems which are tightly coupled to each other. Functionality is split between these two subsystems: the front-end performs data acquisition while the host subsystem performs near real-time data analysis and control. Yet, through the use of backplane-based Remote Procedure Calls, the feel of one coherent system is preserved. Observers can control data acquisition, archiving to tape, and other functions from the host, but, the front-end can accept these same commands and operate independently. The DSC meets the needs for such robustness and cost-effective computing

  11. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  12. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    International Nuclear Information System (INIS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-01-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  13. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    Energy Technology Data Exchange (ETDEWEB)

    Sels, Seppe, E-mail: Seppe.Sels@uantwerpen.be; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve [Op3Mech Research Group, University of Antwerp, Salesianenlaan 90, 2660 Antwerp (Belgium)

    2016-06-28

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  14. Applications of a shadow camera system for energy meteorology

    Science.gov (United States)

    Kuhn, Pascal; Wilbert, Stefan; Prahl, Christoph; Garsche, Dominik; Schüler, David; Haase, Thomas; Ramirez, Lourdes; Zarzalejo, Luis; Meyer, Angela; Blanc, Philippe; Pitz-Paal, Robert

    2018-02-01

    Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras directly image shadows on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and can help to optimize plant operations. In this publication, two key applications of shadow cameras are briefly presented.

  15. Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Directory of Open Access Journals (Sweden)

    Alexander Wendel

    2017-10-01

    Full Text Available Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera’s 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera’s pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m/1.05 ∘ and 0.18 m/2.39 ∘ . We also propose several approaches to displaying and interpreting the 6D results in a human readable way.

  16. Quantitative studies with the gamma-camera: correction for spatial and energy distortion

    International Nuclear Information System (INIS)

    Soussaline, F.; Todd-Pokropek, A.E.; Raynaud, C.

    1977-01-01

    The gamma camera sensitivity distribution is an important source of error in quantitative studies. In addition, spatial distortion produces apparent variations in count density which degrades quantitative studies. The flood field image takes into account both effects and is influenced by the pile-up of the tail distribution. It is essential to measure separately each of these parameters. These were investigated using a point source displaced by a special scanning table with two X, Y stepping motors of 10 micron precision. The spatial distribution of the sensitivity, spatial distortion and photopeak in the field of view were measured and compared for different setting-up of the camera and PM gains. For well-tuned cameras, the sensitivity is fairly constant, while the variations appearing in the flood field image are primarily due to spatial distortion, the former more dependent than the latter on the energy window setting. This indicates why conventional flood field uniformity correction must not be applied. A correction technique to improve the results in quantitative studies has been tested using a continuously matched energy window at every point within the field. A method for correcting spatial distortion is also proposed, where, after an adequately sampled measurement of this error, a transformation can be applied to calculate the true position of events. The knowledge of the magnitude of these parameters is essential in the routine use and design of detector systems

  17. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    Science.gov (United States)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  18. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera

    International Nuclear Information System (INIS)

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest 99m Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time. (author)

  19. Comparison of corneal measurements in keratoconic eyes using rotating Scheimpflug camera and scanning-slit topography

    Directory of Open Access Journals (Sweden)

    Mohammad Naderan

    2015-04-01

    Full Text Available AIM: To compare the anterior segment measurements obtained by rotating Scheimpflug camera (Pentacam and Scanning-slit topography (Orbscan IIz in keratoconic eyes. METHODS: A total of 121 patients, 71 males (58.7% and 50 females (41.3% (214 eyes with the diagnosis of keratoconus (KC were enrolled in this study. Following diagnosis of KC by slit-lamp biomicroscopic examination, central corneal thickness (CCT, thinnest corneal thickness (TCT, anterior chamber depth (ACD, and pupil diameter (PD were measured by a single examiner using successive instrumentation by Pentacam and Orbscan. RESULTS: There was no significant difference between the two instruments for the measurement of CCT and TCT. In contrast, scanning-slit topography measured ACD (3.46±0.40 mm vs. 3.38±0.33 mm, P=0.019 and PD (4.97±1.26 mm vs 4.08±1.19 mm, P<0.001 significantly larger than rotating Scheimpflug camera. The two devices made similar measurements for CCT (95% CI: -2.94 to 5.06, P=0.602. However, the mean difference for TCT was -6.28 (95% CI: -10.51 to -2.06, P=0.004 showing a thinner measurement by Orbscan than by Pentacam. In terms of the ACD, the mean difference was 0.08 mm (95% CI: 0.04 to 0.12, P<0.001 with Orbscan giving a slightly larger value than Pentacam. Similarly, Orbscan measurement for PD was longer than Pentacam (95% CI: 0.68 to 1.08, P<0.001. CONCLUSION: A good agreement was found between Pentacam and Orbscan concerning CCT measurement while comparing scanning-slit topography and rotating Scheimpflug camera there was an underestimation for TCT and overestimation for ACD and PD.

  20. A design of a high speed dual spectrometer by single line scan camera

    Science.gov (United States)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  1. Status of the Dark Energy Survey Camera (DECam) Project

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, Brenna L.; Abbott, Timothy M.C.; Angstadt, Robert; Annis, Jim; Antonik, Michelle, L.; Bailey, Jim; Ballester, Otger.; Bernstein, Joseph P.; Bernstein, Rebbeca; Bonati, Marco; Bremer, Gale; /Fermilab /Cerro-Tololo InterAmerican Obs. /ANL /Texas A-M /Michigan U. /Illinois U., Urbana /Ohio State U. /University Coll. London /LBNL /SLAC /IFAE

    2012-06-29

    The Dark Energy Survey Collaboration has completed construction of the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. All components of DECam have been shipped to Chile and post-shipping checkout finished in Jan. 2012. Installation is in progress. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  2. Status of the Dark Energy Survey Camera (DECam) project

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, Brenna L.; McLean, Ian S.; Ramsay, Suzanne K.; Abbott, Timothy M. C.; Angstadt, Robert; Takami, Hideki; Annis, Jim; Antonik, Michelle L.; Bailey, Jim; Ballester, Otger; Bernstein, Joseph P.; Bernstein, Rebecca A.; Bonati, Marco; Bremer, Gale; Briones, Jorge; Brooks, David; Buckley-Geer, Elizabeth J.; Campa, Juila; Cardiel-Sas, Laia; Castander, Francisco; Castilla, Javier; Cease, Herman; Chappa, Steve; Chi, Edward C.; da Costa, Luis; DePoy, Darren L.; Derylo, Gregory; de Vincente, Juan; Diehl, H. Thomas; Doel, Peter; Estrada, Juan; Eiting, Jacob; Elliott, Anne E.; Finley, David A.; Flores, Rolando; Frieman, Josh; Gaztanaga, Enrique; Gerdes, David; Gladders, Mike; Guarino, V.; Gutierrez, G.; Grudzinski, Jim; Hanlon, Bill; Hao, Jiangang; Holland, Steve; Honscheid, Klaus; Huffman, Dave; Jackson, Cheryl; Jonas, Michelle; Karliner, Inga; Kau, Daekwang; Kent, Steve; Kozlovsky, Mark; Krempetz, Kurt; Krider, John; Kubik, Donna; Kuehn, Kyler; Kuhlmann, Steve E.; Kuk, Kevin; Lahav, Ofer; Langellier, Nick; Lathrop, Andrew; Lewis, Peter M.; Lin, Huan; Lorenzon, Wolfgang; Martinez, Gustavo; McKay, Timothy; Merritt, Wyatt; Meyer, Mark; Miquel, Ramon; Morgan, Jim; Moore, Peter; Moore, Todd; Neilsen, Eric; Nord, Brian; Ogando, Ricardo; Olson, Jamieson; Patton, Kenneth; Peoples, John; Plazas, Andres; Qian, Tao; Roe, Natalie; Roodman, Aaron; Rossetto, B.; Sanchez, E.; Soares-Santos, Marcelle; Scarpine, Vic; Schalk, Terry; Schindler, Rafe; Schmidt, Ricardo; Schmitt, Richard; Schubnell, Mike; Schultz, Kenneth; Selen, M.; Serrano, Santiago; Shaw, Terri; Simaitis, Vaidas; Slaughter, Jean; Smith, R. Christopher; Spinka, Hal; Stefanik, Andy; Stuermer, Walter; Sypniewski, Adam; Talaga, R.; Tarle, Greg; Thaler, Jon; Tucker, Doug; Walker, Alistair R.; Weaverdyck, Curtis; Wester, William; Woods, Robert J.; Worswick, Sue; Zhao, Allen

    2012-09-24

    The Dark Energy Survey Collaboration has completed construction of the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. All components of DECam have been shipped to Chile and post-shipping checkout finished in Jan. 2012. Installation is in progress. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  3. Streak electronic camera with slow-scanning storage tube used in the field of high-speed cineradiography

    International Nuclear Information System (INIS)

    Marilleau, J.; Bonnet, L.; Garcin, G.; Guix, R.; Loichot, R.

    The cineradiographic machine designed for measurements in the field of detonics consists of a linear accelerator associated with a braking target, a scintillator and a remote controlled electronic camera. The quantum factor of X-ray detection and the energetic efficiency of the scintillator are given. The electronic camera is built upon a deflection-converter tube (RCA C. 73 435 AJ) coupled by optical fibres to a photosensitive storage tube (TH-CSF Esicon) used in a slow-scanning process with electronic recording of the information. The different parts of the device are described. Some capabilities such as data processing numerical outputs, measurements and display are outlined. A streak cineradiogram of a typical implosion experiment is given [fr

  4. FDG scan on an ordinary coincidence gamma camera (CDET) -preliminary data in pulmonary or colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Montravers, F.; Grahek, D.; Ghazzar, N.; Younsi, N.; Kerrou, K.; Talbot, J.N. [Hopital Tenon, 75 - Paris (France). Services de Medecine Nucleaire; Wartski, M.; Zerbib, E. [Hopital Marie Lannelongue Le Plessis Robinson (France); Lumbroso, J. [Institut Gustave Roussy Villejuif (France)

    1997-12-31

    Full text. The purpose of this study to evaluate the impact of FDG scan performed on an ordinary CDET gamma camera on the therapeutic management of patients with pulmonary nodules or with suspicion of recurrent colorectal carcinoma. Methods: two tomoscintigrams (thorax and abdomen) were acquired, using a PICKER Prism XP 2000 coincidence gamma camera, 45 m after i.v. injection of 100-150 MBq of {sup 18} F-FDG in fasting patients. The 21 pts were explored in July or August 1997. Preliminary results: among 12 patients with pulmonary nodules, the planed surgery was replaced by chemotherapy after visualization of unknown metastases accumulating FDG in 3 patients. In another one, the high uptake of FDG by a lung nodule which has been known for 6 years, led to surgery and objectivation of an adenocarcinoma. In one case, the absence of FDG uptake corresponded to an abscess (true negative result). In the other 7 patients, the indication of surgery was confirmed but the procedure was modified in 2 cases. In case of suspicion of recurrent colorectal carcinoma (9 patients), the finding of a single focus of FDG uptake whereas CT scan was negative or inconclusive let do the decision of surgery in 3 patients. In one patient with pelvic pain without increase of tumor markers levels and with normal CT scan, a normal FDG scan confirmed the physician`s hypothesis of pain due to the previous therapy but do not recurrence. In one patient, the finding of 3 foci of uptake of FDG whereas CT scan was inconclusive confirmed the indication of chemotherapy. In 2 patients with FDG abdominal foci without morphologic abnormalities, the therapeutic strategy is not yet decided in 2 patients, no foci could be found. In conclusion, these preliminary results show that FDG scan has provided a help to the physician indecision-making for therapeutic strategy in 8 patients on 21 (38%) and a help to the surgeon in 2 more cases (48% as a whole)

  5. FDG scan on an ordinary coincidence gamma camera (CDET) -preliminary data in pulmonary or colorectal cancer

    International Nuclear Information System (INIS)

    Montravers, F.; Grahek, D.; Ghazzar, N.; Younsi, N.; Kerrou, K.; Talbot, J.N.; Lumbroso, J.

    1997-01-01

    Full text. The purpose of this study to evaluate the impact of FDG scan performed on an ordinary CDET gamma camera on the therapeutic management of patients with pulmonary nodules or with suspicion of recurrent colorectal carcinoma. Methods: two tomoscintigrams (thorax and abdomen) were acquired, using a PICKER Prism XP 2000 coincidence gamma camera, 45 m after i.v. injection of 100-150 MBq of 18 F-FDG in fasting patients. The 21 pts were explored in July or August 1997. Preliminary results: among 12 patients with pulmonary nodules, the planed surgery was replaced by chemotherapy after visualization of unknown metastases accumulating FDG in 3 patients. In another one, the high uptake of FDG by a lung nodule which has been known for 6 years, led to surgery and objectivation of an adenocarcinoma. In one case, the absence of FDG uptake corresponded to an abscess (true negative result). In the other 7 patients, the indication of surgery was confirmed but the procedure was modified in 2 cases. In case of suspicion of recurrent colorectal carcinoma (9 patients), the finding of a single focus of FDG uptake whereas CT scan was negative or inconclusive let do the decision of surgery in 3 patients. In one patient with pelvic pain without increase of tumor markers levels and with normal CT scan, a normal FDG scan confirmed the physician's hypothesis of pain due to the previous therapy but do not recurrence. In one patient, the finding of 3 foci of uptake of FDG whereas CT scan was inconclusive confirmed the indication of chemotherapy. In 2 patients with FDG abdominal foci without morphologic abnormalities, the therapeutic strategy is not yet decided in 2 patients, no foci could be found. In conclusion, these preliminary results show that FDG scan has provided a help to the physician indecision-making for therapeutic strategy in 8 patients on 21 (38%) and a help to the surgeon in 2 more cases (48% as a whole)

  6. Fully integrated digital GAMMA camera-computer system

    International Nuclear Information System (INIS)

    Berger, H.J.; Eisner, R.L.; Gober, A.; Plankey, M.; Fajman, W.

    1985-01-01

    Although most of the new non-nuclear imaging techniques are fully digital, there has been a reluctance in nuclear medicine to abandon traditional analog planar imaging in favor of digital acquisition and display. The authors evaluated a prototype digital camera system (GE STARCAM) in which all of the analog acquisition components are replaced by microprocessor controls and digital circuitry. To compare the relative effects of acquisition matrix size on image quality and to ascertain whether digital techniques could be used in place of analog imaging, Tc-99m bone scans were obtained on this digital system and on a comparable analog camera in 10 patients. The dedicated computer is used for camera setup including definition of the energy window, spatial energy correction, and spatial distortion correction. The display monitor, which is used for patient positioning and image analysis, is 512/sup 2/ non-interlaced, allowing high resolution imaging. Data acquisition and processing can be performed simultaneously. Thus, the development of a fully integrated digital camera-computer system with optimized display should allow routine utilization of non-analog studies in nuclear medicine and the ultimate establishment of fully digital nuclear imaging laboratories

  7. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Huffman, E.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94551 (United States); Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Chen, N.; Gopal, A.; Udin, S. [Nanoshift LLC, Emeryville, California 94608 (United States); Feng, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hilsabeck, T. J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  8. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    Science.gov (United States)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  9. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    International Nuclear Information System (INIS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M.K.; Theint, A.M.M.; Tint, K.T.

    2017-01-01

    A new scanning system named “Vertex picker” has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  10. System Architecture of the Dark Energy Survey Camera Readout Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Theresa; /FERMILAB; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; /Barcelona, IFAE; Chappa, Steve; /Fermilab; de Vicente, Juan; /Madrid, CIEMAT; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; /Fermilab; Martinez, Gustavo; /Madrid, CIEMAT; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.

  11. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  12. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  13. Energy independent uniformity improvement for gamma camera systems

    International Nuclear Information System (INIS)

    Lange, K.

    1979-01-01

    In a gamma camera system having an array of photomultiplier tubes for detecting scintillation events and preamplifiers connecting each tube to a weighting resistor matrix for determining the position coordinates of the events, means are provided for summing the signals from all photomultipliers to obtain the total energy of each event. In one embodiment, at least two different percentages of the summed voltage are developed and used to change the gain of the preamplifiers as a function of total energy when energies exceed specific levels to thereby obtain more accurate correspondence between the true coordinates of the event and its coordinates in a display

  14. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection

    Directory of Open Access Journals (Sweden)

    Gil Lopes

    2016-04-01

    Full Text Available This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills—Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels’ image width (1 m width of road surface with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel. Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  15. High Resolution Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting Diode Lighting for Road-Kill Detection.

    Science.gov (United States)

    Lopes, Gil; Ribeiro, A Fernando; Sillero, Neftalí; Gonçalves-Seco, Luís; Silva, Cristiano; Franch, Marc; Trigueiros, Paulo

    2016-04-19

    This paper presents a road surface scanning system that operates with a trichromatic line scan camera with light emitting diode (LED) lighting achieving road surface resolution under a millimeter. It was part of a project named Roadkills-Intelligent systems for surveying mortality of amphibians in Portuguese roads, sponsored by the Portuguese Science and Technology Foundation. A trailer was developed in order to accommodate the complete system with standalone power generation, computer image capture and recording, controlled lighting to operate day or night without disturbance, incremental encoder with 5000 pulses per revolution attached to one of the trailer wheels, under a meter Global Positioning System (GPS) localization, easy to utilize with any vehicle with a trailer towing system and focused on a complete low cost solution. The paper describes the system architecture of the developed prototype, its calibration procedure, the performed experimentation and some obtained results, along with a discussion and comparison with existing systems. Sustained operating trailer speeds of up to 30 km/h are achievable without loss of quality at 4096 pixels' image width (1 m width of road surface) with 250 µm/pixel resolution. Higher scanning speeds can be achieved by lowering the image resolution (120 km/h with 1 mm/pixel). Computer vision algorithms are under development to operate on the captured images in order to automatically detect road-kills of amphibians.

  16. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    Science.gov (United States)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  17. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  18. Algorithm-enabled partial-angular-scan configurations for dual-energy CT.

    Science.gov (United States)

    Chen, Buxin; Zhang, Zheng; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2018-05-01

    We seek to investigate an optimization-based one-step method for image reconstruction that explicitly compensates for nonlinear spectral response (i.e., the beam-hardening effect) in dual-energy CT, to investigate the feasibility of the one-step method for enabling two dual-energy partial-angular-scan configurations, referred to as the short- and half-scan configurations, on standard CT scanners without involving additional hardware, and to investigate the potential of the short- and half-scan configurations in reducing imaging dose and scan time in a single-kVp-switch full-scan configuration in which two full rotations are made for collection of dual-energy data. We use the one-step method to reconstruct images directly from dual-energy data through solving a nonconvex optimization program that specifies the images to be reconstructed in dual-energy CT. Dual-energy full-scan data are generated from numerical phantoms and collected from physical phantoms with the standard single-kVp-switch full-scan configuration, whereas dual-energy short- and half-scan data are extracted from the corresponding full-scan data. Besides visual inspection and profile-plot comparison, the reconstructed images are analyzed also in quantitative studies based upon tasks of linear-attenuation-coefficient and material-concentration estimation and of material differentiation. Following the performance of a computer-simulation study to verify that the one-step method can reconstruct numerically accurately basis and monochromatic images of numerical phantoms, we reconstruct basis and monochromatic images by using the one-step method from real data of physical phantoms collected with the full-, short-, and half-scan configurations. Subjective inspection based upon visualization and profile-plot comparison reveals that monochromatic images, which are used often in practical applications, reconstructed from the full-, short-, and half-scan data are largely visually comparable except for some

  19. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  20. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  1. Overview of the low energy accelerator scanning system

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Muhamad Zahidee Taat; Abu Bakar Ghazali; Mohd Rizal Ibrahim; Mohd Rizal Chulan Md Chulan; Azaman Ahmad; Abdul Halim Baijan; Rokiah Mohd Sabri

    2009-01-01

    This paper describes the specification of the low energy accelerator (Baby-EBM; Electron Beam Machine) scanning system. It comprises a discussion of coil inductance measurement, power supply design and the test results. The scanning horn system was completely assembled and tested; it was found that the system is able to scan the beam across the scanning window with a required beam profile. (Author)

  2. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation ... high as with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more ...

  4. Head-positioning scintillation camera and head holder therefor

    International Nuclear Information System (INIS)

    Kay, T.D.

    1976-01-01

    A holder for immobilizing the head of a patient undergoing a vertex brain scan by a Gamma Scintillation Camera is described. The holder has a uniquely designed shape capable of comfortably supporting the head. In addition, this holder can be both adjustably and removably utilized in combination with the scintillation camera so as to enable the brain scan operation to take place while the patient is in the seated position

  5. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  6. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  7. A study of effects of scattered reaction on physical parameters of a new gamma camera used in nuclear medicine

    International Nuclear Information System (INIS)

    Maury, Martine.

    1979-01-01

    This work is devoted to the analysis of the performance of a new gamma camera. This camera is characterized by the introduction of an image amplifier between the crystal detector and the localization system which compound four photomultipliers. The appreciation of performances of this new instrument is based on the measure of the physical parameters usually studied in this purpose: energy resolution, spatial resolution, modulation transfert fonction and contrast, sensitivity and deadtime. Furthermore, we have studied the influence of scattered radiation on the value of these parameters. Two studies complete this work: the artificial deterioration of the energy resolution of the camera inserting a noise, to estimate the importance of the energy resolution on the image contrast; the scanning of pulse amplitude spectra obtained from brain of patients in order to evaluate the participation of scattered radiation in the peak's constitution. We present, at last, a quality control programm for scintillation camera [fr

  8. 3D shape measurement for moving scenes using an interlaced scanning colour camera

    International Nuclear Information System (INIS)

    Cao, Senpeng; Cao, Yiping; Lu, Mingteng; Zhang, Qican

    2014-01-01

    A Fourier transform deinterlacing algorithm (FTDA) is proposed to eliminate the blurring and dislocation of the fringe patterns on a moving object captured by an interlaced scanning colour camera in phase measuring profilometry (PMP). Every frame greyscale fringe from three colour channels of every colour fringe is divided into even and odd field fringes respectively, each of which is respectively processed by FTDA. All of the six frames deinterlaced fringes from one colour fringe form two sets of three-step phase-shifted greyscale fringes, with which two 3D shapes corresponding to two different moments are reconstructed by PMP within a frame period. The deinterlaced fringe is identical with the exact frame fringe at the same moment theoretically. The simulation and experiments show its feasibility and validity. The method doubles the time resolution, maintains the precision of the traditional phase measurement profilometry, and has potential applications in the moving and online object’s 3D shape measurements. (paper)

  9. Exploring the Nuclear Phase Diagram with Beam Energy Scans

    International Nuclear Information System (INIS)

    Horvat, Stephen

    2017-01-01

    The nuclear phase diagram is mapped using beam energy scans of relativistic heavy-ion collisions. This mapping is possible because different collision energies develop along different trajectories through the phase diagram. High energy collisions will evolve though a crossover phase transition according to lattice QCD, but lower collision energies may traverse a first order phase transition. There are hints for this first order phase transition and its critical endpoint, but further measurements and theoretical guidance is needed. In addition to mapping the phase transition, beam energy scans allow us to see if we can turn off the signatures of deconfinement. If an observable is a real signature for the formation of the deconfined state called quark-gluon plasma, then it should turn off at sufficiently low collision energies. In this summary talk I will show the current state of the field using beam energy scan results from RHIC and SPS, I will show where precise theoretical guidance is needed for understanding recent measurements, and I will motivate the need for more data and new measurements from FAIR, NICA, RHIC, and the SPS. (paper)

  10. Bone scan in pediatrics

    International Nuclear Information System (INIS)

    Gordon, I.; Peters, A.M.

    1987-01-01

    In 1984, a survey carried out in 21 countries in Europe showed that bone scintigraphy comprised 16% of all paediatric radioisotope scans. Although the value of bone scans in paediatrics is potentially great, their quality varies greatly, and poor-quality images are giving this valuable technique a bad reputation. The handling of children requires a sensitive staff and the provision of a few simple inexpensive items of distraction. Attempting simply to scan a child between two adult patients in a busy general department is a recipe for an unhappy, uncooperative child with the probable result of poor images. The intravenous injection of isotope should be given adjacent to the gamma camera room, unless dynamic scans are required, so that the child does not associate the camera with the injection. This injection is best carried out by someone competent in paediatric venipunture; the entire procedure should be explained to the child and parent, who should remain with child throughout. It is naive to think that silence makes for a cooperative child. The sensitivity of bone-seeking radioisotope tracers and the marked improvement in gamma camera resolution has allowed the bone scanning to become an integrated technique in the assessment of children suspected of suffering from pathological bone conditions. The tracer most commonly used for routine bone scanning is 99m Tc diphosphonate (MDP); other isotopes used include 99m Tc colloid for bone marrow scans and 67 Ga citrate and 111 In white blood cells ( 111 In WBC) for investigation of inflammatory/infective lesions

  11. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    Science.gov (United States)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  12. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  13. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    Energy Technology Data Exchange (ETDEWEB)

    Saotome, Naoya, E-mail: naosao@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji [Department of Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2016-04-15

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  14. Technical Note: Range verification system using edge detection method for a scintillator and a CCD camera system

    International Nuclear Information System (INIS)

    Saotome, Naoya; Furukawa, Takuji; Hara, Yousuke; Mizushima, Kota; Tansho, Ryohei; Saraya, Yuichi; Shirai, Toshiyuki; Noda, Koji

    2016-01-01

    Purpose: Three-dimensional irradiation with a scanned carbon-ion beam has been performed from 2011 at the authors’ facility. The authors have developed the rotating-gantry equipped with the scanning irradiation system. The number of combinations of beam properties to measure for the commissioning is more than 7200, i.e., 201 energy steps, 3 intensities, and 12 gantry angles. To compress the commissioning time, quick and simple range verification system is required. In this work, the authors develop a quick range verification system using scintillator and charge-coupled device (CCD) camera and estimate the accuracy of the range verification. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. The optical spatial resolution of the system is 0.2 mm/pixel. The camera control system was connected and communicates with the measurement system that is part of the scanning system. The range was determined by image processing. Reference range for each energy beam was determined by a difference of Gaussian (DOG) method and the 80% of distal dose of the depth-dose distribution that were measured by a large parallel-plate ionization chamber. The authors compared a threshold method and a DOG method. Results: The authors found that the edge detection method (i.e., the DOG method) is best for the range detection. The accuracy of range detection using this system is within 0.2 mm, and the reproducibility of the same energy measurement is within 0.1 mm without setup error. Conclusions: The results of this study demonstrate that the authors’ range check system is capable of quick and easy range verification with sufficient accuracy.

  15. PAVEMENT DISTRESS DETECTION WITH PICUCHA METHODOLOGY FOR AREA-SCAN CAMERAS AND DARK IMAGES

    Directory of Open Access Journals (Sweden)

    Reus Salini

    2017-04-01

    Full Text Available The PICture Unsupervised Classification with Human Analysis (PICUCHA refers to a hybrid human-artificial intelligence methodology for pavement distresses assessment. It combines the human flexibility to recognize patterns and features in images with the neural network ability to expand such recognition to large volumes of images. In this study, the PICUCHA performance was tested with images taken with area-scan cameras and flash light illumination over a pavement with dark textures. These images are particularly challenging for the analysis because of the lens distortion and non-homogeneous illumination, generating artificial joints that happened at random positions inside the image cells. The chosen images were previously analyzed by other software without success because of the dark coluor. The PICUCHA algorithms could analyze the images with no noticeable problem and without any image pre-processing, such as contrast or brightness adjustments. Because of the special procedure used by the pavement engineer for the key patterns description, the distresses detection accuracy of the PICUCHA for the particular image set could reach 100%.

  16. Quick-E-scan: A methodology for the energy scan of SMEs

    International Nuclear Information System (INIS)

    Cagno, E.; Trucco, P.; Trianni, A.; Sala, G.

    2010-01-01

    This paper introduces the Quick-E-Scan methodology that has been developed to achieve the operational energy efficiency of small and medium enterprises (SMEs), characterized by being scarcely disposed to long energy audits and by a limited budget for energy management programs. On one side, through dividing the firm into functional units - either service (lighting, HVAC, etc.) or production units - the main consuming areas are identified and a criticality index is defined; conversely, an enhancement index highlights the gap of each unit towards the best available techniques (BATs) in energy management programs. Finally, a priority index, created with the junction of the two indexes, points out the most profitable areas in which energy saving measures should be implemented. The methodology, particularly quick and simple, has been successfully tested in 38 SMEs in Northern Italy.

  17. Towards next generation 3D cameras

    Science.gov (United States)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (robotic inspection and assembly systems.

  18. Photometric Characterization of the Dark Energy Camera

    Science.gov (United States)

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; Burke, D. L.; Diehl, H. T.; Gruendl, R. A.; Johnson, M. D.; Li, T. S.; Rykoff, E. S.; Walker, A. R.; Wester, W.; Yanny, B.

    2018-05-01

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >107 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.

  19. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  20. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Perkel, M.S.; Fajman, W.A.; Hersh, T.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T 1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T 1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T 1/2 (r = 0.076) or the GC6 (r = 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P < .01), the T 1/2 (P < .01), and the GC6 (P < .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  1. Comparison of the barium test meal and the gamma camera scanning technic in measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Perkel, M.S.; Fajman, W.A.; Hersh, T.; Moore, C.; Davidson, E.D.; Haun, C.

    1981-09-01

    In 21 patients with nonresected stomachs and symptoms of delayed gastric emptying, obstruction was excluded by upper gastrointestinal series and upper endoscopy; all had abnormal results of barium test meal (BTM) study. Each had repeat BTM after the administration of 10 mg of metoclopramide. Each patient also had two gamma camera studies after a technetium Tc 99m sulfur colloid labeled meal; normal saline or metoclopramide was administered before each test in a blinded and random manner. Half-time (T1/2) and percentage of isotope remaining at six hours (GC6) were recorded. Ten asymptomatic controls had a gamma camera scanning study, and seven of these had a BTM. Nine of 19 patients had a T1/2 in the normal range, and in 12 of 19 patients the GC6 was in the normal range. The magnitude of retention of barium at six hours on the BTM did not correlate with the T1/2 (r . 0.076) or the GC6 (r. 0.296). Thus, these tests were not comparable in this study. By regression analysis, a significant reduction was shown in the amount of retained food and barium (P less than .01), the T1/2 (P less than .01), and the GC6 (P less than .01) after intramuscular administration of metoclopramide, indicating that both tests were able to evaluate the effects of this drug.

  2. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  3. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  4. An energy-optimized collimator design for a CZT-based SPECT camera

    International Nuclear Information System (INIS)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including "5"7Co, "9"9"mTc, "1"2"3I and "1"1"1In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus

  5. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  6. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  7. Automated bone removal in CT angiography: Comparison of methods based on single energy and dual energy scans

    International Nuclear Information System (INIS)

    Straten, Marcel van; Schaap, Michiel; Dijkshoorn, Marcel L.; Greuter, Marcel J.; Lugt, Aad van der; Krestin, Gabriel P.; Niessen, Wiro J.

    2011-01-01

    Purpose: To evaluate dual energy based methods for bone removal in computed tomography angiography (CTA) images and compare these with single energy based methods that use an additional, nonenhanced, CT scan. Methods: Four different bone removal methods were applied to CT scans of an anthropomorphic thorax phantom, acquired with a second generation dual source CT scanner. The methods differed by the way information on the presence of bone was obtained (either by using an additional, nonenhanced scan or by scanning with two tube voltages at the same time) and by the way the bone was removed from the CTA images (either by masking or subtracting the bone). The phantom contained parts which mimic vessels of various diameters in direct contact with bone. Both a quantitative and qualitative analysis of image quality after bone removal was performed. Image quality was quantified by the contrast-to-noise ratio (CNR) normalized to the square root of the dose (CNRD). At locations where vessels touch bone, the quality of the bone removal and the vessel preservation were visually assessed. The dual energy based methods were assessed with and without the addition of a 0.4 mm tin filter to the high voltage x-ray tube filtration. For each bone removal method, the dose required to obtain a certain CNR after bone removal was compared with the dose of a reference scan with the same CNR but without automated bone removal. The CNRD value of the reference scan was maximized by choosing the lowest tube voltage available. Results: All methods removed the bone completely. CNRD values were higher for the masking based methods than for the subtraction based methods. Single energy based methods had a higher CNRD value than the corresponding dual energy based methods. For the subtraction based dual energy method, tin filtration improved the CNRD value with approximately 50%. For the masking based dual energy method, it was easier to differentiate between iodine and bone when tin filtration

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  9. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn [Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Cardiology, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada)

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  10. Control system for gamma camera

    International Nuclear Information System (INIS)

    Miller, D.W.

    1977-01-01

    An improved gamma camera arrangement is described which utilizing a solid state detector, formed of high purity germanium. the central arrangement of the camera operates to effect the carrying out of a trapezoidal filtering operation over antisymmetrically summed spatial signals through gated integration procedures utilizing idealized integrating intervals. By simultaneously carrying out peak energy evaluation of the input signals, a desirable control over pulse pile-up phenomena is achieved. Additionally, through the use of the time derivative of incoming pulse or signal energy information to initially enable the control system, a low level information evaluation is provided serving to enhance the signal processing efficiency of the camera

  11. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... rate at which the body converts food to energy. top of page What are some common uses ... camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  13. A novel simultaneous streak and framing camera without principle errors

    Science.gov (United States)

    Jingzhen, L.; Fengshan, S.; Ningwen, L.; Xiangdong, G.; Bin, H.; Qingyang, W.; Hongyi, C.; Yi, C.; Xiaowei, L.

    2018-02-01

    A novel simultaneous streak and framing camera with continuous access, the perfect information of which is far more important for the exact interpretation and precise evaluation of many detonation events and shockwave phenomena, has been developed. The camera with the maximum imaging frequency of 2 × 106 fps and the maximum scanning velocity of 16.3 mm/μs has fine imaging properties which are the eigen resolution of over 40 lp/mm in the temporal direction and over 60 lp/mm in the spatial direction and the framing frequency principle error of zero for framing record, and the maximum time resolving power of 8 ns and the scanning velocity nonuniformity of 0.136%~-0.277% for streak record. The test data have verified the performance of the camera quantitatively. This camera, simultaneously gained frames and streak with parallax-free and identical time base, is characterized by the plane optical system at oblique incidence different from space system, the innovative camera obscura without principle errors, and the high velocity motor driven beryllium-like rotating mirror, made of high strength aluminum alloy with cellular lateral structure. Experiments demonstrate that the camera is very useful and reliable to take high quality pictures of the detonation events.

  14. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    Science.gov (United States)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  15. Virtual substitution scan via single-step free energy perturbation.

    Science.gov (United States)

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  16. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Directory of Open Access Journals (Sweden)

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  17. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  18. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  19. Real-time vehicle matching for multi-camera tunnel surveillance

    Science.gov (United States)

    Jelača, Vedran; Niño Castañeda, Jorge Oswaldo; Frías-Velázquez, Andrés; Pižurica, Aleksandra; Philips, Wilfried

    2011-03-01

    Tracking multiple vehicles with multiple cameras is a challenging problem of great importance in tunnel surveillance. One of the main challenges is accurate vehicle matching across the cameras with non-overlapping fields of view. Since systems dedicated to this task can contain hundreds of cameras which observe dozens of vehicles each, for a real-time performance computational efficiency is essential. In this paper, we propose a low complexity, yet highly accurate method for vehicle matching using vehicle signatures composed of Radon transform like projection profiles of the vehicle image. The proposed signatures can be calculated by a simple scan-line algorithm, by the camera software itself and transmitted to the central server or to the other cameras in a smart camera environment. The amount of data is drastically reduced compared to the whole image, which relaxes the data link capacity requirements. Experiments on real vehicle images, extracted from video sequences recorded in a tunnel by two distant security cameras, validate our approach.

  20. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaofeng, E-mail: xfluo@mail.ccnu.edu.cn

    2016-12-15

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019–2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  1. Some practical aspects of dual-energy CT scanning

    Energy Technology Data Exchange (ETDEWEB)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J. (Charing Cross Group of Hospitals, London (UK))

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number.

  2. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... exam of any medications you are taking, including vitamins and herbal supplements. You should also inform them ... of scan you are undergoing. top of page What does the equipment look like? The special camera ...

  4. FPS camera sync and reset chassis

    International Nuclear Information System (INIS)

    Yates, G.J.

    1980-06-01

    The sync and reset chassis provides all the circuitry required to synchronize an event to be studied, a remote free-running focus projection and scanning (FPS) data-acquisition TV camera, and a video signal recording system. The functions, design, and operation of this chassis are described in detail

  5. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  6. Some practical aspects of dual-energy CT scanning

    International Nuclear Information System (INIS)

    Dunscombe, P.B.; Katz, D.E.; Stacey, A.J.

    1984-01-01

    Using the dual-energy scanning method developed by Brooks (1977), and making slow x-ray scans at 100 kVp, 35 mA and 140 kVp, 20 mA, measurements were made of electron density and effective atomic number in the lumbar spines of 36 patients aged from 22 to 87 years, and not known to be suffering from conditions which result in osteoporosis or osteomalacia. The authors discuss in detail the sources of experimental error which contributed to the large measured spread of normal values of electron density and effective atomic number. (U.K.)

  7. The structure of formate on TiO{sub 2}(110) by scanned-energy and scanned-angle photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, S.; Kim, Y.J.; Herman, G.S. [Pacific Northwest National Laboratory, Richland, WA (United States)] [and others

    1997-04-01

    There is a considerable interest in understanding the interaction of small organic molecules with oxide surfaces. The chemistry of formate interactions with TiO{sub 2}(110) has been investigated by several groups, but there is little information on the structure of the adsorbate/surface complex. Recently the authors combined high-energy x-ray photoelectron diffraction (XPD) measurements at PNNL with low-energy scanned-angle and scanned-energy photoelectron diffraction measurements at the ALS to investigate the structure of the formate ion on TiO{sub 2}(110) in detail. The high-energy XPD results reveal that formate binds through the oxygens in a bidentate fashion to Ti cation rows along the [001] direction with an O-C-O bond angle of about 126{degrees}. Low-energy photoelectron diffraction data, which is briefly described below, was used to identify the specific bonding geometry, including the bond length between the Ti cation and the oxygen in the formate.

  8. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  9. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  10. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  11. Underwater Inspection of Navigation Structures with an Acoustic Camera

    Science.gov (United States)

    2013-08-01

    the camera with a slow angular speed while recording the images. 5. After the scanning has been performed, review recorded data to determine the...Core x86) or newer  2GB RAM  120GB disc space Operating system requirements  Windows XP, Vista, Windows 7, 32/64 bit Java requirements  Sun... Java JDK, Version 1.6, Update 16 or newer, for installation Limitations and tips for proper scanning  Best results are achieved when scanning in

  12. New nuclear medicine gamma camera systems

    International Nuclear Information System (INIS)

    Villacorta, Edmundo V.

    1997-01-01

    with the existing three gamma cameras, one with fixed opposed dual-head, these new gamma cameras are capable of entire patient coverage for general imaging procedures as well as for SPECT and anterior/posterior whole body scanning using low, medium, and high energies such as Technetium 99m, Gallium 67 and Iodine 131. Imaging procedures done in MMC include thyroid, bone, heart, liver, lungs, kidney, brain, and others: hepatobiliary, parathyroid, testicles, detection for gastrointestinal bleeding and abscesses, etc. An added new equipment in the nuclear laboratory is a Packard COBRA single detector automatic gamma well counter as a backup for our 5 detector counter of the same brand

  13. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  14. SU-F-J-140: Using Handheld Stereo Depth Cameras to Extend Medical Imaging for Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C; Xing, L; Yu, S [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: A correct body contour is essential for the accuracy of dose calculation in radiation therapy. While modern medical imaging technologies provide highly accurate representations of body contours, there are times when a patient’s anatomy cannot be fully captured or there is a lack of easy access to CT/MRI scanning. Recently, handheld cameras have emerged that are capable of performing three dimensional (3D) scans of patient surface anatomy. By combining 3D camera and medical imaging data, the patient’s surface contour can be fully captured. Methods: A proof-of-concept system matches a patient surface model, created using a handheld stereo depth camera (DC), to the available areas of a body contour segmented from a CT scan. The matched surface contour is then converted to a DICOM structure and added to the CT dataset to provide additional contour information. In order to evaluate the system, a 3D model of a patient was created by segmenting the body contour with a treatment planning system (TPS) and fabricated with a 3D printer. A DC and associated software were used to create a 3D scan of the printed phantom. The surface created by the camera was then registered to a CT model that had been cropped to simulate missing scan data. The aligned surface was then imported into the TPS and compared with the originally segmented contour. Results: The RMS error for the alignment between the camera and cropped CT models was 2.26 mm. Mean distance between the aligned camera surface and ground truth model was −1.23 +/−2.47 mm. Maximum deviations were < 1 cm and occurred in areas of high concavity or where anatomy was close to the couch. Conclusion: The proof-of-concept study shows an accurate, easy and affordable method to extend medical imaging for radiation therapy planning using 3D cameras without additional radiation. Intel provided the camera hardware used in this study.

  15. Experience with dedicated ultra fast solid state cardiac gamma camera: technologist perspective

    International Nuclear Information System (INIS)

    Parab, Anil; Gaikar, Anil; Patil, Kashinath; Lele, V.

    2010-01-01

    Full text: To describe technologist perspective of working with ultra fast solid state gamma camera and comparison with conventional dual head gamma camera. Material and Methods: 900 Myocardial Perfusion scan were carried out on dedicated solid state detector cardiac camera between 1st February 2010 till 29th August 2010. 27 studies were done back to back on a conventional dual head gamma camera. In 2 cases dual head isotope imaging was done (Thallium+ 99m Tc-tetrofosmin). Rest stress protocol was used in 600 patients and stress - rest protocol was used in 300. 1:3 ratio of injected activity was maintained for both protocols (5 mCi for 1st study and 15 mCi for second study). For Rest - Stress protocol, 5 mCi of 99m Tc - Tetrofosmin was injected at rest, 40 minutes later, 5 min image was acquired on the solid state detector. Patient was then stressed. 15 mCi 99m Tc - Tetrofosmin was injected at peak stress. Images were acquired 20 minutes later for 3 minutes (total duration of study 90-100 min). For stress rest protocol, 5 mCi 99m Tc - Tetrofosmin was injected at peak stress. 5 mCi images were acquired 20 minutes later. Rest injection of 15 mCi was given 1 hour post stress injection. Rest images were acquired 40 minutes after rest injection (total duration of study 110-120 min). Results: We observed even with lesser amount activity and acquisition time of 5 min/cardiac scan it showed high sensitivity count rate over 2.2-4.7 kcps (10 times more counts than standard gamma camera). System gives better energy resolution < 7%. Better image contrast. Dual isotope imaging can be possible. Spatial resolution 4.3-4.9 mm. Excellent quality images were obtained using low activities (5 mCi/15 mCi) using 1/3rd the acquisition time compared to conventional dual head gamma camera Even in obese patients 7 mCi/21 mCi activity yielded excellent images at 1/3 rd acquisition time Quick acquisition resulted in greater patient comfort and no motion artifact also due to non rotation of

  16. Image-converter streak cameras with very high gain

    International Nuclear Information System (INIS)

    1975-01-01

    A new camera is described with slit scanning and very high photonic gain (G=5000). Development of the technology of tubes and microchannel plates has enabled integration of such an amplifying element in an image converter tube which does away with the couplings and the intermediary electron-photon-electron conversions of the classical converter systems having external amplification. It is thus possible to obtain equal or superior performance while retaining considerable gain for the camera, great compactness, great flexibility in use, and easy handling. (author)

  17. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  18. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    De Luca, G.M.R.; Desclos, E.; Breedijk, R.M.P.; Dolz-Edo, L.; Smits, G.J.; Nahidiazar, L.; Bielefeld, P.; Picavet, L.; Fitzsimons, C.P.; Hoebe, R.; Manders, E.M.M.

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  19. Calibration of gamma cameras for the evaluation of accidental intakes of high-energy photon emitting radionuclides by humans based on urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, A.L.; Lucena, E.A.; Reis, A.A. dos; Souza, W.O.; Dantas, A.L.A.; Dantas, B.M., E-mail: bmdantas@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Dosimetria

    2017-07-01

    The prompt response to emergency situations involving suspicion of intakes of radionuclides requires the use of simple and rapid methods of internal monitoring of the exposed individuals. The use of gamma cameras to estimate intakes and committed doses was investigated by the Centers for Disease Control and Preventions (CDC) of the USA in 2010.The present study aims to develop a calibration protocol for gamma cameras to be applied on internal monitoring based on urine samples to evaluate the incorporation of high-energy photon emitting radionuclides in emergency situations. A gamma camera available in a public hospital located in the city of Rio de Janeiro was calibrated using a standard liquid source of {sup 152}Eu supplied by the LNMRI of the IRD.'Efficiency vs Energy' curves at 10 and 30 cm were obtained. Calibration factors, Minimum Detectable Activities and Minimum Detectable Effective Doses of the gamma camera were calculated for {sup 137}Cs and {sup 60}Co. The gamma camera evaluated in this work presents enough sensitivity to detect activities of such radionuclides at dose levels suitable to assess suspected accidental intakes. (author)

  20. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  1. Gamma camera

    International Nuclear Information System (INIS)

    Reiss, K.H.; Kotschak, O.; Conrad, B.

    1976-01-01

    A gamma camera with a simplified setup as compared with the state of engineering is described permitting, apart from good localization, also energy discrimination. Behind the usual vacuum image amplifier a multiwire proportional chamber filled with trifluorine bromium methane is connected in series. Localizing of the signals is achieved by a delay line, energy determination by means of a pulse height discriminator. With the aid of drawings and circuit diagrams, the setup and mode of operation are explained. (ORU) [de

  2. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Science.gov (United States)

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  3. Improved positron emission tomography camera

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1986-01-01

    A positron emission tomography camera having a plurality of rings of detectors positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom, and a plurality of scintillation crystals positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring may be offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. (author)

  4. A wide field X-ray camera

    International Nuclear Information System (INIS)

    Sims, M.; Turner, M.J.L.; Willingale, R.

    1980-01-01

    A wide field of view X-ray camera based on the Dicke or Coded Mask principle is described. It is shown that this type of instrument is more sensitive than a pin-hole camera, or than a scanning survey of a given region of sky for all wide field conditions. The design of a practical camera is discussed and the sensitivity and performance of the chosen design are evaluated by means of computer simulations. The Wiener Filter and Maximum Entropy methods of deconvolution are described and these methods are compared with each other and cross-correlation using data from the computer simulations. It is shown that the analytic expressions for sensitivity used by other workers are confirmed by the simulations, and that ghost images caused by incomplete coding can be substantially eliminated by the use of the Wiener Filter and the Maximum Entropy Method, with some penalty in computer time for the latter. The cyclic mask configuration is compared with the simple mask camera. It is shown that when the diffuse X-ray background dominates, the simple system is more sensitive and has the better angular resolution. When sources dominate the simple system is less sensitive. It is concluded that the simple coded mask camera is the best instrument for wide field imaging of the X-ray sky. (orig.)

  5. hepawk - A language for scanning high energy physics events

    International Nuclear Information System (INIS)

    Ohl, T.

    1992-01-01

    We present the programming language hepawk, designed for convenient scanning of data structures arising in the simulation of high energy physics events. The interpreter for this language has been implemented in FORTRAN-77, therefore hepawk runs on any machine with a FORTRAN-77 compiler. (orig.)

  6. Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm

    Science.gov (United States)

    Gao, X.; Li, M.; Xing, L.; Liu, Y.

    2018-04-01

    Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.

  7. The use of optical scanning for analysis of casting shape

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2011-04-01

    Full Text Available In the paper the use of optical scanning for inspection of casting shape and its accuracy was described. Optical system applied todigitization of objects determines all dimensions and shape of inspected object. This technology is used in quality control and reverse engineering. System is based on triangulation: sensor head performs projection of different patterns of fringes onto measured object and scanner tracks their distribution with two cameras. Basing on optical transform equations, a processing unit automatically and with remarkable accuracy calculates 3D coordinates for every pixel of camera. Depending on camera resolution the result of such a scan is acloud of points with up to 5 million points for every image. In the paper examples of applications for castings with different designationwas presented.

  8. Principle of some gamma cameras (efficiencies, limitations, development)

    International Nuclear Information System (INIS)

    Allemand, R.; Bourdel, J.; Gariod, R.; Laval, M.; Levy, G.; Thomas, G.

    1975-01-01

    The quality of scintigraphic images is shown to depend on the efficiency of both the input collimator and the detector. Methods are described by which the quality of these images may be improved by adaptations to either the collimator (Fresnel zone camera, Compton effect camera) or the detector (Anger camera, image amplification camera). The Anger camera and image amplification camera are at present the two main instruments whereby acceptable space and energy resolutions may be obtained. A theoretical comparative study of their efficiencies is carried out, independently of their technological differences, after which the instruments designed or under study at the LETI are presented: these include the image amplification camera, the electron amplifier tube camera using a semi-conductor target CdTe and HgI 2 detector [fr

  9. Gamma camera investigations using an on-line computer system

    International Nuclear Information System (INIS)

    Vikterloef, K.J.; Beckman, K.-W.; Berne, E.; Liljenfors, B.

    1974-01-01

    A computer system for use with a gamma camera has been developed by Oerebro Regional Hospital and Nukab AB using a PDP 8/e with a 12K core memory connected to a Selektronik gamma camera. It is possible to register, without loss, pictures of high (5kcps) pulse frequency, two separate channels with identical coordinates, fast dynamic functions down to 5 pictures/second, and to perform statistical smoothing and subtraction of two separate pictures. Experience has shown these possibilities to be so valuable that one has difficulty in thinking of a scanning system without them. This applies not only to sophisticated investigations, e.g. dual isotope registration, but also in conventional scanning for avoiding false positive interpretations and increasing the precision. It is possible at relatively low cost to add a dosage planning system. (JIW)

  10. Assessing the Potential of Low-Cost 3D Cameras for the Rapid Measurement of Plant Woody Structure

    Directory of Open Access Journals (Sweden)

    Charles Nock

    2013-11-01

    Full Text Available Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2–13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height. Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future.

  11. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  12. Radioisotope camera

    International Nuclear Information System (INIS)

    Tausch, L.M.; Kump, R.J.

    1978-01-01

    The electronic ciruit corrects distortions caused by the distance between the individual photomultiplier tubes of the multiple radioisotope camera on one hand and between the tube configuration and the scintillator plate on the other. For this purpose the transmission characteristics of the nonlinear circuits are altered as a function of the energy of the incident radiation. By this means the threshold values between lower and higher amplification are adjusted to the energy level of each scintillation. The correcting circuit may be used for any number of isotopes to be measured. (DG) [de

  13. Medical Radioisotope Scanning, Vol. II. Proceedings of the Symposium on Medical Radioisotope Scanning

    International Nuclear Information System (INIS)

    1964-01-01

    Medical applications of radioisotopes continue to grow in number and importance and medical centres in almost all countries of the world are now using radioactive materials both in the diagnosis and treatment of disease. An increasing proportion of these applications involves studies of the spatial distribution of radioactive material within the human body, for which purpose highly specialized scanning methods have been elaborated. By these methods it is possible to study the position, size and functional state of different organs, to detect tumours, cysts and other abnormalities and to obtain much useful information about regions of the body that are otherwise inaccessible, except by surgery. Progress in scanning methods in recent years has been very rapid and there have been many important advances in instrumentation and technique. The development of new forms of the gamma camera and of colour-scanning techniques are but two examples of recent improvements. The production of new radioisotopes and new labelled compounds has further extended the scope of these methods. To survey these new advances the International Atomic Energy Agency held a Symposium on Medical Radioisotope Scanning in Athens from 20-24 April 1964. The scientific programme of the meeting covered all aspects of scanning methods including theoretical principles, instrumentation, techniques and clinical applications. The World Health Organization assisted in the selection of papers by providing a consultant to the selection committee. The meeting followed the earlier IAEA/WHO Seminar on Medical Radioisotope Scanning in Vienna in 1959, which was attended by 36 participants and at which 14 papers were presented. Some idea of the growth of interest in the subject may be gained from the fact that the Symposium was attended by 160 participants from 26 countries and 4 international organizations, and that 58 papers were presented. The published proceedings, comprising two volumes, contain all the

  14. Distributed embedded smart cameras architectures, design and applications

    CERN Document Server

    Velipasalar, Senem

    2014-01-01

    This publication addresses distributed embedded smart camerascameras that perform onboard analysis and collaborate with other cameras. This book provides the material required to better understand the architectural design challenges of embedded smart camera systems, the hardware/software ecosystem, the design approach for, and applications of distributed smart cameras together with the state-of-the-art algorithms. The authors concentrate on the architecture, hardware/software design, realization of smart camera networks from applications to architectures, in particular in the embedded and mobile domains. •                    Examines energy issues related to wireless communication such as decreasing energy consumption to increase battery-life •                    Discusses processing large volumes of video data on an embedded environment in real-time •                    Covers design of realistic applications of distributed and embedded smart...

  15. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations. We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%. This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The advantages of ASCs, compared to the space-born imagers, are

  16. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  17. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  18. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  19. The development of an automatic scanning method for CR-39 neutron dosimeter

    International Nuclear Information System (INIS)

    Tawara, Hiroko; Miyajima, Mitsuhiro; Sasaki, Shin-ichi; Hozumi, Ken-ichi

    1989-01-01

    A method of measuring low level neutron dose has been developed with CR-39 track detectors using an automatic scanning system. It is composed of the optical microscope with a video camera, an image processor and a personal computer. The focus point of the microscope and the X-Y stage are controlled from the computer. The minimum detectable neutron dose is estimated at 4.6 mrem in the uniform field of neutron with equivalent energy spectrum to Am-Be source from the results of automatic measurements. (author)

  20. Delay line clipping in a scintillation camera system

    International Nuclear Information System (INIS)

    Hatch, K.F.

    1979-01-01

    The present invention provides a novel base line restoring circuit and a novel delay line clipping circuit in a scintillation camera system. Single and double delay line clipped signal waveforms are generated for increasing the operational frequency and fidelity of data detection of the camera system by base line distortion such as undershooting, overshooting, and capacitive build-up. The camera system includes a set of photomultiplier tubes and associated amplifiers which generate sequences of pulses. These pulses are pulse-height analyzed for detecting a scintillation having an energy level which falls within a predetermined energy range. Data pulses are combined to provide coordinates and energy of photopeak events. The amplifiers are biassed out of saturation over all ranges of pulse energy level and count rate. Single delay line clipping circuitry is provided for narrowing the pulse width of the decaying electrical data pulses which increase operating speed without the occurrence of data loss. (JTA)

  1. Applications of a Ga-68/Ge-68 generator system to brain imaging using a multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Chu, D.; Perez-Mendez, V.

    1976-01-01

    A Ge-68/Ga-68 generator system has been applied to brain imaging in conjunction with a novel coincidence detection based positron camera. The camera consists of two opposed large area multiwire proportional chamber (MWPC) detectors interfaced to multichannel lead converter plates. Event localization is effected of delay lines. Ten patients with brain lesions have been studied 1-2 hours after the administration of Ga-68 formulated as DTPA. The images were compared to conventional brain scans, and to x-ray section scans (CAT). The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy compared to conventional brain scans. Central necrosis of lesions observed in positron images, but not in the conventional scans has been confirmed in CAT. The economy of MWPC positron cameras combined with the ideal characteristics of the Ge-68/Ga-68 generator promise a cost efficient imaging system for the future

  2. Reducing flicker due to ambient illumination in camera captured images

    Science.gov (United States)

    Kim, Minwoong; Bengtson, Kurt; Li, Lisa; Allebach, Jan P.

    2013-02-01

    The flicker artifact dealt with in this paper is the scanning distortion arising when an image is captured by a digital camera using a CMOS imaging sensor with an electronic rolling shutter under strong ambient light sources powered by AC. This type of camera scans a target line-by-line in a frame. Therefore, time differences exist between the lines. This mechanism causes a captured image to be corrupted by the change of illumination. This phenomenon is called the flicker artifact. The non-content area of the captured image is used to estimate a flicker signal that is a key to being able to compensate the flicker artifact. The average signal of the non-content area taken along the scan direction has local extrema where the peaks of flicker exist. The locations of the extrema are very useful information to estimate the desired distribution of pixel intensities assuming that the flicker artifact does not exist. The flicker-reduced images compensated by our approach clearly demonstrate the reduced flicker artifact, based on visual observation.

  3. Scanning by use of TV

    International Nuclear Information System (INIS)

    Drevermann, H.

    1981-01-01

    The use of TV read out for scanning and measuring holographic pictures seems to give less problems than the use of optical projection as is usual for conventional bubble chamber photos. Whereas the measuring of conventional bubble chamber pictures seems to give no problems, it is not clear whether scanning by use of TV is possible. Therefore scanning pictures from experiment NA16 (taken in LEBC) with TV only was tried using the TV system of ERASME, where the CRT system is used as a camera. It should be mentioned that this system, being a flying spot device, cannot be adapted for holography. (author)

  4. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    Energy Technology Data Exchange (ETDEWEB)

    Cardan, R; Popple, R [Univ Alabama Birmingham, Birmingham, AL (United States)

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh for collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.

  5. Real-time spot size camera for pulsed high-energy radiographic machines

    International Nuclear Information System (INIS)

    Watson, S.A.

    1993-01-01

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... radioactive energy that is emitted from the patient's body and converts it into an image. The gamma camera itself does not emit any ... of the gamma camera heads around the patient's body to produce more detailed, three-dimensional images. A computer aids in creating the images from ...

  7. Application of dual-energy scanning technique with dual-source CT in pulmonary mass lesions

    International Nuclear Information System (INIS)

    Jiang Jie; Xu Yiming; He Bo; Xie Xiaojie; Han Dan

    2012-01-01

    Objective: To explore the feasibility of DSCT dual-energy technique in pulmonary mass lesions. Methods: A total of 100 patients with pulmonary masses underwent conventional plain CT scan and dual-energy enhanced CT scan. The virtual non-contrast (VNC) images were obtained at post-processing workstation.The mean CT value,enhancement value,signal to noise ratio (SNR), image quality and radiation dose of pulmonary masses were compared between the two scan techniques using F or t test and the detectability of lesions was compared using Wilcoxon test. Results: There was no statistically significant difference among VNC (A) (32.89 ± 12.58) HU,VNC (S) (30.86 ± 9.60) HU and conventional plain images (35.89 ± 9.99) HU in mean CT value of mass (F =2.08, P>0.05). There was statistically significant difference among VNC (A) (3.29 ± 1.45), VNC (S) (3.93 ± 1.49) and conventional plain image (4.61 ± 1.50) in SNR (F =6.01, P<0.05), which of conventional plain scan was higher than that of VNC.The enhancement value of mass in conventional enhanced scan (60.74 ± 13.9) HU and distribution of iodine from VNC (A) (58.26 ± 31.99) HU was no statistically significant difference (t=0.48, P>0.05), but there was a significant difference between conventional enhanced scan (56.51 ± 17.94) HU and distribution of iodine from VNC (S) (52.65 ± 16.78) HU (t=4.45, P<0.05). There was no statistically significant difference among conventional plain scan (4.69 ± 0.06) and VNC (A) (4.60 ± 0.09), VNC (S) (4.61 ±0.11) in image quality at mediastinal window (F=3.014, P>0.05). The appearance, size, internal features of mass (such as necrosis, calcification and cavity) were showed the same in conventional plain scan, VNC (A) and VNC (S). Of 41 patients with hilar mass, 18 patients were found to have lobular and segmental perfusion decrease or defect. Perfusion defect area was found in 59 patients with peripheral lung mass. The radiation dose of dual-energy enhanced scan was lower than that of

  8. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  9. Parallelised photoacoustic signal acquisition using a Fabry-Perot sensor and a camera-based interrogation scheme

    Science.gov (United States)

    Saeb Gilani, T.; Villringer, C.; Zhang, E.; Gundlach, H.; Buchmann, J.; Schrader, S.; Laufer, J.

    2018-02-01

    Tomographic photoacoustic (PA) images acquired using a Fabry-Perot (FP) based scanner offer high resolution and image fidelity but can result in long acquisition times due to the need for raster scanning. To reduce the acquisition times, a parallelised camera-based PA signal detection scheme is developed. The scheme is based on using a sCMOScamera and FPI sensors with high homogeneity of optical thickness. PA signals were acquired using the camera-based setup and the signal to noise ratio (SNR) was measured. A comparison of the SNR of PA signal detected using 1) a photodiode in a conventional raster scanning detection scheme and 2) a sCMOS camera in parallelised detection scheme is made. The results show that the parallelised interrogation scheme has the potential to provide high speed PA imaging.

  10. Development of a Compton camera for prompt-gamma medical imaging

    Science.gov (United States)

    Aldawood, S.; Thirolf, P. G.; Miani, A.; Böhmer, M.; Dedes, G.; Gernhäuser, R.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Mayerhofer, M.; Schaart, D. R.; Lozano, I. Valencia; Parodi, K.

    2017-11-01

    A Compton camera-based detector system for photon detection from nuclear reactions induced by proton (or heavier ion) beams is under development at LMU Munich, targeting the online range verification of the particle beam in hadron therapy via prompt-gamma imaging. The detector is designed to be capable to reconstruct the photon source origin not only from the Compton scattering kinematics of the primary photon, but also to allow for tracking of the secondary Compton-scattered electrons, thus enabling a γ-source reconstruction also from incompletely absorbed photon events. The Compton camera consists of a monolithic LaBr3:Ce scintillation crystal, read out by a multi-anode PMT acting as absorber, preceded by a stacked array of 6 double-sided silicon strip detectors as scatterers. The detector components have been characterized both under offline and online conditions. The LaBr3:Ce crystal exhibits an excellent time and energy resolution. Using intense collimated 137Cs and 60Co sources, the monolithic scintillator was scanned on a fine 2D grid to generate a reference library of light amplitude distributions that allows for reconstructing the photon interaction position using a k-Nearest Neighbour (k-NN) algorithm. Systematic studies were performed to investigate the performance of the reconstruction algorithm, revealing an improvement of the spatial resolution with increasing photon energy to an optimum value of 3.7(1)mm at 1.33 MeV, achieved with the Categorical Average Pattern (CAP) modification of the k-NN algorithm.

  11. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    Science.gov (United States)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  12. Patient restraining device for the pinhole collimator and gamma scintillation camera

    International Nuclear Information System (INIS)

    Kay, T.D.

    1977-01-01

    A patient restraining device for use with the pinhole collimator of a conventional Gamma Scintillation Camera, the restraining device being made of an adapter ring and a patient holder. The adapter ring is secured directly to the pinhole collimator while the holder is adjustably mounted on the adapter. The adapter ring is so designed to accommodate a variety of holders so as to enable the scanning of many different areas of a patient's anatomy by the scintillation camera

  13. Preprocessing of A-scan GPR data based on energy features

    Science.gov (United States)

    Dogan, Mesut; Turhan-Sayan, Gonul

    2016-05-01

    There is an increasing demand for noninvasive real-time detection and classification of buried objects in various civil and military applications. The problem of detection and annihilation of landmines is particularly important due to strong safety concerns. The requirement for a fast real-time decision process is as important as the requirements for high detection rates and low false alarm rates. In this paper, we introduce and demonstrate a computationally simple, timeefficient, energy-based preprocessing approach that can be used in ground penetrating radar (GPR) applications to eliminate reflections from the air-ground boundary and to locate the buried objects, simultaneously, at one easy step. The instantaneous power signals, the total energy values and the cumulative energy curves are extracted from the A-scan GPR data. The cumulative energy curves, in particular, are shown to be useful to detect the presence and location of buried objects in a fast and simple way while preserving the spectral content of the original A-scan data for further steps of physics-based target classification. The proposed method is demonstrated using the GPR data collected at the facilities of IPA Defense, Ankara at outdoor test lanes. Cylindrically shaped plastic containers were buried in fine-medium sand to simulate buried landmines. These plastic containers were half-filled by ammonium nitrate including metal pins. Results of this pilot study are demonstrated to be highly promising to motivate further research for the use of energy-based preprocessing features in landmine detection problem.

  14. Development of a dual MCP framing camera for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

  15. New knowledge about the bremsstrahlung image of strontium-89 with the scintillation camera

    International Nuclear Information System (INIS)

    Narita, Hiroto; Hirase, Kiyoshi; Uchiyama, Mayuki; Fukushi, Masahiro

    2012-01-01

    Strontium-89 ( 89 Sr) chloride has been used to treat metastases in bone. A method to visualize the distribution of 89 Sr chloride with a scintillation camera was developed in 1996. Studies using bremsstrahlung imaging have shown that 89 Sr accumulates in bone and that the bremsstrahlung generated from biological tissue surrounding bone does not exceed 30 keV. However, it was not clear how low-energy bremsstrahlung from bone can produce peak energy levels of around 75 keV. We speculate that a different (unidentified) factor is involved. The energy spectrum of an 89 Sr source was acquired with a scintillation camera with or without a low-to-medium-energy general-purpose collimator. The energy window was set at 20-650 keV for 4 windows. A 50-mm thick acrylic block was placed between the scintillation camera and the 89 Sr source to exclude the effects of bremsstrahlung. The energy spectrum of 89 Sr covered with lead was acquired using the scintillation camera without a collimator. With the collimator the energy spectrum curve was similar to that without the 50 mm of acrylic. The energy spectrum curve showed peaks at about 75, 170, and 520 keV. Without the collimator the energy spectrum showed a similar curve but no peak at 75 keV peak. The curve was similar to that obtained with the scintillation camera and the collimator; however, the curve obtained when the 89 Sr source had been placed in a lead container was similar to that obtained when the source was unshielded, and the collimator was not attached to the scintillation camera. If bremsstrahlung of 89 Sr produces an image, a low-energy spectrum region should decrease when acrylic is placed between the 89 Sr source and the scintillation camera. However, similar curves were obtained both with the acrylic in place and without the acrylic. Therefore, we believe that the radiation detected by the scintillation camera was not bremsstrahlung due to the beta rays of 89 Sr. Most 89 Sr preparations are contaminated by 85 Sr

  16. Optimization of electrostatic lens systems for low-energy scanning microcolumn applications

    International Nuclear Information System (INIS)

    Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon

    2008-01-01

    The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn

  17. The upgrade of the H.E.S.S. cameras

    Science.gov (United States)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; Naurois, Mathieu de; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-12-01

    The High Energy Stereoscopic System (HESS) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas highland in Namibia. It was built to detect Very High Energy (VHE > 100 GeV) cosmic gamma rays. Since 2003, HESS has discovered the majority of the known astrophysical VHE gamma-ray sources, opening a new observational window on the extreme non-thermal processes at work in our universe. HESS consists of four 12-m diameter Cherenkov telescopes (CT1-4), which started data taking in 2002, and a larger 28-m telescope (CT5), built in 2012, which lowers the energy threshold of the array to 30 GeV . The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Only the PMTs and their HV supplies have been kept from the original cameras. Novel technical solutions have been introduced, which will find their way into some of the Cherenkov cameras foreseen for the next-generation Cherenkov Telescope Array (CTA) observatory. In particular, the camera readout system is the first large-scale system based on the analog memory chip NECTAr, which was designed for CTA cameras. The camera control subsystems and the control software framework also pursue an innovative design, exploiting cutting-edge hardware and software solutions which excel in performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 have been upgraded in fall 2016. Together they will assure continuous operation of HESS at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded HESS

  18. Characterisation of microfocused beam for synchrotron powder diffraction using a new X-ray camera

    International Nuclear Information System (INIS)

    Thomas, C; Potter, J; Tang, C C; Lennie, A R

    2012-01-01

    The powder diffraction beamline I11, Diamond Light Source, is being continually upgraded as requirements of the user community evolve. Intensities of X-rays from the I11 in-vacuum electron undulator in the 3 GeV synchrotron fall off at higher energies. By focusing higher energy X-rays, we can overcome flux limitations, and open up new diffraction experiments. Here, we describe characterisation of microfocusing using compound refractive lenses (CRL). For a relatively modest outlay, we have developed an experimental setup and a novel X-ray camera with good sensitivity and a resolution specification suitable for characterising these focusing optics. We show that vertical oscillations in the focused beam compromise resolution of the source imaged by the CRL. Nevertheless, we have measured CRL focusing properties, and demonstrate the use of energy scanning to determine lens alignment. Real benefits of the intensity gain are illustrated.

  19. Distribution of biomolecules in porous nitrocellulose membrane pads using confocal laser scanning microscopy and high-speed cameras.

    Science.gov (United States)

    Mujawar, Liyakat Hamid; Maan, Abid Aslam; Khan, Muhammad Kashif Iqbal; Norde, Willem; van Amerongen, Aart

    2013-04-02

    The main focus of our research was to study the distribution of inkjet printed biomolecules in porous nitrocellulose membrane pads of different brands. We produced microarrays of fluorophore-labeled IgG and bovine serum albumin (BSA) on FAST, Unisart, and Oncyte-Avid slides and compared the spot morphology of the inkjet printed biomolecules. The distribution of these biomolecules within the spot embedded in the nitrocellulose membrane was analyzed by confocal laser scanning microscopy in the "Z" stack mode. By applying a "concentric ring" format, the distribution profile of the fluorescence intensity in each horizontal slice was measured and represented in a graphical color-coded way. Furthermore, a one-step diagnostic antibody assay was performed with a primary antibody, double-labeled amplicons, and fluorophore-labeled streptavidin in order to study the functionality and distribution of the immune complex in the nitrocellulose membrane slides. Under the conditions applied, the spot morphology and distribution of the primary labeled biomolecules was nonhomogenous and doughnut-like on the FAST and Unisart nitrocellulose slides, whereas a better spot morphology with more homogeneously distributed biomolecules was observed on the Oncyte-Avid slide. Similar morphologies and distribution patterns were observed when the diagnostic one-step nucleic acid microarray immunoassay was performed on these nitrocellulose slides. We also investigated possible reasons for the differences in the observed spot morphology by monitoring the dynamic behavior of a liquid droplet on and in these nitrocellulose slides. Using high speed cameras, we analyzed the wettability and fluid flow dynamics of a droplet on the various nitrocellulose substrates. The spreading of the liquid droplet was comparable for the FAST and Unisart slides but different, i.e., slower, for the Oncyte-Avid slide. The results of the spreading of the droplet and the penetration behavior of the liquid in the

  20. Pavement cracking measurements using 3D laser-scan images

    International Nuclear Information System (INIS)

    Ouyang, W; Xu, B

    2013-01-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel −1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s −1 , allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions. (paper)

  1. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  2. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    Science.gov (United States)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  3. WE-DE-BRA-10: Development of a Novel Scanning Beam Low-Energy Intraoperative Radiation Therapy (SBIORT) System for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wears, B; Mohiuddin, I; Flynn, R; Waldron, T; Kim, Y; Allen, B; Xia, J [University of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    2016-06-15

    Purpose: Developing a compact collimator system and validating a 3D surface imaging module for a scanning beam low-energy x-ray radiation therapy (SBIORT) system that enables delivery of non-uniform radiation dose to targets with irregular shapes intraoperatively. Methods: SBIORT consists of a low energy x-ray source, a custom compact collimator module, a robotic arm, and a 3D surface imaging module. The 3D surface imaging system (structure sensor) is utilized for treatment planning and motion monitoring of the surgical cavity. SBIORT can deliver non-uniform dose distributions by dynamically moving the x-ray source assembly along optimal paths with various collimator apertures. The compact collimator utilizes a dynamic shutter mechanism to form a variable square aperture. The accuracy and reproducibility of the collimator were evaluated using a high accuracy encoder and a high resolution camera platform. The dosimetrical characteristics of the collimator prototype were evaluated using EBT3 films with a Pantak Therapax unit. The accuracy and clinical feasibility of the 3D imaging system were evaluated using a phantom and a cadaver cavity. Results: The SBIORT collimator has a compact size: 66 mm diameter and 10 mm thickness with the maximum aperture of 20 mm. The mechanical experiment indicated the average accuracy of leaf position was 0.08 mm with a reproducibility of 0.25 mm at 95% confidence level. The dosimetry study indicated the collimator had a penumbra of 0.35 mm with a leaf transmission of 0.5%. 3D surface scans can be acquired in 5 seconds. The average difference between the acquired 3D surface and the ground truth is 1 mm with a standard deviation of 0.6 mm. Conclusion: This work demonstrates the feasibility of the compact collimator and 3D scanning system for the SBIORT. SBIORT is a way of delivering IORT with a compact system that requires minimum shielding of the procedure room. This research is supported by the University of Iowa Internal Funding

  4. Compton camera study for high efficiency SPECT and benchmark with Anger system

    Science.gov (United States)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application

  5. Fog camera to visualize ionizing charged particles

    International Nuclear Information System (INIS)

    Trujillo A, L.; Rodriguez R, N. I.; Vega C, H. R.

    2014-10-01

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  6. Stereo Cameras for Clouds (STEREOCAM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Romps, David [Univ. of California, Berkeley, CA (United States); Oktem, Rusen [Univ. of California, Berkeley, CA (United States)

    2017-10-31

    The three pairs of stereo camera setups aim to provide synchronized and stereo calibrated time series of images that can be used for 3D cloud mask reconstruction. Each camera pair is positioned at approximately 120 degrees from the other pair, with a 17o-19o pitch angle from the ground, and at 5-6 km distance from the U.S. Department of Energy (DOE) Central Facility at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) observatory to cover the region from northeast, northwest, and southern views. Images from both cameras of the same stereo setup can be paired together to obtain 3D reconstruction by triangulation. 3D reconstructions from the ring of three stereo pairs can be combined together to generate a 3D mask from surrounding views. This handbook delivers all stereo reconstruction parameters of the cameras necessary to make 3D reconstructions from the stereo camera images.

  7. Cheap streak camera based on the LD-S-10 intensifier tube

    Science.gov (United States)

    Dashevsky, Boris E.; Krutik, Mikhail I.; Surovegin, Alexander L.

    1992-01-01

    Basic properties of a new streak camera and its test results are reported. To intensify images on its screen, we employed modular G1 tubes, the LD-A-1.0 and LD-A-0.33, enabling magnification of 1.0 and 0.33, respectively. If necessary, the LD-A-0.33 tube may be substituted by any other image intensifier of the LDA series, the choice to be determined by the size of the CCD matrix with fiber-optical windows. The reported camera employs a 12.5- mm-long CCD strip consisting of 1024 pixels, each 12 X 500 micrometers in size. Registered radiation was imaged on a 5 X 0.04 mm slit diaphragm tightly connected with the LD-S- 10 fiber-optical input window. Electrons escaping the cathode are accelerated in a 5 kV electric field and focused onto a phosphor screen covering a fiber-optical plate as they travel between deflection plates. Sensitivity of the latter was 18 V/mm, which implies that the total deflecting voltage was 720 V per 40 mm of the screen surface, since reversed-polarity scan pulses +360 V and -360 V were applied across the deflection plate. The streak camera provides full scan times over the screen of 15, 30, 50, 100, 250, and 500 ns. Timing of the electrically or optically driven camera was done using a 10 ns step-controlled-delay (0 - 500 ns) circuit.

  8. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-01-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations

  9. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum–Liu–Tesche equation

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); He, Jiai [School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2016-10-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum–Liu–Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  10. A numerical algorithm to evaluate the transient response for a synchronous scanning streak camera using a time-domain Baum–Liu–Tesche equation

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Wu, Shengli; He, Jiai; Liu, Zhen

    2016-01-01

    The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum–Liu–Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.

  11. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  12. Standardization of test conditions for gamma camera performance measurement

    International Nuclear Information System (INIS)

    Jordan, K.

    1982-02-01

    The way of measuring gamma camera performance is to use point sources or flood sources in air, often in combination with bar phantoms. This method has nothing in common with the use of a camera in clinical practice. Particularly in the case of low energy emitters, like Tc-99m, the influence of scattered radiation over the performance of cameras is very high. The IEC document 'Characteristics and test conditions of radionuclide imaging devices' is discussed

  13. Scanning probes for new energy materials: probing local structure and function

    NARCIS (Netherlands)

    Balke, N.; Bonnell, D.; Ginger, D.S.; Kemerink, M.

    2012-01-01

    The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from

  14. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems

    Energy Technology Data Exchange (ETDEWEB)

    Farr, J. B.; Schoenenberg, D. [Westdeutsches Protonentherapiezentrum Essen, Universitaetsklinikum-Essen, Hufelandstrasse 55, 45147 Essen (Germany); Dessy, F.; De Wilde, O.; Bietzer, O. [Ion Beam Applications, Chemin du Cyclotron, 3, 1348 Louvain-la-Neuve (Belgium)

    2013-07-15

    Purpose: The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so.Methods: The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool.Results: The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not.Conclusions: The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton

  15. Fundamental radiological and geometric performance of two types of proton beam modulated discrete scanning systems.

    Science.gov (United States)

    Farr, J B; Dessy, F; De Wilde, O; Bietzer, O; Schönenberg, D

    2013-07-01

    The purpose of this investigation was to compare and contrast the measured fundamental properties of two new types of modulated proton scanning systems. This provides a basis for clinical expectations based on the scanned beam quality and a benchmark for computational models. Because the relatively small beam and fast scanning gave challenges to the characterization, a secondary purpose was to develop and apply new approaches where necessary to do so. The following performances of the proton scanning systems were investigated: beamlet alignment, static in-air beamlet size and shape, scanned in-air penumbra, scanned fluence map accuracy, geometric alignment of scanning system to isocenter, maximum field size, lateral and longitudinal field uniformity of a 1 l cubic uniform field, output stability over time, gantry angle invariance, monitoring system linearity, and reproducibility. A range of detectors was used: film, ionization chambers, lateral multielement and longitudinal multilayer ionization chambers, and a scintillation screen combined with a digital video camera. Characterization of the scanned fluence maps was performed with a software analysis tool. The resulting measurements and analysis indicated that the two types of delivery systems performed within specification for those aspects investigated. The significant differences were observed between the two types of scanning systems where one type exhibits a smaller spot size and associated penumbra than the other. The differential is minimum at maximum energy and increases inversely with decreasing energy. Additionally, the large spot system showed an increase in dose precision to a static target with layer rescanning whereas the small spot system did not. The measured results from the two types of modulated scanning types of system were consistent with their designs under the conditions tested. The most significant difference between the types of system was their proton spot size and associated resolution

  16. Optimisation of a dual head semiconductor Compton camera using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom)], E-mail: ljh@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom); Beveridge, T.; Gillam, J. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia); Lazarus, I. [STFC Daresbury Laboratory, Warrington, Cheshire (United Kingdom)

    2009-06-01

    Conventional medical gamma-ray camera systems utilise mechanical collimation to provide information on the position of an incident gamma-ray photon. Systems that use electronic collimation utilising Compton image reconstruction techniques have the potential to offer huge improvements in sensitivity. Position sensitive high purity germanium (HPGe) detector systems are being evaluated as part of a single photon emission computed tomography (SPECT) Compton camera system. Data have been acquired from the orthogonally segmented planar SmartPET detectors, operated in Compton camera mode. The minimum gamma-ray energy which can be imaged by the current system in Compton camera configuration is 244 keV due to the 20 mm thickness of the first scatter detector which causes large gamma-ray absorption. A simulation package for the optimisation of a new semiconductor Compton camera has been developed using the Geant4 toolkit. This paper will show results of preliminary analysis of the validated Geant4 simulation for gamma-ray energies of SPECT, 141 keV.

  17. F-18-FDG-hybrid-camera-PET in patients with postoperative fever

    International Nuclear Information System (INIS)

    Meller, J.; Lehmann, K.; Siefker, U.; Meyer, I.; Altenvoerde, G.; Becker, W.; Sahlmann, C.O.; Schreiber, K.

    2002-01-01

    Aim: Evaluation of F-18-FDG-hybrid-camera-PET imaging in patients with undetermined postoperative fever (POF). Methods: Prospective study of 18 patients (9 women, 9 men; age 23-85 years) suffering from POF with 2-fluoro-2'-deoxyglucose (F-18-FDG) using a dual headed coincidence camera (DHCC). Surgery had been performed 5-94 days prior to our investigation. 13 of the 18 patients received antibiotic therapy during the time of evaluation. Ten (55%) had an infectious and eight (45%) a norr infectious cause of fever. Results: Increased F-18-FDG-uptake outside the surgical wound occurred in 13 regions (infection n = 11, malignancy n = 2). The sensitivity of F-18-FDG-hybrid-camera-PET in imaging infection in areas outside the surgical wound was 86% and the specificity 100%, respectively. Antibiotic therapy did not negatively influence the results of F-18-FDG-scanning. Increased F-18-FDG-uptake within the surgical wound was seen in 8 of 18 patients. The sensitivity of F-18-FDG-hybrid-camera-PET in imaging infection within the surgical wound was 100% and the specificty 56%, respectively. The interval between surgery and F-18-FDG-scanning was significantly shorter in patients with false positive results compared with patients showing true negative results (median 34 vs. 54 days; p = 0,038). Conclusion: In POF-Patients, F-18-FDG transaxial tomography performed with a F-18-FDG-hybrid-camera-PET is sensitive in the diagnosis of inflammation and malignant disease within and outside the surgical wound. Because of the accumulation of the tracer both in granulation tissue and infection, the specificity in detecting the focus of fever within the surgical wound is poor. (orig.) [de

  18. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  19. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Transverse electric fields' effects in the Dark Energy Camera CCDs

    International Nuclear Information System (INIS)

    Plazas, A A; Sheldon, E S; Bernstein, G M

    2014-01-01

    Spurious electric fields transverse to the surface of thick CCDs displace the photo-generated charges, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs, where the transverse fields manifest as concentric rings (impurity gradients or ''tree rings'') and bright stripes near the boundaries of the detectors (''edge distortions'') with relative amplitudes of about 1% and 10%, respectively. Using flat-field images, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position on each DECam detector. Comparison of the astrometric and photometric residuals confirms their nature as pixel-size variations. The templates are directly incorporated into the derivation of photometric and astrometric residuals. The results presented in these proceedings are a partial report of analysis performed before the workshop ''Precision Astronomy with Fully depleted CDDs'' at Brookhaven National Laboratory. Additional work is underway, and the final results and analysis will be published elsewhere (Plazas, Bernstein and Sheldon 2014, in prep.)

  1. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  2. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  3. Bone scans

    International Nuclear Information System (INIS)

    Hetherington, V.J.

    1989-01-01

    Oftentimes, in managing podiatric complaints, clinical and conventional radiographic techniques are insufficient in determining a patient's problem. This is especially true in the early stages of bone infection. Bone scanning or imaging can provide additional information in the diagnosis of the disorder. However, bone scans are not specific and must be correlated with clinical, radiographic, and laboratory evaluation. In other words, bone scanning does not provide the diagnosis but is an important bit of information aiding in the process of diagnosis. The more useful radionuclides in skeletal imaging are technetium phosphate complexes and gallium citrate. These compounds are administered intravenously and are detected at specific time intervals postinjection by a rectilinear scanner with minification is used and the entire skeleton can be imaged from head to toe. Minification allows visualization of the entire skeleton in a single image. A gamma camera can concentrate on an isolated area. However, it requires multiple views to complete the whole skeletal image. Recent advances have allowed computer augmentation of the data received from radionucleotide imaging. The purpose of this chapter is to present the current radionuclides clinically useful in podiatric patients

  4. PC-AT to gamma camera interface ANUGAMI-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Gopalakrishnan, K.R.

    1997-01-01

    PC-AT to gamma camera interface is an image acquisition system used in nuclear medicine centres and hospitals. The interface hardware and acquisition software have been designed and developed to meet most of the routine clinical applications using gamma camera. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable frame sizes, orientation and colour palettes. A complete emulation of camera console has been provided along with persistence scope and acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. (author). 4 refs., 3 figs

  5. In-vivo elemental imaging of plants using in-air submilli-PIXE camera

    International Nuclear Information System (INIS)

    Matsuyama, Shigeo; Ishii, Keizo; Kikuchi, Yohei; Kawamura, Yu; Yamazaki, Hiromichi; Watanabe, Ryohei; Tashiro, Kumiko; Inoue, Chihiro

    2008-01-01

    We developed a PIXE analysis system which provides spatial distribution images of elements in a region of 3x3 cm 2 with a spatial resolution of ∼0.5 mm. We call this system a submilli-PIXE camera. For in-vivo imaging of plants, we combined the submilli-PIXE camera with an in-air analysis. The high-speed beam scanning and the in-air analysis also reduce the risk of damaging the plants, thus in-vivo imaging could be realized. We applied the in-air submilli-PIXE camera to phytoremediation research. Phytoremediation is a technology for cleaning metal-contaminated soils using plant physiology. To study accumulation mechanisms for heavy metals, elemental distribution in plant organ should be known as well as average concentration. Elemental images of fronds were obtained in-vivo without sample preparation. Elemental map of the fronds showed that arsenic was accumulated in the edges of Pteris vittata fronds. The in-air submilli-PIXE camera clearly shows the accumulation of arsenic in fronds. The in-air submilli-PIXE camera is an effective tool for undertaking phytoremediation research. (author)

  6. VirtoScan - a mobile, low-cost photogrammetry setup for fast post-mortem 3D full-body documentations in x-ray computed tomography and autopsy suites.

    Science.gov (United States)

    Kottner, Sören; Ebert, Lars C; Ampanozi, Garyfalia; Braun, Marcel; Thali, Michael J; Gascho, Dominic

    2017-03-01

    Injuries such as bite marks or boot prints can leave distinct patterns on the body's surface and can be used for 3D reconstructions. Although various systems for 3D surface imaging have been introduced in the forensic field, most techniques are both cost-intensive and time-consuming. In this article, we present the VirtoScan, a mobile, multi-camera rig based on close-range photogrammetry. The system can be integrated into automated PMCT scanning procedures or used manually together with lifting carts, autopsy tables and examination couch. The VirtoScan is based on a moveable frame that carries 7 digital single-lens reflex cameras. A remote control is attached to each camera and allows the simultaneous triggering of the shutter release of all cameras. Data acquisition in combination with the PMCT scanning procedures took 3:34 min for the 3D surface documentation of one side of the body compared to 20:20 min of acquisition time when using our in-house standard. A surface model comparison between the high resolution output from our in-house standard and a high resolution model from the multi-camera rig showed a mean surface deviation of 0.36 mm for the whole body scan and 0.13 mm for a second comparison of a detailed section of the scan. The use of the multi-camera rig reduces the acquisition time for whole-body surface documentations in medico-legal examinations and provides a low-cost 3D surface scanning alternative for forensic investigations.

  7. DESIGN OF CAMERA MOUNT AND ITS APPLICATION FOR MONITORING MACHINING PROCESS

    Directory of Open Access Journals (Sweden)

    Nadežda Čuboňová

    2015-05-01

    Full Text Available The article deals with the solution to the problem of holding a scanning device – GoPro camera in the vicinity of milling machine EMCO Concept MILL 105, practical part solves the design and production of the fixture. The proposal of the fixture includes the best placing of the fixture within the milling area. On this basis individual variants of this solution are elaborated. The best variant for holding of the camera was selected and fixture production was experimentally performed on a 3D printer – Easy 3D Maker. Fixture functionality was verified on the milling machine.

  8. Cerebral imaging using 68Ga DTPA and the U.C.S.F. multiwire proportional chamber positron camera

    International Nuclear Information System (INIS)

    Hattner, R.S.; Lim, C.B.; Swann, S.J.; Kaufman, L.; Perez-Mendez, V.; Chu, D.; Huberty, J.P.; Price, D.C.; Wilson, C.B.

    1975-12-01

    A multiwire proportional chamber positron camera consisting of four 48 x 48 cm 2 detectors linked to a small digital computer has been designed, constructed, and characterized. Initial clinical application to brain imaging using 68 Ga DTPA in 10 patients with brain tumors is described. Tomographic image reconstruction is accomplished by an algorithm determining the intersection of the annihilation photon paths in planes of interest. Final image processing utilizes uniformity correction, simple thresholding, and smoothing. The positron brain images were compared to conventional scintillation brain scans and x-ray computerized axial tomograms (CAT) in each case. The positron studies have shown significant mitigation of confusing superficial activity resulting from craniotomy in comparison to conventional brain scans. Central necrosis of lesions observed in the positron images, but not in the conventional scans, has been confirmed in CAT. Modifications of the camera are being implemented to improve image quality, and these changes combined with the tomography inherent in the positron scans are anticipated to result in images superior in information content to conventional brain scans

  9. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    Science.gov (United States)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  10. Development and evaluation of a Gamma Camera tuning system

    International Nuclear Information System (INIS)

    Arista Romeu, E. J.; Diaz Garcia, A.; Osorio Deliz, J. F.

    2015-01-01

    Correct operation of conventional analogue Gamma Cameras implies a good conformation of the position signals that correspond to a specific photo-peak of the radionuclide of interest. In order to achieve this goal the energy spectrum from each photo multiplier tube (PMT) has to be set within the same energy window. For this reason a reliable tuning system is an important part of all gamma cameras processing systems. In this work is being tested and evaluated a new prototype of tuning card that was developed and setting up for this purpose. The hardware and software of the circuit allow the regulation if each PMT high voltage. By this means a proper gain control for each of them is accomplished. The Tuning Card prototype was simulated in a virtual model and its satisfactory operation was proven in a Siemens Orbiter Gamma Camera. (Author)

  11. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  12. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  13. Pothole Detection System Using a Black-box Camera

    Directory of Open Access Journals (Sweden)

    Youngtae Jo

    2015-11-01

    Full Text Available Aging roads and poor road-maintenance systems result a large number of potholes, whose numbers increase over time. Potholes jeopardize road safety and transportation efficiency. Moreover, they are often a contributing factor to car accidents. To address the problems associated with potholes, the locations and size of potholes must be determined quickly. Sophisticated road-maintenance strategies can be developed using a pothole database, which requires a specific pothole-detection system that can collect pothole information at low cost and over a wide area. However, pothole repair has long relied on manual detection efforts. Recent automatic detection systems, such as those based on vibrations or laser scanning, are insufficient to detect potholes correctly and inexpensively owing to the unstable detection of vibration-based methods and high costs of laser scanning-based methods. Thus, in this paper, we introduce a new pothole-detection system using a commercial black-box camera. The proposed system detects potholes over a wide area and at low cost. We have developed a novel pothole-detection algorithm specifically designed to work with the embedded computing environments of black-box cameras. Experimental results are presented with our proposed system, showing that potholes can be detected accurately in real-time.

  14. Double and triple isotope gamma camera studies with energy selection after data collection

    International Nuclear Information System (INIS)

    Soussaline, F.; Raynaud, C.; Kacperek, A.; Kellershohn, C.; Sauce, M.; Zadje, C.

    1974-01-01

    A system comprising a Toshiba camera and a Informatek data processing system has been used to perform multiple isotope studies. A large window (30-550KeV) is used and the data can be manipulated after data collection, to form sets of dynamic frames for various energies. Linear combinations of matrices have been used to correct for scattering. Double isotope studies using 197Hg/198Au have been used to determine Hg renal uptake in man, and are compared to a previous technique requiring two separate data acquisitions. Animal (pig) renal experiments have been performed using 169 Yb/sup(99m)Tc/ 197 Hg. This pilot study gave good results and indicates the utility of the system for multiple isotope function studies in man [fr

  15. Linearity correction device for a scintillation camera

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Kai

    1978-06-16

    This invention concerns the scintillation cameras still called gamma ray camera. The invention particularly covers the improvement in the resolution and the uniformity of these cameras. Briefly, in the linearity correction device of the invention, the sum is made of the voltage signals of different amplitudes produced by the preamplifiers of all the photomultiplier tubes and the signal obtained is employed to generate bias voltages which represent predetermined percentages of the sum signal. In one design mode, pairs of transistors are blocked when the output signal of the corresponding preamplifier is under a certain point on its gain curve. When the summation of the energies of a given scintillation exceeds this level which corresponds to a first percentage of the total signal, the first transistor of each pair of each line is unblocked, thereby modifying the gain and curve slop. When the total energy of an event exceeds the next preset level, the second transistor is unblocked to alter the shape again, so much so that the curve shows two break points. If needs be, the device can be designed so as to obtain more break points for the increasingly higher levels of energy. Once the signals have been processed as described above, they may be used for calculating the co-ordinates of the scintillation by one of the conventional methods.

  16. SSC High Energy Booster resonance corrector and dynamic tune scanning simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Machida, S.

    1993-05-01

    A resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSCL) was investigated by means of dynamic multiparticle tracking. In the simulation the operating tune is scanned as a function of time so that the bunch goes through a resonance. The performance of the half integer and third integer resonance correction system is demonstrated.

  17. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    Science.gov (United States)

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  18. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  19. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    Tsuji, Kenji; Watanabe, Masato; Takashima, Masanobu; Kawamura, Shingo; Tanaka, Hiroyuki

    2012-01-01

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  20. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  1. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    Bell, P; Griffith, R; Hagans, K; Lerche, R; Allen, C; Davies, T; Janson, F; Justin, R; Marshall, B; Sweningsen, O

    2004-01-01

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  2. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    International Nuclear Information System (INIS)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N.; Creed, Richard; Pancake, Daniel

    2013-01-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr 3 scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr 3 detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple radionuclides may be

  3. Testing and Performance Validation of a Sensitive Gamma Ray Camera Designed for Radiation Detection and Decommissioning Measurements in Nuclear Facilities-13044

    Energy Technology Data Exchange (ETDEWEB)

    Mason, John A.; Looman, Marc R.; Poundall, Adam J.; Towner, Antony C.N. [ANTECH, A. N. Technology Ltd., Unit 6, Thames Park, Wallingford, Oxfordshire, OX10 9TA (United Kingdom); Creed, Richard; Pancake, Daniel [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-07-01

    This paper describes the measurements, testing and performance validation of a sensitive gamma ray camera designed for radiation detection and quantification in the environment and decommissioning and hold-up measurements in nuclear facilities. The instrument, which is known as RadSearch, combines a sensitive and highly collimated LaBr{sub 3} scintillation detector with an optical (video) camera with controllable zoom and focus and a laser range finder in one detector head. The LaBr{sub 3} detector has a typical energy resolution of between 2.5% and 3% at the 662 keV energy of Cs-137 compared to that of NaI detectors with a resolution of typically 7% to 8% at the same energy. At this energy the tungsten shielding of the detector provides a shielding ratio of greater than 900:1 in the forward direction and 100:1 on the sides and from the rear. The detector head is mounted on a pan/tile mechanism with a range of motion of ±180 degrees (pan) and ±90 degrees (tilt) equivalent to 4 π steradians. The detector head with pan/tilt is normally mounted on a tripod or wheeled cart. It can also be mounted on vehicles or a mobile robot for access to high dose-rate areas and areas with high levels of contamination. Ethernet connects RadSearch to a ruggedized notebook computer from which it is operated and controlled. Power can be supplied either as 24-volts DC from a battery or as 50 volts DC supplied by a small mains (110 or 230 VAC) power supply unit that is co-located with the controlling notebook computer. In this latter case both power and Ethernet are supplied through a single cable that can be up to 80 metres in length. If a local battery supplies power, the unit can be controlled through wireless Ethernet. Both manual operation and automatic scanning of surfaces and objects is available through the software interface on the notebook computer. For each scan element making up a part of an overall scanned area, the unit measures a gamma ray spectrum. Multiple

  4. INFN Camera demonstrator for the Cherenkov Telescope Array

    CERN Document Server

    Ambrosi, G; Aramo, C.; Bertucci, B.; Bissaldi, E.; Bitossi, M.; Brasolin, S.; Busetto, G.; Carosi, R.; Catalanotti, S.; Ciocci, M.A.; Consoletti, R.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Palma, F.; Desiante, R.; Di Girolamo, T.; Di Giulio, C.; Doro, M.; D'Urso, D.; Ferraro, G.; Ferrarotto, F.; Gargano, F.; Giglietto, N.; Giordano, F.; Giraudo, G.; Iacovacci, M.; Ionica, M.; Iori, M.; Longo, F.; Mariotti, M.; Mastroianni, S.; Minuti, M.; Morselli, A.; Paoletti, R.; Pauletta, G.; Rando, R.; Fernandez, G. Rodriguez; Rugliancich, A.; Simone, D.; Stella, C.; Tonachini, A.; Vallania, P.; Valore, L.; Vagelli, V.; Verzi, V.; Vigorito, C.

    2015-01-01

    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs...

  5. Performance assessment of gamma cameras. Part 1

    International Nuclear Information System (INIS)

    Elliot, A.T.; Short, M.D.; Potter, D.C.; Barnes, K.J.

    1980-11-01

    The Dept. of Health and Social Security and the Scottish Home and Health Dept. has sponsored a programme of measurements of the important performance characteristics of 15 leading types of gamma cameras providing a routine radionuclide imaging service in hospitals throughout the UK. Measurements have been made of intrinsic resolution, system resolution, non-uniformity, spatial distortion, count rate performance, sensitivity, energy resolution and shield leakage. The main aim of this performance assessment was to provide sound information to the NHS to ease the task of those responsible for the purchase of gamma cameras. (U.K.)

  6. The New Approach to Camera Calibration – GCPs or TLS Data?

    Directory of Open Access Journals (Sweden)

    J. Markiewicz

    2016-06-01

    Full Text Available Camera calibration is one of the basic photogrammetric tasks responsible for the quality of processed products. The majority of calibration is performed with a specially designed test field or during the self-calibration process. The research presented in this paper aims to answer the question of whether it is necessary to use control points designed in the standard way for determination of camera interior orientation parameters. Data from close-range laser scanning can be used as an alternative. The experiments shown in this work demonstrate the potential of laser measurements, since the number of points that may be involved in the calculation is much larger than that of commonly used ground control points. The problem which still exists is the correct and automatic identification of object details in the image, taken with a tested camera, as well as in the data set registered with the laser scanner.

  7. Clinical Application of Colour Modulation of Gamma Energy and Depth by Dual-Channel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Ben-Porath, M. [Veterans Administration Hospital, Hines, IL (United States)

    1969-01-15

    A dual-channel scanning system has been described permitting the simultaneous imaging in individual color of the distribution of two gamma-emitting radioisotopes. In those cases where two organs are adjacent and concentrate the same isotope, they may be displayed in separate color if one of the organs concentrates another gamma-emitting isotope with a different energy. This is accomplished by individual color readout of this isotope and the display of the subtraction of this isotope from the common isotope in another color. By using two facing scintillation probes on either side of the individual being scanned, two overlapping organs at different depths concentrating the same isotope can be color differentiated by a dual-channel playout of each probe. The principal application of these dual-channel scanning methods to date has been the simultaneous display of the liver and pancreas in individual colors using {sup 198}Au and {sup 75}selenomethionine. Characteristic scans have been obtained which differentiate a number of disease states from the normal pancreas and liver. The pancreatic and liver diseases studied and characterized are carcinoma of the pancreas, pancreatic insufficiency, acute recurrent pancreatitis, pancreatic pseudocyst and Laennec's cirrhosis, hepatoma and metastatic malignancy in the liver. The uptake of {sup 75}selenomethionine in malignant lesions in many instances produces positive scans of these tumors in contrasting color to the liver. Depth discrimination in color with the two-probe system has permitted the lateralization of intracranial lesions, the color of the display being proportional to the depth of the lesion. The discrimination of depth and gamma-ray energy by dual-channel color scanning and its general application in visualizing other organs has been accomplished. (author)

  8. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  9. Astrometric Calibration and Performance of the Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.; Walker, A. R.; Abbott, T. M. C.; Allam, S.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Costa, L. N. da; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Fernandez, E.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kent, S.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Reil, K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.

    2017-05-30

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $\\ge20$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $\\pm7$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.

  10. Relative camera localisation in non-overlapping camera networks using multiple trajectories

    NARCIS (Netherlands)

    John, V.; Englebienne, G.; Kröse, B.J.A.

    2012-01-01

    In this article we present an automatic camera calibration algorithm using multiple trajectories in a multiple camera network with non-overlapping field-of-views (FOV). Visible trajectories within a camera FOV are assumed to be measured with respect to the camera local co-ordinate system.

  11. Structure determination of Ga As (110) p (1 x 1) - Sb using scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Ascolani, H.; Asensio, M.C.; Fritzsche, W.

    1996-01-01

    Photoelectron diffraction (PD) in the scanned-energy mode has proven to be a powerfull tool for structural determination of the first few surface layers. The scanned-energy mode involves the measurement of the intensity of photoelectrons emitted from a core level as a function of the incident photon energy for different emission directions. The atom specificity of PD allows the investigation of the local structure of adsorbed atoms without interference of the substrate. In addition, if a measurable chemical shift exists, this technique is also able to discriminate between atoms of the same species adsorbed in inequivalent sites. The Ga As (110) p (1x1)-Sb (1 ML) surface represents a prototype system to study atom adsorption on III-V semiconductors. The epitaxial continued layer structure (ECLS) is generally accepted as the geometry corresponding to this surface, although some authors have claimed that the p 3 model forms a stable geometry equivalent to the ECLS, and that it provides an equally good description of their experimental results. So far, the conclusions about the atomic structure of this surface had been derived on the basis of indirect methods. This work exploits to the utmost the possibilities of analysis offered by the scanned-energy PD technique, namely, chemical shift analysis and direct inversion. The energy spectrum of Sb-4d photoelectrons emitted from the Ga As (110)-p (1x1) Sb surface has two chemically-shifted components. We have inverted the scanned-energy photoelectron diffraction data corresponding to these two components to obtain the positions of the Ga and As atoms which are nearest neighbors of two inequivalent Sb atoms. Our results contradict various models proposed for this surface and are consistent only with the ECLS. For a more detailed atomic structure determination, the best fit between experiment and multiple-scattering calculations was determined by a trial-and-error procedure. (author)

  12. Pseudo real-time coded aperture imaging system with intensified vidicon cameras

    International Nuclear Information System (INIS)

    Han, K.S.; Berzins, G.J.

    1977-01-01

    A coded image displayed on a TV monitor was used to directly reconstruct a decoded image. Both the coded and the decoded images were viewed with intensified vidicon cameras. The coded aperture was a 15-element nonredundant pinhole array. The coding and decoding were accomplished simultaneously during the scanning of a single 16-msec TV frame

  13. Development of a hardware-based registration system for the multimodal medical images by USB cameras

    International Nuclear Information System (INIS)

    Iwata, Michiaki; Minato, Kotaro; Watabe, Hiroshi; Koshino, Kazuhiro; Yamamoto, Akihide; Iida, Hidehiro

    2009-01-01

    There are several medical imaging scanners and each modality has different aspect for visualizing inside of human body. By combining these images, diagnostic accuracy could be improved, and therefore, several attempts for multimodal image registration have been implemented. One popular approach is to use hybrid image scanners such as positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT. However, these hybrid scanners are expensive and not fully available. We developed multimodal image registration system with universal serial bus (USB) cameras, which is inexpensive and applicable to any combinations of existed conventional imaging scanners. The multiple USB cameras will determine the three dimensional positions of a patient while scanning. Using information of these positions and rigid body transformation, the acquired image is registered to the common coordinate which is shared with another scanner. For each scanner, reference marker is attached on gantry of the scanner. For observing the reference marker's position by the USB cameras, the location of the USB cameras can be arbitrary. In order to validate the system, we scanned a cardiac phantom with different positions by PET and MRI scanners. Using this system, images from PET and MRI were visually aligned, and good correlations between PET and MRI images were obtained after the registration. The results suggest this system can be inexpensively used for multimodal image registrations. (author)

  14. A quantitative theory of the Hounsfield unit and its application to dual energy scanning.

    Science.gov (United States)

    Brooks, R A

    1977-10-01

    A standard definition is proposed for the Hounsfield number. Any number in computed tomography can be converted to the Hounsfield scale after performing a simple calibration using air and water. The energy dependence of the Hounsfield number, H, is given by the expression H = (Hc + Hp Q)/(1 + Q), where Hc and Hp are the Compton and photoelectric coefficients of the material being measured, expressed in Hounsfield units, and Q is the "quality factor" of the scanner. Q can be measured by performing a scan of a single calibrating material, such as a potassium iodine solution. By applying this analysis to dual energy scans, the Compton and photoelectric coefficients of an unknown substance may easily be obtained. This can lead to a limited degree of chemical identification.

  15. Design and tests of a portable mini gamma camera

    International Nuclear Information System (INIS)

    Sanchez, F.; Benlloch, J.M.; Escat, B.; Pavon, N.; Porras, E.; Kadi-Hanifi, D.; Ruiz, J.A.; Mora, F.J.; Sebastia, A.

    2004-01-01

    Design optimization, manufacturing, and tests, both laboratory and clinical, of a portable gamma camera for medical applications are presented. This camera, based on a continuous scintillation crystal and a position-sensitive photomultiplier tube, has an intrinsic spatial resolution of ≅2 mm, an energy resolution of 13% at 140 keV, and linearities of 0.28 mm (absolute) and 0.15 mm (differential), with a useful field of view of 4.6 cm diameter. Our camera can image small organs with high efficiency and so it can address the demand for devices of specific clinical applications like thyroid and sentinel node scintigraphy as well as scintimammography and radio-guided surgery. The main advantages of the gamma camera with respect to those previously reported in the literature are high portability, low cost, and weight (2 kg), with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the minigamma camera, and no external electronic devices are required. The camera is only connected through the universal serial bus port to a portable personal computer (PC), where a specific software allows to control both the camera parameters and the measuring process, by displaying on the PC the acquired image on 'real time'. In this article, we present the camera and describe the procedures that have led us to choose its configuration. Laboratory and clinical tests are presented together with diagnostic capabilities of the gamma camera

  16. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    Science.gov (United States)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  17. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, A., E-mail: daphne3h-aya@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan)

    2017-02-11

    The Compton camera, which shows gamma-ray distribution utilizing the kinematics of Compton scattering, is a promising detector capable of imaging across a wide range of energy. In this study, we aim to construct a small-animal molecular imaging system in a wide energy range by using the Compton camera. We developed a compact medical Compton camera based on a Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator and multi-pixel photon counter (MPPC). A basic performance confirmed that for 662 keV, the typical energy resolution was 7.4 % (FWHM) and the angular resolution was 4.5° (FWHM). We then used the medical Compton camera to conduct imaging experiments based on a 3-D imaging reconstruction algorithm using the multi-angle data acquisition method. The result confirmed that for a {sup 137}Cs point source at a distance of 4 cm, the image had a spatial resolution of 3.1 mm (FWHM). Furthermore, we succeeded in producing 3-D multi-color image of different simultaneous energy sources ({sup 22}Na [511 keV], {sup 137}Cs [662 keV], and {sup 54}Mn [834 keV]).

  18. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1977-01-01

    A gamma camera system having control components operating in conjunction with a solid state detector is described. The detector is formed of a plurality of discrete components which are associated in geometrical or coordinate arrangement defining a detector matrix to derive coordinate signal outputs. These outputs are selectively filtered and summed to form coordinate channel signals and corresponding energy channel signals. A control feature of the invention regulates the noted summing and filtering performance to derive data acceptance signals which are addressed to further treating components. The latter components include coordinate and enery channel multiplexers as well as energy-responsive selective networks. A sequential control is provided for regulating the signal processing functions of the system to derive an overall imaging cycle

  19. Performance tests of two portable mini gamma cameras for medical applications

    International Nuclear Information System (INIS)

    Sanchez, F.; Fernandez, M. M.; Gimenez, M.; Benlloch, J. M.; Rodriguez-Alvarez, M. J.; Garcia de Quiros, F.; Lerche, Ch. W.; Pavon, N.; Palazon, J. A.; Martinez, J.; Sebastia, A.

    2006-01-01

    We have developed two prototypes of portable gamma cameras for medical applications based on a previous prototype designed and tested by our group. These cameras use a CsI(Na) continuous scintillation crystal coupled to the new flat-panel-type multianode position-sensitive photomultiplier tube, H8500 from Hamamatsu Photonics. One of the prototypes, mainly intended for intrasurgical use, has a field of view of 44x44 mm 2 , and weighs 1.2 kg. Its intrinsic resolution is better than 1.5 mm and its energy resolution is about 13% at 140 keV. The second prototype, mainly intended for osteological, renal, mammary, and endocrine (thyroid, parathyroid, and suprarenal) scintigraphies, weighs a total of 2 kg. Its average spatial resolution is 2 mm; it has a field of view of 95x95 mm 2 , with an energy resolution of about 15% at 140 keV. The main advantages of these gamma camera prototypes with respect to those previously reported in the literature are high portability and low weight, with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the mini gamma cameras, and no external electronic devices are required. The cameras are only connected through the universal serial bus port to a portable PC. In this paper, we present the design of the cameras and describe the procedures that have led us to choose their configuration together with the most important performance features of the cameras. For one of the prototypes, clinical tests on melanoma patients are presented and images are compared with those obtained with a conventional camera

  20. PC-AT to gamma camera interface Anugami-S

    International Nuclear Information System (INIS)

    Bhattacharya, Sadhana; Sonalkar, S.Y.; Kataria, S.K.

    2000-01-01

    The gamma camera interface ANUGAMI-S is an image acquisition system used in nuclear medicine centres and hospitals. The state of the art design of the interface provides quality improvement in addition to image acquisition, by applying on-line uniformity correction which is very essential for gamma camera applications in nuclear medicine. The improvement in the quality of the image has been achieved by image acquisition in positionally varying and sliding energy window. It supports all acquisition modes viz. static, dynamic and gated acquisition modes with and without uniformity correction. The user interface provides the acquisition in various user selectable parameters with image display and related acquisition parameter display. It is a universal system which provides a modern, cost effective and easily maintainable solution for interfacing any gamma camera to PC or upgradation of analog gamma camera. The paper describes the system details and gated acquisition achieved on the present system. (author)

  1. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Darne, C; Robertson, D; Alsanea, F; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm{sup 3}) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirect scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.

  2. SU-D-BRC-07: System Design for a 3D Volumetric Scintillation Detector Using SCMOS Cameras

    International Nuclear Information System (INIS)

    Darne, C; Robertson, D; Alsanea, F; Beddar, S

    2016-01-01

    Purpose: The purpose of this project is to build a volumetric scintillation detector for quantitative imaging of 3D dose distributions of proton beams accurately in near real-time. Methods: The liquid scintillator (LS) detector consists of a transparent acrylic tank (20×20×20 cm"3) filled with a liquid scintillator that when irradiated with protons generates scintillation light. To track rapid spatial and dose variations in spot scanning proton beams we used three scientific-complementary metal-oxide semiconductor (sCMOS) imagers (2560×2160 pixels). The cameras collect optical signal from three orthogonal projections. To reduce system footprint two mirrors oriented at 45° to the tank surfaces redirect scintillation light to cameras for capturing top and right views. Selection of fixed focal length objective lenses for these cameras was based on their ability to provide large depth of field (DoF) and required field of view (FoV). Multiple cross-hairs imprinted on the tank surfaces allow for image corrections arising from camera perspective and refraction. Results: We determined that by setting sCMOS to 16-bit dynamic range, truncating its FoV (1100×1100 pixels) to image the entire volume of the LS detector, and using 5.6 msec integration time imaging rate can be ramped up to 88 frames per second (fps). 20 mm focal length lens provides a 20 cm imaging DoF and 0.24 mm/pixel resolution. Master-slave camera configuration enable the slaves to initiate image acquisition instantly (within 2 µsec) after receiving a trigger signal. A computer with 128 GB RAM was used for spooling images from the cameras and can sustain a maximum recording time of 2 min per camera at 75 fps. Conclusion: The three sCMOS cameras are capable of high speed imaging. They can therefore be used for quick, high-resolution, and precise mapping of dose distributions from scanned spot proton beams in three dimensions.

  3. [Microinjection Monitoring System Design Applied to MRI Scanning].

    Science.gov (United States)

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  4. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.

    Science.gov (United States)

    Perez-Garcia, H; Barquero, R

    The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in 131 I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with 131 I radioactive water (big object size) image, a 131 I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of 131 I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter makes

  5. [Indications and instructions to patients for a positron emission tomography-PET scan. The importance of the hybridic PET/CT-computerised tomography scan and which specialty should be responsible for its function].

    Science.gov (United States)

    Grammaticos, Philip; Datseris, Ioannis; Gerali, Sofia; Papantoniou, Vassilios; Valsamaki, Pipitsa; Boundas, Dimitrios

    2007-01-01

    Indications and instructions to patients for performing a positron emission tomography - PET scan are mentioned. Although PET camera was developed in 1970 its clinical indications were established in about 1998. The hybridic PET/CT- computerized tomography scanner appeared in 2001 and its clinical indications are still under discussion. These discussions refer to both the use of PET/CT as an acquisition correction and anatomic localization device for PET images (AC/A) and to its use as a diagnostic CT scan (dCT). Most of the patients submitted for a PET scan have already done a dCT scan. This was the case in 286 out of the first 300 patients referred to "Evangelismos" hospital in Athens for a PET scan. These two scans can be matched electronically. Extra cost, space, personnel and radiation absorption dose especially in children, are additional factors to be considered in using the PET/CT scanner. The specialty of Nuclear Medicine is now based on the PET camera, its best part and main equipment for molecular imaging. It is very much easier and faster for a Nuclear Medicine physician who routinely reports tomographic PET and SPET images, to be familiar with the CT images than for a Radiologist to get to "know how" about the PET camera and the whole Nuclear Medicine Department. Nuclear Medicine is about open radiation sources, molecular imaging, specific radio-pharmacology, radiobiology, radiation protection etc, while on the other hand in some countries, Nuclear Physicians have already spent, as part of their official training, six months in a Radiology Department whose function is considered to be at least 25% about the CT scanner. We come to the conclusion that the PET/CT scanner should be under the responsibility of the Nuclear Medicine Department and the Radiologist should act as an advisor.

  6. Deep Rapid Optical Follow-Up of Gravitational Wave Sources with the Dark Energy Camera

    Science.gov (United States)

    Cowperthwaite, Philip

    2018-01-01

    The detection of an electromagnetic counterpart associated with a gravitational wave detection by the Advanced LIGO and VIRGO interferometers is one of the great observational challenges of our time. The large localization regions and potentially faint counterparts require the use of wide-field, large aperture telescopes. As a result, the Dark Energy Camera, a 3.3 sq deg CCD imager on the 4-m Blanco telescope at CTIO in Chile is the most powerful instrument for this task in the Southern Hemisphere. I will report on the results from our joint program between the community and members of the dark energy survey to conduct rapid and efficient follow-up of gravitational wave sources. This includes systematic searches for optical counterparts, as well as developing an understanding of contaminating sources on timescales not normally probed by traditional untargeted supernova surveys. I will additionally comment on the immense science gains to be made by a joint detection and discuss future prospects from the standpoint of both next generation wide-field telescopes and next generation gravitational wave detectors.

  7. [Application of second generation dual-source computed tomography dual-energy scan mode in detecting pancreatic adenocarcinoma].

    Science.gov (United States)

    Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu

    2010-12-01

    To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.

  8. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    Science.gov (United States)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  9. STRUCTURED-LIGHT BASED 3D LASER SCANNING OF SEMI-SUBMERGED STRUCTURES

    Directory of Open Access Journals (Sweden)

    J. van der Lucht

    2018-05-01

    Full Text Available In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  10. Value of coincidence gamma camera PET for diagnosing head and neck tumors: functional imaging and image coregistration

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Hahn, K.

    2001-01-01

    54 patients suffering from head and neck tumors (30 m, 24 f, age: 32-67 years) were examined using dedicated PET and coincidence gamma camera PET after injection of 185-350 MBq [ 18 F]FDG. Examinations were carried out on the dedicated PET first (Siemens ECAT Exact HR+) followed by a scan on the coincidence gamma camera PET (Picker Prism 2000 XP-PCD, Marconi Axis g-PET 2 AZ). Dedicated PET was acquired in 3D mode, coincidence gamma camera PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and coincidence gamma camera PET. All patients received a CT scan in multislice technique (Siemens Somatom Plus 4, Marconi MX 8000). Image coregistration was performed on an Odyssey workstation (Marconi). All findings have been verified by the gold standard histology or in case of negative histology by follow-up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using coincidence gamma camera PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with coincidence gamma camera PET and in 15/18 with CT. False-positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and hybrid PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastatic lesions were seen with dedicated PET and with coincidence gamma camera PET elsewhere in the body (lung: n = 7, bone: n = 3, liver: n = 1). Additional malignant disease other than the head and neck tumor was found in 4 patients. (orig.) [de

  11. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  12. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  13. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  14. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  15. Bullet scintigraphy: can gamma camera be used for depleted uranium accident measurements?

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Radic, Z.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2002-01-01

    The aim of this study was to see could gamma cameras be used for measurement of internal contamination with depleted uranium. Radioactive waste depleted uranium, which is by-product from the production of enriched fuel for nuclear rectors and weapons now, is used for manufacture bullets, which are used in Iraq, Republic of Srpska and Yugoslavia. In this paper is measured minimum detectable activity (MDA) of gamma cameras for depleted uranium, iodine and technetium. For detection of the depleted uranium are used low energy X-rays, energy of 100 keV with 20% windows width. About 40% of gamma emissions of the depleted uranium are in these limits. Measured MDA activities 50-100 Bq for depleted uranium, iodine and technetium are about then times more then same for WBC (5 Bq). Gamma cameras can be used for relatively measurement of depleted uranium activity, what can be used for absorbed dose estimation. Detection of low level internal contamination with depleted uranium can be done with gamma cameras. (authors)

  16. Mobile phone camera benchmarking: combination of camera speed and image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-01-01

    When a mobile phone camera is tested and benchmarked, the significance of quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. For example, ISO 15781 defines several measurements to evaluate various camera system delays. However, the speed or rapidity metrics of the mobile phone's camera system have not been used with the quality metrics even if the camera speed has become more and more important camera performance feature. There are several tasks in this work. Firstly, the most important image quality metrics are collected from the standards and papers. Secondly, the speed related metrics of a mobile phone's camera system are collected from the standards and papers and also novel speed metrics are identified. Thirdly, combinations of the quality and speed metrics are validated using mobile phones in the market. The measurements are done towards application programming interface of different operating system. Finally, the results are evaluated and conclusions are made. The result of this work gives detailed benchmarking results of mobile phone camera systems in the market. The paper defines also a proposal of combined benchmarking metrics, which includes both quality and speed parameters.

  17. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    Science.gov (United States)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  18. Free energy and stability of macromolecules studied by the double scanning simulation procedure

    International Nuclear Information System (INIS)

    Meirovitch, H.; Vasquez, M.; Scheraga, H.A.

    1990-01-01

    The double scanning method (DSM) is a computer simulation technique suggested recently by Meirovitch [J. Chem. Phys. 89, 2514 (1988)]. This method is a variant of the usual or ''single'' scanning method (SSM) of the same author, which was extended by us to polypeptides [Biopolymers 27, 1189 (1988); this paper is designated here as paper II]. The two methods are step-by-step construction procedures from which the entropy and the free energy can be estimated. The transition probabilities are obtained by scanning the so-called ''future'' chains, which are continuations of the chain in future steps up to a maximum of b steps. With the SSM, the process is carried out by exact enumeration of the future chains; this is time consuming, and therefore b is limited to small values. With the DSM, on the other hand, only a relatively small sample of the future chains is generated by applying an additional scanning procedure. This enables one to increase b at the expense of approximating the transition probabilities. Increasing of b, however, is important in order to treat medium- and long-range interactions more properly. In this paper (as in our paper II), we apply the DSM to a model of decaglycine without solvent, described by the potential energy function ECEPP at 100 and 300 K. Using the SSM with the maximal value, b=4, we found in paper II that, at 100 K, the α helix rather than the statistical coil is the most stable state. The present DSM simulation at T=100 K (based on b=5) is more efficient than the SSM, and a structure with significantly lower energy than that of the α helix is found. It is argued that b can be increased further to 7 at this temperature. At 300 K the DSM, like the SSM, shows that the statistical coil is the most stable state of decaglycine. However, the DSM is found to be less efficient than the SSM

  19. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    Science.gov (United States)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  20. Soft x-ray streak camera for laser fusion applications

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown

  1. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  2. Magnification bone scan of knees for knee pain evaluation

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Park, Chan H.; Yoon, Seok Nam; Hwang, Kyung Hoon

    2001-01-01

    Knee pain is one of the common complaints of patients seen in our orthopedic clinic. Routine anterior and posterior views of whole body bone scan (WBBS) is often not sufficient in the evaluation of these patients. An ideal bone scan using pinhole collimator or single photon emission tomography (SPECT), however, is impractical and time consuming in busy nuclear medicine department with limited resources. Therefore, the aim of the study is to assess limited bone scan of knees with magnification (LNSKM) for knee pain evaluation. Technical aspect of LBSKM and diagnostic efficacy are discussed on this poster. Adult patients with knee pain were reffered for LBSKM from an orthopedic surgen specializing knees. Four hundred fifteen LBSKMs were performed since 1999. patients were given 740 MBq (20mCi) Tc-99m MDP intravenously and 3 hours later LBSKM was performed using a low energy high resolution parallel hole collimator and Siemens Orbitor camera. (Simens medical systems. Inc., Hoffman Estates, III., USA). Anterior view of the knees was taken for 5 min, without magnification and both lateral views of symptomatic knees were obtained with electronic magnification (1.25, upto 2.0) for 8 min each. Disease processes such as DJD, traumatic arthritis, P-F tendonitis, SONK, meniscus tear are detected and illustrated along with normal knee scan finding. We believe LBSKM may not be as good as SPECT or pinhole imaging of the knees in the evaluation of knee pain but superior to routine WBBS in the nuclear medicine department with limited resources of instrumentation and manpower

  3. EVALUATION OF THE QUALITY OF ACTION CAMERAS WITH WIDE-ANGLE LENSES IN UAV PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    H. Hastedt

    2016-06-01

    Full Text Available The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.

  4. Evaluation of the Quality of Action Cameras with Wide-Angle Lenses in Uav Photogrammetry

    Science.gov (United States)

    Hastedt, H.; Ekkel, T.; Luhmann, T.

    2016-06-01

    The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.

  5. Gamma Camera with Image Amplifier: Application in Nuclear Medicine; Camera Gamma a Amplificateur d'Image: Application en Medecine Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Kellershohn, C.; Vernejoul, P. de; Desgrez, A. [CEA, Service Hospitalier Frederic Joliot, Orsay (France); Lequais, J.; Roux, G.; Lansiart, A. [CEA, Centre d' Etudes Nucleaires de Saclay, Gif-Sur-Yvette (France)

    1969-05-15

    The camera described has an optical system consisting of a lead grid collimator with 649 cylindrical channels 130 mm long and 5.5 mm in diameter; a detector consisting of a mosaic of 700 NaI(Tl) crystals with an effective diameter of 5.5 mm, length 20 mm, and a distance of 7.5 mm between the axes; and a light amplification device consisting of an initial image amplifier (No. 9463 of the French Thomson-Houston Company), the photocathode of which is in optical contact with the detector and is itself optically coupled to a second, high-gain light amplifier (P 829A, from English Electric Valve). In accordance with a principle first laid down during the preceding Conference on Medical Isotope Scanning organized by the International Atomic Energy Agency, this second amplifier may also be used as an electronic shutter operated by a photomultiplier which selects the light originating in the radio active source under examination. This device very effectively suppresses the background from the first amplifier tube. With reference to applications, the camera is used for two types of operation: firstly for the activation of the electronic shutter device, the rate of whose opening and shutting may reach 10 kHz; the background is almost entirely eliminated and it is possible with trace doses of conventional radionuclides to obtain images of such organs as the thyroid, liver, kidney, etc., in very short exposure times by comparison with customary scanning; secondly, by utilizing radionuclides of very short half-life with very high activities (of the order of several mCi), it is no longer necessary to effect suppression of the background whose repetition frequency is limited to 10 kHz. One can thus obtain ultrashort exposure times, e.g., about 1/20th of a second for an amount of 10 mCi of {sup 99m}Tc; such exposure times make cinematography possible. Various examples are supplied of applications making use of {sup 99m}Tc, {sup 137m}Ba and {sup 133}Xe in the field of vascular and

  6. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  7. Standardization of test conditions for gamma camera performance measurement

    International Nuclear Information System (INIS)

    Jordan, K.

    1980-01-01

    The actual way of measuring gamma camera performance is to use point sources or flood sources in air, often in combination with bar phantoms. This method mostly brings best performance parameters for cameras but it has nothing in common with the use of a camera in clinical practice. Particular in the case of low energy emitters, like Tc-99m, the influence of scattered radiation over the performance of cameras is very high. Therefore it is important to have test conditions of radionuclide imaging devices, that will approach as best as practicable the measuring conditions in clinical applications. It is therefore a good news that the International Electrochemical Commission IEC has prepared a draft 'Characteristics and test conditions of radionuclide imaging devices' which is now submitted to the national committees for formal approval under the Six Months' Rule. Some essential points of this document are discussed in the paper. (orig.) [de

  8. Can we Use Low-Cost 360 Degree Cameras to Create Accurate 3d Models?

    Science.gov (United States)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2018-05-01

    360 degree cameras capture the whole scene around a photographer in a single shot. Cheap 360 cameras are a new paradigm in photogrammetry. The camera can be pointed to any direction, and the large field of view reduces the number of photographs. This paper aims to show that accurate metric reconstructions can be achieved with affordable sensors (less than 300 euro). The camera used in this work is the Xiaomi Mijia Mi Sphere 360, which has a cost of about 300 USD (January 2018). Experiments demonstrate that millimeter-level accuracy can be obtained during the image orientation and surface reconstruction steps, in which the solution from 360° images was compared to check points measured with a total station and laser scanning point clouds. The paper will summarize some practical rules for image acquisition as well as the importance of ground control points to remove possible deformations of the network during bundle adjustment, especially for long sequences with unfavorable geometry. The generation of orthophotos from images having a 360° field of view (that captures the entire scene around the camera) is discussed. Finally, the paper illustrates some case studies where the use of a 360° camera could be a better choice than a project based on central perspective cameras. Basically, 360° cameras become very useful in the survey of long and narrow spaces, as well as interior areas like small rooms.

  9. Neutron imaging system based on a video camera

    International Nuclear Information System (INIS)

    Dinca, M.

    2004-01-01

    The non-destructive testing with cold, thermal, epithermal or fast neutrons is nowadays more and more useful because the world-wide level of industrial development requires considerably higher standards of quality of manufactured products and reliability of technological processes especially where any deviation from standards could result in large-scale catastrophic consequences or human loses. Thanks to their properties, easily obtained and very good discrimination of the materials that penetrate, the thermal neutrons are the most used probe. The methods involved for this technique have advanced from neutron radiography based on converter screens and radiological films to neutron radioscopy based on video cameras, that is, from static images to dynamic images. Many neutron radioscopy systems have been used in the past with various levels of success. The quality of an image depends on the quality of the neutron beam and the type of the neutron imaging system. For real time investigations there are involved tube type cameras, CCD cameras and recently CID cameras that capture the image from an appropriate scintillator through the agency of a mirror. The analog signal of the camera is then converted into digital signal by the signal processing technology included into the camera. The image acquisition card or frame grabber from a PC converts the digital signal into an image. The image is formatted and processed by image analysis software. The scanning position of the object is controlled by the computer that commands the electrical motors that move horizontally, vertically and rotate the table of the object. Based on this system, a lot of static image acquisitions, real time non-destructive investigations of dynamic processes and finally, tomographic investigations of the small objects are done in a short time. A system based on a CID camera is presented. Fundamental differences between CCD and CID cameras lie in their pixel readout structure and technique. CIDs

  10. Comparative evaluation of consumer grade cameras and mobile phone cameras for close range photogrammetry

    Science.gov (United States)

    Chikatsu, Hirofumi; Takahashi, Yoji

    2009-08-01

    The authors have been concentrating on developing convenient 3D measurement methods using consumer grade digital cameras, and it was concluded that consumer grade digital cameras are expected to become a useful photogrammetric device for the various close range application fields. On the other hand, mobile phone cameras which have 10 mega pixels were appeared on the market in Japan. In these circumstances, we are faced with alternative epoch-making problem whether mobile phone cameras are able to take the place of consumer grade digital cameras in close range photogrammetric applications. In order to evaluate potentials of mobile phone cameras in close range photogrammetry, comparative evaluation between mobile phone cameras and consumer grade digital cameras are investigated in this paper with respect to lens distortion, reliability, stability and robustness. The calibration tests for 16 mobile phone cameras and 50 consumer grade digital cameras were conducted indoors using test target. Furthermore, practability of mobile phone camera for close range photogrammetry was evaluated outdoors. This paper presents that mobile phone cameras have ability to take the place of consumer grade digital cameras, and develop the market in digital photogrammetric fields.

  11. Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution

    International Nuclear Information System (INIS)

    Heemskerk, Jan W T; Westra, Albert H; Linotte, Peter M; Ligtvoet, Kees M; Zbijewski, Wojciech; Beekman, Freek J

    2007-01-01

    Charge-coupled devices (CCDs) coupled to scintillation crystals can be used for high-resolution imaging with x-rays and gamma rays. When the CCD images can be read out fast enough, the energy and interaction position of individual gamma quanta can be estimated by a real-time image analysis of the scintillation light flashes ('photon-counting mode'). The electron-multiplying CCD (EMCCD) is well suited for fast read out, since even at high frame rates it has extremely low read-out noise. Back-illuminated (BI) EMCCDs have much higher quantum efficiency than front-illuminated (FI) EMCCDs. Here we compare the spatial and energy resolution of gamma cameras based on FI and BI EMCCDs. The CCDs are coupled to a 1000 μm thick columnar CsI(Tl) crystal for the purpose of Tc-99m and I-125 imaging. Intrinsic spatial resolutions of 44 μm for I-125 and 49 μm for Tc-99m were obtained when using a BI EMCCD, which is an improvement by a factor of about 1.2-2 over the FI EMCCD. Furthermore, in the energy spectrum of the BI EMCCD, the I-125 signal could be clearly separated from the background noise, which was not the case for the FI EMCCD. The energy resolution of a BI EMCCD for Tc-99m was estimated to be approximately 36 keV, full width at half maximum, at 141 keV. The excellent results for the BI EMCCD encouraged us to investigate the cooling requirements for our setup. We have found that for the BI EMCCD, the spatial and energy resolution, as well as image noise, remained stable over a range of temperatures from -50 deg. C to -15 deg. C. This is a significant advantage over the FI EMCCD, which suffered from loss of spatial and especially energy resolution at temperatures as low as -40 deg. C. We conclude that the use of BI EMCCDs may significantly improve the imaging capabilities and the cost efficiency of CCD-based high-resolution gamma cameras. (note)

  12. The 2-ID-B intermediate-energy scanning X-ray microscope at the APS

    International Nuclear Information System (INIS)

    McNulty, I.; Paterson, D.; Arko, J.; Erdmann, M.; Goetze, K.; Ilinski, P.; Mooney, T.; Vogt, S.; Xu, S.; Frigo, S.P.; Stampfl, A.P.J.; Wang, Y.

    2002-01-01

    The intermediate-energy scanning x-ray microscope at beamline 2-ID-B at the Advanced Photon Source is a dedicated instrument for materials and biological research. The microscope uses a zone plate lens to focus coherent 1-4 keV x-rays to a 60 nm focal spot of 10 9 photons/s onto the sample. It records simultaneous transmission and energy-resolved fluorescence images. We have used the microscope for nano-tomography of chips and micro-spectroscopy of cells. (authors)

  13. Design and evaluation of controls for drift, video gain, and color balance in spaceborne facsimile cameras

    Science.gov (United States)

    Katzberg, S. J.; Kelly, W. L., IV; Rowland, C. W.; Burcher, E. E.

    1973-01-01

    The facsimile camera is an optical-mechanical scanning device which has become an attractive candidate as an imaging system for planetary landers and rovers. This paper presents electronic techniques which permit the acquisition and reconstruction of high quality images with this device, even under varying lighting conditions. These techniques include a control for low frequency noise and drift, an automatic gain control, a pulse-duration light modulation scheme, and a relative spectral gain control. Taken together, these techniques allow the reconstruction of radiometrically accurate and properly balanced color images from facsimile camera video data. These techniques have been incorporated into a facsimile camera and reproduction system, and experimental results are presented for each technique and for the complete system.

  14. Optimal Scanning Protocols for Dual-Energy CT Angiography in Peripheral Arterial Stents: An in Vitro Phantom Study

    Directory of Open Access Journals (Sweden)

    Abdulrahman Almutairi

    2015-05-01

    Full Text Available Objective: To identify the optimal dual-energy computed tomography (DECT scanning protocol for peripheral arterial stents while achieving a low radiation dose, while still maintaining diagnostic image quality, as determined by an in vitro phantom study. Methods: Dual-energy scans in monochromatic spectral imaging mode were performed on a peripheral arterial phantom with use of three gemstone spectral imaging (GSI protocols, three pitch values, and four kiloelectron volts (keV ranges. A total of 15 stents of different sizes, materials, and designs were deployed in the phantom. Image noise, the signal-to-noise ratio (SNR, different levels of adaptive statistical iterative reconstruction (ASIR, and the four levels of monochromatic energy for DECT imaging of peripheral arterial stents were measured and compared to determine the optimal protocols. Results: A total of 36 scans with 180 datasets were reconstructed from a combination of different protocols. There was a significant reduction of image noise with a higher SNR from monochromatic energy images between 65 and 70 keV in all investigated preset GSI protocols (p < 0.05. In addition, significant effects were found from the main effect analysis for these factors: GSI, pitch, and keV (p = 0.001. In contrast, there was significant interaction on the unstented area between GSI and ASIR (p = 0.015 and a very high significant difference between keV and ASIR (p < 0.001. A radiation dose reduction of 50% was achieved. Conclusions: The optimal scanning protocol and energy level in the phantom study were GSI-48, pitch value 0.984, and 65 keV, which resulted in lower image noise and a lower radiation dose, but with acceptable diagnostic images.

  15. In-flight calibration of the ISGRI camera

    International Nuclear Information System (INIS)

    Terrier, R.; Lebrun, F.; Belanger, G.; Blondel, C.; David, P.; Goldoni, P.; Goldwurm, A.; Gros, A.; Laurent, P.; Malaguti, G.; Sauvageon, A.; Bazzano, A.; Ubertini, P.; Segreto, A.; Malaguti, G.; Bird, A.J.

    2003-01-01

    ISGRI, the IBIS low energy camera (15 keV-1 MeV) on board INTEGRAL, is the first large CdTe gamma-ray imager in orbit. We present here an overview of the ISGRI in-flight calibrations performed during the first months after launch. We discuss the stability of the camera as well as the CdTe pixels response under cosmic radiation. The energy calibrations were done using lead and tungsten fluorescence lines and the 22 Na calibration unit. Thermal effects and charge correction algorithm are discussed, and the resulting energy resolution is presented. The ISGRI background spatial and spectral non-uniformity is also described, and some image correction results are presented. ISGRI, despite a few unexpected features like zero rise time events, performs well with only 4,5% noisy or disabled pixels. Thermal effects are at the origin of the largest difference between ground and in-flight data. Correcting for these effects yields good spectral performances close to the expectations with 8.4% at 59.3 keV and 4.9% at 511 keV. The resolution in the high energy band is broader than before launch because of residual rise time gains uncertainties. Handling of these errors requires a larger amount of calibration data than what is available today

  16. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  17. A New Technique for Scanning the Pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Ephraiem, K. H. [Rotterdamsch Radio-Therapeutisch Instituut, Rotterdam (Netherlands)

    1969-05-15

    The difficulties in visualizing the pancreas are partly caused by the high uptake of seleno-methionine in the liver. A simple technique has been developed to prevent data registration during the time the detector is moving above the liver. The technique is based on the fact that both {sup 75}Se and {sup 99m}Tc emit gamma rays of 140-keV energy. The pulses, normally going from the single-channel analyser to the registrating units, are deviated through a ratemeter to an API contactless optical meter relay (model API-compack I) and then passed on to the registrating units. The patient is given the normal dose of Se-methionine and everything is prepared for normal pancreas scanning with only one exception: The window of the single-channel analyser is tuned in on the 140-keV photopeak. The patient is given 2 mCi of {sup 99m}Tc colloid intravenously and the controls on the meter relay are adjusted in such a way that no pulse from the single-channel analyser passes to the registrating units unless the activity is beneath the activity level in the liver. Then the scanning machine is started. The author developed this inexpensive technique to help smaller clinical isotope laboratories which cannot afford the combination of a gamma camera with a special-purpose computer. (author)

  18. ePix100 camera: Use and applications at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Carini, G. A., E-mail: carini@slac.stanford.edu; Alonso-Mori, R.; Blaj, G.; Caragiulo, P.; Chollet, M.; Damiani, D.; Dragone, A.; Feng, Y.; Haller, G.; Hart, P.; Hasi, J.; Herbst, R.; Herrmann, S.; Kenney, C.; Lemke, H.; Manger, L.; Markovic, B.; Mehta, A.; Nelson, S.; Nishimura, K. [SLAC National Accelerator Laboratory (United States); and others

    2016-07-27

    The ePix100 x-ray camera is a new system designed and built at SLAC for experiments at the Linac Coherent Light Source (LCLS). The camera is the first member of a family of detectors built around a single hardware and software platform, supporting a variety of front-end chips. With a readout speed of 120 Hz, matching the LCLS repetition rate, a noise lower than 80 e-rms and pixels of 50 µm × 50 µm, this camera offers a viable alternative to fast readout, direct conversion, scientific CCDs in imaging mode. The detector, designed for applications such as X-ray Photon Correlation Spectroscopy (XPCS) and wavelength dispersive X-ray Emission Spectroscopy (XES) in the energy range from 2 to 10 keV and above, comprises up to 0.5 Mpixels in a very compact form factor. In this paper, we report the performance of the camera during its first use at LCLS.

  19. Blood Circulation Studies with a Scintillation Camera; Explorations Circulatoires a l'Aide de la Camera a Scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Delaloye, B.; Rivier, J. L.; Banna, G. [Clinique Medicale Universitaire, Lausanne (Switzerland)

    1969-05-15

    The authors carried out a series of an giocardiographs and angiographs using a scintillation camera. In most cases they injected human serum albumin labelled with technetium-99m; less frequently, they used pertechnetate or barium-137m. The images with the barium-137m are not so good as those obtained from the technetium-99m because the energy of the barium is too high for the scintillation camera; studies are currently being begun where indium-113m is being used. Examples are given dealing with the heart in its normal state and when it is suffering from such diseases of the valves as aortic insufficiency and stenosis, tricuspid incompetence and aortic disease. The study also includes cases of pulmonary hypertension. The method can be used both to establish the period of circulation, which varies according to the site of the lesion and its seriousness, and to visualize shunts without any difficulty. The authors, who have carried out angiocardiograms and radio-cardiograms simultaneously, regard it as a very useful technique. They accordingly think that quantitative information should be obtained and intend to add to their camera the necessary accessories for this purpose. Renal angiographs can be used to establish vascularization rates in each kidney. (author) [French] Les auteurs realisent des angiocardiographies et des angiographies a l'aide de la camera a scintillations. Dans la majorite des cas ils ont injecte de la serum-albumine humaine marquee par le technetium-99m, plus rarement du pertechnetate ou du baryum-l37m. Le baryum-137m donne de moins bonnes images que le technetium-99m car il possede une energie trop elevee pour la camera a scintillations; actuellement ils commencent a utiliser rindium-113m. Des exemples sont decrits qui interessent le coeur normal ou atteint de diverses valvulopathies telles que l'insuffisance aortique, la stenose aortique, l'insuffisance tricuspidienne ou la maladie aortique; des cas d'hypertension pulmonaire sont egalement

  20. Quality control of plane and tomographic gamma cameras

    International Nuclear Information System (INIS)

    Moretti, J.L.; Roussi, A.

    1993-01-01

    In this article, the authors present different methods of gamma camera quality control in matters of uniformity, spatial resolution, spatial linearity, sensitivity, energy resolution, counting rate performance, SPECT parameters. The authors refer mainly to NEMA standards. 14 figs., 8 tabs

  1. THE USE OF 3D SCANNING AND RAPID PROTOTYPING IN MEDICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Octavian CIOBANU

    2013-05-01

    Full Text Available New cost effective scanning and modeling techniques are used today to process data acquisition and3D reconstruction in order to fabricate prostheses and orthoses by 3D printing. Paper approaches two scanningand 3D modeling techniques used in order to fabricate orthoses and prostheses. In this study, an artificialprosthetic ear was produced through 3D printing using two scanning techniques: structured light scanningtechnique and single camera stereo photogrammetric scanning technique. The processing phases are describedand discussed from data acquisition to 3D printing. The surface scanning and 3D reconstruction techniques willcontinue to increase the accessibility of prostheses and orthoses, making them more cost-effective and morecomfortable.

  2. Evaluation of misplaced event count rate using a scintillation camera

    International Nuclear Information System (INIS)

    Yanagimoto, Shin-ichi; Tomomitsu, Tatsushi; Muranaka, Akira

    1985-01-01

    Misplaced event count rates were evaluated using an acryl scatter body of various thickness and a gamma camera. The count rate in the region of interest (ROI) within the camera view field, which was thought to represent part of the misplaced event count rate, increased as the thickness of the scatter body was increased to 5 cm, followed by a steep decline in the count rate. On the other hand, the ratio of the count rate in the ROI to the total count rate continuously increased as the thickness of the scatter body was increased. As the thickness of the scatter body was increased, the count rates increased, and the increments of increase were greater in the lower energy region of the photopeak than in the higher energy region. In ranges energy other than the photopeak, the influence of the scatter body on the count rate in the ROI was the greatest at 76 keV, which was the lowest energy we examined. (author)

  3. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  4. Infrared Imaging Camera Final Report CRADA No. TC02061.0

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nebeker, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF on this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.

  5. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  6. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    Science.gov (United States)

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  7. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Science.gov (United States)

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  8. Correction of response defects in scintillation cameras by an on-line microcomputer

    International Nuclear Information System (INIS)

    Hadjeris, L.

    1982-07-01

    A fast microprocessor device has been developed, to allow removal of non-linearity and non-uniformity effects of gamma camera signals. It slips in between a commercial gamma camera and the associated data processing system. Camera signals are digitized by fast ADC and numerically processed in real time. Corrected data are given analogic to be taken into account by process device associated to the camera. The principle is first to correct energy spatial variations by using coefficients determinated during calibration by a uniform radioactive distribution source. Then non-linearity of X and Y signals are removed by translations of them. The displacement coefficient table is given from reference images of parallel line phantom [fr

  9. Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution.

    Science.gov (United States)

    Tothill, Peter; Weir, Nicholas; Loveland, John

    2014-01-01

    The variable proportion of fat in overlying soft tissue is a potential source of error in dual-energy X-ray absorptiometry (DXA) measurements of bone mineral. The effect on spine scanning has previously been assessed from cadaver studies and from computed tomography (CT) scans of soft tissue distribution. We have now applied the latter technique to DXA hip scanning. The CT scans performed for clinical purposes were used to derive mean adipose tissue thicknesses over bone and background areas for total hip and femoral neck. The former was always lower. More importantly, the fat thickness differences varied among subjects. Errors because of bone marrow fat were deduced from CT measurements of marrow thickness and assumed fat proportions of marrow. The effect of these differences on measured bone mineral density was deduced from phantom measurements of the bone equivalence of fat. Uncertainties of around 0.06g/cm(2) are similar to those previously reported for spine scanning and the results from cadaver measurements. They should be considered in assessing the diagnostic accuracy of DXA scanning. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  10. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  11. Observation of runaway electrons by infrared camera in J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, R. H.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Zhang, M.; Huang, D. W.; Yan, W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    When the energy of confined runaway electrons approaches several tens of MeV, the runaway electrons can emit synchrotron radiation in the range of infrared wavelength. An infrared camera working in the wavelength of 3-5 μm has been developed to study the runaway electrons in the Joint Texas Experimental Tokamak (J-TEXT). The camera is located in the equatorial plane looking tangentially into the direction of electron approach. The runaway electron beam inside the plasma has been observed at the flattop phase. With a fast acquisition of the camera, the behavior of runaway electron beam has been observed directly during the runaway current plateau following the massive gas injection triggered disruptions.

  12. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  13. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  14. Multiwire proportional gamma camera for imaging /sup 99/Tcsup(m) radionuclide distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-05-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of /sup 99/Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m/sup 2/, a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77.

  15. A multiwire proportional gamma camera for imaging 99Tcsup(m) radionuclide distributions

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-01-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of 99 Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m 2 , a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77. (author)

  16. Measurement of gastric emptying rate in humans. Simplified scanning method

    Energy Technology Data Exchange (ETDEWEB)

    Holt, S.; Colliver, J.; Guram, M.; Neal, C.; Verhulst, S.J.; Taylor, T.V. (Univ. of South Carolina School of Medicine, Columbia (USA))

    1990-11-01

    Simultaneous measurements of the gastric emptying rate of the solid and liquid phase of a dual-isotope-labeled test meal were made using a gamma camera and a simple scintillation detector, similar to that used in a hand-held probe. A simple scanning apparatus, similar to that used in a hand-held scintillation probe, was compared with simultaneous measurements made by a gamma camera in 16 healthy males. A dual-labeled test meal was utilized to measure liquid and solid emptying simultaneously. Anterior and posterior scans were taken at intervals up to 120 min using both a gamma camera and the scintillation probe. Good relative agreement between the methods was obtained both for solid-phase (correlation range 0.92-0.99, mean 0.97) and for liquid-phase data (correlation range 0.93-0.99, mean 0.97). For solid emptying data regression line slopes varied from 0.75 to 1.03 (mean 0.84). Liquid emptying data indicated that slopes ranged from 0.71 to 1.06 (mean 0.87). These results suggested that an estimate of the gamma measurement could be obtained by multiplying the scintillation measurement by a factor of 0.84 for the solid phase and 0.87 for the liquid phase. Correlation between repeat studies was 0.97 and 0.96 for solids and liquids, respectively. The application of a hand-held probe technique provides a noninvasive and inexpensive method for accurately assessing solid- and liquid-phase gastric emptying from the human stomach that correlates well with the use of a gamma camera, within the range of gastric emptying rate in the normal individuals in this study.

  17. Measurement of gastric emptying rate in humans. Simplified scanning method

    International Nuclear Information System (INIS)

    Holt, S.; Colliver, J.; Guram, M.; Neal, C.; Verhulst, S.J.; Taylor, T.V.

    1990-01-01

    Simultaneous measurements of the gastric emptying rate of the solid and liquid phase of a dual-isotope-labeled test meal were made using a gamma camera and a simple scintillation detector, similar to that used in a hand-held probe. A simple scanning apparatus, similar to that used in a hand-held scintillation probe, was compared with simultaneous measurements made by a gamma camera in 16 healthy males. A dual-labeled test meal was utilized to measure liquid and solid emptying simultaneously. Anterior and posterior scans were taken at intervals up to 120 min using both a gamma camera and the scintillation probe. Good relative agreement between the methods was obtained both for solid-phase (correlation range 0.92-0.99, mean 0.97) and for liquid-phase data (correlation range 0.93-0.99, mean 0.97). For solid emptying data regression line slopes varied from 0.75 to 1.03 (mean 0.84). Liquid emptying data indicated that slopes ranged from 0.71 to 1.06 (mean 0.87). These results suggested that an estimate of the gamma measurement could be obtained by multiplying the scintillation measurement by a factor of 0.84 for the solid phase and 0.87 for the liquid phase. Correlation between repeat studies was 0.97 and 0.96 for solids and liquids, respectively. The application of a hand-held probe technique provides a noninvasive and inexpensive method for accurately assessing solid- and liquid-phase gastric emptying from the human stomach that correlates well with the use of a gamma camera, within the range of gastric emptying rate in the normal individuals in this study

  18. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yunsu Bok

    2014-11-01

    Full Text Available This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  19. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea: video evidence from animal-borne cameras.

    Directory of Open Access Journals (Sweden)

    Susan G Heaslip

    Full Text Available The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate correlate with the daytime foraging behavior of leatherbacks (n = 19 in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h, and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata was the dominant prey (83-100%, but moon jellyfish (Aurelia aurita were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models. Handling time increased with prey size regardless of prey species (p = 0.0001. Estimates of energy intake averaged 66,018 kJ • d(-1 but were as high as 167,797 kJ • d(-1 corresponding to turtles consuming an average of 330 kg wet mass • d(-1 (up to 840 kg • d(-1 or approximately 261 (up to 664 jellyfish • d(-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1 equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to

  20. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  1. Picosecond camera

    International Nuclear Information System (INIS)

    Decroisette, Michel

    A Kerr cell activated by infrared pulses of a model locked Nd glass laser, acts as an ultra-fast and periodic shutter, with a few p.s. opening time. Associated with a S.T.L. camera, it gives rise to a picosecond camera allowing us to study very fast effects [fr

  2. The image camera of the 17 m diameter air Cherenkov telescope MAGIC

    CERN Document Server

    Ostankov, A P

    2001-01-01

    The image camera of the 17 m diameter MAGIC telescope, an air Cherenkov telescope currently under construction to be installed at the Canary island La Palma, is described. The main goal of the experiment is to cover the unexplored energy window from approx 10 to approx 300 GeV in gamma-ray astrophysics. In its first phase with a classical PMT camera the MAGIC telescope is expected to reach an energy threshold of approx 30 GeV. The operational conditions, the special characteristics of the developed PMTs and their use with light concentrators, the fast signal transfer scheme using analog optical links, the trigger and DAQ organization as well as image reconstruction strategy are described. The different paths being explored towards future camera improvements, in particular the constraints in using silicon avalanche photodiodes and GaAsP hybrid photodetectors in air Cherenkov telescopes are discussed.

  3. Reducing the Variance of Intrinsic Camera Calibration Results in the ROS Camera_Calibration Package

    Science.gov (United States)

    Chiou, Geoffrey Nelson

    The intrinsic calibration of a camera is the process in which the internal optical and geometric characteristics of the camera are determined. If accurate intrinsic parameters of a camera are known, the ray in 3D space that every point in the image lies on can be determined. Pairing with another camera allows for the position of the points in the image to be calculated by intersection of the rays. Accurate intrinsics also allow for the position and orientation of a camera relative to some world coordinate system to be calculated. These two reasons for having accurate intrinsic calibration for a camera are especially important in the field of industrial robotics where 3D cameras are frequently mounted on the ends of manipulators. In the ROS (Robot Operating System) ecosystem, the camera_calibration package is the default standard for intrinsic camera calibration. Several researchers from the Industrial Robotics & Automation division at Southwest Research Institute have noted that this package results in large variances in the intrinsic parameters of the camera when calibrating across multiple attempts. There are also open issues on this matter in their public repository that have not been addressed by the developers. In this thesis, we confirm that the camera_calibration package does indeed return different results across multiple attempts, test out several possible hypothesizes as to why, identify the reason, and provide simple solution to fix the cause of the issue.

  4. Commercialization of radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10{sup 6} - 10{sup 8} rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  5. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10 6 - 10 8 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  6. Cameras in mobile phones

    Science.gov (United States)

    Nummela, Ville; Viinikanoja, Jarkko; Alakarhu, Juha

    2006-04-01

    One of the fastest growing markets in consumer markets today are camera phones. During past few years total volume has been growing fast and today millions of mobile phones with camera will be sold. At the same time resolution and functionality of the cameras has been growing from CIF towards DSC level. From camera point of view the mobile world is an extremely challenging field. Cameras should have good image quality but in small size. They also need to be reliable and their construction should be suitable for mass manufacturing. All components of the imaging chain should be well optimized in this environment. Image quality and usability are the most important parameters to user. The current trend of adding more megapixels to cameras and at the same time using smaller pixels is affecting both. On the other hand reliability and miniaturization are key drivers for product development as well as the cost. In optimized solution all parameters are in balance but the process of finding the right trade-offs is not an easy task. In this paper trade-offs related to optics and their effects to image quality and usability of cameras are discussed. Key development areas from mobile phone camera point of view are also listed.

  7. Calibration of gamma camera systems for a multicentre European {sup 123}I-FP-CIT SPECT normal database

    Energy Technology Data Exchange (ETDEWEB)

    Tossici-Bolt, Livia [Southampton Univ. Hospitals NHS Trust, Dept. of Medical Physics and Bioengineering, Southampton (United Kingdom); Dickson, John C. [UCLH NHS Foundation Trust and Univ. College London, Institute of Nuclear Medicine, London (United Kingdom); Sera, Terez [Univ. of Szeged, Dept. of Nuclear Medicine and Euromedic Szeged, Szeged (Hungary); Nijs, Robin de [Rigshospitalet and Univ. of Copenhagen, Neurobiology Research Unit, Copenhagen (Denmark); Bagnara, Maria Claudia [Az. Ospedaliera Universitaria S. Martino, Medical Physics Unit, Genoa (Italy); Jonsson, Cathrine [Karolinska Univ. Hospital, Dept. of Nuclear Medicine, Medical Physics, Stockholm (Sweden); Scheepers, Egon [Univ. of Amsterdam, Dept. of Nuclear Medicine, Academic Medical Centre, Amsterdam (Netherlands); Zito, Felicia [Fondazione IRCCS Granda, Ospedale Maggiore Policlinico, Dept. of Nuclear Medicine, Milan (Italy); Seese, Anita [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Koulibaly, Pierre Malick [Univ. of Nice-Sophia Antipolis, Nuclear Medicine Dept., Centre Antoine Lacassagne, Nice (France); Kapucu, Ozlem L. [Gazi Univ., Faculty of Medicine, Dept. of Nuclear Medicine, Ankara (Turkey); Koole, Michel [Univ. Hospital and K.U. Leuven, Nuclear Medicine, Leuven (Belgium); Raith, Maria [Medical Univ. of Vienna, Dept. of Nuclear Medicine, Vienna (Austria); George, Jean [Univ. Catholique Louvain, Nuclear Medicine Division, Mont-Godinne Medical Center, Mont-Godinne (Belgium); Lonsdale, Markus Nowak [Bispebjerg Univ. Hospital, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Muenzing, Wolfgang [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Tatsch, Klaus [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Municipal Hospital of Karlsruhe Inc., Dept. of Nuclear Medicine, Karlsruhe (Germany); Varrone, Andrea [Center for Psychiatric Research, Karolinska Inst., Dept. of Clinical Neuroscience, Stockholm (Sweden)

    2011-08-15

    A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [{sup 123}I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. {sup 123}I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the ''Southampton'' methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the

  8. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-01-01

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  9. Evaluation of efficiency of a semiconductor gamma camera

    CERN Document Server

    Otake, H; Takeuchi, Y

    2002-01-01

    We evaluation basic characteristics of a compact type semiconductor gamma camera (eZ-SCOPE AN) of Cadmium Zinc Telluride (CdZnTe). This new compact gamma camera has 256 semiconductors representing the same number of pixels. Each semiconductor is 2 mm square and is located in 16 lines and rows on the surface of the detector. The specific performance characteristics were evaluated in the study referring to National Electrical Manufactures Association (NEMA) standards; intrinsic energy resolution, intrinsic count rate performance, integral uniformity, system planar sensitivity, system spatial resolution, and noise to the neighboring pixels. The intrinsic energy resolution measured 5.7% as full width half maximum (FWHM). The intrinsic count rate performance ranging from 17 kcps to 1,285 kcps was evaluated, but the highest intrinsic count rate was not observed. Twenty percents count loss was recognized at 1,021 kcps. The integral uniformity was 1.3% with high sensitivity collimator. The system planar sensitivity w...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... form of gamma rays. Special cameras detect this energy, and with the help of a computer, create pictures offering details on both the structure and function of organs and tissues in your body. top of page How is the procedure performed? Nuclear medicine imaging is usually performed on an outpatient ...

  11. Development of an all-optical framing camera and its application on the Z-pinch.

    Science.gov (United States)

    Song, Yan; Peng, Bodong; Wang, Hong-Xing; Song, Guzhou; Li, Binkang; Yue, Zhiqin; Li, Yang; Sun, Tieping; Xu, Qing; Ma, Jiming; Sheng, Liang; Han, Changcai; Duan, Baojun; Yao, Zhiming; Yan, Weipeng

    2017-12-11

    An all-optical framing camera has been developed which measures the spatial profile of photons flux by utilizing a laser beam to probe the refractive index change in an indium phosphide semiconductor. This framing camera acquires two frames with the time resolution of about 1.5 ns and the inter frame separation time of about 13 ns by angularly multiplexing the probe beam on to the semiconductor. The spatial resolution of this camera has been estimated to be about 140 μm and the spectral response of this camera has also been theoretically investigated in 5 eV-100 KeV range. This camera has been applied in investigating the imploding dynamics of the molybdenum planar wire array Z-pinch on the 1-MA "QiangGuang-1" facility. This framing camera can provide an alternative scheme for high energy density physics experiments.

  12. Influence of antibacterial therapy on bone scan indices at foot inflammation in diabetes mellitus accompanied by diabetic foot syndrome

    International Nuclear Information System (INIS)

    Slavnov, V.M.; Bolgars'ka, S.V.; Taran, E.V.; Markov, V.V.

    2004-01-01

    The influence of antibacterial therapy on bone scan indices at foot inflammation in patients with diabetes mellitus (DM) accompanied by diabetic foot syndrome was studied. Bone scan was performed using scintillation tomographic gamma-camera hours after intravenous injection of 99m Tc-methylene diphosphonate

  13. Divergence-ratio axi-vision camera (Divcam): A distance mapping camera

    International Nuclear Information System (INIS)

    Iizuka, Keigo

    2006-01-01

    A novel distance mapping camera the divergence-ratio axi-vision camera (Divcam) is proposed. The decay rate of the illuminating light with distance due to the divergence of the light is used as means of mapping the distance. Resolutions of 10 mm over a range of meters and 0.5 mm over a range of decimeters were achieved. The special features of this camera are its high resolution real-time operation, simplicity, compactness, light weight, portability, and yet low fabrication cost. The feasibility of various potential applications is also included

  14. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  15. Note on an energy scanning system for a Van de Graaff or a tandem accelerator

    International Nuclear Information System (INIS)

    Camplan, J.

    1987-01-01

    In a system including one electrostatic deflector, one magnet and a second electrostatic deflector used for energy scanning of particles outgoing from a tandem or a Van de Graaff accelerator, we derive equations linking positions and deflexions of the two deflectors. (orig.)

  16. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  17. Testing of camera performance standards at steady and local overloading

    International Nuclear Information System (INIS)

    Keszthelyine Landori, S.; Adorjanne Farkas, M.; Csirik, J.

    1983-01-01

    Camera performance standards are usually given for low count rates and uniform irradiation. A conventional analog gamma camera system (Gamma MB 9100 manufactured under the know-how of Picker DC 4/12 in Hungary) was studied on the basis of the Picker test procedure and the NEMA standard system. Uniformity, linearity, spatial and energy resolution were measured at high count rates and uniform irradiation (steady overloading). Linearity was studied at local overloading. Linearity, spatial and energy resolution were measured by a 1024-channel analyzer-computer system of KFKI, Hungary. The data were evaluated on the basis of NEMA standards, while uniformity was measured by the Gamma data processing system and evaluated by special SEGAMS programs. Performance variations were studied between 7500 cps and 75.000 cps pulse rates. Spatial and energy resolution were influenced strongly, uniformity slightly by pulse rates, while linearity did not change at all. Linearity was not influenced even by local overloading. (author)

  18. COLIBRI: partial camera readout and sliding trigger for the Cherenkov Telescope Array CTA

    International Nuclear Information System (INIS)

    Naumann, C L; Tejedor, L A; Martínez, G

    2013-01-01

    Plans for the future Cherenkov telescope array CTA include replacing the monolithic camera designs used in H.E.S.S. and MAGIC-I by one that is built up from a number of identical segments. These so-called clusters will be relatively autonomous, each containing its own triggering and readout hardware. While this choice was made for reasons of flexibility and ease of manufacture and maintenance, such a concept with semi-independent sub-units lends itself quite naturally to the possibility of new, and more flexible, readout modes. In all previously-used concepts, triggering and readout of the camera is centralised, with a single camera trigger per event that starts the readout of all pixels in the camera at the same time and within the same integration time window. The limitations of such a trigger system can reduce the performance of a large array such as CTA, due to the huge amount of useless data created by night-sky background if trigger thresholds are set low enough to achieve the desired 20 GeV energy threshold, and to image losses at high energies due to the rigid readout window. In this study, an alternative concept (''COLIBRI'' = Concept for an Optimised Local Image Building and Readout Infrastructure) is presented, where only those parts of the camera which are likely to actually contain image data (usually a small percentage of the total pixels) are read out. This leads to a significant reduction of the expected data rate and the dead-times incurred in the camera. Furthermore, the quasi-independence of the individual clusters can be used to read different parts of the camera at slightly different times, thus allowing the readout to follow the slow development of the shower image across the camera field of view. This concept of flexible, partial camera readout is presented in the following, together with a description of Monte-Carlo studies performed to evaluate its performance as well as a hardware implementation proposed for CTA.

  19. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  20. Detection of Arthritis by Joint Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, W. S. [Dept, of Radiology, Louisiana State University School of Medicine, New Orleans, LA (United States); Weiss, T. E.; Tutton, R. H.; Hidalgo, J. U. [Ochsner Clinic and Ochsner Foundation Hospital, New Orleans, LA (United States)

    1969-05-15

    Detection and identification of early arthritis is frequently difficult with routine methods. Several tracers, {sup 131}I human serum albumin (25 {mu}Ci/10 lb), {sup 99m}Tc human serum albumin (1-3 mCi), {sup 131}I iodipamide (40 {mu}Ci/10 lb), and {sup 99m}Tc pertechnetate (10 mCi), have been employed for joint scanning to detect synovitis produced by arthritis in joints of the extremities. When administered intravenously, the 25% increase in localization of these tracers in the synovial membrane, if there is active synovitis, can be demonstrated by scintillation scanning. This ability to detect synovitis at an early stage enables the joint scan to show areas of active synovitis not demonstrated on roentgenograms. The scan may objectively confirm or disprove questionable physical findings. From this standpoint the technique has been useful in determining whether joint pain is functional or due to arthritis as a negative localization tends to rule out active synovitis as the cause of the pain. The scan demonstration of a positive localization of the tracer in several joints when only one area is symptomatic is evidence that joint pain is due to systemic disease. The short half-life tracera permit serial studies to follow the course of an arthritis process. Use of {sup 99m}Tc pertechnetate and an Anger camera have made joint scanning a practical technique for clinical use. A review of the accuracy of joint scanning in 130 cases as compared to roentgenograms is presented. (author)

  1. Bone scan and serum CA 15-3 in bone metastasis in breast cancer

    International Nuclear Information System (INIS)

    Mendoza, G.; Cano, R.; Morales, R.; Guzman, C.

    1996-01-01

    CA 15-3 is a tumor marker useful in evolution control of breast cancer, being the serum levels trend the most important parameter. The purpose of this study was to report our experience and show the concordance of bone scan and CA 15-3 in patients with breast cancer attending the Breast and Bone Department of INEN from June to December 1993. One hundred patients had serum CA 15-3 quantification between June and December of 1993 in Nuclear Medicine Center (Peruvian Institute of Nuclear Energy and National Institute of Neoplasic Diseases). We selected 52 patients which simultaneously had a bone scan performed. Patients age ranged from 21 to 67 years (media of 44,57 years). 99m Tc methylenediphosphonate produced by IPEN was the radiopharmaceutical employed. A GE AZS-400 gamma camera was utilized to obtain the bone scans. Ca 15-5 quantification was performed with ELSA-CA 15-3 (CIS bio France) IRMA kit. Bone scan and CA 15-3 media of 17,06 U/ml (DS 15,4). Eight patients had a positive bone scan with a CA 15-3 media of 41,6 U/ml (SD 23,0). CA 15-3 levels ranged between 4,6 and 96,0 U/ml in the first group and 10,1 U/ml to 75,0 U/ml in the second group. Using a cut-off point of 30 U/ml the sensitivity of CA 15-3 was 62,5% and the specificity 93,2% respectively. Mean CA 15-3 values of the negative and positive bone scan groups were significantly different (p=0,0361). The high negative predictive value of CA 15-3 may help to establish which patients will benefit from bone scan procedure. (authors) 42 refs., 2 tabs

  2. The iQID camera: An ionizing-radiation quantum imaging detector

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: brian.miller@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States); Gregory, Stephanie J.; Fuller, Erin S. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Barrett, Harrison H.; Bradford Barber, H.; Furenlid, Lars R. [Center for Gamma-Ray Imaging, The University of Arizona, Tucson, AZ 85719 (United States); College of Optical Sciences, The University of Arizona, Tucson, AZ 85719 (United States)

    2014-12-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

  3. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen- er...

  4. Development of silicon pad detectors and readout electronics for a Compton camera

    CERN Document Server

    Studen, A; Clinthorne, N H; Czermak, A; Dulinski, W; Fuster, J A; Han, L; Jalocha, P; Kowal, M; Kragh, T; Lacasta, C; Llosa, G; Meier, D; Mikuz, M; Nygård, E; Park, S J; Roe, S; Rogers, W L; Sowicki, B; Weilhammer, P; Wilderman, S J; Yoshioka, K; Zhang, L

    2003-01-01

    Applications in nuclear medicine and bio-medical engineering may profit using a Compton camera for imaging distributions of radio-isotope labelled tracers in organs and tissues. These applications require detection of photons using thick position-sensitive silicon sensors with the highest possible energy and good spatial resolution. In this paper, research and development on silicon pad sensors and associated readout electronics for a Compton camera are presented. First results with low-noise, self-triggering VATAGP ASIC's are reported. The measured energy resolution was 1.1 keV FWHM at room temperature for the sup 2 sup 4 sup 1 Am photo-peak at 59.5 keV.

  5. The camera of the fifth H.E.S.S. telescope. Part I: System description

    Energy Technology Data Exchange (ETDEWEB)

    Bolmont, J., E-mail: bolmont@in2p3.fr [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Corona, P.; Gauron, P.; Ghislain, P.; Goffin, C.; Guevara Riveros, L.; Huppert, J.-F.; Martineau-Huynh, O.; Nayman, P.; Parraud, J.-M.; Tavernet, J.-P.; Toussenel, F.; Vincent, D.; Vincent, P. [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Bertoli, W.; Espigat, P.; Punch, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Besin, D.; Delagnes, E.; Glicenstein, J.-F. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); and others

    2014-10-11

    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m{sup 2} reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.

  6. Performance characteristics of ZLC 37 Siemens gamma camera

    International Nuclear Information System (INIS)

    Abdelgadir, Wafaa Abdelrahman

    1994-04-01

    The relationships between the ZLC 37 Siemens γ camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens γ cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author)

  7. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  8. Augmentation of Quick-EXAFS measurement facility at the energy scanning EXAFS beamline at INDUS-2 SRS

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, Ankur; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai -400085 (India)

    2015-06-24

    In this paper implementation of Quick-EXAFS data acquisition facility at the Energy Scanning EXAFS beamline(BL-09) at INDUS-2 synchrotron source, Indore is presented. By adopting a continuous-scan mode in the Double Crystal monochromator (DCM), a high signal-to-noise ratio is maintained and the acquisition time is reduced to few seconds. The quality of spectra and repeatability is checked by measuring standards. The present mode of data acquisition would enable EXAFS measurement for in-situ studies even in fluorescence mode.

  9. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    section unearths what characterizes the literature on camera movement. The second section of the dissertation delineates the history of camera movement itself within narrative cinema. Several organizational principles subtending the on-screen effect of camera movement are revealed in section two...... but they are not organized into a coherent framework. This is the task that section three meets in proposing a functional taxonomy for camera movement in narrative cinema. Two presumptions subtend the taxonomy: That camera movement actively contributes to the way in which we understand the sound and images on the screen......, commentative or valuative manner. 4) Focalization: associating the movement of the camera with the viewpoints of characters or entities in the story world. 5) Reflexive: inviting spectators to engage with the artifice of camera movement. 6) Abstract: visualizing abstract ideas and concepts. In order...

  10. Emission Trading System in the SER Energy Agreement for Sustainable Growth. Macro-economic calculation by means of WorldScan; ETS in het SER Energieakkoord. Macro-economische doorrekening met WorldScan

    Energy Technology Data Exchange (ETDEWEB)

    Brink, C. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands)

    2013-09-01

    The Dutch National Energy Agreement for Sustainable Growth aims at strengthening the European system for emissions trading by a more strict emission ceiling. Also, the agreement aims at guarantee the competitiveness of global energy intensive businesses by adjusting the allocation method for emission rights. In the calculations for the energy agreement this is reflected in the adjustment of the ETS pricing path. In this memo the calculations with the equilibrium model WordlScan are described and presented [Dutch] Het Nationaal Energieakkoord voor Duurzame Groei zet in op een versterking van het Europees systeem voor emissiehandel (ETS) door aanscherpen van het emissieplafond. Verder wil het akkoord de concurrentiepositie van het mondiaal opererende energie-intensieve bedrijfsleven borgen door aanpassing van de allocatiemethode voor emissierechten. In de doorrekening van het Energieakkoord is deze inzet tot uitdrukking gebracht in een aanpassing van het ETS-prijspad. Deze notitie beschrijft de berekeningen met het algemeen evenwichtsmodel WorldScan waar deze aanpassing van het ETS-prijspad op is gebaseerd.

  11. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taya, T., E-mail: taka48138@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Nishio, T. [Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima (Japan); Kabuki, S. [School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa (Japan); Inaniwa, T. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan)

    2016-09-21

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a {sup 137}Cs source. We measured the energy spectra of the gamma rays using a LaBr{sub 3}(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH){sub 2}, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from {sup 10}B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study. - Highlights: • Gamma imaging during proton irradiation by a handheld Compton camera is demonstrated. • We were able to acquire the online gamma-ray images quickly. • We are developing a high resolution Compton camera for range verification.

  12. Status of the NectarCAM camera project

    International Nuclear Information System (INIS)

    Glicenstein, J.F.; Delagnes, E.; Fesquet, M.; Louis, F.; Moudden, Y.; Moulin, E.; Nunio, F.; Sizun, P.

    2014-01-01

    NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various sub-components and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014. (authors)

  13. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  14. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, E., E-mail: eriuli@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Inaniwa, T., E-mail: taku@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Sato, S., E-mail: shin_s@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Himukai, T., E-mail: himukai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan)

    2011-12-15

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  15. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Science.gov (United States)

    Takeshita, E.; Furukawa, T.; Inaniwa, T.; Sato, S.; Himukai, T.; Shirai, T.; Noda, K.

    2011-12-01

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  16. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Osman, Yousif Bashir Soliman

    2015-12-01

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  17. Mixel camera--a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging.

    Science.gov (United States)

    Høye, Gudrun; Fridman, Andrei

    2013-05-06

    Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.

  18. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 96, č. 4 (2017), č. článku 044904. ISSN 2469-9985 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * RHIC * Beam Energy Scan Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.820, year: 2016

  19. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (UV, EUV and X-ray science cameras at MSFC.

  20. Neutron cameras for ITER

    International Nuclear Information System (INIS)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-01-01

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from 16 N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with 16 N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins

  1. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many

  2. Evaluation of mobile phone camera benchmarking using objective camera speed and image quality metrics

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-11-01

    When a mobile phone camera is tested and benchmarked, the significance of image quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. However, the speed or rapidity metrics of the mobile phone's camera system has not been used with the quality metrics even if the camera speed has become a more and more important camera performance feature. There are several tasks in this work. First, the most important image quality and speed-related metrics of a mobile phone's camera system are collected from the standards and papers and, also, novel speed metrics are identified. Second, combinations of the quality and speed metrics are validated using mobile phones on the market. The measurements are done toward application programming interface of different operating systems. Finally, the results are evaluated and conclusions are made. The paper defines a solution to combine different image quality and speed metrics to a single benchmarking score. A proposal of the combined benchmarking metric is evaluated using measurements of 25 mobile phone cameras on the market. The paper is a continuation of a previous benchmarking work expanded with visual noise measurement and updates of the latest mobile phone versions.

  3. The use of a Micromegas as a detector for gamma camera

    International Nuclear Information System (INIS)

    Barbouchi, Asma; Trabelsi, Adel

    2008-01-01

    The micromegas (Micro Mesh Gaseaous) is a gas detector; it was developed by I.Giomattaris and G.Charpak for application in the field of experimental particle physics. But the polyvalence of this detector makes it to be used in several areas such as medical imaging. This detector has an X-Y readout capability of resolution less than 100μm, an energy resolution down to 14% for energy range 1-10 keV and an overall efficiency of 70%. Monte carlo simulation is widely used in nuclear medicine. It allows predicting the behaviour of system. Gate (Geant4 for Application Tomography Emission) is a platform for monte carlo simulation. It is dedicated to PET/SPECT (Position Emission Tomography / single Photon Emission Tomography) applications. Our goal is to model a gamma camera that use a Micromegas as a detector and to compare their performances (energy resolution, point spread function...) with those of a scintillated gamma camera by using Gate

  4. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  5. Performances evaluation of the coincidence detection on a gamma-camera

    International Nuclear Information System (INIS)

    Dreuille, O. de; Gaillard, J.F.; Brasse, D.; Bendriem, B.; Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.

    2000-01-01

    The performance of the VERTEX gamma-camera (ADAC) working in coincidence mode are investigated using a protocol derived from the NEMA and IEC recommendations. With a field of view determined by two rectangular detectors (50.8 cm x 40 cm) composed of NaI crystal, this camera allows a 3-D acquisition with different energy window configurations: photopeak-photopeak only (PP) and photopeak-photopeak + photopeak-Compton (PC). An energy resolution of 11% and a scatter fraction of 27% and 33% for the 3D-PP and 3D-PC mode respectively are the main significant results of our study. The spatial resolution equals 5.9 mm and the limit of the detectability ranges from 16 mm to 13 mm for a contrast of 2.5: as a function of the random estimation, the maximum of the Noise Equivalent Count rate varies from 3 kcps to 4.5 kcps for the PP mode and from 3.85 kcps to 6.1 kcps for the PC mode. These maxima are reached for a concentration of 8 kBq/ml for the PP mode and 5 kBq/ml for the PC mode. These values are compared with the results obtained by other groups for the VERTEX gamma camera and several dedicated PET systems. (authors)

  6. Spectroscopic gamma camera for use in high dose environments

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro, E-mail: yuichiro.ueno.bv@hitachi.com [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi [Research and Development Group, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken 319-1221 (Japan); Fujishima, Yasutake; Kometani, Yutaka [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Ibaraki-ken (Japan); Suzuki, Yasuhiko [Measuring Systems Engineering Dept., Hitachi Aloka Medical, Ltd., Ome-shi, Tokyo (Japan); Umegaki, Kikuo [Faculty of Engineering, Hokkaido University, Sapporo-shi, Hokkaido (Japan)

    2016-06-21

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  7. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  8. A Compton camera application for the GAMOS GEANT4-based framework

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.uk [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Arce, P. [Department of Basic Research, CIEMAT, Madrid (Spain); Judson, D.S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dormand, J.; Jones, M.; Nolan, P.J.; Sampson, J.A.; Scraggs, D.P.; Sweeney, A. [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2012-04-11

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  9. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial

  10. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  11. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  12. A high count rate position decoding and energy measuring method for nuclear cameras using Anger logic detectors

    International Nuclear Information System (INIS)

    Wong, W.H.; Li, H.; Uribe, J.

    1998-01-01

    A new method for processing signals from Anger position-sensitive detectors used in gamma cameras and PET is proposed for very high count-rate imaging where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in the measurement of energy and position. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. The remnant subtraction is exact even for multiple pileup events. A prototype circuit for energy recovery demonstrated that the maximum count rates can be increased by more than 10 times comparing to the pulse-shaping method, and the energy resolution is as good as pulse shaping (or fixed integration) at low count rates. At 2 x 10 6 events/sec on NaI(Tl), the true counts acquired with this method is 3.3 times more than the delay-line clipping method (256 ns clipping) due to events recovered from pileups. Pulse-height spectra up to 3.5 x 10 6 events/sec have been studied. Monte Carlo simulation studies have been performed for image-quality comparisons between different processing methods

  13. 'SIMPLE' - a novel concept of an imaging camera for space applications

    International Nuclear Information System (INIS)

    Ferenc, Daniel

    2003-01-01

    A novel concept of a large camera for space applications is proposed. It comprises extremely light and inexpensive construction, and very high photon detection efficiency. The essential point of the concept is the evasion of any vacuum-sealing constructional elements, and the exploitation of vacuum in space. This concept was developed particularly for the next-generation experiments aimed to detect extensive air showers in the atmosphere, initiated by extreme energy cosmic rays (like the EUSO experiment). The SIMPLE camera, as well as its launch, should be much less expensive than the previously considered options

  14. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  15. Automatic Camera Orientation and Structure Recovery with Samantha

    Science.gov (United States)

    Gherardi, R.; Toldo, R.; Garro, V.; Fusiello, A.

    2011-09-01

    SAMANTHA is a software capable of computing camera orientation and structure recovery from a sparse block of casual images without human intervention. It can process both calibrated images or uncalibrated, in which case an autocalibration routine is run. Pictures are organized into a hierarchical tree which has single images as leaves and partial reconstructions as internal nodes. The method proceeds bottom up until it reaches the root node, corresponding to the final result. This framework is one order of magnitude faster than sequential approaches, inherently parallel, less sensitive to the error accumulation causing drift. We have verified the quality of our reconstructions both qualitatively producing compelling point clouds and quantitatively, comparing them with laser scans serving as ground truth.

  16. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Multiple Sensor Camera for Enhanced Video Capturing

    Science.gov (United States)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  18. Using DSLR cameras in digital holography

    Science.gov (United States)

    Hincapié-Zuluaga, Diego; Herrera-Ramírez, Jorge; García-Sucerquia, Jorge

    2017-08-01

    In Digital Holography (DH), the size of the bidimensional image sensor to record the digital hologram, plays a key role on the performance of this imaging technique; the larger the size of the camera sensor, the better the quality of the final reconstructed image. Scientific cameras with large formats are offered in the market, but their cost and availability limit their use as a first option when implementing DH. Nowadays, DSLR cameras provide an easy-access alternative that is worthwhile to be explored. The DSLR cameras are a wide, commercial, and available option that in comparison with traditional scientific cameras, offer a much lower cost per effective pixel over a large sensing area. However, in the DSLR cameras, with their RGB pixel distribution, the sampling of information is different to the sampling in monochrome cameras usually employed in DH. This fact has implications in their performance. In this work, we discuss why DSLR cameras are not extensively used for DH, taking into account the problem reported by different authors of object replication. Simulations of DH using monochromatic and DSLR cameras are presented and a theoretical deduction for the replication problem using the Fourier theory is also shown. Experimental results of DH implementation using a DSLR camera show the replication problem.

  19. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    Science.gov (United States)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  20. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  1. Selecting a digital camera for telemedicine.

    Science.gov (United States)

    Patricoski, Chris; Ferguson, A Stewart

    2009-06-01

    The digital camera is an essential component of store-and-forward telemedicine (electronic consultation). There are numerous makes and models of digital cameras on the market, and selecting a suitable consumer-grade camera can be complicated. Evaluation of digital cameras includes investigating the features and analyzing image quality. Important features include the camera settings, ease of use, macro capabilities, method of image transfer, and power recharging. Consideration needs to be given to image quality, especially as it relates to color (skin tones) and detail. It is important to know the level of the photographer and the intended application. The goal is to match the characteristics of the camera with the telemedicine program requirements. In the end, selecting a digital camera is a combination of qualitative (subjective) and quantitative (objective) analysis. For the telemedicine program in Alaska in 2008, the camera evaluation and decision process resulted in a specific selection based on the criteria developed for our environment.

  2. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  3. INCREASE OF READABILITY AND ACCURACY OF 3D MODELS USING FUSION OF CLOSE RANGE PHOTOGRAMMETRY AND LASER SCANNING

    Directory of Open Access Journals (Sweden)

    M. Gašparović

    2012-07-01

    Full Text Available The development of laser scanning technology has opened a new page in geodesy and enabled an entirely new way of presenting data. Products obtained by the method of laser scanning are used in many sciences, as well as in archaeology. It should be noted that 3D models of archaeological artefacts obtained by laser scanning are fully measurable, written in 1:1 scale and have high accuracy. On the other hand, texture and RGB values of the surface of the object obtained by a laser scanner have lower resolution and poorer radiometric characteristics in relation to the textures captured with a digital camera. Scientific research and the goal of this paper are to increase the accuracy and readability of the 3D model with textures obtained with a digital camera. Laser scanning was performed with triangulation scanner of high accuracy, Vivid 9i (Konica Minolta, while for photogrammetric recording digital camera Nikon D90 with a lens of fixed focal length 20 mm, was used. It is important to stress that a posteriori accuracy score of the global registration of point clouds in the form of the standard deviation was ± 0.136 mm while the average distance was only ± 0.080 mm. Also research has proven that the quality projection texture model increases readability. Recording of archaeological artefacts and making their photorealistic 3D model greatly contributes to archaeology as a science, accelerates processing and reconstruction of the findings. It also allows the presentation of findings to the general public, not just to the experts.

  4. Precise real-time correction of Anger camera deadtime losses

    International Nuclear Information System (INIS)

    Woldeselassie, Tilahun

    2002-01-01

    An earlier paper dealt with modeling of the camera in terms of the resolving times, τ 0 and T, of the paralyzable detector and nonparalyzable computer system, respectively, for the case of a full energy window. A second paper presented a decaying source method for the accurate real-time measurement of these resolving times. The present paper first shows that the detector system can be treated as a single device with a resolving time τ 0 dependent on source distribution. It then discusses camera operation with an energy window, window fraction being f w =R p /R d ≤1, where R d and R p are the detector and pulse-height-analyzer (PHA) outputs, respectively. The detector resolving time is shown to vary with window fraction according to τ 0p =τ 0p /f w , while T is unaffected, so that operation may be paralyzable or nonparalyzable depending on window setting and the ratio k T =T/τ 0 . Regions of interest are described in terms of the ROI fraction, f r =R r /R≤1, and resolving time, τ 0r =τ 0p /f r , where R and R r are the recorded count rates for the field-of-view and the region-of-interest, respectively. As τ 0p and τ 0r are expected to vary with input rate, it is shown that these can be measured in real-time using the decaying source method. It is then shown that camera operation both with f w ≤1 and f r ≤1 can be described by the simple paralyzable equation r=ne -n , where n=N w τ 0p =N r τ 0r and r=R p τ 0p =R r τ 0r , N w , and N r being the input rates within the energy window and the region of interest, respectively. An analytical solution to the paralyzable equation is then presented, which enables the input rates N w =n/τ 0p and N r =n/τ 0r to be obtained correct to better than 0.52% all the way up to the peak response point of the camera

  5. Periodic and uniform nanogratings formed on cemented carbide by femtosecond laser scanning

    International Nuclear Information System (INIS)

    Lian, Yunsong; Deng, Jianxin; Xing, Youqiang; Lei, Shuting; Yu, Xiaoming

    2013-01-01

    Periodic and uniform nanogratings are fabricated by femtosecond laser scanning on cemented carbide. Specifically, three experiments are designed to study the influence of single pulse energy, scanning speed, and scanning spacing on the period and the uniformity of the formed nanogratings. The results show that the sample with single pulse energy of 2 μJ, scanning speed of 1000 μm/s, and scanning spacing of 5 μm shows the best quality of nanogratings among all the tested samples at different processing parameters. The uniformity of the nanogratings is largely determined by single pulse energy, scanning speed, and scanning spacing. Single pulse energy and scanning speed significantly affect the period of the nanogratings, whereas the period of the nanogratings maintains a fixed value under different scanning spacings. The period of the nanogratings increases gradually with the decrease of the single pulse energy and the increase of the scanning speed, respectively.

  6. Quality assurance procedures for the IAEA Department of Safeguards Twin Minolta Camera Surveillance System

    International Nuclear Information System (INIS)

    Geoffrion, R.R.; Bussolini, P.L.; Stark, W.A.; Ahlquist, A.J.; Sanders, K.E.; Rubinstein, G.

    1986-01-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations are complying with nuclear safeguards treaties. In one aspect of the program, the Department of Safeguards has developed a twin Minolta camera photo surveillance systems program to assure itself and the international community that material handling is accomplished according to safeguards treaty regulations. The camera systems are positioned in strategic locations in facilities such that objective evidence can be obtained for material transactions. The films are then processed, reviewed, and used to substantiate the conclusions that nuclear material has not been diverted. Procedures have been developed to document and aid in: 1) the performance of activities involved in positioning of the camera system; 2) installation of the systems; 3) review and use of the film taken from the cameras

  7. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    Science.gov (United States)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  8. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  9. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  10. Automatic locking radioisotope camera lock

    International Nuclear Information System (INIS)

    Rosauer, P.J.

    1978-01-01

    The lock of the present invention secures the isotope source in a stored shielded condition in the camera until a positive effort has been made to open the lock and take the source outside of the camera and prevents disconnection of the source pigtail unless the source is locked in a shielded condition in the camera. It also gives a visual indication of the locked or possible exposed condition of the isotope source and prevents the source pigtail from being completely pushed out of the camera, even when the lock is released. (author)

  11. ITEM-QM solutions for EM problems in image reconstruction exemplary for the Compton Camera

    CERN Document Server

    Pauli, Josef; Anton, G

    2002-01-01

    Imaginary time expectation maximation (ITEM), a new algorithm for expectation maximization problems based on the quantum mechanics energy minimalization via imaginary (euclidian) time evolution is presented. Both (the algorithm as well as the implementation (http://www.johannes-pauli.de/item/index.html) are published under the terms of General GNU public License (http://www.gnu.org/copyleft/gpl.html). Due to its generality ITEM is applicable to various image reconstruction problems like CT, PET, SPECT, NMR, Compton Camera, tomosynthesis as well as any other energy minimization problem. The choice of the optimal ITEM Hamiltonian is discussed and numerical results are presented for the Compton Camera.

  12. Analysis of the response dependence of Ebt3 radiochromic film with energy, dose rate, wavelength, scanning mode and humidity

    International Nuclear Information System (INIS)

    Leon M, E. Y.; Camacho L, M. A.; Herrera G, J. A.; Garcia G, O. A.; Villarreal B, J. E.

    2016-10-01

    With the development of new modalities in radiotherapy treatments, the use of radiochromic films has increased considerably. Because the characteristics that presented, they are suitable for quality control and dose measurement. In this work and analysis of the dependence of the response of Ebt3 radiochromic films with energy, dose rate, wavelength, scan mode and humidity, for a dose range of 0-70 Gy is presented. According to the results, the response of Ebt3 radiochromic films has low dependence on energy, dose rate, scan mode and humidity. However, the sensitivity of the response Ebt3 radiochromic films has a high dependence on the wavelength of the optical system used for reading. (Author)

  13. Acceptance/Operational Test Report for Tank 241-AN-104 camera and camera purge control system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1995-11-01

    This Acceptance/Operational Test Procedure (ATP/OTP) will document the satisfactory operation of the camera purge panel, purge control panel, color camera system and associated control components destined for installation. The final acceptance of the complete system will be performed in the field. The purge panel and purge control panel will be tested for its safety interlock which shuts down the camera and pan-and-tilt inside the tank vapor space during loss of purge pressure and that the correct purge volume exchanges are performed as required by NFPA 496. This procedure is separated into seven sections. This Acceptance/Operational Test Report documents the successful acceptance and operability testing of the 241-AN-104 camera system and camera purge control system

  14. Resolution recovery for Compton camera using origin ensemble algorithm.

    Science.gov (United States)

    Andreyev, A; Celler, A; Ozsahin, I; Sitek, A

    2016-08-01

    with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.

  15. Resolution recovery for Compton camera using origin ensemble algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Andreyev, A. [Philips Healthcare, Highland Heights, Ohio 44143 (United States); Celler, A. [Medical Imaging Research Group, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9 (Canada); Ozsahin, I.; Sitek, A., E-mail: sarkadiu@gmail.com [Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2016-08-15

    resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.

  16. Resolution recovery for Compton camera using origin ensemble algorithm

    International Nuclear Information System (INIS)

    Andreyev, A.; Celler, A.; Ozsahin, I.; Sitek, A.

    2016-01-01

    resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.

  17. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  18. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  19. Measuring a narrow Bessel beam spot by scanning a charge-coupled device (CCD) pixel

    International Nuclear Information System (INIS)

    Tiwari, S K; Ram, S P; Jayabalan, J; Mishra, S R

    2010-01-01

    By scanning a charge-coupled device (CCD) camera transverse to the beam axis and observing the variation in counts on a marked pixel, we demonstrate that we can measure a laser beam spot size smaller than the size of the CCD-pixel. We find this method particularly attractive for measuring the size of central spot of a Bessel beam, for which the established scanning knife-edge method does not work appropriately because of the large contribution of the rings surrounding the central spot to the signal

  20. Recent results on event-by-event fluctuations from the RHIC Beam Energy Scan program in the STAR experiment

    International Nuclear Information System (INIS)

    Sahoo, Nihar Ranjan

    2014-01-01

    Event-by-event fluctuations of global observables in relativistic heavy-ion collisions are studied as probes for the QCD phase transition and as tools to search for critical phenomena near the phase boundary. Dynamical fluctuations in mean transverse momentum, identified particle ratios and conserved quantities (such as net-charge, net-baryon) are expected to provide signatures of a de-confined state of matter. Non-monotonic behavior in the higher-moments of conserved quantities as a function of beam energy and collision centrality are proposed as signatures of the QCD critical point. To study the QCD phase transition and locate the critical point, the STAR experiment at RHIC has collected a large amount of data for Au+Au collisions from √S_N_N = 7.7 - 200 GeV in the RHIC Beam Energy Scan (BES) program. We present the recent beam energy scan results on dynamical fluctuations of particle ratios and two-particle transverse momentum correlations at mid-rapidity. Higher-moments of the net-charge and net-proton multiplicity distributions as a function of beam energy will be presented. We give a summary of what has been learnt so far and future prospectives for the BES-II program.

  1. Quantitative bone scanning after asymptomatic Charnley arthroplasty

    International Nuclear Information System (INIS)

    Mullaji, A.B.; Tood, R.C.; Robinson, S.; Critchley, M.

    1994-01-01

    To establish the normal pattern of postoperative tracer uptake we performed 73 99m technetium methylene disphosphonate scans following primary Charnley hip replacements for arthrosis in 68 patients without clinical, hematological and radiographic complications. The patients were divided into 7 subgroups according to the period, 6-24 months, between surgery and scan. There were 10-12 patients in each subgroup. A high-resolution gamma camera with a large filed of view was used. Ratios of uptake in each of 10 peri-prosthetic zones to normal bone were calculated. Femoral uptake was found to decrease in linear fashion from 6 to 12 months after surgery. Thereafter the uptake remained unaltered at levels nearly twice the normal ones in the greater trochanter and nearly 1.5 times in the lesser trochanter, returning to almost normal levels in other zones. Acetabular uptake remained elevated throughout. (au) (20 refs.)

  2. Quantitative bone scanning after asymptomatic Charnley arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Mullaji, A.B. (University Department of Orthopedic and Accident Surgery, Royal Liverpool University Hospital, Lierpool (United Kingdom)); Tood, R.C. (Department of Orthopedics, Black Notley Hospital, Braintree (United Kingdom)); Robinson, S. (Department of MedicaL Physics, Colchester General Hospital, Colchester (United Kingdom)); Critchley, M. (Department of Nuclear Medicine, Royal Liverpool University Hospital, Liverpool (United Kingdom))

    1994-06-01

    To establish the normal pattern of postoperative tracer uptake we performed 73 [sup 99m]technetium methylene disphosphonate scans following primary Charnley hip replacements for arthrosis in 68 patients without clinical, hematological and radiographic complications. The patients were divided into 7 subgroups according to the period, 6-24 months, between surgery and scan. There were 10-12 patients in each subgroup. A high-resolution gamma camera with a large filed of view was used. Ratios of uptake in each of 10 peri-prosthetic zones to normal bone were calculated. Femoral uptake was found to decrease in linear fashion from 6 to 12 months after surgery. Thereafter the uptake remained unaltered at levels nearly twice the normal ones in the greater trochanter and nearly 1.5 times in the lesser trochanter, returning to almost normal levels in other zones. Acetabular uptake remained elevated throughout. (au) (20 refs.).

  3. Video camera use at nuclear power plants

    International Nuclear Information System (INIS)

    Estabrook, M.L.; Langan, M.O.; Owen, D.E.

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs

  4. The development of large-aperture test system of infrared camera and visible CCD camera

    Science.gov (United States)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  5. Human tracking over camera networks: a review

    Science.gov (United States)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  6. Microprocessor-controlled wide-range streak camera

    Science.gov (United States)

    Lewis, Amy E.; Hollabaugh, Craig

    2006-08-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  7. Microprocessor-controlled, wide-range streak camera

    International Nuclear Information System (INIS)

    Amy E. Lewis; Craig Hollabaugh

    2006-01-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized

  8. Performance characteristics of ZLC 37 Siemens gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Abdelgadir, Wafaa Abdelrahman [Department of Physics, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1994-04-01

    The relationships between the ZLC 37 Siemens {gamma} camera parameters (energy resolution, plane sensitivity, intrinsic uniformity, intrinsic resolution, system uniformity and system resolution) and diagnostic imaging performance was investigated. These parameters when computers when compared with internationally published data showed that the ZLC 37 Siemens {gamma} cameras is in good operative conditions. The effect of the scattering media and WW on the spatial resolution, when the distance is kept fixed were investigated. Comparison of resolution for the media (air, water, water + radioactivity) when using WW (10, 15,20%) showed that the resolution is best for air, better for water and worse for water + radioactivity up to a concentration of 8% for a 10% WW. (Author) 28 refs. , 10 tabs. , 22 figs. Also available from the Department of Physics, Faculty of Science, University of Khartoum, Khartoum (SD)

  9. Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system

    Science.gov (United States)

    Mundhenk, Terrell N.; Dhavale, Nitin; Marmol, Salvador; Calleja, Elizabeth; Navalpakkam, Vidhya; Bellman, Kirstie; Landauer, Chris; Arbib, Michael A.; Itti, Laurent

    2003-10-01

    In view of the growing complexity of computational tasks and their design, we propose that certain interactive systems may be better designed by utilizing computational strategies based on the study of the human brain. Compared with current engineering paradigms, brain theory offers the promise of improved self-organization and adaptation to the current environment, freeing the programmer from having to address those issues in a procedural manner when designing and implementing large-scale complex systems. To advance this hypothesis, we discus a multi-agent surveillance system where 12 agent CPUs each with its own camera, compete and cooperate to monitor a large room. To cope with the overload of image data streaming from 12 cameras, we take inspiration from the primate"s visual system, which allows the animal to operate a real-time selection of the few most conspicuous locations in visual input. This is accomplished by having each camera agent utilize the bottom-up, saliency-based visual attention algorithm of Itti and Koch (Vision Research 2000;40(10-12):1489-1506) to scan the scene for objects of interest. Real time operation is achieved using a distributed version that runs on a 16-CPU Beowulf cluster composed of the agent computers. The algorithm guides cameras to track and monitor salient objects based on maps of color, orientation, intensity, and motion. To spread camera view points or create cooperation in monitoring highly salient targets, camera agents bias each other by increasing or decreasing the weight of different feature vectors in other cameras, using mechanisms similar to excitation and suppression that have been documented in electrophysiology, psychophysics and imaging studies of low-level visual processing. In addition, if cameras need to compete for computing resources, allocation of computational time is weighed based upon the history of each camera. A camera agent that has a history of seeing more salient targets is more likely to obtain

  10. AUTOMATIC CAMERA ORIENTATION AND STRUCTURE RECOVERY WITH SAMANTHA

    Directory of Open Access Journals (Sweden)

    R. Gherardi

    2012-09-01

    Full Text Available SAMANTHA is a software capable of computing camera orientation and structure recovery from a sparse block of casual images without human intervention. It can process both calibrated images or uncalibrated, in which case an autocalibration routine is run. Pictures are organized into a hierarchical tree which has single images as leaves and partial reconstructions as internal nodes. The method proceeds bottom up until it reaches the root node, corresponding to the final result. This framework is one order of magnitude faster than sequential approaches, inherently parallel, less sensitive to the error accumulation causing drift. We have verified the quality of our reconstructions both qualitatively producing compelling point clouds and quantitatively, comparing them with laser scans serving as ground truth.

  11. KEhD-1 Debye-Sherrar camera with a coordinate proportional counter

    International Nuclear Information System (INIS)

    Ageev, O.I.; Glazova, L.P.; Goganov, D.A.; Rejzis, B.M.; Syrkin, M.G.

    1985-01-01

    An arrangement of the KEhD-1 Debye-Sherrar camera, in which the advantages of a proportional counter are combined with the wide range of simultaneous image recording is described. The camera consists of an X-ray tube unit with the URS-0.1 source, a linear coordinate detector with resistive-capacity coding, a signal transducer and the MK-1 multichannel system for data acquisition and processing based on the ''Uskra-1256'' computer. The counting rate of X-ray pulses is > 5x10 4 s -1 , energy resolution for the CuKsub(α) line constitutes 20%, spatial resolution equals 150 μm, detection efficiency constitutes not less than 64%. The range of the detector displacement varies from -30 deg to +130 deg. The information obtained by means of the camera may be output to a display, a plotter, a numeric printer or a magnetic tape

  12. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  13. A laser sheet self-calibration method for scanning PIV

    Science.gov (United States)

    Knutsen, Anna N.; Lawson, John M.; Dawson, James R.; Worth, Nicholas A.

    2017-10-01

    Knowledge of laser sheet position, orientation, and thickness is a fundamental requirement of scanning PIV and other laser-scanning methods. This paper describes the development and evaluation of a new laser sheet self-calibration method for stereoscopic scanning PIV, which allows the measurement of these properties from particle images themselves. The approach is to fit a laser sheet model by treating particles as randomly distributed probes of the laser sheet profile, whose position is obtained via a triangulation procedure enhanced by matching particle images according to their variation in brightness over a scan. Numerical simulations and tests with experimental data were used to quantify the sensitivity of the method to typical experimental error sources and validate its performance in practice. The numerical simulations demonstrate the accurate recovery of the laser sheet parameters over range of different seeding densities and sheet thicknesses. Furthermore, they show that the method is robust to significant image noise and camera misalignment. Tests with experimental data confirm that the laser sheet model can be accurately reconstructed with no impairment to PIV measurement accuracy. The new method is more efficient and robust in comparison with the standard (self-) calibration approach, which requires an involved, separate calibration step that is sensitive to experimental misalignments. The method significantly improves the practicality of making accurate scanning PIV measurements and broadens its potential applicability to scanning systems with significant vibrations.

  14. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  15. Hyperspectral imaging system for disease scanning on banana plants

    Science.gov (United States)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  16. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  17. Towards Adaptive Virtual Camera Control In Computer Games

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2011-01-01

    Automatic camera control aims to define a framework to control virtual camera movements in dynamic and unpredictable virtual environments while ensuring a set of desired visual properties. We inves- tigate the relationship between camera placement and playing behaviour in games and build a user...... model of the camera behaviour that can be used to control camera movements based on player preferences. For this purpose, we collect eye gaze, camera and game-play data from subjects playing a 3D platform game, we cluster gaze and camera information to identify camera behaviour profiles and we employ...... camera control in games is discussed....

  18. Fog camera to visualize ionizing charged particles; Camara de niebla para visualizar particulas cargadas ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo A, L.; Rodriguez R, N. I.; Vega C, H. R., E-mail: ingtrujilloa@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  19. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    Stoughton, R.S.; Martin, H.L.; Bentz, R.R.

    1984-07-01

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2-deg deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  20. Automatic camera tracking for remote manipulators

    International Nuclear Information System (INIS)

    Stoughton, R.S.; Martin, H.L.; Bentz, R.R.

    1984-04-01

    The problem of automatic camera tracking of mobile objects is addressed with specific reference to remote manipulators and using either fixed or mobile cameras. The technique uses a kinematic approach employing 4 x 4 coordinate transformation matrices to solve for the needed camera PAN and TILT angles. No vision feedback systems are used, as the required input data are obtained entirely from position sensors from the manipulator and the camera-positioning system. All hardware requirements are generally satisfied by currently available remote manipulator systems with a supervisory computer. The system discussed here implements linear plus on/off (bang-bang) closed-loop control with a +-2 0 deadband. The deadband area is desirable to avoid operator seasickness caused by continuous camera movement. Programming considerations for camera control, including operator interface options, are discussed. The example problem presented is based on an actual implementation using a PDP 11/34 computer, a TeleOperator Systems SM-229 manipulator, and an Oak Ridge National Laboratory (ORNL) camera-positioning system. 3 references, 6 figures, 2 tables

  1. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras.

    Science.gov (United States)

    de Paula Silveira, Alessandra C; Chaves, Sacha B; Hilgert, Leandro A; Ribeiro, Ana Paula D

    2017-03-01

    The precision of fit of chairside computer-aided design and computer-aided manufacturing (CAD-CAM) complete crowns is affected by digital impression and restorative material. The purpose of this in vitro study was to evaluate by microcomputed tomography (μCT) the marginal and internal adaptation of composite resin and ceramic complete crowns fabricated with 2 different intraoral cameras and 2 restorative materials. Ten extracted human third molars received crown preparations. For each prepared molar, 2 digital impressions were made with different intraoral cameras of the CEREC system, Bluecam and Omnicam. Four groups were formed: LB (Lava Ultimate+Bluecam), EB (Emax+Bluecam), LO (Lava Ultimate+Omnicam), and EO (Emax+Omnicam). Before measuring the precision of fit, all crowns were stabilized with a silicone material. Each unit (crown + prepared tooth) was imaged with μCT, and marginal and internal discrepancies were analyzed. For the 2D analysis, 120 measurements were made of each crown for marginal adaptation, 20 for marginal discrepancy (MD), and 20 for absolute marginal discrepancy (AMD); and for internal adaptation, 40 for axial space (AS) and 40 for occlusal space (OS). After reconstructing the 3D images, the average internal space (AIS) was calculated by dividing the total volume of the internal space by the contact surface. Data were analyzed with 2-way ANOVA and quantile regression. Regarding marginal adaptation, no significant differences were observed among groups. For internal adaptation measured in the 2D evaluation, a significant difference was observed between LO and EO for the AS variable (Mann-Whitney test; POmnicam, and composite resin crowns showed less discrepancy than did ceramic crowns. The marginal adaptations assessed in all groups showed values within the clinically accepted range. Moreover, the composite resin blocks associated with the Bluecam intraoral camera demonstrated the best results for AIS compared with those of the other groups

  2. Reproducibility of trabecular bone score with different scan modes using dual-energy X-ray absorptiometry: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Di Leo, Giovanni [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Pastor Lopez, Maria Juana; Ulivieri, Fabio M. [Servizio di Medicina Nucleare, Ospedale Maggiore, Mineralometria Ossea Computerizzata e Ambulatorio Malattie Metabolismo Minerale e Osseo, Milano (Italy); Mai, Alessandro [Universita degli Studi di Milano, Tecniche di Radiologia Medica, per Immagini e Radioterapia, Milano (Italy); Sardanelli, Francesco [Unita di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-12

    The trabecular bone score (TBS) accounts for the bone microarchitecture and is calculated on dual-energy X-ray absorptiometry (DXA). We estimated the reproducibility of the TBS using different scan modes compared to the reproducibility bone mineral density (BMD). A spine phantom was used with a Hologic QDR-Discovery A densitometer. For each scan mode [fast array, array, high definition (HD)], 25 scans were automatically performed without phantom repositioning; a further 25 scans were performed with phantom repositioning. For each scan, the TBS was obtained. The coefficient of variation (CoV) was calculated as the ratio between standard deviation and mean; percent least significant change (LSC%) as 2.8 x CoV; reproducibility as the complement to 100 % of LSC%. Differences among scan modes were assessed using ANOVA. Without phantom repositioning, the mean TBS (mm{sup -1}) was: 1.352 (fast array), 1.321 (array), and 1.360 (HD); with phantom repositioning, it was 1.345, 1.332, and 1.362, respectively. Reproducibility of the TBS without phantom repositioning was 97.7 % (fast array), 98.3 % (array), and 98.2 % (HD); with phantom repositioning, it was 97.9 %, 98.7 %, and 98.4 %, respectively. LSC% was ≤2.26 %. Differences among scan modes were all statistically significant (p ≤ 0.019). Reproducibility of BMD was 99.1 % with all scan modes, while LSC% was from 0.86 % to 0.91 %. Reproducibility error of the TBS was 2-3-fold higher than that of BMD. Although statistically significant, differences in TBS among scan modes were within the highest LSC%. Thus, the three scan modes can be considered interchangeable. (orig.)

  3. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    International Nuclear Information System (INIS)

    Matsuzaki, Y; Jenkins, C; Yang, Y; Xing, L; Yoshimura, T; Fujii, Y; Umegaki, K

    2016-01-01

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R"2=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  4. TU-FG-BRB-12: Real-Time Visualization of Discrete Spot Scanning Proton Therapy Beam for Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Y [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Jenkins, C; Yang, Y; Xing, L [Stanford University, Stanford, California (United States); Yoshimura, T; Fujii, Y [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Umegaki, K [Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: With the growing adoption of proton beam therapy there is an increasing need for effective and user-friendly tools for performing quality assurance (QA) measurements. The speed and versatility of spot-scanning proton beam (PB) therapy systems present unique challenges for traditional QA tools. To address these challenges a proof-of-concept system was developed to visualize, in real-time, the delivery of individual spots from a spot-scanning PB in order to perform QA measurements. Methods: The PB is directed toward a custom phantom with planar faces coated with a radioluminescent phosphor (Gd2O2s:Tb). As the proton beam passes through the phantom visible light is emitted from the coating and collected by a nearby CMOS camera. The images are processed to determine the locations at which the beam impinges on each face of the phantom. By so doing, the location of each beam can be determined relative to the phantom. The cameras are also used to capture images of the laser alignment system. The phantom contains x-ray fiducials so that it can be easily located with kV imagers. Using this data several quality assurance parameters can be evaluated. Results: The proof-of-concept system was able to visualize discrete PB spots with energies ranging from 70 MeV to 220 MeV. Images were obtained with integration times ranging from 20 to 0.019 milliseconds. If not limited by data transmission, this would correspond to a frame rate of 52,000 fps. Such frame rates enabled visualization of individual spots in real time. Spot locations were found to be highly correlated (R{sup 2}=0.99) with the nozzle-mounted spot position monitor indicating excellent spot positioning accuracy Conclusion: The system was shown to be capable of imaging individual spots for all clinical beam energies. Future development will focus on extending the image processing software to provide automated results for a variety of QA tests.

  5. A new adaptive light beam focusing principle for scanning light stimulation systems.

    Science.gov (United States)

    Bitzer, L A; Meseth, M; Benson, N; Schmechel, R

    2013-02-01

    In this article a novel principle to achieve optimal focusing conditions or rather the smallest possible beam diameter for scanning light stimulation systems is presented. It is based on the following methodology: First, a reference point on a camera sensor is introduced where optimal focusing conditions are adjusted and the distance between the light focusing optic and the reference point is determined using a laser displacement sensor. In a second step, this displacement sensor is used to map the topography of the sample under investigation. Finally, the actual measurement is conducted, using optimal focusing conditions in each measurement point at the sample surface, that are determined by the height difference between camera sensor and the sample topography. This principle is independent of the measurement values, the optical or electrical properties of the sample, the used light source, or the selected wavelength. Furthermore, the samples can be tilted, rough, bent, or of different surface materials. In the following the principle is implemented using an optical beam induced current system, but basically it can be applied to any other scanning light stimulation system. Measurements to demonstrate its operation are shown, using a polycrystalline silicon solar cell.

  6. Gamma camera system

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.; Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  7. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    Science.gov (United States)

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  8. The eye of the camera: effects of security cameras on pro-social behavior

    NARCIS (Netherlands)

    van Rompay, T.J.L.; Vonk, D.J.; Fransen, M.L.

    2009-01-01

    This study addresses the effects of security cameras on prosocial behavior. Results from previous studies indicate that the presence of others can trigger helping behavior, arising from the need for approval of others. Extending these findings, the authors propose that security cameras can likewise

  9. Passive auto-focus for digital still cameras and camera phones: Filter-switching and low-light techniques

    Science.gov (United States)

    Gamadia, Mark Noel

    In order to gain valuable market share in the growing consumer digital still camera and camera phone market, camera manufacturers have to continually add and improve existing features to their latest product offerings. Auto-focus (AF) is one such feature, whose aim is to enable consumers to quickly take sharply focused pictures with little or no manual intervention in adjusting the camera's focus lens. While AF has been a standard feature in digital still and cell-phone cameras, consumers often complain about their cameras' slow AF performance, which may lead to missed photographic opportunities, rendering valuable moments and events with undesired out-of-focus pictures. This dissertation addresses this critical issue to advance the state-of-the-art in the digital band-pass filter, passive AF method. This method is widely used to realize AF in the camera industry, where a focus actuator is adjusted via a search algorithm to locate the in-focus position by maximizing a sharpness measure extracted from a particular frequency band of the incoming image of the scene. There are no known systematic methods for automatically deriving the parameters such as the digital pass-bands or the search step-size increments used in existing passive AF schemes. Conventional methods require time consuming experimentation and tuning in order to arrive at a set of parameters which balance AF performance in terms of speed and accuracy ultimately causing a delay in product time-to-market. This dissertation presents a new framework for determining an optimal set of passive AF parameters, named Filter- Switching AF, providing an automatic approach to achieve superior AF performance, both in good and low lighting conditions based on the following performance measures (metrics): speed (total number of iterations), accuracy (offset from truth), power consumption (total distance moved), and user experience (in-focus position overrun). Performance results using three different prototype cameras

  10. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    Science.gov (United States)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  11. Image compensation for camera and lighting variability

    Science.gov (United States)

    Daley, Wayne D.; Britton, Douglas F.

    1996-12-01

    With the current trend of integrating machine vision systems in industrial manufacturing and inspection applications comes the issue of camera and illumination stabilization. Unless each application is built around a particular camera and highly controlled lighting environment, the interchangeability of cameras of fluctuations in lighting become a problem as each camera usually has a different response. An empirical approach is proposed where color tile data is acquired using the camera of interest, and a mapping is developed to some predetermined reference image using neural networks. A similar analytical approach based on a rough analysis of the imaging systems is also considered for deriving a mapping between cameras. Once a mapping has been determined, all data from one camera is mapped to correspond to the images of the other prior to performing any processing on the data. Instead of writing separate image processing algorithms for the particular image data being received, the image data is adjusted based on each particular camera and lighting situation. All that is required when swapping cameras is the new mapping for the camera being inserted. The image processing algorithms can remain the same as the input data has been adjusted appropriately. The results of utilizing this technique are presented for an inspection application.

  12. Optimising camera traps for monitoring small mammals.

    Directory of Open Access Journals (Sweden)

    Alistair S Glen

    Full Text Available Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1 trigger speed, 2 passive infrared vs. microwave sensor, 3 white vs. infrared flash, and 4 still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea, feral cats (Felis catus and hedgehogs (Erinaceuseuropaeus. Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  13. Control quality and performance measurement of gamma cameras. S.F.P.M. report nr 28. Updating of S.F.P.H. reports Performance assessment and quality control of scintillation cameras: plane mode (1992), tomographic mode (1996) whole-body mode (1997)

    International Nuclear Information System (INIS)

    Petegnief, Yolande; Barrau, Corinne; Coulot, Jeremy; Guilhem, Marie Therese; Hapdey, Sebastien; Vrigneaud, Jean-Marc; Metayer, Yann; Picone, Magali; Ricard, Marcel; Salvat, Cecile; Bouchet, Francis; Ferrer, Ludovic; Murat, Caroline

    2012-01-01

    This report aims at providing students and professionals with a comprehensive guide related to quality control and to performance measurement on gamma cameras. It completes and updates three previous reports published by the SFPM during the 1990's related to the different acquisition modes for this modality of medical imagery: plane imagery, whole-body scanning, and tomography. The authors present the operation principle of scintillation cameras, the characteristics of a scintillation camera, analytic and algebraic algorithms of tomographic reconstruction, and the various software corrections applied in mono-photonic imagery (corrections of the attenuation effect, of the scattering effect, of the collimator response effect, and of the partial volume effect). In the next part, the present the various characteristics, parameters and issues related to performance measurement for the three addressed modes (plane, whole body, tomographic). The last part presents various aspects of the organisation of quality control and of performance follow-up: regulatory context, reference documents, internal quality control program

  14. Science, conservation, and camera traps

    Science.gov (United States)

    Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.

  15. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  16. Camera-Based Lock-in and Heterodyne Carrierographic Photoluminescence Imaging of Crystalline Silicon Wafers

    Science.gov (United States)

    Sun, Q. M.; Melnikov, A.; Mandelis, A.

    2015-06-01

    Carrierographic (spectrally gated photoluminescence) imaging of a crystalline silicon wafer using an InGaAs camera and two spread super-bandgap illumination laser beams is introduced in both low-frequency lock-in and high-frequency heterodyne modes. Lock-in carrierographic images of the wafer up to 400 Hz modulation frequency are presented. To overcome the frame rate and exposure time limitations of the camera, a heterodyne method is employed for high-frequency carrierographic imaging which results in high-resolution near-subsurface information. The feasibility of the method is guaranteed by the typical superlinearity behavior of photoluminescence, which allows one to construct a slow enough beat frequency component from nonlinear mixing of two high frequencies. Intensity-scan measurements were carried out with a conventional single-element InGaAs detector photocarrier radiometry system, and the nonlinearity exponent of the wafer was found to be around 1.7. Heterodyne images of the wafer up to 4 kHz have been obtained and qualitatively analyzed. With the help of the complementary lock-in and heterodyne modes, camera-based carrierographic imaging in a wide frequency range has been realized for fundamental research and industrial applications toward in-line nondestructive testing of semiconductor materials and devices.

  17. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  18. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  19. New camera systems for fuel services

    International Nuclear Information System (INIS)

    Hummel, W.; Beck, H.J.

    2010-01-01

    AREVA NP Fuel Services have many years of experience in visual examination and measurements on fuel assemblies and associated core components by using state of the art cameras and measuring technologies. The used techniques allow the surface and dimensional characterization of materials and shapes by visual examination. New enhanced and sophisticated technologies for fuel services f. e. are two shielded color camera systems for use under water and close inspection of a fuel assembly. Nowadays the market requirements for detecting and characterization of small defects (lower than the 10th of one mm) or cracks and analyzing surface appearances on an irradiated fuel rod cladding or fuel assembly structure parts have increased. Therefore it is common practice to use movie cameras with higher resolution. The radiation resistance of high resolution CCD cameras is in general very low and it is not possible to use them unshielded close to a fuel assembly. By extending the camera with a mirror system and shielding around the sensitive parts, the movie camera can be utilized for fuel assembly inspection. AREVA NP Fuel Services is now equipped with such kind of movie cameras. (orig.)

  20. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  2. Automatic multi-camera calibration for deployable positioning systems

    Science.gov (United States)

    Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan

    2012-06-01

    Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.

  3. Multi-Angle Snowflake Camera Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Martin [Univ. of Alaska, Fairbanks, AK (United States); Bailey, J. [Univ. of Alaska, Fairbanks, AK (United States)

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASC cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.

  4. CALIBRATION PROCEDURES ON OBLIQUE CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna –IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first

  5. SmartScan: a robust pushbroom imaging concept for moderate spacecraft attitude stability

    Science.gov (United States)

    Janschek, K.; Tchernykh, V.; Dyblenko, S.; Harnisch, B.

    2017-11-01

    Pushbroom scan cameras with linear image sensors, commonly used for Earth observation from satellites, require high attitude stability during the image acquisition. Especially noticeable are the effects of high frequency attitude variations originating from micro shocks and vibrations, produced by momentum and reaction wheels, mechanically activated coolers, steering and deployment mechanics and other reasons. The SMARTSCAN imaging concept offers high quality imaging even with moderate satellite attitude stability on a sole opto-electronic basis without any moving parts. It uses real-time recording of the actual image motion in the focal plane of the remote sensing camera during the frame acquisition and a posteriori correction of the obtained image distortions on base of the image motion record. Exceptional real-time performances with subpixel accuracy image motion measurement are provided by an innovative high-speed onboard optoelectronic correlation processor. SMARTSCAN allows therefore using smart pushbroom cameras for hyper-spectral imagers on satellites and platforms which are not specially intended for imaging missions, e.g. micro satellites. The paper gives an overview on the system concept and main technologies used (advanced optical correlator for ultra high-speed image motion tracking), it discusses the conceptual design for a smart compact space camera and it reports on airborne test results of a functional breadboard model.

  6. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    Science.gov (United States)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  7. Wavefront analysis for plenoptic camera imaging

    International Nuclear Information System (INIS)

    Luan Yin-Sen; Xu Bing; Yang Ping; Tang Guo-Mao

    2017-01-01

    The plenoptic camera is a single lens stereo camera which can retrieve the direction of light rays while detecting their intensity distribution. In this paper, to reveal more truths of plenoptic camera imaging, we present the wavefront analysis for the plenoptic camera imaging from the angle of physical optics but not from the ray tracing model of geometric optics. Specifically, the wavefront imaging model of a plenoptic camera is analyzed and simulated by scalar diffraction theory and the depth estimation is redescribed based on physical optics. We simulate a set of raw plenoptic images of an object scene, thereby validating the analysis and derivations and the difference between the imaging analysis methods based on geometric optics and physical optics are also shown in simulations. (paper)

  8. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A; Fraga, F A F; Fraga, M M F R; Margato, L M S; Pereira, L [LIP-Coimbra and Departamento de Física, Universidade de Coimbra, Rua Larga, Coimbra (Portugal); Defendi, I; Jurkovic, M [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TUM, Lichtenbergstr. 1, Garching (Germany); Engels, R; Kemmerling, G [Zentralinstitut für Elektronik, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich (Germany); Gongadze, A; Guerard, B; Manzin, G; Niko, H; Peyaud, A; Piscitelli, F [Institut Laue Langevin, 6 Rue Jules Horowitz, Grenoble (France); Petrillo, C; Sacchetti, F [Istituto Nazionale per la Fisica della Materia, Unità di Perugia, Via A. Pascoli, Perugia (Italy); Raspino, D; Rhodes, N J; Schooneveld, E M, E-mail: andrei@coimbra.lip.pt [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom); others, and

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/∼andrei/.

  9. FPS-vidicon television camras for ultrafast-scan data acquisition

    International Nuclear Information System (INIS)

    Noel, B.W.; Yates, G.J.

    1980-06-01

    Two ultrafast-scan ( 500 TV lines per picture height with a corresponding dynamic range (to light input) of more than 100. The cameras use the unique properties of FPS vidicons and specially designed electronics to achieve their performance levels and versatility. The advantages and disadvantages of FPS vidicons and of antimony trisulfide and silicon target materials in such applications are discussed in detail. All of the electronics circuits are discussed. The sweep generator designs are treated at length because they are the key to the cameras' versatility. Emphasis is placed on remotely controllable analog and digital sweep generators. The latter is a complete CAMAC-compatible subsystem containing a 16-function master arithmetic logic unit. Pulsed and cw methods of obtaining transfer characteristics are described and compared. The effects of generation rates, tube types, and target types on the resolution, determined from contrast-transfer-function curves, are discussed. Several applications are described, including neutron TV pinhole, TREAT, and barium-release experiments

  10. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    Science.gov (United States)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  11. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    International Nuclear Information System (INIS)

    Lewellen, T.K.; Miyaoka, R.S.; Kaplan, M.S.

    1996-01-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz

  12. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao, E-mail: qlyang@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-08-28

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  13. Homography-based multiple-camera person-tracking

    Science.gov (United States)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of

  14. Computing camera heading: A study

    Science.gov (United States)

    Zhang, John Jiaxiang

    2000-08-01

    An accurate estimate of the motion of a camera is a crucial first step for the 3D reconstruction of sites, objects, and buildings from video. Solutions to the camera heading problem can be readily applied to many areas, such as robotic navigation, surgical operation, video special effects, multimedia, and lately even in internet commerce. From image sequences of a real world scene, the problem is to calculate the directions of the camera translations. The presence of rotations makes this problem very hard. This is because rotations and translations can have similar effects on the images, and are thus hard to tell apart. However, the visual angles between the projection rays of point pairs are unaffected by rotations, and their changes over time contain sufficient information to determine the direction of camera translation. We developed a new formulation of the visual angle disparity approach, first introduced by Tomasi, to the camera heading problem. Our new derivation makes theoretical analysis possible. Most notably, a theorem is obtained that locates all possible singularities of the residual function for the underlying optimization problem. This allows identifying all computation trouble spots beforehand, and to design reliable and accurate computational optimization methods. A bootstrap-jackknife resampling method simultaneously reduces complexity and tolerates outliers well. Experiments with image sequences show accurate results when compared with the true camera motion as measured with mechanical devices.

  15. Utility of morphine-augmented hepatobiliary scanning in evaluation of acute cholecystitis

    International Nuclear Information System (INIS)

    Kistler, A.M.; Ziessman, H.A.; Gooch, D.; Bitterman, P.

    1989-01-01

    The authors review experience with morphine sulfate-augmented cholescintigraphy in suspected acute cholecystitis. MS has been recommended to reduce study time while maintaining accuracy of hepatobiliary scans. Patients received 5-mCi injections of Tc-99m mebrofenin and imaged on a low-field-view gamma camera. In 32 patients with nonvisualization of the gallbladder at 30-40 minutes after injection, 2 mg MS was given intravenously, and imaging continued for an additional 30 minutes

  16. Scintillation camera for high activity sources

    International Nuclear Information System (INIS)

    Arseneau, R.E.

    1978-01-01

    The invention described relates to a scintillation camera used for clinical medical diagnosis. Advanced recognition of many unacceptable pulses allows the scintillation camera to discard such pulses at an early stage in processing. This frees the camera to process a greater number of pulses of interest within a given period of time. Temporary buffer storage allows the camera to accommodate pulses received at a rate in excess of its maximum rated capability due to statistical fluctuations in the level of radioactivity of the radiation source measured. (U.K.)

  17. Decision about buying a gamma camera

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera

  18. Decision about buying a gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    A large part of the referral to a nuclear medicine department is usually for imaging studies. Sooner or later, the nuclear medicine specialist will be called upon to make a decision about when and what type of gamma camera to buy. There is no longer an option of choosing between a rectilinear scanner and a gamma camera as the former is virtually out of the market. The decision that one has to make is when to invest in a gamma camera, and then on what basis to select the gamma camera 1 tab., 1 fig

  19. Selective-imaging camera

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  20. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Domke, M.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Krumm, B.; Lorenz, E.

    2011-01-01

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  1. Video Chat with Multiple Cameras

    OpenAIRE

    MacCormick, John

    2012-01-01

    The dominant paradigm for video chat employs a single camera at each end of the conversation, but some conversations can be greatly enhanced by using multiple cameras at one or both ends. This paper provides the first rigorous investigation of multi-camera video chat, concentrating especially on the ability of users to switch between views at either end of the conversation. A user study of 23 individuals analyzes the advantages and disadvantages of permitting a user to switch between views at...

  2. Microprocessor-controlled, wide-range streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Amy E. Lewis, Craig Hollabaugh

    2006-09-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera’s user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  3. Development of an ultra-fast X-ray camera using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Dawiec, A.

    2011-05-01

    The aim of the project whose work described in this thesis is part, was to design a high-speed X-ray camera using hybrid pixels applied to biomedical imaging and for material science. As a matter of fact the hybrid pixel technology meets the requirements of these two research fields, particularly by providing energy selection and low dose imaging capabilities. In this thesis, high frame rate X-ray imaging based on the XPAD3-S photons counting chip is presented. Within a collaboration between CPPM, ESRF and SOLEIL, three XPAD3 cameras were built. Two of them are being operated at the beamline of the ESRF and SOLEIL synchrotron facilities and the third one is embedded in the PIXSCAN II irradiation setup of CPPM. The XPAD3 camera is a large surface X-ray detector composed of eight detection modules of seven XPAD3-S chips each with a high-speed data acquisition system. The readout architecture of the camera is based on the PCI Express interface and on programmable FPGA chips. The camera achieves a readout speed of 240 images/s, with maximum number of images limited by the RAM memory of the acquisition PC. The performance of the device was characterized by carrying out several high speed imaging experiments using the PIXSCAN II irradiation setup described in the last chapter of this thesis. (author)

  4. Gastric emptying of liquid meals: validation of the gamma camera technique

    Energy Technology Data Exchange (ETDEWEB)

    Lawaetz, Otto; Dige-Petersen, Harriet

    1989-05-01

    To assess the extent of errors and to provide correction factors for gamma camera gastric emptying studies of liquid meals labelled with radionuclides (/sup 99/Tc/sup m/ or /sup 113/In/sup m/), phantom studies were performed with different gastric emptying procedures, gamma cameras and data handling systems. To validate the overall accuracy of the method, 24 combined aspiration and gamma camera gastric emptying studies were carried out in three normal volunteers. Gastric meal volume was underestimated due to scattered radiation from the stomach. The underestimation was 7-20% varying with the size of the gastric region of interest (ROI), the energy of the nuclide and the fraction of meal in the stomach. The overestimation, due to scattered radiation from the gut, was negligible (1-3%) for any of the procedures. The gamma camera technique eliminated much of the error due to variations of stomach geometry and produced accurate quantitative gastric emptying data comparable to those obtained by evacuation (P > 0.10), when the entire field maximum 1-min count achieved within the first 20 min of a study was taken as representing the original volume of the meal ingested, and when corrections for area related errors due to scattered radiation from the stomach were performed. (author).

  5. Characterizing high-energy-formed particulates with the scanning electron microscope/energy dispersive spectrometer system. Progress report, March--September 1977

    International Nuclear Information System (INIS)

    Casey, A.W.; Biermann, A.H.

    1977-01-01

    A method is being sought that will allow the differentiation between particulates formed in implosions and particulates formed in explosions. The scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDS) were used to measure and compare particle size, shape, surface morphology, and composition. Implosion and explosion detonations yielded spherical, smooth particles within the same size range. Although the particle size, shape, and morphology were the same for comparable samples of different detonation type, there were distinct differences in composition. It is not certain whether differences in composition reflect differences in device components or differences in the nature of the detonation

  6. Performance and quality control of scintillation cameras

    International Nuclear Information System (INIS)

    Moretti, J.L.; Iachetti, D.

    1983-01-01

    Acceptance testing, quality and control assurance of gamma-cameras are a part of diagnostic quality in clinical practice. Several parameters are required to achieve a good diagnostic reliability: intrinsic spatial resolution, spatial linearity, uniformities, energy resolution, count-rate characteristics, multiple window spatial analysis. Each parameter was measured and also estimated by a test easy to implement in routine practice. Material required was a 4028 multichannel analyzer linked to a microcomputeur, mini-computers and a set of phantoms (parallel slits, diffusing phantom, orthogonal hole transmission pattern). Gamma-cameras on study were:CGR 3400, CGR 3420, G.E.4000. Siemens ZLC 75 and large field Philips. Several tests proposed by N.E.M.A. and W.H.O. have to be improved concerning too punctual spatial determinations during distortion measurements with multiple window. Contrast control of image need to be monitored with high counting rate. This study shows the need to avoid punctual determinations and the interest to give sets of values of the same parameter on the whole field and to report mean values with their standard variation [fr

  7. Technetium-Iron Complex. Radiopharmaceutical for Renal Scanning and Function Studies

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, J. A.; Cunningham, R. M. [Victoria General Hospital and Dalhousie Medical School, Halifax, NS (Canada)

    1969-05-15

    A preliminary report on the use of a technetium-iron complex as a radiopharmaceutical in the evaluation of kidney function as well as renal scanning is presented. The first part considers the {sup 99m}Tc iron complex as an agent to determine the kidney function. This is correlated with the conventional {sup 131}I Hippuran renogram as well as the mercury accumulative test. The second part describes the use of the {sup 99m}Tc iron complex as a renal scanning agent; again it is compared with {sup 197}Hg Neohydrin. The availability of the Anger gamma camera, along with {sup 99m}Tc and its favourable characteristics have encouraged further search for better preparations. Among these is the {sup 99m}Tc iron complex. The authors' technique of preparation is described. Although the pertechnetate ion is not very active chemically in combining with other compounds, it is readily reduced to more reactive lower valence states. Such alterations of chemical form produce changes in biologic localization of {sup 99m}Tc. After the intravenous injection of {sup 99m}Tc as pertechnetate, it is rapidly localized in the stomach, urinary bladder, thyroid, and salivary glands. Excretion during the first 24 h occurs largely through the urine. Harper et al. have shown that the {sup 99m}Tc iron complex is rapidly excreted through the urine. The initial disappearance from the plasma is so very rapid that 50% or more has usually left the blood in 3-5 min. Part of the 5'irnTc is fixed in the kidney which constitutes half of what is retained in the body. Our technique consists of obtaining the conventional {sup 131}I Hippuran renogram. This is followed by the injection of {sup 99m}Tc iron complex. The two renograms obtained, using the two agents, are correlated along with other diagnostic tests. Since the {sup 99m}Tc iron complex used for doing the renogram can be used in scanning the kidney, both kidneys are scanned using the Anger gamma camera. Comparative scans are done with the use of {sup

  8. Single Camera Calibration in 3D Vision

    Directory of Open Access Journals (Sweden)

    Caius SULIMAN

    2009-12-01

    Full Text Available Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.. In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment Matlab.

  9. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  10. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  11. RELATIVE AND ABSOLUTE CALIBRATION OF A MULTIHEAD CAMERA SYSTEM WITH OBLIQUE AND NADIR LOOKING CAMERAS FOR A UAS

    Directory of Open Access Journals (Sweden)

    F. Niemeyer

    2013-08-01

    Full Text Available Numerous unmanned aerial systems (UAS are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis“ software and will give an overview of the results and experiences of test flights.

  12. A camera specification for tendering purposes

    International Nuclear Information System (INIS)

    Lunt, M.J.; Davies, M.D.; Kenyon, N.G.

    1985-01-01

    A standardized document is described which is suitable for sending to companies which are being invited to tender for the supply of a gamma camera. The document refers to various features of the camera, the performance specification of the camera, maintenance details, price quotations for various options and delivery, installation and warranty details. (U.K.)

  13. 2-D image diagnostic technique for edge turbulence using fast cameras

    International Nuclear Information System (INIS)

    Nishino, N.; Mizuuchi, T.; Feng, Z.

    2007-01-01

    Fast cameras are powerful tool to visualize the edge turbulence in peripheral plasmas. Under Bi-directional collaborations recently in Heliotron J and GAMMA10 filamentary structures along the magnetic field line were firstly observed with GPI (gas puff imaging) by fast camera. In both machines the filamentary structures had similar stripe pattern in the images and simultaneous measurements of the ion saturation current by electrostatic probes show that the filamentary structures were relatively higher electron density/temperature regions in peripheral plasmas. It is not sufficient to conclude both filamentary structures are the same, however, these phenomena were thought to be related to the energy confinement. Thus the physics mechanism should be solved in the near future. (author)

  14. Bring your own camera to the trap: An inexpensive, versatile, and portable triggering system tested on wild hummingbirds.

    Science.gov (United States)

    Rico-Guevara, Alejandro; Mickley, James

    2017-07-01

    The study of animals in the wild offers opportunities to collect relevant information on their natural behavior and abilities to perform ecologically relevant tasks. However, it also poses challenges such as accounting for observer effects, human sensory limitations, and the time intensiveness of this type of research. To meet these challenges, field biologists have deployed camera traps to remotely record animal behavior in the wild. Despite their ubiquity in research, many commercial camera traps have limitations, and the species and behavior of interest may present unique challenges. For example, no camera traps support high-speed video recording. We present a new and inexpensive camera trap system that increases versatility by separating the camera from the triggering mechanism. Our system design can pair with virtually any camera and allows for independent positioning of a variety of sensors, all while being low-cost, lightweight, weatherproof, and energy efficient. By using our specialized trigger and customized sensor configurations, many limitations of commercial camera traps can be overcome. We use this system to study hummingbird feeding behavior using high-speed video cameras to capture fast movements and multiple sensors placed away from the camera to detect small body sizes. While designed for hummingbirds, our application can be extended to any system where specialized camera or sensor features are required, or commercial camera traps are cost-prohibitive, allowing camera trap use in more research avenues and by more researchers.

  15. State of art in radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Choi; Young Soo; Kim, Seong Ho; Cho, Jae Wan; Kim, Chang Hoi; Seo, Young Chil

    2002-02-01

    Working in radiation environment such as nuclear power plant, RI facility, nuclear fuel fabrication facility, medical center has to be considered radiation exposure, and we can implement these job by remote observation and operation. However the camera used for general industry is weakened at radiation, so radiation-tolerant camera is needed for radiation environment. The application of radiation-tolerant camera system is nuclear industry, radio-active medical, aerospace, and so on. Specially nuclear industry, the demand is continuous in the inspection of nuclear boiler, exchange of pellet, inspection of nuclear waste. In the nuclear developed countries have been an effort to develop radiation-tolerant cameras. Now they have many kinds of radiation-tolerant cameras which can tolerate to 10{sup 6}-10{sup 8} rad total dose. In this report, we examine into the state-of-art about radiation-tolerant cameras, and analyze these technology. We want to grow up the concern of developing radiation-tolerant camera by this paper, and upgrade the level of domestic technology.

  16. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk still...

  17. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  19. A scanning point source for quality control of FOV uniformity in GC-PET imaging

    International Nuclear Information System (INIS)

    Bergmann, H.; Minear, G.; Dobrozemsky, G.; Nowotny, R.; Koenig, B.

    2002-01-01

    Aim: PET imaging with coincidence cameras (GC-PET) requires additional quality control procedures to check the function of coincidence circuitry and detector zoning. In particular, the uniformity response over the field of view needs special attention since it is known that coincidence counting mode may suffer from non-uniformity effects not present in single photon mode. Materials and methods: An inexpensive linear scanner with a stepper motor and a digital interface to a PC with software allowing versatile scanning modes was developed. The scanner is used with a source holder containing a Sodium-22 point source. While moving the source along the axis of rotation of the GC-PET system, a tomographic acquisition takes place. The scan covers the full axial field of view of the 2-D or 3-D scatter frame. Depending on the acquisition software, point source scanning takes place continuously while only one projection is acquired or is done in step-and-shoot mode with the number of positions equal to the number of gantry steps. Special software was developed to analyse the resulting list mode acquisition files and to produce an image of the recorded coincidence events of each head. Results: Uniformity images of coincidence events were obtained after further correction for systematic sensitivity variations caused by acquisition geometry. The resulting images are analysed visually and by calculating NEMA uniformity indices as for a planar flood field. The method has been applied successfully to two different brands of GC-PET capable gamma cameras. Conclusion: Uniformity of GC-PET can be tested quickly and accurately with a routine QC procedure, using a Sodium-22 scanning point source and an inexpensive mechanical scanning device. The method can be used for both 2-D and 3-D acquisition modes and fills an important gap in the quality control system for GC-PET

  20. Single photon emission computed tomography of the brain with a rotating gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H J; Knopp, R; Winkler, C; Wappenschmidt, J

    1981-08-01

    In 471 patients SPECT of the brain was performed in addition to conventional serial brain scintigraphy using a rotating gamma camera (GAMMATOME T 9000). 23 patients had tumorous lesions, 26 had vascular lesions, and 422 patients revealed normal brain findings. 5 of the 23 patients with tumorous lesion and 5 of the 12 patients with vascular lesion (anamnesis shorter than 4 weeks) showed positive SPECT results but false negative conventional brain scans. Specificity could be improved up to 98% (412 out of 422 patients) using SPECT and conventional scintigraphy.

  1. Streak camera recording of interferometer fringes

    International Nuclear Information System (INIS)

    Parker, N.L.; Chau, H.H.

    1977-01-01

    The use of an electronic high-speed camera in the streaking mode to record interference fringe motion from a velocity interferometer is discussed. Advantages of this method over the photomultiplier tube-oscilloscope approach are delineated. Performance testing and data for the electronic streak camera are discussed. The velocity profile of a mylar flyer accelerated by an electrically exploded bridge, and the jump-off velocity of metal targets struck by these mylar flyers are measured in the camera tests. Advantages of the streak camera include portability, low cost, ease of operation and maintenance, simplified interferometer optics, and rapid data analysis

  2. A Study of the Magnetic Dipole Field of LEP during the 1995 Energy Scan

    CERN Document Server

    Dehning, Bernd; Geitz, M A

    1996-01-01

    In preparation for the 1995 LEP energy scan additional instrumentation was installed in two tunnel dipoles to monitor the time evolution of the magnetic field during experimental fills. Significant increase of the bending field superimposed by day-time dependent fluctuations on a minute time scale were revealed. These unexpected features could be correlated with earth currents captured by the LEP vacuum chamber and the ground cable. The currents are produced in particular by trains circulating in the Geneva area. This study presents a summary of our understanding of the LEP dipole field.

  3. The fly's eye camera system

    Science.gov (United States)

    Mészáros, L.; Pál, A.; Csépány, G.; Jaskó, A.; Vida, K.; Oláh, K.; Mezö, G.

    2014-12-01

    We introduce the Fly's Eye Camera System, an all-sky monitoring device intended to perform time domain astronomy. This camera system design will provide complementary data sets for other synoptic sky surveys such as LSST or Pan-STARRS. The effective field of view is obtained by 19 cameras arranged in a spherical mosaic form. These individual cameras of the device stand on a hexapod mount that is fully capable of achieving sidereal tracking for the subsequent exposures. This platform has many advantages. First of all it requires only one type of moving component and does not include unique parts. Hence this design not only eliminates problems implied by unique elements, but the redundancy of the hexapod allows smooth operations even if one or two of the legs are stuck. In addition, it can calibrate itself by observed stars independently from both the geographical location (including northen and southern hemisphere) and the polar alignment of the full mount. All mechanical elements and electronics are designed within the confines of our institute Konkoly Observatory. Currently, our instrument is in testing phase with an operating hexapod and reduced number of cameras.

  4. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  5. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    Science.gov (United States)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  6. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/n, Rio de Janeiro (Brazil); Rebelo, A.M.O. [University Hospital, Nuclear Medicine Center, Rio de Janeiro (Brazil); Teran, M.; Paolino, A. [Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Rojo, A.M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Puerta, J.A.; Morales, J. [Universidad Nacional de Colombia, Medellin (Colombia); Bejerano, G.M.L. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.; Ruiz, M.A. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac (Mexico); Videla, R.; Pinones, O. [Comision Chilena de Energia Nuclear, Santiago (Chile); Gonzalez, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Navarro, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Cruz-Suarez, R. [International Atomic Energy Agency, Vienna (Austria)

    2007-07-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of {sup 131}I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  7. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    International Nuclear Information System (INIS)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D.; Rebelo, A.M.O.; Teran, M.; Paolino, A.; Hermida, J.C.; Rojo, A.M.; Puerta, J.A.; Morales, J.; Bejerano, G.M.L.; Alfaro, M.; Ruiz, M.A.; Videla, R.; Pinones, O.; Gonzalez, S.; Navarro, T.; Cruz-Suarez, R.

    2007-01-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of 131 I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  8. A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes

    International Nuclear Information System (INIS)

    Anderhub, H; Biland, A; Boller, A; Braun, I; Commichau, S; Commichau, V; Dorner, D; Gendotti, A; Grimm, O; Gunten, H von; Hildebrand, D; Horisberger, U; Kraehenbuehl, T; Kranich, D; Lorenz, E; Lustermann, W; Backes, M; Neise, D; Bretz, T; Mannheim, K

    2009-01-01

    Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light detection in atmospheric Cherenkov telescopes. In this paper, the design and commissioning of a 36-pixel G-APD prototype camera is presented. The data acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond time resolution has been achieved. Cosmic-ray induced air showers have been recorded using an imaging mirror setup, in a self-triggered mode. This is the first time that such measurements have been carried out with a complete G-APD camera.

  9. Performance Evaluation of Thermographic Cameras for Photogrammetric Measurements

    Science.gov (United States)

    Yastikli, N.; Guler, E.

    2013-05-01

    The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was modelled efficiently

  10. Design studies of a depth encoding large aperture PET camera

    International Nuclear Information System (INIS)

    Moisan, C.; Rogers, J.G.; Buckley, K.R.; Ruth, T.J.; Stazyk, M.W.; Tsang, G.

    1994-10-01

    The feasibility of a wholebody PET tomograph with the capacity to correct for the parallax error induced by the Depth-Of-Interaction of γ-rays is assessed through simulation. The experimental energy, depth, and transverse position resolutions of BGO block detector candidates are the main inputs to a simulation that predicts the point source resolution of the Depth Encoding Large Aperture Camera (DELAC). The results indicate that a measured depth resolution of 7 mm (FWHM) is sufficient to correct a substantial part of the parallax error for a point source at the edge of the Field-Of-View. A search for the block specifications and camera ring radius that would optimize the spatial resolution and its uniformity across the Field-Of-View is also presented. (author). 10 refs., 1 tab., 5 figs

  11. First PET scans in Estonia

    International Nuclear Information System (INIS)

    Nazarenko, Sergei

    2003-01-01

    First PET scans in Estonia were performed on 25th November 2002 in North Estonia Regional Hospital, Tallinn. Six patients with melanoma underwent scanning with FDG. This event was a result of thorough extensive preparations first started in 2000 during the European Association of Nuclear Medicine congress in Paris. During the congress first contacts were made with providers of mobile PET units. At the same time negotiations were begun with potential FDG suppliers. For the introduction of PET in Estonia mobile truckmounted scanning technology was chosen due to low level of initial investments. Of particular importance was also availability of maintenance personnel from the device providers. A significant prerequisite was potential availability of FDG from the neighbourhood - Finland and Sweden. The latter avoided the necessity for investments into local cyclotrons and local FDG production. For the first scanning experience the dedicated truckmounted PET-camera Accel, Siemens was brought by the International Hospital Group (IHG, Amersfoort, Netherlands). The device arrived by ferry from Stockholm to Tallinn harbour at 10 o'clock in the morning and left by ferry for Helsinki at 23 o'clock. The team-on-truck consisted of one technician for device operation, two drivers and two company representatives. North Estonia Regional Hospital provided three additional technicians for patient preparation and FDG injection, one nuclear medicine doctor and one specialist of biomedical engineering and medical physics. The FDG was provided by MAP Medical Technologies, Schering, Helsinki, Finland. The shipments were made by air. This was possible due to small distance between Tallinn and Helsinki of approximately 80 km due to the regular flight connections between the two cities. The FDG was shipped in two lots with a time interval of 4 hours. The patient selection was based on clinical and histopathology data. In all six patients the exam was justified for detailied staging and

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive ...

  13. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

    Science.gov (United States)

    Wang, Tuo; Vaxenburg, Roman; Liu, Wenyong; Rupich, Sara M; Lifshitz, Efrat; Efros, Alexander L; Talapin, Dmitri V; Sibener, S J

    2015-01-27

    The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

  14. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    Science.gov (United States)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  15. Stereo Pinhole Camera: Assembly and experimental activities

    Directory of Open Access Journals (Sweden)

    Gilmário Barbosa Santos

    2015-05-01

    Full Text Available This work describes the assembling of a stereo pinhole camera for capturing stereo-pairs of images and proposes experimental activities with it. A pinhole camera can be as sophisticated as you want, or so simple that it could be handcrafted with practically recyclable materials. This paper describes the practical use of the pinhole camera throughout history and currently. Aspects of optics and geometry involved in the building of the stereo pinhole camera are presented with illustrations. Furthermore, experiments are proposed by using the images obtained by the camera for 3D visualization through a pair of anaglyph glasses, and the estimation of relative depth by triangulation is discussed.

  16. First results from the TOPSAT camera

    Science.gov (United States)

    Greenway, Paul; Tosh, Ian; Morris, Nigel; Burton, Gary; Cawley, Steve

    2017-11-01

    The TopSat camera is a low cost remote sensing imager capable of producing 2.5 metre resolution panchromatic imagery, funded by the British National Space Centre's Mosaic programme. The instrument was designed and assembled at the Space Science & Technology Department of the CCLRC's Rutherford Appleton Laboratory (RAL) in the UK, and was launched on the 27th October 2005 from Plesetsk Cosmodrome in Northern Russia on a Kosmos-3M. The camera utilises an off-axis three mirror system, which has the advantages of excellent image quality over a wide field of view, combined with a compactness that makes its overall dimensions smaller than its focal length. Keeping the costs to a minimum has been a major design driver in the development of this camera. The camera is part of the TopSat mission, which is a collaboration between four UK organisations; QinetiQ, Surrey Satellite Technology Ltd (SSTL), RAL and Infoterra. Its objective is to demonstrate provision of rapid response high resolution imagery to fixed and mobile ground stations using a low cost minisatellite. The paper "Development of the TopSat Camera" presented by RAL at the 5th ICSO in 2004 described the opto-mechanical design, assembly, alignment and environmental test methods implemented. Now that the spacecraft is in orbit and successfully acquiring images, this paper presents the first results from the camera and makes an initial assessment of the camera's in-orbit performance.

  17. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  18. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  19. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the

  20. The Eye of the Camera

    NARCIS (Netherlands)

    van Rompay, Thomas Johannes Lucas; Vonk, Dorette J.; Fransen, M.L.

    2009-01-01

    This study addresses the effects of security cameras on prosocial behavior. Results from previous studies indicate that the presence of others can trigger helping behavior, arising from the need for approval of others. Extending these findings, the authors propose that security cameras can likewise

  1. Compact 3D Camera for Shake-the-Box Particle Tracking

    Science.gov (United States)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  2. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  3. Poster: A Software-Defined Multi-Camera Network

    OpenAIRE

    Chen, Po-Yen; Chen, Chien; Selvaraj, Parthiban; Claesen, Luc

    2016-01-01

    The widespread popularity of OpenFlow leads to a significant increase in the number of applications developed in SoftwareDefined Networking (SDN). In this work, we propose the architecture of a Software-Defined Multi-Camera Network consisting of small, flexible, economic, and programmable cameras which combine the functions of the processor, switch, and camera. A Software-Defined Multi-Camera Network can effectively reduce the overall network bandwidth and reduce a large amount of the Capex a...

  4. Gamma camera performance: technical assessment protocol

    Energy Technology Data Exchange (ETDEWEB)

    Bolster, A.A. [West Glasgow Hospitals NHS Trust, London (United Kingdom). Dept. of Clinical Physics; Waddington, W.A. [University College London Hospitals NHS Trust, London (United Kingdom). Inst. of Nuclear Medicine

    1996-12-31

    This protocol addresses the performance assessment of single and dual headed gamma cameras. No attempt is made to assess the performance of any associated computing systems. Evaluations are usually performed on a gamma camera commercially available within the United Kingdom and recently installed at a clinical site. In consultation with the manufacturer, GCAT selects the site and liaises with local staff to arrange a mutually convenient time for assessment. The manufacturer is encouraged to have a representative present during the evaluation. Three to four days are typically required for the evaluation team to perform the necessary measurements. When access time is limited, the team will modify the protocol to test the camera as thoroughly as possible. Data are acquired on the camera`s computer system and are subsequently transferred to the independent GCAT computer system for analysis. This transfer from site computer to the independent system is effected via a hardware interface and Interfile data transfer. (author).

  5. The Light Field Attachment: Turning a DSLR into a Light Field Camera Using a Low Budget Camera Ring

    KAUST Repository

    Wang, Yuwang

    2016-11-16

    We propose a concept for a lens attachment that turns a standard DSLR camera and lens into a light field camera. The attachment consists of 8 low-resolution, low-quality side cameras arranged around the central high-quality SLR lens. Unlike most existing light field camera architectures, this design provides a high-quality 2D image mode, while simultaneously enabling a new high-quality light field mode with a large camera baseline but little added weight, cost, or bulk compared with the base DSLR camera. From an algorithmic point of view, the high-quality light field mode is made possible by a new light field super-resolution method that first improves the spatial resolution and image quality of the side cameras and then interpolates additional views as needed. At the heart of this process is a super-resolution method that we call iterative Patch- And Depth-based Synthesis (iPADS), which combines patch-based and depth-based synthesis in a novel fashion. Experimental results obtained for both real captured data and synthetic data confirm that our method achieves substantial improvements in super-resolution for side-view images as well as the high-quality and view-coherent rendering of dense and high-resolution light fields.

  6. Object tracking using multiple camera video streams

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  7. PERFORMANCE EVALUATION OF THERMOGRAPHIC CAMERAS FOR PHOTOGRAMMETRIC MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    N. Yastikli

    2013-05-01

    Full Text Available The aim of this research is the performance evaluation of the termographic cameras for possible use for photogrammetric documentation and deformation analyses caused by moisture and isolation problem of the historical and cultural heritage. To perform geometric calibration of the termographic camera, the 3D test object was designed with 77 control points which were distributed in different depths. For performance evaluation, Flir A320 termographic camera with 320 × 240 pixels and lens with 18 mm focal length was used. The Nikon D3X SLR digital camera with 6048 × 4032 pixels and lens with 20 mm focal length was used as reference for comparison. The size of pixel was 25 μm for the Flir A320 termographic camera and 6 μm for the Nikon D3X SLR digital camera. The digital images of the 3D test object were recorded with the Flir A320 termographic camera and Nikon D3X SLR digital camera and the image coordinate of the control points in the images were measured. The geometric calibration parameters, including the focal length, position of principal points, radial and tangential distortions were determined with introduced additional parameters in bundle block adjustments. The measurement of image coordinates and bundle block adjustments with additional parameters were performed using the PHIDIAS digital photogrammetric system. The bundle block adjustment was repeated with determined calibration parameter for both Flir A320 termographic camera and Nikon D3X SLR digital camera. The obtained standard deviation of measured image coordinates was 9.6 μm and 10.5 μm for Flir A320 termographic camera and 8.3 μm and 7.7 μm for Nikon D3X SLR digital camera. The obtained standard deviation of measured image points in Flir A320 termographic camera images almost same accuracy level with digital camera in comparison with 4 times bigger pixel size. The obtained results from this research, the interior geometry of the termographic cameras and lens distortion was

  8. An Open Standard for Camera Trap Data

    Directory of Open Access Journals (Sweden)

    Tavis Forrester

    2016-12-01

    Full Text Available Camera traps that capture photos of animals are a valuable tool for monitoring biodiversity. The use of camera traps is rapidly increasing and there is an urgent need for standardization to facilitate data management, reporting and data sharing. Here we offer the Camera Trap Metadata Standard as an open data standard for storing and sharing camera trap data, developed by experts from a variety of organizations. The standard captures information necessary to share data between projects and offers a foundation for collecting the more detailed data needed for advanced analysis. The data standard captures information about study design, the type of camera used, and the location and species names for all detections in a standardized way. This information is critical for accurately assessing results from individual camera trapping projects and for combining data from multiple studies for meta-analysis. This data standard is an important step in aligning camera trapping surveys with best practices in data-intensive science. Ecology is moving rapidly into the realm of big data, and central data repositories are becoming a critical tool and are emerging for camera trap data. This data standard will help researchers standardize data terms, align past data to new repositories, and provide a framework for utilizing data across repositories and research projects to advance animal ecology and conservation.

  9. Influence of scanning system and dentist's level of training in the accuracy of digital impressions

    Science.gov (United States)

    Hategan, Simona; Gabor, Alin; Zaharia, Cristian; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Jivanescu, Anca

    2016-03-01

    Background: The principal aim of our study was to evaluate digital impressions, taken with spray powder and powderfree scan systems, in order to determine the influence of the dentist's commitment to training as a critical factor regarding quality. Material and method: Two digital intraoral impression systems from the same manufacture (Sirona) : Apollo DI and CEREC Omnicam, were used to scan 16 crown preparations on teeth on a typodont maxillary model. Because an Apollo Di intraoral camera is a powder system, an adhesive was applied before using the powder spray. Three groups were used to scan the crown preparations in order to determine coating thickness homogeneity. One group consisted of senior year dental students, a second consisted of prosthodontics residents, and the third consisted of prosthodontics specialists. The same procedure was applied with a CEREC Omnicam intraoral camera, which is a powder-free system. By using the two systems software parameters we were able to determine the scanning precision. Results: Homogeneity scores for Apollo Di regarding the spray layer was significantly thinner for all dental surfaces in the first group, while the second group had thinner coatings for buccal and distal surfaces. For the third group, the crown preparations were coated more homogeneously than the first two groups. The powder-free system CEREC Omnicam can, to a degree, mask the lack of experience in direct optical impressions by avoiding the poor quality coating, which can lead to defective marginal adaptation of definitive restoration. Conclusions: The dentist's lack of experience can be mitigated, and partially avoided, by using powder-free systems. At the same time, the dentist can give more time towards learning how to integrate computerized fabricated restoration into the practice. The commitment to training is a critical factor in the successful integration of the technology. In addition, scanning marginal preparation details needs time in order to

  10. Camera network video summarization

    Science.gov (United States)

    Panda, Rameswar; Roy-Chowdhury, Amit K.

    2017-05-01

    Networks of vision sensors are deployed in many settings, ranging from security needs to disaster response to environmental monitoring. Many of these setups have hundreds of cameras and tens of thousands of hours of video. The difficulty of analyzing such a massive volume of video data is apparent whenever there is an incident that requires foraging through vast video archives to identify events of interest. As a result, video summarization, that automatically extract a brief yet informative summary of these videos, has attracted intense attention in the recent years. Much progress has been made in developing a variety of ways to summarize a single video in form of a key sequence or video skim. However, generating a summary from a set of videos captured in a multi-camera network still remains as a novel and largely under-addressed problem. In this paper, with the aim of summarizing videos in a camera network, we introduce a novel representative selection approach via joint embedding and capped l21-norm minimization. The objective function is two-fold. The first is to capture the structural relationships of data points in a camera network via an embedding, which helps in characterizing the outliers and also in extracting a diverse set of representatives. The second is to use a capped l21-norm to model the sparsity and to suppress the influence of data outliers in representative selection. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the structure, but also indicate the requirements of sparse representative selection. Extensive experiments on standard multi-camera datasets well demonstrate the efficacy of our method over state-of-the-art methods.

  11. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Sicart, Sergi; Paredes, Pilar [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain); Institut d' Investigacio Biomedica Agusti Pi Sunyer (IDIBAPS), Barcelona (Spain); Vermeeren, Lenka; Valdes-Olmos, Renato A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Nuclear Medicine Department, Amsterdam (Netherlands); Sola, Oriol [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain)

    2011-04-15

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ({sup 99m}Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  12. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    International Nuclear Information System (INIS)

    Vidal-Sicart, Sergi; Paredes, Pilar; Vermeeren, Lenka; Valdes-Olmos, Renato A.; Sola, Oriol

    2011-01-01

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ( 99m Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  13. Autonomous Multicamera Tracking on Embedded Smart Cameras

    Directory of Open Access Journals (Sweden)

    Bischof Horst

    2007-01-01

    Full Text Available There is currently a strong trend towards the deployment of advanced computer vision methods on embedded systems. This deployment is very challenging since embedded platforms often provide limited resources such as computing performance, memory, and power. In this paper we present a multicamera tracking method on distributed, embedded smart cameras. Smart cameras combine video sensing, processing, and communication on a single embedded device which is equipped with a multiprocessor computation and communication infrastructure. Our multicamera tracking approach focuses on a fully decentralized handover procedure between adjacent cameras. The basic idea is to initiate a single tracking instance in the multicamera system for each object of interest. The tracker follows the supervised object over the camera network, migrating to the camera which observes the object. Thus, no central coordination is required resulting in an autonomous and scalable tracking approach. We have fully implemented this novel multicamera tracking approach on our embedded smart cameras. Tracking is achieved by the well-known CamShift algorithm; the handover procedure is realized using a mobile agent system available on the smart camera network. Our approach has been successfully evaluated on tracking persons at our campus.

  14. Non-invasive diagnostics of ion beams in strong toroidal magnetic fields with standard CMOS cameras

    Science.gov (United States)

    Ates, Adem; Ates, Yakup; Niebuhr, Heiko; Ratzinger, Ulrich

    2018-01-01

    A superconducting Figure-8 stellarator type magnetostatic Storage Ring (F8SR) is under investigation at the Institute for Applied Physics (IAP) at Goethe University Frankfurt. Besides numerical simulations on an optimized design for beam transport and injection a scaled down (0.6T) experiment with two 30°toroidal magnets is set up for further investigations. A great challenge is the development of a non-destructive, magnetically insensitive and flexible detector for local investigations of an ion beam propagating through the toroidal magnetostatic field. This paper introduces a new way of beam path measurement by residual gas monitoring. It uses a single board camera connected to a standard single board computer by a camera serial interface all placed inside the vacuum chamber. First experiments with one camera were done and in a next step two under 90 degree arranged cameras were installed. With the help of the two cameras which are moveable along the beam pipe the theoretical predictions are experimentally verified successfully. Previous experimental results have been confirmed. The transport of H+ and H2+ ion beams with energies of 7 keV and at beam currents of about 1 mA is investigated successfully.

  15. An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy

    Czech Academy of Sciences Publication Activity Database

    Heller, M.; Schioppa, E.jr.; Porcelli, A.; Pujadas, I.T.; Zietara, K.; della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J.A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Blocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idzkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandát, Dušan; Marszalek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Pasko, P.; Pech, Miroslav; Schovánek, Petr; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Walter, R.; Wiecek, M.; Zagdanski, A.

    2017-01-01

    Roč. 77, č. 1 (2017), s. 1-31, č. článku 47. ISSN 1434-6044 R&D Projects: GA MŠk LE13012; GA MŠk LG14019 Institutional support: RVO:68378271 Keywords : silicon photomultiplier * digitizing camera * gamma-ray astronomy Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  16. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    International Nuclear Information System (INIS)

    Ronald Justin; Terence Davies; Frans Janson; Bruce Marshall; Perry Bell; Daniel Kalantar; Joseph Kimbrough; Stephen Vernon; Oliver Sweningsen

    2008-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called 'comb' pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber

  17. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    Science.gov (United States)

    Thoeni, K.; Giacomini, A.; Murtagh, R.; Kniest, E.

    2014-06-01

    This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  18. A comparison of multi-view 3D reconstruction of a rock wall using several cameras and a laser scanner

    Directory of Open Access Journals (Sweden)

    K. Thoeni

    2014-06-01

    Full Text Available This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS. Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp, iPhone 4S (8 Mp, Panasonic Lumix LX5 (9.5 Mp, Panasonic Lumix ZS20 (14.1 Mp and Canon EOS 7D (18 Mp. The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.

  19. Video Sharing System Based on Wi-Fi Camera

    OpenAIRE

    Qidi Lin; Hewei Yu; Jinbin Huang; Weile Liang

    2015-01-01

    This paper introduces a video sharing platform based on WiFi, which consists of camera, mobile phone and PC server. This platform can receive wireless signal from the camera and show the live video on the mobile phone captured by camera. In addition, it is able to send commands to camera and control the camera's holder to rotate. The platform can be applied to interactive teaching and dangerous area's monitoring and so on. Testing results show that the platform can share ...

  20. Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Nishizaki, Terukazu; Takano, Yoshihiko; Nagao, Masanori; Takenouchi, Tomohiro; Kawarada, Hiroshi; Kobayashi, Norio

    2007-01-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) experiments on (1 1 1)-oriented epitaxial films of heavily boron-doped diamond at T = 0.47 K. The STM topography shows two kinds of atomic structures: a hydrogenated 1 x 1 structure, C(1 1 1)1 x 1:H, and an amorphous structure. On the C(1 1 1)1 x 1:H region, the tunneling spectra show superconducting property with the energy gap Δ = 0.83 meV. The obtained gap ratio 2Δ/k B T c = 3.57 is consistent with the weak-coupling BCS theory

  1. Impact of liberalization on private financed energy research. From scan to image. Final report

    International Nuclear Information System (INIS)

    De Graaff, R.J.; Dullens, M.; Benner, J.H.B.; Klaassen, M.A.W.; Schneider, H.C.

    2000-01-01

    The consequences of the liberalization process in the market for research and development in the Dutch electricity and natural gas sector are discussed. The main questions of the study are (1) what are the developments in those sectors, and (2) what can be learned from the experiences of liberalized energy markets in other countries and existing commercial petroleum and natural gas companies. The results are based on a literature study and interviews by telephone with experts in the field in seven countries (the 'scan-phase'). The results of the seven countries (Denmark, United Kingdom, Sweden, Germany, Norway, USA, Netherlands, and the European Union as a whole) are presented in the form of fact sheets. The most important leads and subjects were explored in detail by means of personal interviews with representatives from the energy sector in Sweden and England (the 'image-phase'). 52 refs

  2. EDICAM (Event Detection Intelligent Camera)

    Energy Technology Data Exchange (ETDEWEB)

    Zoletnik, S. [Wigner RCP RMI, EURATOM Association, Budapest (Hungary); Szabolics, T., E-mail: szabolics.tamas@wigner.mta.hu [Wigner RCP RMI, EURATOM Association, Budapest (Hungary); Kocsis, G.; Szepesi, T.; Dunai, D. [Wigner RCP RMI, EURATOM Association, Budapest (Hungary)

    2013-10-15

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator.

  3. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    Science.gov (United States)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  4. Upgrading of analogue gamma cameras with PC based computer system

    International Nuclear Information System (INIS)

    Fidler, V.; Prepadnik, M.

    2002-01-01

    Full text: Dedicated nuclear medicine computers for acquisition and processing of images from analogue gamma cameras in developing countries are in many cases faulty and technologically obsolete. The aim of the upgrading project of International Atomic Energy Agency (IAEA) was to support the development of the PC based computer system which would cost 5.000 $ in total. Several research institutions from different countries (China, Cuba, India and Slovenia) were financially supported in this development. The basic demands for the system were: one acquisition card an ISA bus, image resolution up to 256x256, SVGA graphics, low count loss at high count rates, standard acquisition and clinical protocols incorporated in PIP (Portable Image Processing), on-line energy and uniformity correction, graphic printing and networking. The most functionally stable acquisition system tested on several international workshops and university clinics was the Slovenian one with a complete set of acquisition and clinical protocols, transfer of scintigraphic data from acquisition card to PC through PORT, count loss less than 1 % at count rate of 120 kc/s, improvement of integral uniformity index by a factor of 3-5 times, reporting, networking and archiving solutions for simple MS network or server oriented network systems (NT server, etc). More than 300 gamma cameras in 52 countries were digitized and put in the routine work. The project of upgrading the analogue gamma cameras yielded a high promotion of nuclear medicine in the developing countries by replacing the old computer systems, improving the technological knowledge of end users on workshops and training courses and lowering the maintenance cost of the departments. (author)

  5. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera

    International Nuclear Information System (INIS)

    Cardarelli, J.A.; Slingerland, D.W.; Burrows, B.A.; Miller, A.

    1985-01-01

    Previously described techniques for the measurement of the absorption of [ 57 Co]vitamin B 12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room

  6. An Open Standard for Camera Trap Data

    NARCIS (Netherlands)

    Forrester, Tavis; O'Brien, Tim; Fegraus, Eric; Jansen, P.A.; Palmer, Jonathan; Kays, Roland; Ahumada, Jorge; Stern, Beth; McShea, William

    2016-01-01

    Camera traps that capture photos of animals are a valuable tool for monitoring biodiversity. The use of camera traps is rapidly increasing and there is an urgent need for standardization to facilitate data management, reporting and data sharing. Here we offer the Camera Trap Metadata Standard as an

  7. Polarizing aperture stereoscopic cinema camera

    Science.gov (United States)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  8. Scintillating camera

    International Nuclear Information System (INIS)

    Vlasbloem, H.

    1976-01-01

    The invention relates to a scintillating camera and in particular to an apparatus for determining the position coordinates of a light pulse emitting point on the anode of an image intensifier tube which forms part of a scintillating camera, comprising at least three photomultipliers which are positioned to receive light emitted by the anode screen on their photocathodes, circuit means for processing the output voltages of the photomultipliers to derive voltages that are representative of the position coordinates; a pulse-height discriminator circuit adapted to be fed with the sum voltage of the output voltages of the photomultipliers for gating the output of the processing circuit when the amplitude of the sum voltage of the output voltages of the photomultipliers lies in a predetermined amplitude range, and means for compensating the distortion introduced in the image on the anode screen

  9. The "All Sky Camera Network"

    Science.gov (United States)

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  10. Initial laboratory evaluation of color video cameras: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.L.

    1993-07-01

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. The monochrome cameras were selected over color cameras because they have greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color camera technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories has established an on-going program to evaluate the newest color solid-state cameras. Phase One of the Sandia program resulted in the SAND91-2579/1 report titled: Initial Laboratory Evaluation of Color Video Cameras. The report briefly discusses imager chips, color cameras, and monitors, describes the camera selection, details traditional test parameters and procedures, and gives the results reached by evaluating 12 cameras. Here, in Phase Two of the report, we tested 6 additional cameras using traditional methods. In addition, all 18 cameras were tested by newly developed methods. This Phase 2 report details those newly developed test parameters and procedures, and evaluates the results.

  11. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  12. Photogrammetric Applications of Immersive Video Cameras

    OpenAIRE

    Kwiatek, K.; Tokarczyk, R.

    2014-01-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to ov...

  13. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding area...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  15. Compact CdZnTe-Based Gamma Camera For Prostate Cancer Imaging

    International Nuclear Information System (INIS)

    Cui, Y.; Lall, T.; Tsui, B.; Yu, J.; Mahler, G.; Bolotnikov, A.; Vaska, P.; DeGeronimo, G.; O'Connor, P.; Meinken, G.; Joyal, J.; Barrett, J.; Camarda, G.; Hossain, A.; Kim, K.H.; Yang, G.; Pomper, M.; Cho, S.; Weisman, K.; Seo, Y.; Babich, J.; LaFrance, N.; James, R.B.

    2011-01-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  16. Design of Microwave Camera for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2008-01-01

    is then used to reconstruct an image, which consists of a spatial distribution of the complex permittivity in the imaging domain. Using this image the cancer tissue can be detected due to its dielectric property contrast compared to normal tissue. The instrument employs a multichannel high sensitive...... superheterodyne architecture, enabling parallel coherent measurements. In this way, mechanical scanning, which is commonly used in measurements of an electromagnetic field distribution, is avoided. The system presented is the first reported 3D microwave breast imaging camera with parallel signal detection....... The hardware operates in the frequency range 0.3 – 3 GHz. The noise floor is below -140 dBm over the bandwidth of the system. The dynamic range depends on the available incident power range and is limited by the channel to channel isolation of 140 dB. The work presented in this thesis encompasses a wide range...

  17. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  18. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  19. Prism-based single-camera system for stereo display

    Science.gov (United States)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  20. The Use of Camera Traps in Wildlife

    Directory of Open Access Journals (Sweden)

    Yasin Uçarlı

    2013-11-01

    Full Text Available Camera traps are increasingly used in the abundance and density estimates of wildlife species. Camera traps are very good alternative for direct observation in case, particularly, steep terrain, dense vegetation covered areas or nocturnal species. The main reason for the use of camera traps is eliminated that the economic, personnel and time loss in a continuous manner at the same time in different points. Camera traps, motion and heat sensitive, can take a photo or video according to the models. Crossover points and feeding or mating areas of the focal species are addressed as a priority camera trap set locations. The population size can be finding out by the images combined with Capture-Recapture methods. The population density came out the population size divided to effective sampling area size. Mating and breeding season, habitat choice, group structures and survival rates of the focal species can be achieved from the images. Camera traps are very useful to obtain the necessary data about the particularly mysterious species with economically in planning and conservation efforts.

  1. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  2. Typical effects of laser dazzling CCD camera

    Science.gov (United States)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  3. Hidden cameras everything you need to know about covert recording, undercover cameras and secret filming

    CERN Document Server

    Plomin, Joe

    2016-01-01

    Providing authoritative information on the practicalities of using hidden cameras to expose abuse or wrongdoing, this book is vital reading for anyone who may use or encounter secret filming. It gives specific advice on using phones or covert cameras and unravels the complex legal and ethical issues that need to be considered.

  4. Comparison of the contrast in conventional and lattice resolved ADF STEM images of InGaAs/GaAs structures using different camera lengths

    Science.gov (United States)

    Qiu, Y.; Lari, L.; Ross, I. M.; Walther, T.

    2011-11-01

    A procedure to quantify annular dark field (ADF) images in scanning transmission electron microscopy (STEM) has been applied to two 200kV transmission electron microscopes (TEMs), a JEOL 2010F and a double aberration-corrected JEOL 2200FSC. A series of ADF images is acquired as a function of the camera length (i.e. inner detection angle). Then the intensity ratio of InGaAs and GaAs is plotted vs. camera length and extrapolated to zero, at which point the contrast behaves exactly as predicted by Rutherford's scattering. The linearity of ADF intensity ratio vs. camera length improves significantly by using the JEOL 2200FSC compared to the JEOL 2010F at medium resolution. A high-resolution ADF image at 2MX nominal magnification acquired in the JEOL 2200FSC shows the same linearity of intensity ratio vs. camera length, independent of whether the ratios of the average background intensities or the fringe amplitudes are used for the analysis. This is explained by both group III and group V atoms contributing to the {111} fringes observed, similar to low resolution data.

  5. Long wavelength infrared camera (LWIRC): a 10 micron camera for the Keck Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Wishnow, E.H.; Danchi, W.C.; Tuthill, P.; Wurtz, R.; Jernigan, J.G.; Arens, J.F.

    1998-05-01

    The Long Wavelength Infrared Camera (LWIRC) is a facility instrument for the Keck Observatory designed to operate at the f/25 forward Cassegrain focus of the Keck I telescope. The camera operates over the wavelength band 7-13 {micro}m using ZnSe transmissive optics. A set of filters, a circular variable filter (CVF), and a mid-infrared polarizer are available, as are three plate scales: 0.05``, 0.10``, 0.21`` per pixel. The camera focal plane array and optics are cooled using liquid helium. The system has been refurbished with a 128 x 128 pixel Si:As detector array. The electronics readout system used to clock the array is compatible with both the hardware and software of the other Keck infrared instruments NIRC and LWS. A new pre-amplifier/A-D converter has been designed and constructed which decreases greatly the system susceptibility to noise.

  6. Technical Note: Spot characteristic stability for proton pencil beam scanning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis [ProCure Treatment Center, Somerset, New Jersey 08873 (United States); Moyers, Michael F. [ProCure Treatment Center, Somerset, New Jersey 08873 and Shanghai Proton and Heavy Ion Center, Shanghai 201321 (China); Gao, Mingcheng [CDH Proton Center, Warrenville, Illinois 60555 (United States)

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  7. Technical Note: Spot characteristic stability for proton pencil beam scanning

    International Nuclear Information System (INIS)

    Chen, Chin-Cheng; Chang, Chang; Mah, Dennis; Moyers, Michael F.; Gao, Mingcheng

    2016-01-01

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter

  8. Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management

    Science.gov (United States)

    Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.

    2018-01-01

    During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.

  9. Application of optical scanning for measurements of castings and cores

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper application of non destructive method for dimensional control of elements in initial phase of car manufacturing, at Volks-wagen Poznań foundry was presented. VW foundry in Poznań is responsible of series production of chill and dies castings made of light alloys using contemporary technologies. Castings have a complex shape: they are die castings of housings for steering columns and gravity chill castings of cylinder heads, for which cores are manufactured using both hot box and cold box method. Manufacturing capabilities of VW foundry in Poznań reach 26.000 tons of aluminum castings per year. Optical system ATOS at Volkswagen Poznań foundry is used to digitize object and determination of all dimensions and shapes of inspected object. This technology is applied in car industry, reverse engineering, quality analysis and control and to solve many similar tasks. System is based on triangulation: sensor head projects different fringes patterns onto a measured object while scanner observes their trajectories using two cameras. Basing on optical transform equations a processing unit automatically and with a great accuracy calculates 3D coordinates for every pixel of camera. Depending on camera reso-lution as an effect of such a scan we obtain a cloud of up to 4 million points for every single measurement. In the paper examples of di-mensional analysis regarding castings and cores were presented.

  10. Qualification Tests of Micro-camera Modules for Space Applications

    Science.gov (United States)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  11. Estimation of signal intensity for online measurement X-ray pinhole camera

    International Nuclear Information System (INIS)

    Dong Jianjun; Liu Shenye; Yang Guohong; Yu Yanning

    2009-01-01

    The signal intensity was estimated for on-line measurement X-ray pinhole camera with CCD as measurement equipment. The X-ray signal intensity counts after the attenuation of thickness-varied Be filters and different material flat mirrors respectively were estimated using the energy spectrum of certain laser prototype and the quantum efficiency curve of PI-SX1300 CCD camera. The calculated results indicate that Be filters no thicker than 200 μm can only reduce signal intensity by one order of magnitude, and so can Au flat mirror with 3 degree incident angle, Ni, C and Si flat mirrors with 5 degree incident angle,but the signal intensity counts for both attenuation methods are beyond the saturation counts of the CCD camera. We also calculated the attenuation of signal intensity for different thickness Be filters combined with flat mirrors, indicates that the combination of Be filters with the thickness between 20 and 40 μm and Au flat mirror with 3 degree incident angle or Ni flat mirror with 5 degree incident angle is a good choice for the attenuation of signal intensity. (authors)

  12. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    industry and game AI research focus on the devel- opment of increasingly sophisticated systems to automate the control of the virtual camera integrating artificial intel- ligence algorithms within physical simulations. However, in both industry and academia little research has been carried out......In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...

  13. Event detection intelligent camera development

    International Nuclear Information System (INIS)

    Szappanos, A.; Kocsis, G.; Molnar, A.; Sarkozi, J.; Zoletnik, S.

    2008-01-01

    A new camera system 'event detection intelligent camera' (EDICAM) is being developed for the video diagnostics of W-7X stellarator, which consists of 10 distinct and standalone measurement channels each holding a camera. Different operation modes will be implemented for continuous and for triggered readout as well. Hardware level trigger signals will be generated from real time image processing algorithms optimized for digital signal processor (DSP) and field programmable gate array (FPGA) architectures. At full resolution a camera sends 12 bit sampled 1280 x 1024 pixels with 444 fps which means 1.43 Terabyte over half an hour. To analyse such a huge amount of data is time consuming and has a high computational complexity. We plan to overcome this problem by EDICAM's preprocessing concepts. EDICAM camera system integrates all the advantages of CMOS sensor chip technology and fast network connections. EDICAM is built up from three different modules with two interfaces. A sensor module (SM) with reduced hardware and functional elements to reach a small and compact size and robust action in harmful environment as well. An image processing and control unit (IPCU) module handles the entire user predefined events and runs image processing algorithms to generate trigger signals. Finally a 10 Gigabit Ethernet compatible image readout card functions as the network interface for the PC. In this contribution all the concepts of EDICAM and the functions of the distinct modules are described

  14. F-18 FDG PET with coincidence detection, dual-head gamma camera, initial experience in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.M.G.; Pocock, N.; Quach, T.; Camden, B.M.C. [Liverpool Health Services, Liverpool, NSW (Australia). Department of Nuclear Medicine and Clinical Ultrasound

    1998-06-01

    Full text: The development of Co-incidence Detection (CD) in gamma camera technology has allowed the use of positron radiopharmaceuticals in clinical practice without dedicated PET facilities. We report our initial experience of this technology in Oncological applications. All patients were administered 200 MBq of F- 18 FDG intravenously in a fasting state, with serum glucose below 8.9 mmol/L., and hydration well maintained. Tomography was performed using an ADAC Solus Molecular Co-incidence Detection (MCD) dual-head gamma camera, 60 minutes after administration and immediately after voiding. Tomography of the torso required up to three collections depending on the length of the patient, with each collection requiring 32 steps of 40 second duration, and a 50% overlap. Tomography of the brain required a single collection with 32 steps of 80 seconds. Patients were scanned in the supine position. An iterative reconstruction algorithm was employed without attenuation correction. All patients had histologically confirmed malignancy. Scan findings were correlated with results of all conventional diagnostic imaging procedures that were pertinent to the evaluation and management of each individual patient`s disease. Correlation with tumour type and treatment status was also undertaken. F-18 FDG uptake as demonstrated by CD-PET was increased in tumour bearing sites. The degree of increased uptake varied with tumour type and with treatment status. Our initial experience with CD-PET has been very encouraging, and has led us to undertake prospective short and long term studies to define its role in oncology

  15. Detector design issues for compact nuclear emission cameras dedicated to breast imaging

    International Nuclear Information System (INIS)

    Levin, Craig S.

    2003-01-01

    Certain gamma ray and positron emitting radiotracers have shown great promise for use in the detection, diagnosis and staging of breast cancer. Unfortunately, standard nuclear emission cameras (SPECT, PET) found in the clinic are not practical for breast imaging of these emissions due to inadequate spatial and energy resolutions and sensitivity, large and awkward size, and relatively high cost per study. High spatial and energy resolutions and sensitivity are needed for good lesion detectability. Due to these limitations of standard cameras, there has been recent research into the development of small, compact nuclear emission imagers dedicated for close-proximity breast imaging. The small detector head size means a variety of exotic detectors or collimators may be implemented to improve spatial and energy resolution and sensitivity performances at a reasonable cost. In this paper, we will present some of the compact gamma ray and annihilation photon imaging detector designs that have been proposed and/or developed for dedicated breast imaging. We will review the physics and discuss the advantages and disadvantages of various detector configurations. Finally we will estimate the fundamental spatial resolution potential available with close-proximity nuclear emission imaging and discuss how one may approach those limits through proper detector design

  16. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    Science.gov (United States)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  17. Dual energy X-ray absorptiometry spine scans to determine abdominal fat in postmenopausal women.

    Science.gov (United States)

    Bea, J W; Blew, R M; Going, S B; Hsu, C-H; Lee, M C; Lee, V R; Caan, B J; Kwan, M L; Lohman, T G

    2016-11-01

    Body composition may be a better predictor of chronic disease risk than body mass index (BMI) in older populations. We sought to validate spine fat fraction (%) from dual energy X-ray absorptiometry (DXA) spine scans as a proxy for total abdominal fat. Total body DXA scan abdominal fat regions of interest (ROI) that have been previously validated by magnetic resonance imaging were assessed among healthy, postmenopausal women who also had antero-posterior spine scans (n = 103). ROIs were (1) lumbar vertebrae L2-L4 and (2) L2-Iliac Crest (L2-IC), manually selected by two independent raters, and (3) trunk, auto-selected by DXA software. Intra-class correlation coefficients evaluated intra and inter-rater reliability on a random subset (N = 25). Linear regression models, validated by bootstrapping, assessed the relationship between spine fat fraction (%) and total abdominal fat (%) ROIs. Mean age, BMI, and total body fat were 66.1 ± 4.8 y, 25.8 ± 3.8 kg/m 2 and 40.0 ± 6.6%, respectively. There were no significant differences within or between raters. Linear regression models adjusted for several participant and scan characteristics were equivalent to using only BMI and spine fat fraction. The model predicted L2-L4 (Adj. R 2 : 0.83) and L2-IC (Adj. R 2 : 0.84) abdominal fat (%) well; the adjusted R 2 for trunk fat (%) was 0.78. Model validation demonstrated minimal over-fitting (Adj. R 2 : 0.82, 0.83, and 0.77 for L2-L4, L2-IC, and trunk fat, respectively). The strong correlation between spine fat fraction and DXA abdominal fat measures make it suitable for further development in postmenopausal chronic disease risk prediction models. Am. J. Hum. Biol. 28:918-926, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Star camera aspect system suitable for use in balloon experiments

    International Nuclear Information System (INIS)

    Hunter, S.D.; Baker, R.G.

    1985-01-01

    A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)

  19. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  20. Scanning WorldScan. Final report on the presentation and evaluation of WorldScan, a model of the WORLD economy for SCenario ANalysis

    International Nuclear Information System (INIS)

    Geurts, B.; Gielen, A.; Nahuis, R.; Tang, P.; Timmer, H.

    1997-01-01

    An overview is given of the efforts made to present and evaluate WorldScan, a long-term model of the world economy, developed at the Dutch Central Planning Bureau (CPB). One of the pivotal activities was the organisation of a peer review of the model during a two-day workshop. The reviewers were selected both from the academic and the policy field. The main recommendations of that review were (a) not to pursue a formal, full-scale linkage between WorldScan and the RIVM-developed climate model IMAGE. Instead, WorldScan should be used for separate economic analyses, which is input in the climate model; (b) to make more precise choices with respect to the underlying theories the time horizon of the analyses; (c) to improve the empirical base of WorldScan; and (d) to enhance the use of WorldScan for policy analyses on behalf of international policy fora. The review proved to be very beneficial for the evolution of WorldScan. Implementation of some of the recommendations has led to increased use of the model by international institutions. Since the review, WorldScan has been used on behalf of the European Union (EU), the Organisation for Economic Cooperation and Development (OECD), the Energy Modelling Forum (EMF), the Centre for Global Trade Analysis (GTAP), the Chinese Academy of Social Sciences (CASS) and Indian Planning Commission (IPC). 110 refs