WorldWideScience

Sample records for energy baseload power

  1. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  2. Advantages of geosynchronous solar power satellites for terrestrial base-load electrical supply compared to other renewable energy sources - or why civilization needs solar power satellites

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, J.K. Jr. [Texas Univ., Austin, TX (United States)

    1998-06-01

    The arguments in favour of using solar power satellites for primary base-load electrical supply are presented and compared with the advantages and drawbacks of other renewable energy sources, especially ground solar and wind systems. Popular misconceptions about energy use and the importation of space solar energy to the Earth`s surface are examined and discounted. Finally an optimal mix of space solar (focusing on geosynchronous solar power satellites), ground solar, and other energy sources is described which, it is argued, would be capable to meet future global energy demand. (UK)

  3. Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data

    International Nuclear Information System (INIS)

    Squalli, Jay

    2017-01-01

    This paper examines the relationship between renewable energy production and greenhouse gas emissions (GHG) using U.S. state-level data for 2010. After controlling for other sources of emissions, U.S. states that produce a larger share of renewable energy are found to have lower GHG emissions. It is estimated that a 10% increase in the share of renewable energy could decrease CH_4 emissions by about 0.26%. Since the use of renewable energy sources does not release GHG emissions, this effect can be interpreted as stabilizing if renewable energy is added to coal use or as corrective if it replaces coal. After accounting for the role of coal as a baseload power source, an increase in the share of renewable energy is estimated to mitigate N_2O emissions at the U.S. state level only if states individually decrease their share of coal use to levels below 41.47%. These findings have significant policy implications for the provision of guidance to policymakers in identifying optimal energy mixes and in pursuing realistic goals to enhance renewable energy penetration and to contribute to the current efforts of tackling climate change. - Highlights: • The paper examines the link between renewable energy, coal, and GHG emissions. • The analysis accounts for the role of coal as a baseload power source. • A 10% increase in renewable energy share decreases CH_4 emissions by about 0.26%. • Renewable energy can mitigate emissions if the share of coal drops below 41.47%.

  4. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Technologies LLC, Minneapolis, MN (United States)

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the

  5. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  6. Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Despite the increasing importance of variable renewable power generation, baseload, that is stable and predictable power generators, remain the backbone of many countries’ power systems. We here compare CSP (concentrating solar power) and nuclear power as baseload electricity providers for the case of South Africa, which is adding significant new generation capacity, has an abundant solar resource, but also one existing and additional planned nuclear power plants. Both of these technologies are considered baseload-capable with sufficient available fuel (sunlight or fissible material) to provide large amounts of nearly emissions-free electricity. We find that under a range of technological learning assumptions, CSP compares favorably against nuclear on costs in the period to 2030, and has lower investment and environmental risks. The results suggest that while nuclear power may be an important low-emissions power technology in regions with little sun, in the case of South Africa, CSP could be capable of providing a stable baseload supply at lower cost than nuclear power, and may have other non-cost benefits. - Highlights: • We compare nuclear and CSP (concentrating solar power) as baseload generators. • CSP could be competitive with nuclear by 2030 on providing baseload. • CSP plants producing above baseload when possible are more competitive. • On environmental and investment risks, CSP compares favorably. • Both options may have a role in different parts of the world

  7. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  8. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Drake [Abengoa Solar LLC, Lakewood, CO (United States); Kelly, Bruce [Abengoa Solar LLC, Lakewood, CO (United States); Burkholder, Frank [Abengoa Solar LLC, Lakewood, CO (United States)

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  9. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  10. Baseload, industrial-scale wind power: An alternative to coal in China

    Energy Technology Data Exchange (ETDEWEB)

    Lew, D.J.; Williams, R.H. [Princeton Univ., Princeton, NJ (United States); Xie Shaoxiong; Zhang Shihui [Ministry of Electric Power, Beijing (China)

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  11. Lightweight power bus for a baseload nuclear reactor in space

    International Nuclear Information System (INIS)

    Oberly, C.E.; Massie, L.D.; Hoffman, D.J.

    1989-01-01

    Space environmental interactions with the power distribution/power processing subsystem can become a serious problem for power systems rated at 10's to 100's of kilowatts. Utilization of ceramic superconductors at 1000 A/cm/sup 2/, which has already been demonstrated at 77 K in a conductor configuration may eliminate both bus mass and distribution voltage problems in a high power satellite. The analytical results presented here demonstrate that a superconducting coaxial power transmission bus offers significant benefits in reduced distribution voltage and mass

  12. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation

    International Nuclear Information System (INIS)

    Greenblatt, Jeffery B.; Succar, Samir; Denkenberger, David C.; Williams, Robert H.; Socolow, Robert H.

    2007-01-01

    The economic viability of producing baseload wind energy was explored using a cost-optimization model to simulate two competing systems: wind energy supplemented by simple- and combined cycle natural gas turbines ('wind+gas'), and wind energy supplemented by compressed air energy storage ('wind+CAES'). Pure combined cycle natural gas turbines ('gas') were used as a proxy for conventional baseload generation. Long-distance electric transmission was integral to the analysis. Given the future uncertainty in both natural gas price and greenhouse gas (GHG) emissions price, we introduced an effective fuel price, p NGeff , being the sum of the real natural gas price and the GHG price. Under the assumption of p NGeff =$5/GJ (lower heating value), 650 W/m 2 wind resource, 750 km transmission line, and a fixed 90% capacity factor, wind+CAES was the most expensive system at cents 6.0/kWh, and did not break even with the next most expensive wind+gas system until p NGeff =$9.0/GJ. However, under real market conditions, the system with the least dispatch cost (short-run marginal cost) is dispatched first, attaining the highest capacity factor and diminishing the capacity factors of competitors, raising their total cost. We estimate that the wind+CAES system, with a greenhouse gas (GHG) emission rate that is one-fourth of that for natural gas combined cycle plants and about one-tenth of that for pulverized coal plants, has the lowest dispatch cost of the alternatives considered (lower even than for coal power plants) above a GHG emissions price of $35/tC equiv. , with good prospects for realizing a higher capacity factor and a lower total cost of energy than all the competing technologies over a wide range of effective fuel costs. This ability to compete in economic dispatch greatly boosts the market penetration potential of wind energy and suggests a substantial growth opportunity for natural gas in providing baseload power via wind+CAES, even at high natural gas prices

  13. Optimization of disk generator performance for base-load power plant systems applications

    International Nuclear Information System (INIS)

    Teare, J.D.; Loubsky, W.J.; Lytle, J.K.; Louis, J.F.

    1980-01-01

    Disk generators for use in base-load MHD power plants are examined for both open-cycle and closed-cycle operating modes. The OCD cases are compared with PSPEC results for a linear channel; enthalpy extractions up to 23% with 71% isentropic efficiency are achievable with generator inlet conditions similar to those used in PSPEC, thus confirming that the disk configuration is a viable alternative for base-load power generation. The evaluation of closed-cycle disks includes use of a simplified cycle model. High system efficiencies over a wide range of power levels are obtained for effective Hall coefficients in the range 2.3 to 4.9. Cases with higher turbulence (implying β/sub eff/ less than or equal to 2.4) yield high system efficiencies at power levels of 100 to 500 MW/sub e/. All these CCD cases compare favorably with linear channels reported in the GE ECAS study, yielding higher isentropic efficiences for a given enthalpy extraction. Power densities in the range 70 to 170 MW/m 3 appear feasible, leading to very compact generator configurations

  14. The rule of nuclear power in the base-load portfolio optimization process

    International Nuclear Information System (INIS)

    Desiata, L.; D'Alberti, F.

    2007-01-01

    The pursuit of optimal portfolios, maximizing long-term profitability, is the main strategic challenge faced by electricity producers nowadays. Investment decisions, worth billions of euros, are affected by spot factors (such as current fuel prices volatility) that often lead to unbalanced generation mixes. Our analysis presents a statistical-financial approach that highlights the role of nuclear within the base-load portfolio optimisation process [it

  15. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    Science.gov (United States)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  16. Coordination of baseload power plant group control with static reactive power compensator control

    Directory of Open Access Journals (Sweden)

    Zbigniew Szczerba

    2012-06-01

    Full Text Available Reactive power sources in power system nodes: generators and static reactive power compensators, are controlled by control systems. Generators – by generator node group controllers, compensators – by voltage controllers. The paper presents issues of these control systems’ coordination and proposals for its implementation.

  17. Large and small baseload power plants: Drivers to define the optimal portfolios

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Despite the growing interest in Small Medium sized Power Plants (SMPP) international literature provides only studies related to portfolios of large plants in infinite markets/grids with no particular attention given to base load SMPP. This paper aims to fill this gap, investigating the attractiveness of SMPP portfolios respect to large power plant portfolios. The analysis includes nuclear, coal and combined cycle gas turbines (CCGT) of different plant sizes. The Mean Variance Portfolio theory (MVP) is used to define the best portfolio according to Internal Rate of Return (IRR) and Levelised Unit Electricity Cost (LUEC) considering the life cycle costs of each power plant, Carbon Tax, Electricity Price and grid dimension. The results show how large plants are the best option for large grids, while SMPP are as competitive as large plants in small grids. In fact, in order to achieve the highest profitability with the lowest risk it is necessary to build several types of different plants and, in case of small grids, this is possible only with SMPP. A further result is the application of the framework to European OECD countries and the United States assessing their portfolios. - Highlights: ► The literature about power plant portfolios does not consider small grids and IRR. ► We evaluated Base load portfolios respect to IRR and LUEC. ► We assessed the influence of grid and plant size, CO 2 cost and Electricity Price. ► Large plants are optimal for large markets even if small plants have similar IRR. ► Small plants are suitable to diversify portfolios in small grids reducing the risk.

  18. Wind energy in Germany and Europe. Status, potentials and challenges for baseload application. Pt. 1. Developments in Germany since 2010

    Energy Technology Data Exchange (ETDEWEB)

    Linnemann, Thomas; Vallana, Guido S. [VGB PowerTech e.V., Essen (Germany)

    2017-11-15

    One essential physical property of wind energy is its large spatiotemporal variation due to wind speed fluctuations. As a result, the total wind fleet output of 18 European countries extending over several thousand kilometres in north-south and east-west direction is highly volatile and exhibits a strong intermittent character. An intuitively expectable significant smoothing of this wind fleet output does not occur. In contrast, a highly intermittent wind fleet power output showing significant peaks and minima is observed not only for a single country, but also for the whole of the 18 European countries. Wind energy therefore requires a practically 100 % backup. Part two of this study is under preparation. It covers the analysis of the situation all over Europe.

  19. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    International Nuclear Information System (INIS)

    Tavoni, F.; Van der Zwaan, B.C.C.

    2011-01-01

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  20. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, F. [Fondazione Eni Enrico Mattei, Sustainable Development, Milan (Italy); Van der Zwaan, B.C.C. [ECN Policy Studies, Petten (Netherlands)

    2011-10-15

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  1. Nuclear Energy - a Part of a Solution to Generate Electric Power in Croatia?

    International Nuclear Information System (INIS)

    Mikulicic, V.; Simic, Z.

    1998-01-01

    The growth in Croatian energy, particularly electricity, demand together with growing environmental considerations is such that Croatia needs to have flexibility to respond, by having the option of expanding the nuclear sector. This paper deals with nuclear energy as an option for sustainable Croatian economic development, and with the nuclear power controversy. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia. Most certainly the nuclear technology can provide the energy necessary to sustain progress and, as a country without coal, Croatia should favour nuclear power utilisation as the lowest cost option for base-load electricity generation. (author)

  2. Energy Security and the Role of Nuclear power

    International Nuclear Information System (INIS)

    Kim, Jinwoo

    2008-01-01

    Nuclear power is expected to play a more important role to cope with rapidly changing energy market environment. Recently re-evaluation on nuclear energy is taking place in major countries like USA, Japan, and Sweden. It is of particular interest in Korea to make out optimal level of nuclear power from energy security perspectives. This paper is aiming to derive options for optimal fuel mix and sets up scenarios on major premises such back-end costs and fuel price of nuclear, and CO 2 emission cost. Six scenarios are analyzed for optimal fuel mix and additional cases are examined for the effect on CO 2 emission. The model outcomes suggest to construct 3∼13 units of 1,400 MW nuclear reactors by 2030 to meet ever-growing power demand. It is found that base-load facilities are taking about 70% of total installed capacity in any case. As a reasonable option, 9 units (12.6 GW) of nuclear is recommended to be built, taking 37.0% of total installed capacity in 2030. CO 2 emission turns out to be largely affected by nuclear proportion, which is sensitive to environmental cost. However, expansion of renewable energy or demand side management is found to have rather on CO 2 emission. Energy security aspects need to be considered in developing an optimal fuel mix of power generation. But In-depth studies are needed to obtain a practical range of optimal level of nuclear power from energy security point of view

  3. Hydrogen or Fossil Combustion Nuclear Combined Cycle Systems for Baseload and Peak Load Electricity Production. Annex X

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    A combined cycle power plant is described that uses: (i) heat from a high temperature nuclear reactor to meet baseload electrical demands; and (ii) heat from the same high temperature reactor and burning natural gas, jet fuel or hydrogen to meet peak load electrical demands. For baseload electricity production, fresh air is compressed, then flows through a heat exchanger, where it is heated to between 700 and 900{sup o}C by using heat provided by a high temperature nuclear reactor via an intermediate heat transport loop, and finally exits through a high temperature gas turbine to produce electricity. The hot exhaust from the Brayton cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high temperature reactor. Natural gas, jet fuel or hydrogen is then injected into the hot air in a combustion chamber, combusts and heats the air to 1300{sup o}C - the operating conditions for a standard natural gas fired combined cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until required. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electrical grid can vary from zero (i.e. when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. As nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil fired turbines) to meet spinning reserve requirements and stabilize the electrical grid. This combined

  4. Meeting India's growing energy demand with nuclear power

    International Nuclear Information System (INIS)

    Matzie, R.

    2009-01-01

    Full text: With world energy demand expected to nearly double by 2030, the need for safe, reliable and clean energy is imperative. In India, energy demand has outpaced the increase in energy production, with the country experiencing as much as a 12 percent gap between peak demand and availability. To meet demand, nuclear power is the ideal solution for providing baseload electricity, and as much as 40-60 GWe of nuclear capacity will need to be added throughout the county over the next 20 years. This presentation will describe the benefits of nuclear power compared to other energy sources, provide an overview of new nuclear power plant construction projects worldwide, and explain the benefits and advantages of the Westinghouse AP1000 nuclear power plant. The presentation will also outline the steps that Westinghouse is taking to help facilitate new nuclear construction in India, and how the company's 'Buy Where We Build' approach to supply chain management will positively impact the Indian economy through continued in-country supplier agreements, job creation, and the exporting of materials and components to support AP1000 projects outside of India. Finally, the presentation will show that the experience Westinghouse is gaining in constructing AP1000 plants in both China and the United States will help ensure the success of projects in India

  5. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  6. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways

    Directory of Open Access Journals (Sweden)

    Azadeh Maroufmashat

    2017-07-01

    Full Text Available Power-to-gas is a promising option for storing interment renewables, nuclear baseload power, and distributed energy and it is a novel concept for the transition to increased renewable content of current fuels with an ultimate goal of transition to a sustainable low-carbon future energy system that interconnects power, transportation sectors and thermal energy demand all together. The aim of this paper is to introduce different Power-to-gas “pathways”, including Power to Hydrogen, Power to Natural Gas End-users, Power to Renewable Content in Petroleum Fuel, Power to Power, Seasonal Energy Storage to Electricity, Power to Zero Emission Transportation, Power to Seasonal Storage for Transportation, Power to Micro grid, Power to Renewable Natural Gas (RNG to Pipeline (“Methanation”, and Power to Renewable Natural Gas (RNG to Seasonal Storage. In order to compare the different pathways, the review of key technologies of Power-to-gas systems are studied and the qualitative efficiency and benefits of each pathway is investigated from the technical points of view. Moreover, different Power-to-gas pathways are discussed as an energy policy option that can be implemented to transition towards a lower carbon economy for Ontario’s energy systems.

  7. Energy and power alternatives

    International Nuclear Information System (INIS)

    Messerle, H.K.

    1992-01-01

    Taking into consideration the need for a safe energy supply, rising demand for energy worldwide and limited oil reserves, alternative energy resources for bulk power are discussed. They are nuclear fuel, fluidized bed combustion of coal, coal gasification with combined cycle process, coal-oil mixture combustion and MHD power generation process. It is pointed out that the major environmental impact of fossil fuels is in accumulation of greenhouse gases in the atmosphere and air pollution due to sulphur emission. (M.G.B.)

  8. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we evaluate technologies that will enable solar photovoltaics (PV) to overcome the limits of traditional electric power systems. We performed simulations of a large utility system using hourly solar insolation and load data and attempted to provide up to 50% of this system's energy from PV. We considered several methods to avoid the limits of unusable PV that result at high penetration due to the use of inflexible baseload generators. The enabling technologies considered in this work are increased system flexibility, load shifting via demand responsive appliances, and energy storage

  9. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  10. Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, M.; McRae, M.; Stogran, M.

    2004-08-15

    This report provides a comparison of the lifetime cost of constructing, operating and decommissioning new generation suitable for supplying baseload power by early in the next decade. New baseload generation options in Ontario are nuclear, coal-fired steam turbines or combined cycle gas turbines (CCGT). Nuclear and coal-fired units are characterised by high capital costs and low operating costs. As such, they are candidates for baseload operation only. Gas-fired generation is characterised by lower capital costs and higher operating costs and thus may meet the requirements for operation as peaking and/or baseload generation. The comparison of baseload generating technologies is made by reference to the estimated levelised unit electricity cost (LUEC). The LUEC can be thought of as a 'supply cost', where the unit cost is the price needed to recover all costs over the period. It is determined by finding the price that sets the sum of all future discounted cash flows (net present value, or NPV) to zero. It can also be thought of as representing the constant real wholesale price of electricity that meets the financing cost, debt repayment, income tax and cash flow constraints associated with the construction operation and decommissioning of a generating plant. Levelised unit cost comparisons are usually made with different sets of financing assumptions. This report considers two base cases, which we describe as 'merchant' and 'public' financing. The term 'merchant plant' is used to refer to ones that are built and operated by private investors. These investors pay for their capital through debt and by raising equity, and thus pay return on equity and interest on debt throughout their lifetime. These projects include income taxes, both provincial and federal. Publicly financed projects typically are not subject to income taxes or to the same constraints on raising finance through issuing debt and equity. However, they are

  11. Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario

    International Nuclear Information System (INIS)

    Ayres, M.; McRae, M.; Stogran, M.

    2004-08-01

    This report provides a comparison of the lifetime cost of constructing, operating and decommissioning new generation suitable for supplying baseload power by early in the next decade. New baseload generation options in Ontario are nuclear, coal-fired steam turbines or combined cycle gas turbines (CCGT). Nuclear and coal-fired units are characterised by high capital costs and low operating costs. As such, they are candidates for baseload operation only. Gas-fired generation is characterised by lower capital costs and higher operating costs and thus may meet the requirements for operation as peaking and/or baseload generation. The comparison of baseload generating technologies is made by reference to the estimated levelised unit electricity cost (LUEC). The LUEC can be thought of as a 'supply cost', where the unit cost is the price needed to recover all costs over the period. It is determined by finding the price that sets the sum of all future discounted cash flows (net present value, or NPV) to zero. It can also be thought of as representing the constant real wholesale price of electricity that meets the financing cost, debt repayment, income tax and cash flow constraints associated with the construction operation and decommissioning of a generating plant. Levelised unit cost comparisons are usually made with different sets of financing assumptions. This report considers two base cases, which we describe as 'merchant' and 'public' financing. The term 'merchant plant' is used to refer to ones that are built and operated by private investors. These investors pay for their capital through debt and by raising equity, and thus pay return on equity and interest on debt throughout their lifetime. These projects include income taxes, both provincial and federal. Publicly financed projects typically are not subject to income taxes or to the same constraints on raising finance through issuing debt and equity. However, they are constrained to provide a rate of return. The

  12. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  13. Energy sources and power plants

    International Nuclear Information System (INIS)

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  14. Optimal Operation of Energy Storage in Power Transmission and Distribution

    Science.gov (United States)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  15. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  16. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  17. An Evaluation of Energy Storage Options for Nuclear Power

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.

    2017-01-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  18. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  19. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  20. Can nuclear power and renewable energies be friends? - 15555

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Colbert, C.; Houghton, Z.; Snuggerud, R.; Gaston, J.W.; Empey, M.

    2015-01-01

    The increasing penetration of renewable energies, especially wind generation, have dramatically changed the economics and realities of grid management in ways that now encourage some level of load-following capabilities for historically base-load plants, including nuclear. The NuScale small modular reactor design currently under development in the United States is well suited for integration with renewable energies because of several design features related to the nuclear steam supply system, the power conversion system, and the overall plant architecture. The fundamental building block of the NuScale plant is the NuScale power module. The power module consists of a small 160 MWt reactor core housed with other primary system components in an integral reactor pressure vessel and surrounded by a steel containment pressure vessel, which is immersed in a large pool of water. Several power modules (as many as 12) are co-located in the same pool to comprise a single plant. A dedicated turbine/generator system is coupled to each module to provide a gross electrical power of 50 MWe. The module design allows changes to reactor power down to 40% using only control rod movement (no boron adjustments) to increase power maneuverability. The condenser is designed to accommodate full steam bypass, thus allowing rapid changes to system output while minimizing the impact to the reactor system, which can be maintained at full power. The multi-module nature of a NuScale plant allows the plant output to be varied in 3 ways spanning a wide range of different time frames: (1) taking one or more modules offline for extended periods of sustained wind output, (2) adjusting reactor power for one or more modules for intermediate periods to compensate for hourly changes in wind generation, or (3) bypassing the steam turbine for rapid responses to wind generation variations. Results are presented from a recent analysis of nuclear-wind integration that utilized historical wind generation data

  1. Increasing the flexibility of base-load generating units in operation on fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Girshfel' d, V Ya; Khanaev, V A; Volkova, E D; Gorelov, V A; Gershenkroi, M L

    1979-01-01

    Increasing the flexibility of base-load generating units operating on fossil fuel by modifying them is a necessary measure. The highest economic effect is attained with modification of gas- and oil-fired generating units in the Western United Power Systems of the European part of the SPSS. On the basis of available experience, 150- and 200-MW units can be extensively used to regulate the power in the European part of the SPSS through putting them into reserve for the hours of the load dip at night. The change under favorable conditions of 150- and 200-MW units operating on coal to a district-heating operating mode does not reduce the possibilities for flexible operation of these units because it is possible greatly to unload the turbines while the minimum load level of the pulverized fuel fired boiler is retained through transferring a part of the heat load to the desuperheater. It is necessary to accumulate and analyze experience with operation of generating units (especially of supercritical units) with regular shutdowns and starts of groups of units and to solve the problems of modification of generating units, with differentiation with respect to types of fuel and to the united power supply system.

  2. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  3. Economics of compressed air energy storage to integrate wind power: A case study in ERCOT

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Emily, E-mail: efertig@andrew.cmu.ed [Carnegie Mellon Electricity Industry Center, Department of Engineering and Public Policy and Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Apt, Jay [Carnegie Mellon Electricity Industry Center, Department of Engineering and Public Policy and Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2011-05-15

    Compressed air energy storage (CAES) could be paired with a wind farm to provide firm, dispatchable baseload power, or serve as a peaking plant and capture upswings in electricity prices. We present a firm-level engineering-economic analysis of a wind/CAES system with a wind farm in central Texas, load in either Dallas or Houston, and a CAES plant whose location is profit-optimized. With 2008 hourly prices and load in Houston, the economically optimal CAES expander capacity is unrealistically large - 24 GW - and dispatches for only a few hours per week when prices are highest; a price cap and capacity payment likewise results in a large (17 GW) profit-maximizing CAES expander. Under all other scenarios considered the CAES plant is unprofitable. Using 2008 data, a baseload wind/CAES system is less profitable than a natural gas combined cycle (NGCC) plant at carbon prices less than $56/tCO{sub 2} ($15/MMBTU gas) to $230/tCO{sub 2} ($5/MMBTU gas). Entering regulation markets raises profit only slightly. Social benefits of CAES paired with wind include avoided construction of new generation capacity, improved air quality during peak times, and increased economic surplus, but may not outweigh the private cost of the CAES system nor justify a subsidy. - Research highlights: {yields} Sizes of CAES and transmission paired with a Texas wind farm are optimized for profit. {yields} A profit-maximizing wind farm owner would not invest in a dedicated CAES system. {yields} The social benefit of a wind/CAES system is unlikely to outweigh private cost. {yields} CAES cannot cost-effectively smooth wind power with plausible imminent carbon prices.

  4. Economics of compressed air energy storage to integrate wind power: A case study in ERCOT

    International Nuclear Information System (INIS)

    Fertig, Emily; Apt, Jay

    2011-01-01

    Compressed air energy storage (CAES) could be paired with a wind farm to provide firm, dispatchable baseload power, or serve as a peaking plant and capture upswings in electricity prices. We present a firm-level engineering-economic analysis of a wind/CAES system with a wind farm in central Texas, load in either Dallas or Houston, and a CAES plant whose location is profit-optimized. With 2008 hourly prices and load in Houston, the economically optimal CAES expander capacity is unrealistically large - 24 GW - and dispatches for only a few hours per week when prices are highest; a price cap and capacity payment likewise results in a large (17 GW) profit-maximizing CAES expander. Under all other scenarios considered the CAES plant is unprofitable. Using 2008 data, a baseload wind/CAES system is less profitable than a natural gas combined cycle (NGCC) plant at carbon prices less than $56/tCO 2 ($15/MMBTU gas) to $230/tCO 2 ($5/MMBTU gas). Entering regulation markets raises profit only slightly. Social benefits of CAES paired with wind include avoided construction of new generation capacity, improved air quality during peak times, and increased economic surplus, but may not outweigh the private cost of the CAES system nor justify a subsidy. - Research highlights: → Sizes of CAES and transmission paired with a Texas wind farm are optimized for profit. → A profit-maximizing wind farm owner would not invest in a dedicated CAES system. → The social benefit of a wind/CAES system is unlikely to outweigh private cost. → CAES cannot cost-effectively smooth wind power with plausible imminent carbon prices.

  5. Additional nuclear power in Finland; Challenge for economics and financing

    International Nuclear Information System (INIS)

    Raumolin, H.I.

    1989-01-01

    The overview of energy situation in Finland is presented. Additional base-load power is needed in the second half of the 1990's. The experience of nuclear power including the price of electricity as well as construction and operation of power plants is presented. Challenges for new nuclear power are described. The challenges can be met by utilizing the good experience gained in Finland, as well as the competitive situation on the international market

  6. Decoupling energy and power

    Science.gov (United States)

    Grattieri, Matteo; Minteer, Shelley D.

    2018-01-01

    Biological photovoltaic devices (BPVs) use photosynthetic microorganisms to produce electricity, but low photocurrent generation impedes their application. Now, a micro-scale flow-based BPV system is reported with power density outputs similar to that of large-scale biofuels.

  7. Nuclear power and energy planning

    International Nuclear Information System (INIS)

    Jones, P.

    1990-11-01

    With the rapid depletion of conventional energy sources such as coal and oil and the growing world demand for energy the question of how to provide the extra energy needed in the future is addressed. Relevant facts and figures are presented. Coal and oil have disadvantages as their burning contributes to the greenhouse gases and they will become scarcer and more expensive. Renewable sources such as wind and wave power can supply some but not all future energy requirements. The case made for nuclear power is that it is the only source which offers the long term prospect of meeting the growing world energy demand whilst keeping energy costs close to present levels and which does not add to atmospheric pollution. Reassurance as to the safety of nuclear power plants and the safe disposal of radioactive wastes is given. (UK)

  8. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  9. Proceedings of the APPrO 2006 18. annual Canadian power conference and trade show : Green Power Conference : Canada's leading renewable energy conference

    International Nuclear Information System (INIS)

    Brooks, J.

    2007-01-01

    This conference provided a forum for members of the Association of Power Producers of Ontario to discuss recent developments in renewable energy and the electric power industry. An overview of Ontario's renewable standard offer program was provided. Members of the conference also discussed case studies of Ontario renewable energy projects including micro-hydro; anaerobic digesters; stand-alone wind power; and solar energy. The economics of wind power were discussed, and current capital costs for renewable energy technology projects were reviewed. Other topics included the use of base-load nuclear and hydro-electricity; the closing down of coal-fired generation; the integration of wind power; and natural gas and cogeneration. Issues related to interconnected power supplies were also reviewed. Discussions were divided into 5 topics : (1) an introduction to the standard offer program; (2) provincial procurement of green power; (3) case studies of stand-alone project; (4) distributed generation and the standard offer process; and distribution approval and connection issues. refs., tabs., figs

  10. Energy discharge heater power supply

    International Nuclear Information System (INIS)

    Jaskierny, W.

    1992-11-01

    The heater power supply is intended to supply capacitively stored,energy to embedded heater strips in cryo magnets. The amount of energy can be controlled by setting different charge different capacitor values. Two chassis' can be operated in series or interlocks are provided. The charge voltage, number of capacitors pulse can be monitored. There and dual channel has two discharge supplies in one chassis. This report reviews the characteristics of this power supply further

  11. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  12. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  13. The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets

    International Nuclear Information System (INIS)

    Brand, Bernhard; Zingerle, Jonas

    2011-01-01

    Morocco, Algeria and Tunisia, the three countries of the North African Maghreb region, are showing increased efforts to integrate renewable electricity into their power markets. Like many other countries, they have pronounced renewable energy targets, defining future shares of 'green' electricity in their national generation mixes. The individual national targets are relatively varied, reflecting the different availability of renewable resources in each country, but also the different political ambitions for renewable electricity in the Maghreb states. Open questions remain regarding the targets' economic impact on the power markets. Our article addresses this issue by applying a linear electricity market optimization model to the North African countries. Assuming a competitive, regional electricity market in the Maghreb, the model minimizes dispatch and investment costs and simulates the impact of the renewable energy targets on the conventional generation system until 2025. Special emphasis is put on investment decisions and overall system costs. - Research Highlights: →Market simulation shows impact of RES-E penetration on the conventional power system of Morocco, Algeria and Tunisia. →Noticeable effects on dispatch and investments in fossil power plants. →Reduced utilization of base-load plants - stronger investments in flexible capacities. →Overall system costs can be decreased by optimizing the RES-E goals.

  14. Baseload coal investment decisions under uncertain carbon legislation.

    Science.gov (United States)

    Bergerson, Joule A; Lave, Lester B

    2007-05-15

    More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO2 from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be Pulverized Coal (PC) or IGCC. Do stricter emissions standards (PM, SO2, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO2, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A C02 tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO2. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC w/CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society.

  15. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive...... penetration of renewable, fossil-free energy sources such as solar and wind power. To facilitate such intermittent power producers, we must not only control the production of electricity, but also the consumption, in an ecient and exible manner. By enabling the use of thermal energy storage in supermarkets...... of temperature dependent efficiencies in the refrigeration cycle. -Nonlinear economic MPC with uncertain predictions and the implementation of very simple predictors that use entirely historical data of, e.g., electricity prices and outdoor temperatures. Economic MPC for wind turbines, including -Optimal steady...

  16. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  17. Energy analysis of power systems

    International Nuclear Information System (INIS)

    2004-01-01

    Next to economic viability, the holistic energy balance of electricity generation options' is a factor of major importance. All aspects of the energy balance, i. e. all expenditures and all revenues, are compared in a life cycle analysis. This turns out to be a complex task, especially because of the large number of input quantities to be determined, including the balancing limits to be taken into account. The article presents in detail the findings of analyses of energy balances for various types of nuclear power plants as well as electricity generation in fossil-fired power plants, and for renewable energies. The analyses and their databases are discussed. Moreover, the findings are presented for the energetic amortization periods and the amounts of CO 2 emissions specific to the respective generating technologies. (orig.)

  18. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed

  19. Wind power - energy from air

    International Nuclear Information System (INIS)

    Alakangas, E.

    1998-01-01

    The wind conditions for wind power generation are favourable on the coast, in the archipelagos and in the fell areas of Finland. About 7 MW of wind power has been constructed in Finland, with the investment support of the Ministry of Trade and Industry. In 1995 about 11 GWh were produced by wind energy. A number of wind power plants are under design on the coasts of the Gulf of Finland and the Gulf of Bothnia as well as on the Aaland Islands. The first arctic wind park was constructed in Lapland in September 1996

  20. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Rotty, R.M.; Perry, A.M.; Reister, D.B.

    1975-11-01

    An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered

  1. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    Science.gov (United States)

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  2. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  3. Net energy from nuclear power

    International Nuclear Information System (INIS)

    Perry, A.M.; Rotty, R.M.; Reister, D.B.

    1977-01-01

    Non-fission energy inputs to nuclear fuel cycles were calculated for four types of power reactors and for two grades of uranium ore. Inputs included all requirements for process operations, materials, and facility construction. Process stages are mining, milling, uranium conversion, enrichment, fuel fabrication, reprocessing, waste disposal, reactor construction and operation, and all transportation. Principal inputs were analyzed explicitly; small contributions and facility construction were obtained from input-output tables. For major facilities, the latter approach was based on disaggregated descriptions. Enrichment energy was that of U.S. diffusion plants, with uranium tails assay retained as a variable parameter. Supplemental electrical requirements, as a percentage of lifetime electrical output, are 5-6% for LWRs (0.3 - 0.2% tails assay) using ores with 0.2% uranium and without recycle. Recycle of uranium and plutonium reduces the electrical requirements 30%. Chattanooga Shales (0.006% U) require one-third more electricity. Thermal energy requirements are about 5% of electrical output with conventional ores; shales raise this to about 14%, with 0.2% enrichment tails and full recycle. About one-tenth of the electrical supplements and about a third of the thermal energy supplements are required prior to operation. A typical LWR will repay its energy loan within 15 months, allowing for low initial load factors. Enrichment requiring only 10% as much separative work as gaseous diffusion would reduce electrical requirements about 80%, but have little effect on thermal energy inputs. HTGRs require slightly less supplemental energy than LWRs. HWRs (with natural uranium) require about one-third as much supplemental electricity, but half again as much thermal energy, largely for heavy water production. The paper presents detailed data for several combinations of reactor type, ore grade and tails assay and compares them with conventional power plants. It also exhibits

  4. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  5. Photovoltaic energy in power market

    NARCIS (Netherlands)

    Ho, D.T.; Frunt, J.; Myrzik, J.M.A.

    2009-01-01

    Photovoltaic (PV) penetration in the grid connected power system has been growing. Currently, PV electricity is usually directly sold back to the energy supplier at a fixed price and subsidy. However, subsidies should always be a temporary policy, and will eventually be terminated. A question is

  6. 2004 Power marketing program. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-04-01

    The Sierra Nevada Region proposes to develop a marketing plan that would be implemented in the year 2005 and to allocate power to eligible entities within its marketing area in northern and central California and Nevada. Four alternatives were analyzed that are structured around the range of operations of the Central Valley Project hydroelectric system, levels of power purchases, and customer group allocations. The manner in which hydropower generating plants are operated is one of the fundamental differences across the alternatives. Operating the hydrosystem to provide peaking power (the maximize hydropower peaking alternative, which is similar to the no-action alternative), would provide up to 94 t MW of additional load-carrying capacity in comparison to baseload operations of the CVP system (the baseload alternative). Although it is not possible to determine where or when any lost capacity would be made up, building replacement capacity in response to the baseload alternative would result in land-use impacts and the use of natural and financial resources. Peaking also results in small but beneficial regional economic effects. Peaking and baseload alternatives result in different hourly air emission patterns. The peaking alternative results in annual reductions in air pollution and wastewater. Impacts within the CVP are limited to regulating reservoirs, which would have reduced pool-level fluctuations under the baseload alternative. The regional economic effects of the Sierra Nevada Region's power purchases are small regardless of CVP operations and depend on their quantity and whether they are firm or economy purchases. Changes in allocations co customer groups result in small regional effects that are dependent on assumptions made about customer access to wholesale energy markets

  7. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  8. Evaluation of Dynamic Reversible Chemical Energy Storage with High Temperature Electrolysis

    OpenAIRE

    McVay, Derek Joseph

    2017-01-01

    Renewable power generation is intermittent and non-dispatchable, but is steadily increasing in penetration due to lower costs associated with installation and demand for clean power generation. Without significant energy storage available to a grid with high renewable penetration, a mismatch between the load and the power available can. Furthermore, advanced high temperature nuclear reactors offer clean power generation, but only at a baseload operation scenario due to the significant thermal...

  9. Small Business Voucher CRADA Report: Natural Gas Powered HVAC System for Commercial and Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Daniel [Be Power Tech, Deerfield Beach, FL (United States); Ally, Moonis Raza [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mudiraj, Shyam [Be Power Tech, Deerfield Beach, FL (United States); Tilghman, Matthew [Be Power Tech, Deerfield Beach, FL (United States); Graham, Matthew [Be Power Tech, Deerfield Beach, FL (United States)

    2017-04-30

    Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.

  10. Next-generation reactors in the national energy strategy

    International Nuclear Information System (INIS)

    McGoff, D.J.

    1991-01-01

    In February 1991, the Bush Administration released the National Energy Strategy designed to provide an adequate and balanced energy supply. The strategy provides for major increases in energy efficiency and conservation. Even with these savings, however, there will be a need for substantial increases in base-load electrical generating capacity to sustain economic growth. The strategy identifies the actions required to allow nuclear power to cleanly and safely meet a substantial portion of this needed additional base-load capacity after the turn of the century. On June 27, 1991, the US Department of Energy (DOE) transmitted to Congress the Strategic Plan for Civilian Reactor Development, which reflects the initiative identified in the National Energy Strategy. The strategic plan identifies the advanced light water reactor (ALWR) as the basis for expanded use of nuclear power. The second advanced reactor concept that is being pursued is the modular high-temperature gas-cooled reactor (MHTGR)

  11. 2004 Power marketing program, draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-04-01

    The Sierra Nevada Region proposes to develop a marketing plan that would be implemented in the year 2005 and to allocate power to eligible entities within its marketing area in northern and central California and Nevada. Four alternatives were analyzed that are structured around the range of operations of the Central Valley Project hydroelectric system, levels of power purchases, and customer group allocations. The manner in which hydropower Generating plants are operated is one of the fundamental differences across the alternatives. Operating the hydrosystem to provide peaking power (the maximize hydropower peaking alternative, which is similar to the no-action alternative), would provide up to 941 MW of additional load-carrying capacity in comparison to baseload operations of the CVP system (the baseload alternative). Although it is not possible to determine where or when any lost capacity would be made up, building replacement capacity in response to the baseload alternative would result in land-use impacts and the use of natural and financial resources. Peaking also results in small but beneficial regional economic effects. Peaking and baseload alternatives result in different hourly air emission patterns. The peaking alternative results in annual reductions in air pollution and wastewater. Impacts within the CVP are limited to regulating reservoirs, which would have reduced pool-level fluctuations under the baseload alternative. Changes in allocations to customer groups result in small regional effects that are dependent on assumptions made about customer access to wholesale energy markets. The renewable resource acquisition alternative assumes that technology improvements allow for competitively melding 250 MW of renewables with Federal hydropower. Environmental impacts of the renewables alternative depend on the presence of biomass in the resource mix. Overall, the 2004 Draft Environmental Impact Statement (2004 EIS) identified no significant impacts

  12. Energy strategies and nuclear power

    International Nuclear Information System (INIS)

    Hafele, W.

    1983-01-01

    The results of two quantitative scenarios balancing global energy supply with demand for the period 1980-2030 are reviewed briefly. The results suggest that during these 50 years there will be a persistent demand worldwide for liquid fuels, a continuing reliance on ever more expensive and ''dirty'' fossil fuels, and a limited penetration rate of nuclear generated electricity into the energy market. The paper therefore addresses a possible ''second'' grid driven by nuclear heat - a grid based not on electricity but on ''clean'' liquid fuels manufactured from gaseous and solid fossil fuels using nuclear power. Such a second grid would be an important complement to the electricity grid if the world is to progress towards a truly sustainable energy system after 2030

  13. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  14. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  15. Power management for energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.

    2013-02-15

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms, e.g., in supermarkets. For control of the commercial refrigeration application as well as the wind turbine application, we propose an economic optimizing model predictive controller, economic MPC. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive simulation and comparison with existing control methods and evaluation of data from systems in actual operation. We demonstrate, i.a., substantial cost savings, on the order of 30 %, compared to a standard thermostat-based supermarket refrigeration system and show how our methods exhibit sophisticated demand response to real-time variations in electricity prices. Violations of the temperature ranges can be kept at a very low frequency of occurrence inspite of the presence of uncertainty. For the power output from wind turbines, ramp rates, as low a 3 % of the rated power per minute, can be effectively ensured with the use of energy storage and we show how the active use of rotor inertia as an additional energy storage can reduce the needed storage capacity by up to 30 % without reducing the power output. (Author)

  16. Military space power systems technology trends and issues

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Massie, L.D.

    1985-01-01

    This paper assesses baseload and above-baseload (alert, active, pulsed and burst mode) power system options, places them in logical perspective relative to power level and operating time, discusses power systems technology state-of-the-art and trends and finally attempts to project future (post 2000) space power system capabilities

  17. The power of British Energy

    International Nuclear Information System (INIS)

    Hawley, R.

    1997-01-01

    When the power industry in Britain was privatized, British Energy plc (BE), whose head office is in Edingburgh, Scotland, was founded in July 1996. It is the only power utility in the world exclusively operating nuclear power stations. Operative business has remained the responsibility of the two regional supply companies, Nuclear Electric (NE) and Scottish Nuclear (SN) which, in addition to the modern PWR nuclear generating unit of Sizewell B, have included in the new holding company their advanced gas-cooled and gas-moderated reactor (AGR) units. The older gas-graphite reactor (GGR) plants were combined in the new Magnox Electric plc, Berkeley; at some later date, this company is to be merged with another nuclear power plant operator, British Nuclear Fuels plc (BNFL). Sizewell B, which was commissioned in 1995, is the last nuclear generating unit to be started up in the United Kingdom, for the time being. In times of low raw material prices and the need for a quick return on invested capital, BE is reluctant to run the risk associated with tying up capital for a long time. Instead, the company has backfitted its plants so that the production of electricity from nuclear power in Britain in 1996 of 92,476 GWh was increased by almost 10% over the 1995 level of 84,174 GWh. In addition to modernization and rationalization at home, BE together with Sizewell B vendor Westinghouse is engaged worldwide in the development and commercialization of future advanced reactors. This ensures that the know-how accumulated will be preserved and will be available for new nuclear power plants to be built in Britain in the next century. (orig.)

  18. Nuclear and conventional baseload electricity generation cost experience

    International Nuclear Information System (INIS)

    1993-04-01

    The experienced costs of electricity generation by nuclear and conventional plants and the expected costs of future plants are important for evaluating the economic attractiveness of various power projects and for planning the expansion of electrical generating systems. The main objective of this report is to shed some light on recent cost experience, based on well authenticated information made available by the IAEA Member States participating in this study. Cost information was provided by Canada (Ontario Hydro), Czechoslovakia, Hungary, India, the Republic of Korea and Spain. Reference is also made to information received from Brazil, China, France, Russia and the United States of America. The part of the report that deals with cost experience is Section 2, where the costs of both nuclear and fossil fired plants are reviewed. Other sections give emphasis to the analysis of the major issues and relevant cost elements influencing the costs of nuclear power plants and to a discussion of cost projections. Many of the conclusions can also be applied to conventional plants, although they are usually less important than in the case of nuclear plants. 1 ref., figs and tabs

  19. Power Electronics Control of Wind Energy in Distributed Power System

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  20. Energy analysis and projecting of power plants

    International Nuclear Information System (INIS)

    Jirlow, K.

    1975-01-01

    Energy analysis aims at a better explanation of energy flow and energy exchange at different production processes. In this report the energy budget is analysed for separate nuclear power plants and for expanding systems of power plants. A mathematical model is developed for linear and exponential expanding of nuclear power. The profitableness for nuclear power plants in Sweden is considered to be good. (K.K.)

  1. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  2. Careers in Geothermal Energy: Power from below

    Science.gov (United States)

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  3. Net energy analysis - powerful tool for selecting elective power options

    Energy Technology Data Exchange (ETDEWEB)

    Baron, S. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  4. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  5. An MHD energy storage system comprising a heavy-water producing electrolysis plant and a H2/O2/CsOH MHD generator/steam turbine combination to provide a means of transferring nuclear reactor energy from the base-load regime into the intermediate-load and peaking regimes

    International Nuclear Information System (INIS)

    Townsend, S.J.; Koziak, W.W.

    1975-01-01

    The concept is presented of the MHD Energy Storage System, comprising a heavy-water producing electrolysis plant for electricity absorption, hydrogen/oxygen storage and a high-efficiency MHD generator/steam turbine unit for electricity production on demand from the grid. The overall efficiency at 56 to 60 percent is comparable to pumped storage hydro, but at only one-half to two-thirds the capital cost and at considerably greater freedom of location. The MHD Energy Storage System combined with the CANDU nuclear reactor in Canadian use can supply all-nuclear energy to the grid at a unit energy cost lower than when oil or coal fired plants are used in the same grid

  6. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  7. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    Science.gov (United States)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  8. Nuclear Power, Energy Economics and Energy Security

    International Nuclear Information System (INIS)

    2013-01-01

    Economic development requires reliable, affordable electricity that is provided in sufficient quantities to satisfy the minimum energy requirements at a local, regional or national level. As simple as this recipe for economic development appears, technological, infrastructural, financial and developmental considerations must be analysed and balanced to produce a national energy strategy. Complicating that task is the historic fact that energy at the desired price and in the desired quantities can be neither taken for granted nor guaranteed. Energy economics and energy security determine the options available to nations working to establish a sustainable energy strategy for the future.

  9. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  10. Power marketing and renewable energy

    International Nuclear Information System (INIS)

    Fang, J.M.

    1997-01-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences

  11. Meeting the near-term demand for hydrogen using nuclear energy in competitive power markets

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2004-01-01

    Hydrogen is becoming the reference fuel for future transportation and the timetable for its adoption is shortening. However, to deploy its full potential, hydrogen production either directly or indirectly needs to satisfy three criteria: no associated emissions, including CO 2 ; wide availability; and affordability. This creates a window of great opportunity within the next 15 years for nuclear energy to provide the backbone of hydrogen-based energy systems. But nuclear must establish its hydrogen generating role long before the widespread deployment of Gen IV high-temperature reactors, with their possibility of producing hydrogen directly by heat rather than electricity. For Gen IV the major factors will be efficiency and economic cost, particularly if centralized storage is needed and/or credits for avoided emissions and/or oxygen sales. In the interim, despite its apparently lower overall efficiency, water electrolysis is the only available technology today able to meet the first and second criteria. The third criterion includes costs of electrolysis and electricity. The primary requirements for affordable electrolysis are low capital cost and high utilisation. Consequently, the electricity supply must enable high utilisation as well as being itself low-cost and emissions-free. Evolved Gen III+ nuclear technologies can produce electricity on large scales and at rates competitive with today's CO 2 -emitting, fossil-fuelled technologies. As an example of electrolytic hydrogen's potential, we show competitive deployment in a typical competitive power market. Among the attractions of this approach are reactors supplying a base-loaded market - though permitting occasional, opportunistic diversion of electricity during price spikes on the power grid - and easy delivery of hydrogen to widely distributed users. Gen IV systems with multiple product streams and higher efficiency (e.g., the SCWR) can also be envisaged which can use competitive energy markets to advantage

  12. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  13. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional conventi......Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...

  14. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  15. ENERGY STAR Certified Uninterruptible Power Supplies

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Uninterruptible Power Supplies that are...

  16. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  17. Renewable energy and CCS in German and European power sector decarbonization scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ludig, Sylvie

    2013-11-06

    In order to avoid unmanageable impacts of anthropogenic climate change, it is necessary to achieve substantial CO{sub 2} emission reductions in all energy sectors. Due to salient decarbonization options such as renewable energy technologies and carbon capture and storage (CCS), the power sector plays a major role in climate change mitigation strategies. However, these options come with a set of challenges: the output of wind and solar energy varies in time and space and CCS faces technical challenges and public acceptance problems. This thesis develops power sector decarbonization scenarios for the EU and Germany while taking into account both the interplay of renewable energy technologies and CCS as mitigation options as well as the technical challenges of renewable energy integration. More specifically, a series of model based studies address the respective roles of CCS and renewable energy technologies in emission reduction strategies while evaluating technical integration options such as transmission, storage and balancing technologies. Results show that large-scale expansion of renewable energies will play the main role in power sector decarbonization scenarios, but the availability of CCS could lead to lower total costs and easier reaching of emission reduction targets through compensation of emissions generated by balancing technologies. Long-distance transmission enables better siting of renewable energy and thus higher achievable renewable shares in power generation and higher capacity factors. These indirect effects of delayed expansions induce additional power system costs, which are high relative to investment costs for new transmission lines. Results also reveal a preference for flexible technologies in combination with high shares of renewables for balancing purposes rather than inflexible baseload plants. A case study for the EU shows that a near-complete decarbonization is possible both with and without transmission expansions, but total power

  18. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  19. Green Power Procurement Library | Energy Analysis | NREL

    Science.gov (United States)

    ., and E.S. Brown. 2006. Utility-Marketer Partnerships: An Effective Strategy for Marketing Green Power Reduction Programs. Local Government Climate and Energy Strategy Series. EPA 430-R-09-045. Green Power Developing New Renewable Energy Projects. NREL/TP-6A20-51904. July. Natural Marketing Institute. 2011

  20. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  1. Design and construction of nuclear power plants

    CERN Document Server

    Schnell, Jürgen; Meiswinkel, Rüdiger; Bergmeister, Konrad; Fingerloos, Frank; Wörner, Johann-Dietrich

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply.Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overv

  2. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  3. Demand, Energy, and Power Factor

    Science.gov (United States)

    1994-08-01

    POWER FACTOR DEFINITION I Basically , power factor (pf) is a measure of how effectively the plant uses the electricity it purchases from the utility. It...not be made available by the plant. U 24 This video is relatively short, less than fifteen-minutes, and covers the basics on demand, block extenders... ratemaking methodology and test period as used in determining the NC-RS rates. Pending final decision by the FERC, the Federal Government would pay a rate as

  4. Environmental impact and cost analysis of coal versus nuclear power: The U.S. case

    International Nuclear Information System (INIS)

    Vujić, Jasmina; Antić, Dragoljub P.; Vukmirović, Zorka

    2012-01-01

    With all energy production systems there are environmental issues to be considered, risks to be assessed, and challenges to be addressed. It must be emphasized that an ideal energy source that is at the same time efficient, cost-effective, environment-friendly, and risk-free does not exist. There are always some necessary trade-offs to be made, in order to ensure optimal use of energy resources, while limiting environmental and health impacts. Nuclear energy is currently the only technology with a secure base-load electricity supply and no greenhouse gas emissions that has the potential to expand at a large scale. However, the spent fuel and safety issues must be addressed. Another base-load electricity source – the fossil-burning power plants – although affordable, emits various air pollutants (chemical and radioactive effluents, dust, ash, etc.), which are dispersed from a power source and transported through various pathways that could lead to the general population exposure. This paper summarizes current status and future trends in base-load electricity sources in the U.S., including environmental footprints, new regulatory requirements, and cost issues. It also presents an analysis of challenges that need to be overcome and opportunities that could us lead us closer to a sustainable energy future.

  5. Energy security strategy and nuclear power

    International Nuclear Information System (INIS)

    Toichi, Tsutomu; Shibata, Masaharu; Uchiyama, Yoji; Suzuki, Tatsujiro; Yamazaki, Kazuo

    2006-01-01

    This special edition of 'Energy security strategy and nuclear power' is abstracts of the 27 th Policy Recommendations 'The Establishment of an International Energy Security System' by the Japan Forum on International Relations, Inc on May 18 th , 2006. It consists of five papers: Energy security trend in the world and Japan strategy by Tsutomu Toichi, Establishment of energy strategy supporting Japan as the focus on energy security by Masaharu Shibata, World pays attention to Japan nuclear power policy and nuclear fuel cycle by Yoji Uchiyama, Part of nuclear power in the energy security - the basic approach and future problems by Tatsujiro Suzuki, and Drawing up the energy strategy focused on the national interests - a demand for the next government by Kazuo Yamazaki. (S.Y.)

  6. Renewable Energy. The Power to Choose.

    Science.gov (United States)

    Deudney, Daniel; Flavin, Christopher

    This book, consisting of 13 chapters, charts the progress made in renewable energy in recent years and outlines renewable energy's prospects. Areas addressed include: energy at the crossroads (discussing oil, gas, coal, nuclear power, and the conservation revolution); solar building design; solar collection; sunlight to electricity; wood; energy…

  7. Teachers Environmental Resource Unit: Energy and Power.

    Science.gov (United States)

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  8. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  9. Energy Flexibility in the Power System

    DEFF Research Database (Denmark)

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility can address the challenges of large scale integration of renewable energy resources and thereby increasing imbalance in the power system. Flexible power system can provide reliable supply, low electricity cost and sustainability. Various situations and factors influence...... the adoption of the flexibility solutions, such as flexible electricity generation, demand-response, and electricity storage. This paper tries to analyze the current energy flexibility solutions and the factors that can influence the energy flexibility adoption. This paper takes Philippines as case study...... to provide an overview of the current condition of the Philippines’ power system and discuss the energy flexibility in the Philippines’ power system. A further discussion and recommendation is conducted in the end of the paper....

  10. On energy efficient power allocation for power-constrained systems

    KAUST Repository

    Sboui, Lokman

    2014-09-01

    Recently, the energy efficiency (EE) has become an important factor when designing new wireless communication systems. Due to economic and environmental challenges, new trends and efforts are oriented toward “green” communication especially for energy-constrained applications such as wireless sensors network and cognitive radio. To this end, we analyze the power allocation scheme that maximizes the EE defined as rate over the total power including circuit power. We derive an explicit expression of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and compute explicitly the optimal power for ergodic EE under either a peak or an average power constraint. When the instantaneous channel is not available, we provide the optimal power equation and compute simple sub-optimal power. In the numerical results, we show that the sup-optimal solution is very close to the optimal solution. In addition, we show that the absence of the channel state information (CSI) only affects the EE and the SE performances at high power regime compared to the full CSI case.

  11. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1976-01-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input to each of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steelmaking, for some time to come. (author)

  12. Energy accounting in nuclear power systems

    International Nuclear Information System (INIS)

    Symonds, J.L.; Essam, P.; Stocks, K.

    1975-10-01

    Energy analysis is a systematic way of tracing and accounting for the flows of energy through an industrial system and apportioning a quantity of the primary energy input of the goods and services sent out. The application of energy accounting to nuclear power stations and their growth in generating systems is discussed. Misunderstandings arising from discrepancies and weaknesses in some published simple analyses of hypothetical growth situations are outlined. Results of a more complex energy flow analysis are used to demonstrate that current nuclear energy programs are running at an energy profit. Large fossil fuel savings will occur in a real electrical grid system under anticipated nuclear power growth rates. These savings will give a new dimension in planning the use of fossil energy resources which will still be needed for transport and industrial processes, such as steel-making, for some time to come. (author)

  13. Exchange of availability/performance data on base-load gas turbine and combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Jesuthasan, D.K.; Kaupang, B.M. (Tenaga Nasional Berhad (Malaysia))

    1992-09-01

    This paper describes the recommendations developed to facilitate the international exchange of availability performance data on base-load gas turbines and combined cycle plant. Standardized formats for the collection of plant availability statistics, recognizing the inherent characteristics of gas turbines in simple and combined cycle plants are presented. The formats also allow for a logical expansion of the data collection detail as that becomes desirable. To assist developing countries in particular, the approach includes basic formats for data collection needed for international reporting. In addition, the participating utilities will have a meaningful database for internal use. As experience is gained with this data colletion system, it is expected that additional detail may be accommodated to enable further in-depth performance analysis on the plant and on the utility level. 2 refs., 2 tabs., 11 apps.

  14. Energy waste and nuclear power growth

    International Nuclear Information System (INIS)

    von Hippel, F.; Williams, R.H.

    1976-01-01

    The world's steady advance toward a plutonium economy is based on unnecessarily high projections of the future growth of nuclear power, in the United States, at least. These high projections of nuclear power growth are based in turn upon an assumed pattern of energy use which is economically wasteful and potentially dangerous both to the global environment and international stability. It is therefore of the utmost urgency that the United States develop an energy policy which encourages increased efficiency in energy use. Among other benefits, the authors believe that such a policy would slow the growth of nuclear power to the point where the plutonium recycle decision could be delayed for at least a decade in the United States. They also believe that such an example of ''technological abstinence'' by the world's leading economic power might well inspire similar decisions in other parts of the world. It could also allow time for the development of a safer evolutionary path for fission power

  15. Energy problems and nuclear power in Japan

    International Nuclear Information System (INIS)

    Shirasawa, T.

    1980-01-01

    International petroleum situation maintains the balance between demand and supply for the time being, but hereafter, it seems to be more serious and uncertain. Japanese economy tided over the first oil crisis with difficulty, and moreover, responded to the second oil crisis after the Iranian revolution somehow or other. But oil price has continued to rise, and the acceleration of inflation, the serious depression of businesses and electric power crisis are feared. In Japan where the dependence on imported petroleum is as high as 75%, it is necessary to establish the long term energy policy making energy saving and the development of substitute energy as its mainstay. In August, 1979, the report concerning the interim prospect of long term energy demand and supply was made. Largest efforts will be exerted to reduce the oil import. Then the total demand of energy in 1985 will be 582 million kl calculated in terms of petroleum. The law concerning energy saving was enacted in June, 1979. As the substitute energy, imported coal, LNG and nuclear power generation should be adopted. However, in order to put these energies in practical use, many problems to be solved remain. 21 nuclear power plants of 14.9 million kW capacity are in operation, and provide with 12% of total power generation installations. 30 million kW of nuclear power generation will be attained by 1985. (Kako, I.)

  16. Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?

    International Nuclear Information System (INIS)

    D'haeseleer, William D.

    2005-01-01

    From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going

  17. RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Science.gov (United States)

    Abouzied, Mohamed Ali Mohamed

    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various

  18. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  19. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  20. Energy Decisions: Is Solar Power the Solution?

    Science.gov (United States)

    Childress, Vincent W.

    2011-01-01

    People around the world are concerned about affordable energy. It is needed to power the global economy. Petroleum-based transportation and coal-fired power plants are economic prime movers fueling the global economy, but coal and gasoline are also the leading sources of air pollution. Both of these sources produce greenhouse gases and toxins.…

  1. Wireless sensors remotely powered by RF energy

    NARCIS (Netherlands)

    Visser, Hubregt J.; Vullers, Ruud J.M.

    2012-01-01

    Wireless, radiated far-field energy is being employed for charging a battery. This battery, while being recharged, is used to power a commercially of the shelf, low power, wireless sensor node. Propagation conditions in common office and house configurations are investigated experimentally. These

  2. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  3. Energy efficiency comparison between geothermal power systems

    Directory of Open Access Journals (Sweden)

    Luo Chao

    2017-01-01

    Full Text Available The geothermal water which can be considered for generating electricity with the temperature ranging from 80℃ to 150℃ in China because of shortage of electricity and fossil energy. There are four basic types of geothermal power systems: single flash, double flash, binary cycle, and flash-binary system, which can be adapted to geothermal energy utilization in China. The paper discussed the performance indices and applicable conditions of different power system. Based on physical and mathematical models, simulation result shows that, when geofluid temperature ranges from 100℃ to 130℃, the net power output of double flash power is bigger than flash-binary system. When the geothermal resource temperature is between 130℃ and 150℃, the net power output of flash-binary geothermal power system is higher than double flash system by the maximum value 5.5%. However, the sum water steam amount of double flash power system is 2 to 3 times larger than flash-binary power system, which will cause the bigger volume of equipment of power system. Based on the economy and power capacity, it is better to use flash-binary power system when the geofluid temperature is between 100℃ and 150℃.

  4. Power market model with energy- and power dimension

    International Nuclear Information System (INIS)

    Johnsen, T.A.; Larsen, B.M.

    1995-01-01

    This report discusses a mathematical model of the Norwegian power market. The year is divided into three seasons. Each season is subdivided into a high-load period and a low-load period according to the demand. High-load occurs in daytime on workdays while low-load occurs at night and on holidays. The model is intended to be a tool for studying variations in prices, production, demand and trade throughout the year in a market of free competition. The model establishes equilibrium prices of electricity in Norway in high-load and low-load periods. Equilibrium prices with added transport tariffs and charges give customer an indication of the cost of using electricity. And the equilibrium prices indicate to the power producers the value of further energy or power capacity. Examples of calculations using the model show that extended export and import between Norway and other countries affect power prices and production in Norway. In the examples, power intensive industry and wood processing are subjected to market prices on energy. World market prices which give unilateral power export in the high-load periods cause the Norwegian power prices to rise strongly. If to the export from Norway in periods of high-load there corresponds import in periods of low-load, then the pressure on the prices in the power market is significantly reduced. A more extensive power exchange implies that foreign power producers may use the Norwegian power system to avoid large variations in their thermal power production. 23 refs., 21 figs., 1 tab

  5. Space solar power - An energy alternative

    Science.gov (United States)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  6. Power issues at school; Energie macht Schule

    Energy Technology Data Exchange (ETDEWEB)

    Heup, Juergen

    2011-09-15

    Energy and power are not only current issues in politics and society but also subjects for the classroom. In these time of short budgets, energy consultants are able to offer free teaching materials. However, this is a controversial issue as they may take the opportunity to advertise themselves.

  7. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  8. Nuclear power. A cornerstone of energy security

    International Nuclear Information System (INIS)

    Andrews, H.R.; Harvey, M.

    1985-09-01

    Energy options for Canada are examined. Increasing difficulties with oil and gas supplies will induce a growth in electricity demand beyond that presently projected. Nuclear power is the only option that can supply as much energy as needed for as long as needed at predictable costs and with minimal environmental effects

  9. Breezy Power: From Wind to Energy

    Science.gov (United States)

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  10. long term energy long term energy performan performan power pla

    African Journals Online (AJOL)

    User

    roviding an energy performance analysis of Egbin thermal power plan tive Rankine .... effects [8]. The Egbin Electric power business unit is a steam thermal plant that makes use of steam to drive its ..... cogeneration plant- a case study.” Part A: ...

  11. Energy Servers Deliver Clean, Affordable Power

    Science.gov (United States)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  12. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  13. Ocean energy. Tide and tidal power

    Energy Technology Data Exchange (ETDEWEB)

    Finkl, Charles W. [Coastal Planning and Engineering, Inc., Boca Raton, FL (United States); Charlier, Roger H.

    2009-07-01

    Engineers' dreams and fossil energy replacement schemes can come true. Man has been tapping the energy of the sea to provide power for his industries for centuries. Tidal energy combined with that of waves and marine winds rank among those most successfully put the work. Large scale plants are capital intensive but smaller ones, particularly built in China, have proven profitable. Since the initiation of the St Malo project in France, similar projects have gone into active service where methods have been devised to cut down on costs, new types of turbines developed and cost competitiveness considerably improved. Tidal power has enormous potential. The book reviews recent progress in extracting power from the ocean, surveys the history of tidal power harnessing and updates a prior publication by the author. (orig.)

  14. Energy policy perspectives

    International Nuclear Information System (INIS)

    Stihl, H.P.

    1998-01-01

    More competition is to be achieved in the energy markets of Europe and Germany. New legislation is being adopted to this end, but attempts are also made to block it. DIHT, the Association of German Chambers of Industry and Commerce, examines the influence exerted on competition in the energy sector and on deregulation by the German Act Redefining Hard Coal Subsidies, the German Act Reorganizing Power Economy Law, and the separation of grid operation and power generation and the access to the grid this provides to third parties. In order to be reliable, electricity generation must be based on a broad, balanced mix of energy sources. In the baseload range, neither low-cost lignite - development of the Garzweiler II new open cast mine - nor nuclear power -where the Muelheim-Kaerlich Nuclear Power Station is threatened by permanent shutdown - must be excluded. Especially consumers are to benefit from more competition, while the interests of associations or groupings must rank second. (orig.) [de

  15. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  16. Energy and the need for nuclear power

    International Nuclear Information System (INIS)

    1982-11-01

    The subject is discussed under the headings: fuel and mankind (world population estimates); fuel supply and demand (world nuclear and total primary energy demand forecasts); oil dependence; oil, gas and coal (world oil production and consumption; world coal reserves); nuclear option (consumption of nuclear energy in Western Europe; nuclear plant worldwide at December 1981; uranium reserves 1981); renewable resources; price of energy; Britain's need for nuclear power. (U.K.)

  17. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  18. Energy neutral and low power wireless communications

    Science.gov (United States)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a

  19. Power sales contract/energy supply agreements

    International Nuclear Information System (INIS)

    Wallace, R.B.

    1999-01-01

    The factors involved in negotiating power purchase/sales arrangements in Ontario's newly deregulated electricity market are described, and the ways in which they will evolve in the future are predicted. Indications are that the trends that will govern the changes in the electric power industry will be the same as those that existed in the natural gas industry. For this reason, a comparative evaluation of purchase and sale agreements in the two industries was provided. Traditional power purchase arrangements, including requests for proposals, the seller's response, the memorandum of understanding, and the principal terms of a traditional bilateral power purchase agreement were examined. The author predicted that over time, and probably fairly fast in power pool jurisdictions, the traditional power purchase agreement will give way to the concept of energy as a pure commodity and to a standard form of agreement. 1 appendix

  20. Energy supply, nuclear power, and the international energy situation

    International Nuclear Information System (INIS)

    Pierer, H. von

    1991-01-01

    The Chernobyl accident has greatly intensified the readiness for international cooperation on problems of reactor safety and for exchanges of operating experience. That accident was more than a regional event. If all psychological and political consequences are taken into account, its international significance is apparent. In principle, it demonstrated not the lack of safety of nuclear power plants generally, but rather that of the Soviet RBMK reactor line, which would not have been licensed in any Western country because of its inherent unsafety. In the long run, the worldwide acceptance of nuclear power can be regained and stabilized only by an open dialog and by international exchanges of experience. The pronounced growth of the world's population requires energy policy to think beyond national frontiers. The rising energy requirement permits of no other decision than to exploit all technically feasible and economically viable as well as ecologically tolerable sources of energy. This includes nuclear power as well as solar energy. (orig.) [de

  1. Externalities of energy and atomic power

    International Nuclear Information System (INIS)

    2006-09-01

    Energy technology ensures not only energy supply but also has great impacts on society and environments. Economical value and effect evaluation alone doesn't mean appropriate so the evaluation of 'externalities' should be appreciated. In order to assess atomic power in this context, the Atomic Energy Society of Japan set up a research committee on 'externalities of energy and atomic power' from April 2002 to March 2006, whose activities were described in this report. In addition to environmental effects and environmental externalities, four areas were newly studied as follows: (1) biological effects of low dose rate exposure and externalities, (2) externalities as social/economical effects including stable supply and security, (3) energy technologies evaluation and (4) social choice and decision-making. (T. Tanaka)

  2. Variable electricity and steam from salt, helium and sodium cooled base-load reactors with gas turbines and heat storage - 15115

    International Nuclear Information System (INIS)

    Forsberg, C.; McDaniel, P.; Zohuri, B.

    2015-01-01

    Advances in utility natural-gas-fired air-Brayton combed cycle technology is creating the option of coupling salt-, helium-, and sodium-cooled nuclear reactors to Nuclear air-Brayton Combined Cycle (NACC) power systems. NACC may enable a zero-carbon electricity grid and improve nuclear power economics by enabling variable electricity output with base-load nuclear reactor operations. Variable electricity output enables selling more electricity at times of high prices that increases plant revenue. Peak power is achieved using stored heat or auxiliary fuel (natural gas, bio-fuels, hydrogen). A typical NACC cycle includes air compression, heating compressed air using nuclear heat and a heat exchanger, sending air through a turbine to produce electricity, reheating compressed air, sending air through a second turbine, and exhausting to a heat recovery steam generator (HRSG). In the HRSG, warm air produces steam that is used to produce added electricity. For peak power production, auxiliary heat (natural gas, stored heat) is added before the air enters the second turbine to raise air temperatures and power output. Like all combined cycle plants, water cooling requirements are dramatically reduced relative to other power cycles because much of the heat rejection is in the form of hot air. (authors)

  3. Future energy mix - also without nuclear power?

    International Nuclear Information System (INIS)

    George, C.

    2005-01-01

    The considerable rises in the price of oil in the months of October and November 2004 assigned topical importance to the 'Future Energy Mix - also without Nuclear Power?' meeting of young nuclear engineers and students with experts from politics, industry, and research at the YOUNG GENERATION event organized at the Biblis nuclear power station on November 4-6, 2004. Specialized presentations were made about these topics: The Biblis Nuclear Power Plant Site. The Effects of Deregulation on the Electricity Market Emission Trading - a Combination of Economy and Ecology? Energy Mix for the 21 st Century. The event was completed by a round-table discussion among leading experts, and a presentation of perspectives in university education in areas encompassing power technology. (orig.)

  4. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  5. Wind energy and Swiss hydro power

    International Nuclear Information System (INIS)

    Ott, W.; Baur, M.; Fritz, W.; Zimmer, Ch.; Feldmann, J.; Haubrich, H.-J.; Dany, G.; Schmoeller, H.; Hartmann, T.

    2004-01-01

    This report for the Swiss Federal Office of Energy (SFOE) examines the possibilities of using Switzerland's hydropower generation facilities as a means of control and as a capacity-reserve for a European power system that includes a considerable amount of wind-generated electricity. The aims of the study - the analysis of possible changes in power availability and of the relative importance of peak load compensation, economic optimisation potential for the use of Swiss hydropower and organisational aspects - are presented. Various methods for organising production timetables and trading are looked at, as are future developments in the European power market. Methods of assessment of the value of Swiss hydropower installations are discussed in detail and possibilities of increasing capacity are discussed. The report is concluded with recommendations on the participation of Swiss hydropower in the market for regulation energy and the development of associated strategies. Also, environmental aspects are examined and the influence of national wind-energy concepts are discussed

  6. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  7. Energy and nuclear power planning studies

    International Nuclear Information System (INIS)

    Bennett, L.L.; Molina, P.E.; Mueller, T.

    1990-01-01

    The article focuses on the procedures established by the IAEA for providing assistance to international Member States in conducting studies for the analysis of the economic viability of a nuclear power programme. This article specifically reviews energy and nuclear power planning (ENPP) studies in Algeria, Jordan, and Thailand. It highlights major accomplishments in the context of study objectives and organizations, and the principal lessons learned in the process. 4 figs, 1 tab

  8. Energy analysis of nuclear power stations

    International Nuclear Information System (INIS)

    Lindhout, A.H.

    1975-01-01

    A study based on a 1000MWe light water reactor power station was carried out to determine the total energy input and output of the power station. The calculations took into account the mining and processing of the ore, enrichment of the uranium, treatment of used nuclear fuel, investment in land, buildings, machinery, and transport. 144 tons of natural uranium produce 6100 million kWh (electric) and 340 million kWh (thermal) per annum. (J.S.)

  9. Piezoelectric energy harvesting for powering low power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, M.; Palosaari, J.; Hannu, J.; Juuti, J.; Jantunen, H. (Univ. of Oulu, Dept. of Electrical and Information Engineering (Finland)). email: jajuu@ee.oulu.fi

    2009-07-01

    Although wireless data transmission techniques are commonly used in electronic devices, they still suffer from wires for the power supply or from batteries which require charging, replacement and other maintenance. The vision for the portable electronics and industrial measurement systems of the future is that they are intelligent and independent on their energy supply. The major obstacle in this path is the energy source which enables all other functions and 'smartness' of the systems as the computing power is also restricted by the available energy. The development of long-life energy harvesters would reduce the need for batteries and wires thus enabling cost-effective and environment friendlier solutions for various applications such as autonomous wireless sensor networks, powering of portable electronics and other maintenance-free systems. One of the most promising techniques is mechanical energy harvesting e.g. by piezoelectric components where deformations produced by different means is directly converted to electrical charge via direct piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The total mechanical energy in vibration of machines can be very large and usually only a fraction of it can be transformed to electrical energy. Recently, piezoelectric vibration based energy harvesters have been developed widely for different energy consumption and application areas. As an example for low energy device an piezoelectric energy harvester based on impulse type excitations has been developed for active RFID identification. Moreover, piezoharvester with externally leveraged mechanism for force amplification was reported to be able to generate mean power of 0.4 mW from backpack movement. Significantly higher power levels are expected from larger scale testing in Israel, where piezoelectric material is embedded under active walking street, road, airport or railroad. The energy is harvested from human or

  10. Nuclear power and national energy security

    International Nuclear Information System (INIS)

    Addae, A.K.

    2001-01-01

    The demand for energy in Ghana is expected to grow rapidly in the next couple of decades if the objectives of the Vision 2020 Programme are to become a reality. In particular, the demand for electric power is expected to increase 3 to 5 fold over 1997 levels by the year 2020.This calls for early planning. Adequate and dependable central station electric power supplies in the next couple of decades is therefore very critical to sustainable development and the achievement of the objective of the Vision 2020 Programme. Curtailment in electric power supplies cause disruption in economic activities and consequent economic losses. The recent cases in point are the 1983/84 and 1997/1998 power curtailments in Ghana due to low water levels in the Akosombo Reservoir. These led not only to substantial disruptions in economic activities but also to the erosion of invest confidence in the economy. It is, therefore, very essential that the country's central station electric power supply system should not continue to depend on hydro-electric power as in the past years but should be based on a mix of energy sources to provide an acceptable level of national energy security under all circumstances

  11. Power law scaling for rotational energy transfer

    International Nuclear Information System (INIS)

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  12. Risoe energy report 5. Renewable energy for power and transport

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2006-11-01

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  13. Risoe energy report 5. Renewable energy for power and transport

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2006-11-15

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  14. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  15. Texaco gasification power systems for clean energy

    International Nuclear Information System (INIS)

    Quintana, M.E.; Thone, P.W.

    1991-01-01

    The Texaco Gasification Power Systems integrate Texaco's proprietary gasification technology with proven power generation and energy recovery schemes for efficient and environmentally superior fuel utilization. Texaco's commercial experience on gasification spans a period of over 40 years. During this time, the Texaco Gasification Process has been used primarily to manufacture synthesis gas for chemical applications in one hundred commercial installations worldwide. Power generation using the Texaco Gasification Power Systems (TGPS) concept has been successfully demonstrated at the Texaco-sponsored Cool Water Coal Gasification Program in California. The environmental superiority of this technology was demonstrated by the consistent performance of Cool Water in exceeding the strict emission standards of the state of California. Currently, several TGPS projects are under evaluation worldwide for power generation in the range of 90MW to 1300MW

  16. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  17. Power shifts: the dynamics of energy efficiency

    International Nuclear Information System (INIS)

    Edenhofer, O.; Jaeger, C.C.

    1998-01-01

    Induced technical change is crucial for tackling the problem of timing in environmental policy. However, it is by no means obvious that the state has the ability to impose its will concerning technical change on the other relevant actors. Therefore, we conceptualize power in a non-linear model with social conflict and induced technical change. The model shows how economic growth, business cycles and innovation waves interact in the dynamics of energy efficiency. We assess three different ways of government control: energy taxes, energy and labor subsidies, and energy caps. Energy taxes help to select more energy efficient technologies. However, a successful selection of such technologies presupposes that they are available in the pool of technologies. As for energy subsidies, their existence helps to explain why in contemporary economies labor productivity grows faster than energy efficiency. With an energy cap, the social network of the relevant agents may be stabilized via social norms. It seems plausible that innovation waves comprise several business cycles and that such a wave is currently in the making. Proposals to postpone policies for improving energy efficiency increase the risk of energy inefficient lock-in effects. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Financing renewable energy for Village Power application

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  19. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  20. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  1. Nuclear power: energy security and supply assurances

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2008-01-01

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  2. Improvements for conventional clean energies: hydroelectric power

    International Nuclear Information System (INIS)

    Henry, P.

    1991-01-01

    Hydro-electric energy offers considerable possibilities and advantages which should be exploited before considering the construction of power which use fossil fuels. In fact: - hydro-electric is the only renewable energy available in very large quantities at competitive prices, - there are still many possibilities for producing it since at present only 14% is exploited, - hydraulic machines have been considerably improved over recent years, - the improvements make it possible to use watercourses in successive stages thus considerably reducing damage to the environment, - hydro-electric installations have a regulating effect, - vast areas of uncultivated land can be irrigated using the water reserves created by the artificial lakes. All these reasons favour intensive exploitation of hydro-electric energy reserves, in spite of the initial investment costs, which are sometimes higher than those for constructing fuel/driven power stations. (author) 9 figs., 1 tab., 3 refs

  3. Energy management in fuel cell power trains

    International Nuclear Information System (INIS)

    Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O.

    2006-01-01

    In this paper, experimental results obtained on a small size fuel cell power train (1.8 kW) based on a 500 W proton exchange membrane (PEM) stack are reported and discussed with specific regard to energy management issues to be faced for attainment of the maximum propulsion system efficiency. The fuel cell system (FCS) was realized and characterized via investigating the effects of the main operative variables on efficiency. This resulted in an efficiency higher than 30% in a wide power range with a maximum of 38% at medium load. The efficiency of the overall fuel cell power train measured during both steady state and dynamic conditions (European R40 driving cycle) was about 30%. A discussion about the control strategy to direct the power flows is reported with reference to two different test procedures used in dynamic experiments, i.e., load levelled and load following

  4. Voltage scheduling for low power/energy

    Science.gov (United States)

    Manzak, Ali

    2001-07-01

    Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned

  5. Distributed Wireless Power Transfer With Energy Feedback

    Science.gov (United States)

    Lee, Seunghyun; Zhang, Rui

    2017-04-01

    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  6. Energy, the environment and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, Peter E.

    2005-01-01

    The paper describes the author's view on the environmental problems and nuclear power. The world demand for energy has increased rapidly due to the increase of population and the overall rise in living standards, resulting in many signs that the world is experiencing a growing shortage of energy and continuing need for flexible planning and the search for new sources. Fossil fuels are polluting the atmosphere, leading to climate change, acid rain and global warming. This has led many countries to look again at nuclear power. For the widespread opposition to nuclear power, the author lists up the fear of nuclear weapons, the fear of nuclear radiations including reprocessing plants as well as natural radioactivity and cosmic rays, the fear about the safety of nuclear reactors, and production of large amount of radioactive wastes. The author compares various energy sources, and insists that there is a strong reluctance to face the truth, as Governments knowing that nuclear power is politically so unpopular would not advocate the construction of new nuclear stations. (S. Ohno)

  7. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  8. Energy controversy: the role of nuclear power

    International Nuclear Information System (INIS)

    Schmidt, F.H.; Bodansky, D.

    1975-02-01

    The objective of the paper presented is to show that nuclear fission power is the best, and maybe the only, alternative source of energy. It is written for a wide range of readers, including non-scientists and scientists who are not particularly informed on the issues involved. The first question considered concerns man's need for energy; it is concluded that conservation measures alone cannot suffice. Next, the earth's energy sources are examined, and the extent of each is estimated in the simple context of the length of time it could last at present use rates. Only nuclear fission, nuclear fusion, and solar energy can provide for future time scales commensurate with man's historic past, while avoiding the possibility of catastrophic social upheaval. Fusion and solar energy are rejected on technological grounds because the world energy problem is so pressing that one cannot gamble on hopes for future technological breakthroughs. Thus, only nuclear fission meets the twin criteria of technological feasibility and adequate resource base. Each of the controversial issues surrounding nuclear fission energy is examined in some detail. The conclusion is reached that none is serious, and that nuclear fission offers by far the best energy source from environmental, economic, longevity, and overall safety standpoints

  9. Cost structure of coal- and nuclear-fired electric power plants

    International Nuclear Information System (INIS)

    Helmuth, J.A.

    1981-01-01

    This dissertation investigates the cost structure of coal and nuclear electric power generation. The emphasis of the paper is to empirically estimate the direct costs of generating base-load electric power at the plant level. Empirically, the paper first investigates the relative comparative costs of nuclear and coal power generation, based on historical operating data. Consideration of the learning curve and other dynamic elements is incorporated in the analysis. The second empirical thrust is to inestigate economies of scale for both technologies. The results from the empirical studies give an indication as to the future and present cost viability of each technology. Implications toward energy policy are discussed

  10. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  11. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  12. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  13. The World Power Conference and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    The possibility that emerged after the last World War that useful power could be produced from nuclear fission led to optimistic estimates that nuclear power would prove to be the solution to the world's energy problems. The possible advantages of nuclear methods of power production compared with conventional means are discussed at the World Power Conference. The 1962 Conference with its theme 'The Changing Pattern of Power' will undoubtedly attract great interest in a world where the change-over from conventional to nuclear fuels for power production has started in some countries and is being actively examined in others. It is generally being realized that even though a country may possess indigenous supplies of uranium or thorium minerals, the building up of a nuclear industry i s a long and expensive process and the alternative of depending on countries more advanced in nuclear technology for the supply of materials, skill and know-how is costly in foreign exchange and international prestige. Many of the industrialized countries, still possessing supplies of conventional fuels, are preparing for the day when their reserves will become depleted and are embarking on training schemes to ensure a continuing supply of engineers and scientists skilled in nuclear arts

  14. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  15. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  16. Power and energy balances. Forecast 2008

    International Nuclear Information System (INIS)

    2005-01-01

    Both the energy and power balance in 2008 is slightly better than the former Nordel estimate for 2007. This is due to additional investments in new generation capacity, new interconnections of total 1 000 MW to outside Nordel and reduced demand forecast in Sweden. The Nordic electricity system is able to meet the estimated consumption and the corresponding typical power demand pattern in average conditions. In long term the market is expected to maintain a reasonable balance between supply, imports and demand. Lower precipitation or colder temperature result in higher market prices that give incentives for increased imports, demand response and investments. This is expected to maintain the balance between supply and demand in the short and long term even in extreme situations. Allocation between imports and demand response in reality depends on the prevailing market prices and available generation resources outside Nordel. The interconnection capacities are expected to enable import volumes that can meet the increased peak demand. Some Nordic areas can be exposed to a risk for rationing or other measures because of extremely low precipitation. Nordic transmission capacities may prevent full utilization of Nordic thermal power in certain areas. The planned reinforcements in the 'five prioritised cross-sections' will improve the situation. The power balance and the internal bottlenecks in the continental Europe can have an effect on the import possibilities to the Nordic countries. The annual energy consumption in the Nordic market is estimated to grow by 20 TWh by year 2008 (1.2%la) from 395 TWh in 2004 (temperature corrected). In the three year period investments in power generation is expected to increase the available generation capacity and capability by 1500 MW and 10 TWhla in average conditions. Iceland is not included in the figures. The annual energy consumption in Iceland is estimated to grow by about 6.8 TWh by year 2008 (15 %la) due to two new aluminium

  17. Electric Power From Ambient Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  18. Nuclear power as a regional energy supply

    International Nuclear Information System (INIS)

    MacLoon, Frank.

    1983-02-01

    The author describes the Point Lepreau nuclear power plant and its impact on the electric power grid and the economy of the small province of New Brunswick. The 600 MW CANDU reactor is considered suitable for small operations and has an excellent world record. Although nuclear energy has high capital costs, its fuel costs are low, thus rendering it comparatively inflation free. Its fuel costs of 3 to 4 mills are contrasted with 40 mills for oil-fuelled units. The cost advantage of uranium over coal and oil permits New Brunswick to put aside funds for waste management and decommissioning. Regulatory streamlining is needed to reduce both expense and time of construction. The CANDU system is ideally suited to providing base load, with coal as an intermediate load supply and hydro for peaking. There is room for tidal power as a future part of the mix

  19. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  20. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  1. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  2. Perspectives on renewable energy and Village Power

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.R.

    1997-12-01

    The author provides a brief overview of the role the Department of Energy has been playing in the area of renewable energy sources and their applications at a village level. Energy demand is rising sharply, and shortages are becoming more acute. Developing countries will present a large demand, and market opportunity over the next 40 years. Environmental concerns are a factor in the choice for what sources to promote and develop. The author touches on the features of renewable sources which makes them attractive to DOE for some applications, and what the goals of the department are in supporting this technology. Examples of applications at the level of village power are presented for both the US and abroad.

  3. On FDP energy and nuclear power policies

    International Nuclear Information System (INIS)

    Hirche, W.

    2002-01-01

    A liberal energy policy as proclaimed by the FDP, the Free Democratic Party, is based on the principle of sustainability and, in equal measure, serves to ensure economic viability, continuity of supply, and environmental as well as societal compatibility. The possibilities open for national action are determined by the framework conditions of globalization and liberalization, and by the contribution of Germany to the implementation of the sustainability goals. Liberal policies take into account the protection of the environment and of the climate. Levies imposed to protect the environment and the climate must serve specific purposes; the present eco-tax has no controlling function whatsoever. Political measures must not seek to impose government conditions, but rather strengthen public awareness of sustainable action. Liberal research policy focuses on the four areas of fossil energy sources, nuclear fission and nuclear fusion, renewable energy sources, and new technologies. A balanced energy mix as seen by the FDP constitutes the basic of sufficient, safe, non-polluting, and low-cost energy supply. Nuclear power is, and will continue to be, a component of this energy mix. (orig.) [de

  4. Renewable Energy versus Nuclear Power (Summary)

    International Nuclear Information System (INIS)

    Mraz, G.; Wallner, A.

    2014-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas- emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where our money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The recent state aid case for the construction of the nuclear power plant Hinkley Point in United Kingdom serves as the model for the nuclear option. New milestone in nuclear state aid: Hinkley Point It is planned to construct two additional reactors at Hinkley Point. The EU estimates the total capital needed for construction at € 43 billion. The UK government intends to grant state aid for this project; in accordance with EU state aid rules, the suggested state aid scheme was submitted to the EU Commission for approval as public funds would be used for a company. A central part of the state aid scheme is the Contract for Difference which runs for 35 years. According to this contract, the state commits to compensating any difference between the electricity market price (reference price) and the negotiated Strike Price. Consequently, the plant operator, NNB Generation Company Limited (NNBG), has received a long term price guarantee which, in principle, is analogous to the feed-in tariffs commonly used to support renewable energies. The Strike Price for the first unit to be constructed has been set at € 108 per MWh (with

  5. Nuclear Power Remains Important Energy Option for Many Countries, IAEA Ministerial Conference Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    expansion of nuclear power takes place in a way which results in maximum safety, reliability and efficiency, and guards against the proliferation of nuclear weapons. We will remain a reliable partner for all of our Member States.'' ''We are far from achieving our environmental goal of limiting increases in average world temperature. Bolder and more innovative efforts are required, and nuclear energy can and must be part of the solution,'' said OECD Secretary-General Angel Gurria in a message. ''But it is essential to do so in a safe and economically competitive manner. Only thus, will it be possible to take advantage of the long-term, carbon-free security of supply and stable prices that nuclear energy has to offer.'' 38 ministers were among 500 participants representing 89 countries and 7 international organisations at the Conference, held 27-29 June in St. Petersburg. The concluding statement said nuclear power, as a stable base-load source of electricity complements other energy sources including renewables, and many states look to it to reduce the impact of volatile fossil fuel prices and mitigate climate change. At the same time, participants emphasised the need for high levels of nuclear safety. ''It is fully recognised that nuclear accidents have no borders and nuclear safety must be robust, effective and transparent,'' the statement said, adding that global nuclear safety had been strengthened through comprehensive safety reassessments by IAEA Member States, and through additional measures to improve plant safety, regulatory oversight, emergency preparedness and international collaboration. Participants reaffirmed their commitment to the IAEA Action Plan on Nuclear Safety to strengthen the global nuclear safety framework, and emphasised the IAEA's central role in international cooperation on nuclear safety and the peaceful use of nuclear energy, including the generation of electricity. The significant contribution of the OECD/NEA to safety and economic analyses of

  6. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad; Celik, Abdulkadir; Kamal, Ahmed E.

    2018-01-01

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power

  7. Energy saving and consumption reducing evaluation of thermal power plant

    Science.gov (United States)

    Tan, Xiu; Han, Miaomiao

    2018-03-01

    At present, energy saving and consumption reduction require energy saving and consumption reduction measures for thermal power plant, establishing an evaluation system for energy conservation and consumption reduction is instructive for the whole energy saving work of thermal power plant. By analysing the existing evaluation system of energy conservation and consumption reduction, this paper points out that in addition to the technical indicators of power plant, market activities should also be introduced in the evaluation of energy saving and consumption reduction in power plant. Ttherefore, a new evaluation index of energy saving and consumption reduction is set up and the example power plant is calculated in this paper. Rresults show that after introducing the new evaluation index of energy saving and consumption reduction, the energy saving effect of the power plant can be judged more comprehensively, so as to better guide the work of energy saving and consumption reduction in power plant.

  8. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  9. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  10. Hybrid solar and hydro-power for Austria

    Energy Technology Data Exchange (ETDEWEB)

    Weyss, N

    1978-02-01

    It is proposed that integrating solar powerplants into the Austrian electricity networks could cost less than conventional thermal plants, and provide a high degree of independence to the country. The following aspects are discussed; the seasonal distribution of sunshine, solar power plants, land requirements, economic feasibility, solar/fossil hybrid operation, integration strategy, Malta-B as a calculating unit, solar-hydraulic baseload throughout the year, concrete requirements, solar-hydraulic possibilities within the next 50 years, cement for solar plants, and energy accounting. (MHR)

  11. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: physicochemical characterization and pharmacokinetics in beagle dogs.

    Science.gov (United States)

    Lim, Hyun-Tae; Balakrishnan, Prabagar; Oh, Dong Hoon; Joe, Kwan Hyung; Kim, Young Ran; Hwang, Doo Hyung; Lee, Yong-Bok; Yong, Chul Soon; Choi, Han-Gon

    2010-09-15

    To develop a novel sibutramine base-loaded solid dispersion with enhanced solubility and bioavailability, various solid dispersions were prepared using a spray drying technique with hydrophilic polymers such as gelatin, HPMC and citric acid. Their solubility, thermal characteristics and crystallinity were investigated. The dissolution and pharmacokinetics of the sibutramine base-loaded solid dispersion were then compared with a sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The solid dispersions prepared with gelatin gave higher drug solubility than those prepared without gelatin, irrespective of the amount of polymer. The sibutramine base-loaded solid dispersions containing hydrophilic polymer and citric acid showed higher drug solubility compared to sibutramine base and sibutramine hydrochloride monohydrate. Among the formulations tested, the solid dispersion composed of sibutramine base/gelatin/HPMC/citric acid at the weight ratio of 1/0.8/0.2/0.5 gave the highest solubility of 5.03+/-0.24 mg/ml. Our DSC and powder X-ray diffraction results showed that the drug was present in an altered amorphous form in this solid dispersion. The difference factor (f(1)) values between solid dispersion and commercial product were 2.82, 6.65 and 6.31 at pH 1.2, 4.0 and 6.8, respectively. Furthermore, they had the similarity factor (f(2)) value of 65.68, 53.43 and 58.97 at pH 1.2, 4.0 and 6.8, respectively. Our results suggested that the solid dispersion and commercial product produced a similar correlation of dissolution profiles at all pH ranges. The AUC, C(max) and T(max) of the parent drug and metabolite I and II from the solid dispersion were not significantly different from those of the commercial product, suggesting that the solid dispersion might be bioequivalent to the commercial product in beagle dogs. Thus, the sibutramine base-loaded solid dispersion prepared with gelatin, HPMC and citric acid is a promising candidate for improving the

  12. Renewable energy. The power and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In late 1985, the Public Advisory Committees to the Environmental Council of Alberta began working toward a draft conservation strategy for Alberta. A prospectus was published and meetings and workshops held, the goal being a conservation strategy in place by 1992. This report is one of a series of discussion papers on relevant sectors such as agriculture, fish and wildlife, tourism, and energy production. This report focuses on the present and potential economic significance of renewable energy resources, excluding hydro power, and their capability to meet Alberta's demand. Renewable energy sources discussed include solar, wind, geothermal, biomass, and energy from waste, with economic significance and demand projections for each, as well as their interactions with conventional sources. Their use in low-temperature space heating, industrial process heat, liquid fuels, and electricity is also detailed. Current legislative and regulatory requirements for each of the renewables is given, as well as an attempt at policy formulation to deal with the use of renewables as a whole. 4 figs.

  13. The renewable energy field is gaining power

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, D.B.

    1984-01-01

    For about 25 years, Basic Resources Corp. in New York has been growing on the strength of operations ranging from oil and gas exploration and printing to computer leasing and the manufacture of highway toll-collecting equipment. But since early 1982, when it received an Energy Department grant, a new subsidiary has been working on a project with scant resemblance to any other of the multimillion-dollar firm's operations: the preliminary research for an ocean thermal energy plant that would convert heat on the ocean's surface to power at a site in the Hawaiian islands. Renewable energy -- once largely the domain of dreamers and urban dropouts -- has moved into the corporate mainstream, and more and more companies in the United States and abroad are trying to stake a claim to a piece of its future. Basic Resources is not the only renewable energy source firm doing well. Several hundred exhibitors and other participants -- including a number of foreign visitors -- turned out for the 3-day event. Arco, which has been working on photovoltaics since the late 1970s, is considered the world's largest manufacturer of photovoltaics -- solar cells that convert the sun's energy directly into electricity. But, despite tax credits, worldwide sales and dramatic strides in reducing the cost of the technology, the operation still isn't profitable after the costs of research and other costreduction efforts are included. Nonetheless, Arco has no plans to abandon the field, and its attitude explains why so many firms are bucking the odds and pursuing renewable energy.

  14. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  15. Nuclear power in future energy scenario

    International Nuclear Information System (INIS)

    Srinivasan, M.R.

    1981-01-01

    It is explained that even when the renewable energy sources like solar, biogas and biomass are developed to the maximum feasible extent, they will only be able to sustain a marginal level of economic activity. In India demand for coal is expected to rise at some 6% per annum and that for oil at about 4% per annum. It is doubtful whether the coal production can be raised to meet the demand of 2000 million tonnes of coal by the turn of century. Steadily increasing cost of oil will make it difficult to procure the necessary quota of oil. The only way, therefore, for large-scale increase in electricity generation is to use nuclear energy. At present, it accounts for only 3% of the electricity produced in the country. It is shown that with implementation of a proper nuclear programme, 10,000 MW of nuclear power representing 15% of electricity produced by the year 2000 can be produced. Safety aspect of nuclear power is discussed and it is mentioned that scare on these grounds is not justifiable. Need for a national consensus on this issue is emphasised. (M.G.B.)

  16. Environment and power; Umwelt und Energie

    Energy Technology Data Exchange (ETDEWEB)

    Franz, W.; Ramser, H.J.; Stadler, M. (eds.)

    2006-07-01

    Within the scope of the 35th economic seminar with he title '' Environment and power'' held between 18th and 21st September, 2006, at the monastery Ottobeuren (Federal Republic of Germany), the following lectures were held: (a) Environment and power: introduction into the subject matter (Karl Heinrich Opplaender); (b) Theoretical fundamentals of the sustainability (Wolfgang Buchholz); (c) Ecological fiscal reform and double dividend (Ronnie Schoeb); (d) ''My friend, that is all mere theory'' - Notes to the emission trading (Christoph Boehringer); (e) Environmental policy and locational competition (Michael Rauscher); (f) Dynamical incentives of environment political instruments - a survey (Till Requate); (g) Product differentiation in the presence of environmental concern, network effects and compatibility: The automobile market (Klaus Conrad); (h) The liability right as an instrument of environment policy (Alfred Endres); (i) environment economy and experimental evidence (Joachim Weimann); (j) Market design in the energy economy (Felix Muesgen, Axel Ockenfels); (k) Re-regulation of the liberalized energy markets in Europe (Carl Christian von Weizsaecker).

  17. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  18. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  19. Pec power generation system using pure energy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K; Sonai, A; Kano, A [Toshiba International Fuel Cells Corp. (Japan). Cell Technology Development Dept.; Yatake, T [Toshiba International Fuel Cells Corp. (Japan). Plant Engineering Dept.

    2002-07-01

    A polymer electrolyte fuel cell (PEFC) power generation system using pure hydrogen was developed by Toshiba International Fuel Cells (TIFC), Japan, under the sponsorship of the World Energy Network (WE-NET) Project. The goals of the project consist of the construction of 30 kilowatt power generation plant for stationary application and target electrical efficiency of over 50 per cent. Two critical technologies were investigated for high utilization stack, as high hydrogen utilization operation represents one of the most important items for the achievement of target efficiency. The first technology examined was the humidification method from cathode side, while the second was the two-block configuration, which is arranged in series in accordance with the flow of hydrogen. Using these technologies as a basis for the work, a 5 kilowatt short stack was developed, and a steady performance was obtained under high hydrogen utilization of up to 98 per cent. It is expected that by March 2003 the design of the hydrogen fueled 30 kilowatt power generation plant will be completed and assembled. 1 ref., 1 tab., 11 figs.

  20. What people really think about nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-15

    Nuclear power is a reliable, baseload, low-carbon energy source that can contribute to the fight against climate change. It is also competitive and can help reduce energy dependency. It is vital that politicians take the lead and implement bold decisions regarding the energy mix. Developments in Finland and the UK show that if the political decision to include nuclear in the energy mix is taken and information is communicated in an open, inclusive and democratic way, people tend to become more favourable to nuclear power. The March 2011 accident at the Fukushima-Daiichi nuclear plant in Japan had an impact on public opinion towards nuclear power. Yet the results of opinion polls carried out throughout Europe after the accident show that opinion is polarised and country specific.

  1. Assessing the Army Power and Energy Efforts for the Warfighter

    Science.gov (United States)

    2011-03-01

    term. Details are in Appendix B. The report places energy challenges in three categories: greatest use, greatest difficulty, and greatest impact ...Power and energy testing Silicon carbide Two new energy facilities New types of solar photovoltaic systems Smaller, lighter cogeneration and...Assessing the Army Power and Energy Efforts for the Warfighter John W. Lyons, Richard Chait, and James J. Valdes

  2. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  3. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  4. Which are the competitors for a fusion power plant?

    International Nuclear Information System (INIS)

    Miller, Ronald L.

    2000-01-01

    The (future) competitive position of central-station fusion power will depend on the resolution of several broad public-policy issues, including the provision of adequate electrical energy to a growing world population and the interaction of economic and environmental considerations meeting evolving standards of public acceptance and regulatory compliance. Candidate baseload central-station power plants, fusion or other, will be expected to contend for preferential market penetration against an evolving set of performance indicators or metrics (e.g. cost of electricity) reflecting societal 'customer preferences' for abundant, affordable, safe, reliable, and environmentally benign sources. This competition is enhanced by transitions to price-deregulated regimes, overlaid by nuclear uncertainites and evolution beyond carbon-based fuels toward more renewables in the energy mix. From these top-level considerations, quantifiable attributes, including plant size (output), system power density, surface heat flux, recirculating power fraction, power-conversion efficiency, waste streams, and forced- and planned-outage rates emerge

  5. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  6. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

    International Nuclear Information System (INIS)

    Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A.

    2013-01-01

    The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power. - Highlights: ► Nuclear, “renewable” and fossil energy are comparable on a uniform physical basis. ► Energy storage is considered for the calculation, reducing the ERoEI remarkably. ► All power systems generate more energy than they consume. ► Photovoltaics, biomass and wind (buffered) are below the economical threshold

  7. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  8. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  9. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  10. Nuclear power- the inevitable option for future energy needs

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1995-01-01

    In the ensuring era development and deployment of electrical power sources will be governed by environmental changes, energy security and economical competitiveness. In the energy-mix scenario nuclear power has the potential and will make significant contributions in the coming decades. It is certain that nuclear power will continue to play a vital role in bridging the widening gap of demand and availability of energy in the years to come. In sum and substance, with the limited energy options available with India, nuclear power must assume greater share to meet the rapidly growing energy demands. Fortunately, country has a sound base for achieving the goal. 14 tabs., 3 figs

  11. High efficiency thermal energy storage system for utility applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1979-01-01

    A concept of coupling a high efficiency base loaded coal or nuclear power plant with a thermal energy storage scheme for efficient and low-cost intermediate and peaking power is presented. A portion of the power plant's thermal output is used directly to generate superheated steam for continuous operation of a conventional turbine-generator to product base-load power. The remaining thermal output is used on a continuous basis to heat a conventional heat transfer salt (such as the eutectic composition of KaNO 3 /NaNO 3 /NaNO 2 ), which is stored in a high-temperature reservoir [538 0 C (1000 0 F)]. During peak demand periods, the salt is circulated from the high-temperature reservoir to a low-temperature reservoir through steam generators in order to provide peaking power from a conventional steam cycle plant. The period of operation can vary, but may typically be the equivalent of about 4 to 8 full-power hours each day. The system can be tailored to meet the utilities' load demand by varying the base-load level and the period of operation of the peak-load system

  12. Nuclear power - an inevitable component of a sustainable energy mix

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2000-01-01

    Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)

  13. Optimal Power Flow in Microgrids with Energy Storage

    DEFF Research Database (Denmark)

    Levron, Yoash; Guerrero, Josep M.; Beck, Yuval

    2013-01-01

    Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However...

  14. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    Science.gov (United States)

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  15. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  16. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  17. Solar Power Augmented Electrolysis Module for Energy Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrating solar photovoltaic power with regenerative fuel cell systems for energy storage can often be very complex and costly. It usually requires complex power...

  18. On energy efficient power allocation for power-constrained systems

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2014-01-01

    of the optimal power with instantaneous channel gain based on EE criterion. We show that the relation between the EE and the spectral efficiency (SE) when the optimal power is adopted is strictly increasing in contrast with the SE-EE trade-off discussed

  19. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  20. Power system stabilising features from wind power plants augmented with energy storage

    DEFF Research Database (Denmark)

    Tarnowski, Germán C.; Kjær, Philip C; Lærke, Rasmus

    2014-01-01

    This paper describes a wind power plant augmented with energy storage, configured to provide ancillary services (primary reserve, inertial response, power oscillation damping) for enhancement of power system stability. Energy storage can complement wind power plants thus reducing the need for any...... overload or curtailment to allow active power modulation. A 12MW + 1.6MW augmented plant is used for demonstration of representative performance of the particular ancillary service control algorithms...

  1. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  2. Energy-Saving RAM-Power Tap

    Science.gov (United States)

    Bruner, Alan Roy

    1987-01-01

    Reverse-flow HEXFET(R) minimizes voltage drop and power dissipation. HEXFET(R) scheme reduces voltage drop by approximately 80 percent. Design for power tap for random-access memory (RAM) has potential application in digital systems.

  3. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  4. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  5. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  6. Application of energy storage devices in power systems

    African Journals Online (AJOL)

    user

    paper concentrates on performance benefits of adding energy storage to power ..... Because of geographical, environmental, and cost constraints, construction of pumped .... transport, in Information Day on Non-Nuclear Energy RTD, Brussels.

  7. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  8. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  9. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  10. Wind Power: An Emerging Energy Resource

    Science.gov (United States)

    Deal, Walter F.

    2010-01-01

    One may ask the question, What is energy? Typically the first answers that come to mind are oil, coal, and natural gas or nuclear energy. Most human activities require some form of energy consumption. This may be the energy produced by the food that one eats or the gasoline that is used in cars, trucks, buses, and other vehicles. One cannot ignore…

  11. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients

    NARCIS (Netherlands)

    Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.

    2014-01-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we

  12. Nuclear power and sustainable energy supply for Europe. European Commission

    International Nuclear Information System (INIS)

    Hilden, W.

    2005-01-01

    The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig./GL)

  13. Energy and nuclear power planning study for Armenia

    International Nuclear Information System (INIS)

    2004-07-01

    The Energy and Nuclear Power Planning (ENPP) study for Armenia has been conducted under the technical cooperation programme of the International Atomic Energy Agency (IAEA). The objective of the study was to analyze the electricity demand as part of the total final energy demand in various scenarios of Armenian socioeconomic and technological development, and to develop economically optimized electric generating system expansion plans for meeting the electric power demand, and to assess the role that nuclear energy could play within these optimal programs. The specific objectives of this study were: to define the role that nuclear power could play in the future electricity supply in Armenia, based on a least-cost expansion planning analysis of the country's power system; to analyze the environmental impacts of such a nuclear power development; to evaluate the financial viability of the envisaged nuclear power development program; to train a group of Armenian experts in the use of the IAEA's energy models

  14. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  15. Geothermal energy: the earth, source of heat and electric power

    International Nuclear Information System (INIS)

    Lenoir, D.

    2005-01-01

    This document provides information on the geothermal energy. It presents the different types of geothermal deposits (very low, low and medium energy geothermal energy), the french deposits and the heat production. The electric power production from the geothermal energy is also discussed with the example of Soultz-sous-Forets. The last part deals with the heat pumps. (A.L.B.)

  16. Energy and Environment. Electric power stock exchange

    International Nuclear Information System (INIS)

    Fazioli, R.; Antonioli, B.; Beccarello, M.; Da Rin, B.

    2000-01-01

    In this paper are reported the structural characteristics of electric power stock exchange in the processes liberalization of european electric markets. International experience are also considered [it

  17. Polar lunar power ring: Propulsion energy resource

    Science.gov (United States)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  18. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  19. Distributed Power Systems for Sustainable Energy

    Science.gov (United States)

    2012-10-01

    sources of energy , the largest opportunities to reduce external grid utilization and also the environmental impact associated with the use of non...capital investment in state-of- the-art cogeneration technologies, renewable sources, energy storage, and interconnection hardware and software. It is...installations proved somewhat challenging. First, the performance of DOD energy managers was related to high- impact energy savings on the entire base. In

  20. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    Science.gov (United States)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  1. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    International Nuclear Information System (INIS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells

  2. Sun power: an energy to count on?

    International Nuclear Information System (INIS)

    Bellaton, Michel; Valentin, Priscille; Rondaud, Annabelle; Lipari, Celine

    2011-01-01

    In early 2010, the International Renewable Energy Agency (IRENA) held its first general meeting. At a time when the oil-coal-gas trinity represents 87% of the world's energy supply, IRENA is anticipating a fall to 78% in 2035 and a rise in renewables from 7% to 14%. At present, solar energy only represents 1%... (authors)

  3. Dynamic energy analysis and nuclear power

    International Nuclear Information System (INIS)

    Price, J.

    1974-01-01

    An initial inquiry (intended for the layman) into how the net energy balance of exponential programmes of energy conversion facilities varies in time; what are the energy inputs and outputs of commercial nuclear reactors, both singly and in such programmes; what are the possible errors and omissions in this analysis; and what are the policy and research implications of the results. (author)

  4. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  5. Energy management strategies for vehicle power nets

    NARCIS (Netherlands)

    Koot, M.W.T.; Jager, de A.G.; Kessels, J.T.B.A.; Heemels, W.P.M.H.; Bosch, van den P.P.J.

    2004-01-01

    In the near future a significant increase in electric power consumption in vehicles is to be expected. To limit the associated increase in fuel consumption and exhaust emissions, smart strategies for the generation, storage/retrieval, distribution, and consumption of the electric power can be used.

  6. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  7. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  8. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...

  9. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  10. Wireless Powered Cooperative Communications: Power-Splitting Relaying With Energy Accumulation (Author’s Manuscript)

    Science.gov (United States)

    2016-03-21

    decreasing power usage, while improving the transmission performance. A key concern of the energy harvesting enabled coop- erative relay communication is the...improving transmission performance via an efficient utiliza- tion of harvested power has been widely studied for conven- tional energy harvesting techniques...can be used as energy sources for cooperative nodes. Moreover, it has been illustrated in [6] that wireless -powered cooperative relay communications

  11. Nuclear power developments in the Asia-pacific region

    International Nuclear Information System (INIS)

    Kelly, J.F.

    2003-01-01

    Each Asia-Pacific country has a unique set of energy needs and capabilities: a). Some need large amounts of baseload power and have the political will to install nuclear capacity, but they have no funds b). Others have mature nuclear energy programs to which extra capacity needs to be planned-for. So there is no common Asian drive to install (or reject) nuclear power. However, the Asia-Pacific countries do all seem to have a long term view in regard to their future electricity supply. This paper will briefly discuss China, Japan, Korea, Taiwan and Vietnam. Indonesia remains an interesting prospect for the nuclear power industry, however, there is little real information about when a unit might be built

  12. Review of Energy Storage System for Wind Power Integration Support

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Hu, Shuju

    2015-01-01

    -discharging characteristics, Energy Storage System (ESS) is considered as an effective tool to enhance the flexibility and controllability not only of a specific wind farm, but also of the entire grid. This paper reviews the state of the art of the ESS technologies for wind power integration support from different aspects......With the rapid growth of wind energy development and increasing wind power penetration level, it will be a big challenge to operate the power system with high wind power penetration securely and reliably due to the inherent variability and uncertainty of wind power. With the flexible charging...

  13. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  14. Coordinated control of wind power and energy storage

    DEFF Research Database (Denmark)

    Zhao, Haoran

    the coordinated control of wind power and ESS. Due to the different technical characteristics, such as power and energy density, ESS can play different roles either in generation-side, grid-side or demand side. This thesis focuses on the following two scenarios:• Scenario 1: As a part of wind farm, the ESS plays......Nowadays, wind power has become one of the fastest growing sources of electricity in the world. Due to the inherent variability and uncertainty, wind power integration into the grid brings challenges for power systems, particularly when the wind power penetration level is high. The challenges exist...... in many aspects, such as reliability, power quality and stability. With the rapid development of energy storage technology, the application of Energy Storage System (ESS) is considered as an effective solution to handle the aforementioned challenges. The main objective of this study is to investigate...

  15. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  16. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  17. The security energy encryption in wireless power transfer

    Science.gov (United States)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  18. Nuclear Power and Sustainable Energy Policy: Promises and Perils

    OpenAIRE

    Ioannis N. Kessides

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  19. Wave energy and its possibilities in the Danish power supplies

    International Nuclear Information System (INIS)

    Traeholt Madsen, N.; Lorenzen, S.; Haunstrup Christensen, T.

    1997-06-01

    Mathematical theory of wave forces (wave height, spectrua, energy distribution and effect) is summarized. An attempt to estimate the Danish wave power potential on the basis of previous investigations og wave effect in various regions is presented. A brief review of wave energy applications and research constitutes basis for two scenarios of wave power adjustment into the 'Green society'. Power quality, environment, economics and supply reliability are estimated. (EG) 42 refs

  20. Can renewable energy power the future?

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Honnery, Damon

    2016-01-01

    Fossil fuels face resource depletion, supply security, and climate change problems; renewable energy (RE) may offer the best prospects for their long-term replacement. However, RE sources differ in many important ways from fossil fuels, particularly in that they are energy flows rather than stocks. The most important RE sources, wind and solar energy, are also intermittent, necessitating major energy storage as these sources increase their share of total energy supply. We show that estimates for the technical potential of RE vary by two orders of magnitude, and argue that values at the lower end of the range must be seriously considered, both because their energy return on energy invested falls, and environmental costs rise, with cumulative output. Finally, most future RE output will be electric, necessitating radical reconfiguration of existing grids to function with intermittent RE. - Highlights: •Published estimates for renewable energy (RE) technical potential vary 100-fold. •Intermittent wind and solar energy dominate total RE potential. •We argue it is unlikely that RE can meet existing global energy use. •The need to maintain ecosystem services will reduce global RE potential. •The need for storage of intermittent RE will further reduce net RE potential.

  1. Hydroelectric power stations and ecological energy policy

    International Nuclear Information System (INIS)

    Novakova, R.

    1993-01-01

    The report discusses the place of hydroenergy in solving the power and ecological problems of Bulgaria: level of building up of the hydroelectric capacity of the country; possibilities for new hydro electric construction; environmental problems of design, construction and operation of the hydroelectric units; advantages of the hydroelectric engineering. The possibilities of the hydroelectric power plants as an alternative of the other more or less conventional electicity producers are shown in order to help in decision making as regards the problems of the economic, power and environmental crisis. (author)

  2. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  3. Nuclear power: An evolving scenario. 2 March 2004, Brussels, Belgium. European Parliament Conference: 'Energy Choices for Europe'

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2004-01-01

    , one could point out that the current 'holding period' for nuclear power in Europe will soon come to an end. In the near future, Europe will be faced with important energy decisions. With an increasing number of nuclear power plants reaching their original design lifetimes, Europe will have to decide how to replace its retiring nuclear power plants. Making these decisions will depend, to some extent, on where you choose to place your emphasis, for example, on exploring available coal and natural gas resources, improving the performance and cost of renewables, or placing greater reliance on imports. What seems clear is that the only baseload option available today with low carbon emissions comparable to nuclear power is large hydropower, and sites for hydropower expansion are somewhat limited in Europe. Whether decisions involve decommissioning, extending the life of existing reactors, or building the next generation of European nuclear power plants, the IAEA will be ready to assist you in your efforts to ensure a safe and secure energy supply

  4. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  5. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  6. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  7. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  8. Denmark's Energy Cooperation with Emerging Powers

    DEFF Research Database (Denmark)

    Martins, Bruno Oliveira; Schvartzman, Yonatan; Jørgensen, Knud Erik

    2015-01-01

    of energy interplay with the traditional national protectionist policies pursued by governments in this strategic domain. Being a member of the European Union (EU), an entity that aspires to be world leader in the fight against climate change, Denmark’s energy policies are also defined and pursued...

  9. Sustainable energy landscapes: The power of imagination

    NARCIS (Netherlands)

    Stremke, S.

    2012-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Sustainable energy transition necessitates a transformation of large parts of the existing built environment and presents one of the great challenges of present-day

  10. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power producing systems. Energy analysis compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. Statically we have applied this method to nuclear power producing sytems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios have been investigated. For comparison purposes fossil fueled and solar power plants have also been analyzed. By static evaluation it has been shown that for all types of power plants the energy investment for construction is shortly after plant startup being repaid by energy output. Static analyses of nuclear and fossil fuels have indicated values of fuel concentrations below which more energy is required for their utilization than can be obtained from the plants they fuel. In a further step these global results were specifically modified to the economic situations of countries with various levels of industrialization. Also the influence of energy imports upon energy analysis has been discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programs have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons but especially for their usefulness in showing the advantages and disadvantages of a specific power program with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance especially because of the today so often cited ''valuable cumulated fossil fuel savings''

  11. Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage

    International Nuclear Information System (INIS)

    Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige

    1984-01-01

    Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)

  12. Energy Drinks and Food Bars: Power or Hype?

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Energy Drinks and Food Bars: Power or Hype? KidsHealth / ... nutritivas: ¿Energía o mera exageración? The Buzz on Energy Foods Energy drinks and nutrition bars often make ...

  13. Optimization of the Energy Output of Osmotic Power Plants

    Directory of Open Access Journals (Sweden)

    Florian Dinger

    2013-01-01

    Full Text Available On the way to a completely renewable energy supply, additional alternatives to hydroelectric, wind, and solar power have to be investigated. Osmotic power is such an alternative with a theoretical global annual potential of up to 14400 TWh (70% of the global electricity consumption of 2008 per year. It utilizes the phenomenon that upon the mixing of fresh water and oceanic salt water (e.g., at a river mouth, around 2.88 MJ of energy per 1 m3 of fresh water is released. Here, we describe a new approach to derive operational parameter settings for osmotic power plants using a pressure exchanger for optimal performance, either with respect to maximum generated power or maximum extracted energy. Up to now, only power optimization is discussed in the literature, but when considering the fresh water supply as a limiting factor, the energy optimization appears as the challenging task.

  14. Renewable energy: power for a sustainable future

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2001-01-01

    By the end of the 21 century, according to United National projections, the number of people on the earth is likely to have approximately doubled. How can a world of 10 to 12 billion people be provided with adequate supplies of energy, cleanly, safely and substantially? There is a growing consensus that renewable energy sources will be a very important part of the answer. The growing interest in 'renewables' has been prompted in part, by increasing concern over the pollution, resource depletion and possible climate change implications of our continuing use of conventional fossil and nuclear fuels. But recent technological developments have also improved the cost-effectiveness of many of the renewables, making their economic prospects look increasingly attractive. It describes the achievements and progress made in hydropower, biomass conversion, geothermal, solar thermal technology, wind energy conversion and the increasing usage of photovoltaics. It is evident that global warming is setting in and is going to change the climate as well as the terrain of many countries unless drastic measures are taken. The Kyoto meeting emphasised the importance of limiting CO 2 emissions and to abide by some form of agreement to reduce emissions. Present study concludes that renewable energy penetration into the energy market is much faster than was expected in recent years and by 2030, 15-20 percent of our prime energy will be met by renewable energy. (Author)

  15. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  16. Dispatchable Renewable Energy Model for Microgrid Power System

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Fred; Gentle, Jake P.; McJunkin, Timothy R.

    2017-04-01

    Over the years, many research projects have been performed and focused on finding out the effective ways to balance the power demands and supply on the utility grid. The causes of the imbalance could be the increasing demands from the end users, the loss of power generation (generators down), faults on the transmission lines, power tripped due to overload, and weather conditions, etc. An efficient Load Frequency Control (LFC) can assure the desired electricity quality provided to the residential, commercial and industrial end users. A simulation model is built in this project to investigate the contribution of the modeling of dispatchable energy such as solar energy, wind power, hydro power and energy storage to the balance of the microgrid power system. An analysis of simplified feedback control system with proportional, integral, and derivative (PID) controller was performed. The purpose of this research is to investigate a simulation model that achieves certain degree of the resilient control for the microgrid.

  17. Iran: a (re)emerging energy power

    International Nuclear Information System (INIS)

    Bauchard, D.; Therme, C.

    2007-01-01

    This document first describes the energy situation in Iran: the energy sector is insufficiently developed due to a lack of investments and the prudence of foreign groups, while ambitious gas pipeline projects take place; however, the important domestic consumption reduces the country's exportation capacity. The second part discusses about the domestic and international political context that is not propitious for energy development (internal tensions that paralyse decision making, international sanctions, etc.) while Iran try to by-pass these difficulties through its relations with Russia and Asia. Several scenarios are then proposed, linked to the possible evolutions of the nuclear litigation

  18. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms......&D institutes, such control options were demonstrated and assessed for wind power plant clusters....

  19. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... - Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...

  20. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  1. Innovation on Energy Power Technology (1)

    Science.gov (United States)

    Nagano, Susumu; Kakishima, Masayoshi

    After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.

  2. Specific energy released in power reactors

    International Nuclear Information System (INIS)

    Zaritskaya, T.S.; Kiselev, G.V.; Rudik, A.P.; Tsenter, Eh.M.

    1986-01-01

    Technique of determination are described and analysis of specific energy for different methods of critically maintance of RBMK and WWER-440 reactors are conducted. Characteristics of the optimal mode of critically maintanance are determined

  3. Wind Energy: A Maturing Power Supply Possibility.

    Science.gov (United States)

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  4. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  5. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  6. Biomass power production in Amazonia: Environmentally sound, economically productive

    Energy Technology Data Exchange (ETDEWEB)

    Waddle, D.B. [National Rural Electric Cooperative Association, Washington, DC (United States); Hollomon, J.B. [Winrock International Institute for Agricultural Development, Arlington, VA (United States)

    1993-12-31

    With the support of the US Agency for International Development, the National Rural Electric Cooperative Association (NRECA) is assisting their utility counterparts in Bolivia to improve electric service in the country`s rural population. In remote areas, the cost of extending transmission lines to small communities is prohibitive, and diesel generators represent an expensive alternative, especially for baseload power. This has led to serious consideration of electric generating systems using locally available renewable resources, including biomass, hydro, wind, and solar energy. A project has recently been initiated in Riberalta, in the Amazonian region of Bolivia, to convert waste Brazil nut shells and sawmill residues to electricity. Working in tandem with diesel generators, the biomass-fired plant will produce base-load power in an integrated system that will be able to provide reliable and affordable electricity to the city. The project will allow the local rural electric cooperative to lower the price of electricity by nearly forty percent, enable the local Brazil nut industry to increase its level of mechanization, and reduce the environmental impacts of dumping waste shells around the city and in an adjacent river. The project is representative of others that will be funded in the future by NRECA/AID.

  7. Comparing nuclear power with other energy sources

    International Nuclear Information System (INIS)

    Rey, Francisco C.

    2001-01-01

    The economics of electric generation of nuclear, hydro, oil and gas origin are compared. A similar comparison is also made from the health and environment standpoint for the fossil, nuclear, solar and wind generation. A risk assessment for energies of different origin is outlined and the significance of the greenhouse effect is emphasised. A comprehensive economic and environmental evaluation is recommended for the energy planning

  8. Energy Saving and Efficient Energy Use By Power Electronic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Wang, Huai; Davari, Pooya

    2017-01-01

    In the development of the modern society, one of the key factors is to save energy in order to become more independent of other energy resources. Two important approaches can be taken—one is to change behavior and thereby save energy—the second one is to develop new technology which is able to sa...

  9. Gas-turbine industry prepares to become base-load supplier

    International Nuclear Information System (INIS)

    Hansen, T.

    1996-01-01

    Gas-turbine technology has entered a new era; the simple-cycle units of yesterday are making room for new, highly sophisticated combined-cycle units. In July 1949, the first U.S. commercial power generation gas turbine was installed at Oklahoma Gas and Electric Co.'s Belle Isle Station. This unit was a General Electric (GE) MS3000 heavy-duty gas turbine rated at 3,5000 kW. In 1994, more than 900 gas turbines totaling over 33,000 MW were ordered worldwide, according to Power-Data Group, LaJolla, Calif. These figures show just how far gas turbines have come in less than 50 years. Today, simple-cycle units rated at up to 150 MW (with efficiencies around 35 percent) and combined-cycle units rated at over 200 MW (approaching 60-percent efficiency) are up and running

  10. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    is never sold at a lower price than the most expensive heat alternative. The other is to lower the average costs of wind power by building more onshore wind power capacity, and proportionally less offshore wind power. This is facilitated by local and regional majority ownership models that increase...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs.......Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...

  11. Wind power; L'energie eolienne

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  12. Adaptive control of energy storage systems for power smoothing applications

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2017-01-01

    Energy storage systems (ESSs) are desired and widely applied for power smoothing especially in systems with renewable generation and pulsed loads. High-pass-filter (HPF) is commonly applied in those applications in which the HPF extracts the high frequency fluctuating power and uses...... that as the power reference for ESS. The cut-off frequency, as the critical parameter, actually decides the power/energy compensated by ESS. Practically the state-of-charge (SoC) of the ESS has to be limited for safety and life-cycle considerations. In this paper an adaptive cut-off frequency design is proposed...

  13. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  14. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  15. RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Warda Saeed

    2018-01-01

    Full Text Available This paper presents a review of wireless power transfer (WPT followed by a comparison between ambient energy sources and an overview of different components of rectennas that are used for RF energy harvesting. Being less costly and environment friendly, rectennas are used to provide potentially inexhaustible energy for powering up low power sensors and portable devices that are installed in inaccessible areas where frequent battery replacement is difficult, if not impossible. The current challenges in rectenna design and a detailed comparison of state-of-the-art rectennas are also presented.

  16. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  17. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  18. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad

    2018-02-12

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power supply of green (renewable) and traditional micro-grid, such that traditional micro-grid is not exploited as long as the BSS can meet their power demands from harvested and stored green energy. Therefore, our goal is to minimize the networkwide energy consumption subject to users\\' certain quality of service and BSS\\' power consumption constraints. As a result of binary BS sleeping status and user-cell association variables, proposed is formulated as a binary linear programming (BLP) problem. A green communication algorithm based on binary particle swarm optimization is implemented to solve the problem with low complexity time.

  19. Method for analysing the adequacy of electric power systems with wind power plants and energy storages

    Directory of Open Access Journals (Sweden)

    Perzhabinsky Sergey

    2017-01-01

    Full Text Available Currently, renewable energy sources and energy storage devices are actively introduced into electric power systems. We developed method to analyze the adequacy of these electric power systems. The method takes into account the uncertainty of electricity generation by wind power plants and the processes of energy storage. The method is based on the Monte Carlo method and allowed to use of long-term meteorological data in open access. The performed experimental research of electrical power system is constructed on the basis of the real technical and meteorological data. The method allows to estimate of effectiveness of introducing generators based on renewable energy sources and energy storages in electric power systems.

  20. The Energy Processing by Power Electronics and its Impact on Power Quality

    Directory of Open Access Journals (Sweden)

    J.E. Rocha

    2012-11-01

    Full Text Available This paper discusses the electrical architectures adopted in wind turbines and its impact on the harmonic flux at the connected electric network. The integration of wind electric generators with the power grid needs energy processing by power electronics. It shows that different types of wind turbine generator systems use different types of electronic converters. This work provides a discussion on harmonic distortion taking place on the generator side, as well as in the power grid side. Keywords: grid connection, harmonic distortion, power electronics and converters, wind energy conversion systems, wind power, wind technology, wind turbines

  1. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  2. Renewable energy off-grid power systems: options for energy suppliers

    International Nuclear Information System (INIS)

    Trouchet, K.

    1992-01-01

    SURVIVOR ENERGY SYSTEMS package a range of wind-based renewable energy systems for the supply of 24-hour power to off-grid homesteads and communities. This paper presents a leasing package for these power users and illustrates their cost effectiveness in comparison with stand-alone diesel and comparative hybrid power options. This offer is seen as a alternative for energy planners and supply agencies for their off-grid clients. 6 refs., 3 tabs., 3 figs

  3. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    OpenAIRE

    Vlad MARSIC; Alessandro GIULIANO; Meiling ZHU

    2013-01-01

    This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimiza...

  4. Nuclear stopping power at high energies

    International Nuclear Information System (INIS)

    Date, S.; Gyulassy, M.; Sumiyoshi, H.

    1985-03-01

    Recent p + A → p + X data are analyzed within the context of the multi-chain and additive quark models. We deduce the average energy loss of a baryon as a function of distance traversed in nuclear matter. Consistency of the multi-chain model is checked by comparing the predictions for p + A → π +- + X with data. We discuss the space-time development of baryon stopping and show how longitudinal growth limits the energy deposition per unit length. Predictions are made for the proton spectra to be measured in nucleus-nucleus collisions at CERN and BNL. Finally, we conclude that the stopping domain for central collisions of heavy ions extends up to center of mass kinetic energies KEsub(em) asymptotically equals 3 +- 1 AGev. (author)

  5. Nuclear energy: A balance of power

    International Nuclear Information System (INIS)

    1992-01-01

    The Forum was attended by public information officers of the Member States' atomic energy commissions and agencies; public relations and information representatives of the international nuclear industry, including vendors, utilities and information dispersal groups; scientific societies; and trade associations. The Forum provided an international opportunity for those working in nuclear energy public information programmes to learn from one another, and to exchange ideas and methods on how best to demystify this form of energy and reach the public for better general understanding of the issues involved. The described report of the Forum consists of two parts. One is designed to represent the conclusions, recommendations and specific activities from the strategy sessions. It is followed by examples provided by the participants. An individual section is intended as a ready resources for up-to-date information on non-proliferation and radiation and health. A separate abstract was prepared for each of the presentations

  6. Development of a model to optimize global use of nuclear energy considering competition of seawater uranium and reprocessing

    International Nuclear Information System (INIS)

    Undarmaa, Baatarkhuu; Horio, Kenta; Fujii, Yasumasa; Komiyama, Ryoichi

    2017-01-01

    In order to sustain long-term energy security and to mitigate the climate change, nuclear power remains an important baseload option for the global power generation mix. To utilize nuclear power in long-term, some important concerns such as economics, stability of fuel supply and spent fuel amount should be evaluated. Model developed in this study optimizes the global use nuclear power considering such issues. The Model is based on linear programming and calculates the best mix of nuclear reactor types by minimizing the current value of total power generation cost within the target period (next 100 years). Possibility of fuel cycle options such as reprocessing, seawater uranium and thorium utilization are also taken in to account, along with remaining spent fuel and plutonium stock. As result. reprocessing and uranium from seawater become essential part of nuclear fuel cycle in the long run. Amount of stored spent fuel is reduced following the deployment of Fast Breeder Reactor. Also, as an extension of current model, a baseload power generation mix model, which estimates the optimal mix of nuclear and coal-fired power generation will be introduced. (author)

  7. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  8. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  9. Selling power : marketing energy under deregulation

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.; Hanna, F.

    2001-07-01

    This book discussed the marketing of energy in a deregulated environment. Experience from long distance telephone service providers has shown that historical dominance is not a guarantee for future success. As new brands are introduced and as consumer choice increases, so does the ability to change from one provider to another. Price is only one of the factors prompting that change. Old rules and practices do not bind new competitors who must face the challenge of open competition and must be aware of the ever-changing face of business. It was recommended that the strategic solution would be to build a brand and to develop significant market shares and create effective customer retention programs. This book focused on the elements that energy marketing professionals must use to maintain and increase share without product differentiation. It also explained how energy providers can effectively attract and retain customers over the long term while keeping marketing and service delivery costs down. It was suggested that small players can compete with the growing strength of regional providers by creating new alliances between larger energy conglomerates. The chapters of the book were entitled: (1) Introduction, (2) The Goals of Deregulation, (3) Strategic Marketing Choices, (4) Relationship Marketing, (5) The Role of Customer Service, (6) The Question of Outsourcing, and (7) Final Thoughts and Observations. 24 refs., 3 figs.

  10. Selling power : marketing energy under deregulation

    International Nuclear Information System (INIS)

    Drummond, J.; Hanna, F.

    2001-01-01

    This book discussed the marketing of energy in a deregulated environment. Experience from long distance telephone service providers has shown that historical dominance is not a guarantee for future success. As new brands are introduced and as consumer choice increases, so does the ability to change from one provider to another. Price is only one of the factors prompting that change. Old rules and practices do not bind new competitors who must face the challenge of open competition and must be aware of the ever-changing face of business. It was recommended that the strategic solution would be to build a brand and to develop significant market shares and create effective customer retention programs. This book focused on the elements that energy marketing professionals must use to maintain and increase share without product differentiation. It also explained how energy providers can effectively attract and retain customers over the long term while keeping marketing and service delivery costs down. It was suggested that small players can compete with the growing strength of regional providers by creating new alliances between larger energy conglomerates. The chapters of the book were entitled: (1) Introduction, (2) The Goals of Deregulation, (3) Strategic Marketing Choices, (4) Relationship Marketing, (5) The Role of Customer Service, (6) The Question of Outsourcing, and (7) Final Thoughts and Observations. 24 refs., 3 figs

  11. World's energy appetite may crave nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Anderson, T.D.

    1996-01-01

    As scientists come to agree that global warming is a real phenomenon, it may be time to jumpstart the stalled nuclear industry. World population is expected to double by the end of the 21st century, and the lion's share of growth will be in developing nations. open-quotes More people and more economic activity will require more energy,close quotes say William Fulkerson, a senior fellow at the Joint Institute for Energy and the Environment in Knoxville, Tennessee, and Truman D. Anderson, formerly director of planning at Oak Ridge National Laboratory. There are only three viable options to fossil fuel plants, the authors say: nuclear fission, nuclear fusion, and such renewable energy sources as solar and wind. The advantages of nuclear energy are well known, the authors say. open-quotes It emits no greenhouse gases, and potentially it can be expanded almost without limit anywhere in the world, providing the controversies that surround it can be resolved.close quotes However, to garner public acceptance, a new generation of supersafe nuclear reactors, invulnerable to terrorism and conversion to weapons, will need to be developed, the authors say

  12. Pulsed power liner for PLT energy systems

    International Nuclear Information System (INIS)

    Armellino, C.A.; Bronner, G.; Murray, J.G.

    1975-01-01

    PLT is Princeton University's latest Tokamak machine in the controlled thermonuclear fusion research effort. The OH (ohmic heating) and SF (shaping field) systems for the machine place a very high energy pulsed current load on the AC line feeding them. This paper describes the two systems and the steps taken to insure minimum effect on line regulation during the pulsed operation

  13. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  14. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  15. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  16. Forecast of wind energy production and ensuring required balancing power

    International Nuclear Information System (INIS)

    Merkulov, M.

    2010-01-01

    The wind energy is gaining larger part of the energy mix around the world as well as in Bulgaria. Having in mind the irregularity of the wind, we are in front of a challenge for management of the power grid in new unknown conditions. The world's experience has proven that there could be no effective management of the grid without forecasting tools, even with small scale of wind power penetration. Application of such tools promotes simple management of large wind energy production and reduction of the quantities of required balancing powers. The share of the expenses and efforts for forecasting of the wind energy is incomparably small in comparison with expenses for keeping additional powers in readiness. The recent computers potential allow simple and rapid processing of large quantities of data from different sources, which provides required conditions for modeling the world's climate and producing sophisticated forecast. (author)

  17. The role of nuclear power in sustainable energy strategies

    International Nuclear Information System (INIS)

    Semenov, B.A.; Bennett, L.L.; Bertel, E.

    1993-01-01

    The purpose of this paper is to provide an overview of future demand outlooks for energy, electricity and nuclear power, as a background for discussion of the design and operation aspects of advanced nuclear power systems. The paper does not attempt to forecast the actual outcomes of nuclear power programmes, since this will depend upon many factors that cannot be predicted with certainty. Rather, the paper outlines the size of the opportunity for nuclear power, in terms of the expected growth in energy and electricity demands, the need to diversify energy supply options and substitute depletable fossil fuels by other energy sources, and the need to mitigate health and environmental impacts including in particular those arising from the the atmospheric emissions from burning of fossil fuels. 7 refs

  18. Energy Sharing Framework for Microgrid-Powered Cellular Base Stations

    KAUST Repository

    Farooq, Muhammad Junaid

    2017-02-07

    Cellular base stations (BSs) are increasingly becoming equipped with renewable energy generators to reduce operational expenditures and carbon footprint of wireless communications. Moreover, advancements in the traditional electricity grid allow two-way power flow and metering that enable the integration of distributed renewable energy generators at BS sites into a microgrid. In this paper, we develop an optimized energy management framework for microgrid-connected cellular BSs that are equipped with renewable energy generators and finite battery storage to minimize energy cost. The BSs share excess renewable energy with others to reduce the dependency on the conventional electricity grid. Three cases are investigated where the renewable energy generation is unknown, perfectly known, and partially known ahead of time. For the partially known case where only the statistics of renewable energy generation are available, stochastic programming is used to achieve a conservative solution. Results show the time varying energy management behaviour of the BSs and the effect of energy sharing between them.

  19. Prediction of Wind Energy Resources (PoWER) Users Guide

    Science.gov (United States)

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER

  20. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  1. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  2. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  3. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  4. Architecture-independent power bound for vibration energy harvesters

    International Nuclear Information System (INIS)

    Halvorsen, E; Le, C P; Mitcheson, P D; Yeatman, E M

    2013-01-01

    The maximum output power of energy harvesters driven by harmonic vibrations is well known for a range of specific harvester architectures. An architecture-independent bound based on the mechanical input-power also exists and gives a strict limit on achievable power with one mechanical degree of freedom, but is a least upper bound only for lossless devices. We report a new theoretical bound on the output power of vibration energy harvesters that includes parasitic, linear mechanical damping while still being architecture independent. This bound greatly improves the previous bound at moderate force amplitudes and is compared to the performance of established harvester architectures which are shown to agree with it in limiting cases. The bound is a hard limit on achievable power with one mechanical degree of freedom and can not be circumvented by transducer or power-electronic-interface design

  5. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa; Claudel, Christian G.

    2014-01-01

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  6. Energy and nuclear power planning in developing countries

    International Nuclear Information System (INIS)

    1985-01-01

    In this publication of the IAEA, after the introduction, four substantive parts follow. Part I, Energy demand and rational energy supply, deals with the needs for energy, primary energy resources and reserves, energy transport, storage, distribution and conservation, including the environmental effects on energy development. Part II, Economic aspects of energy development, presents an integrated view of the basic concepts of energy economics, evaluation of alternative energy projects with an in-depth comparison of electricity generation costs of nuclear and fossil-fuelled power plants. Part III, World energy development status and trends, begins with an overview of the world energy status and trends and continues with a presentation of the energy situation in industrialized countries and in developing countries. Part IV, Energy planning, deals with the optimization techniques, energy planning concepts and computerized models. The launching conditions and implementation of a nuclear power programme are described in detail. 582 references are given in the text and a bibliographical list of 356 titles has been added

  7. Wind power today: 1999 Wind Energy program highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, Pat

    2000-04-06

    Wind Power Today is an annual publication that provides an overview for the Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy for the 21st century. Content objectives include: Educate readers about the advantages and potential for widespread deployment of wind energy; explain DOE wind energy program objectives and goals; describe program accomplishments in research and application; examine the barriers to widespread deployment; describe benefits of continued research and development; facilitate technology transfer; attract cooperative wind energy projects with industry.

  8. Energy forum 2005: Nuclear power - in competition with sustainable energy supply in Europe. Lectures

    International Nuclear Information System (INIS)

    2005-01-01

    The forum of energy for future organized on 29st September 2005 the annual Energy Forum at Berlin. The Energy Forum 2005 dealt with nuclear power in competition with sustainable energy supply in Europe and didn't only give their members the possibility of a discussion on this actual theme. Furtheron demanding aims on CO2-reduction, increased raw material- and energy prices as the construction of a new Finnish nuclear power plant have countries moved to evaluate again the future-oriented role of nuclear power. (orig./GL)

  9. Mechanical engineers' handbook, energy and power

    CERN Document Server

    Kutz, Myer

    2015-01-01

    The engineer's ready reference for mechanical power and heat Mechanical Engineer's Handbook provides the mostcomprehensive coverage of the entire discipline, with a focus onexplanation and analysis. Packaged as a modular approach, thesebooks are designed to be used either individually or as a set,providing engineers with a thorough, detailed, ready reference ontopics that may fall outside their scope of expertise. Each bookprovides discussion and examples as opposed to straight data andcalculations, giving readers the immediate background they needwhile pointing them toward more in-depth infor

  10. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  11. Coal and nuclear power: Illinois' energy future

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  12. Nuclear power for energy security - Indian scenario

    International Nuclear Information System (INIS)

    Sinha, R.K.

    2013-01-01

    India has been witnessing an impressive growth in GDP in the face of several challenges including the fact that India has a population of over 1.2 billion. In order to provide and maintain a comfortable standard of living to our large population, as well as to sustain the national economic growth, it is essential to have a matching growth in the availability of energy. One such indicator is per capita electricity consumption, and for India, it is about 700 kWh which is far below that of the OECD countries (∼8000 kWh). Furthermore, India's population is expected to rise to about 1.5 billion by 2050. A per capita use of about 5000 kWh energy in the form of electricity every year would be needed for achieving a state of reasonably high development. This will require an installed electricity generation capacity exceeding 1300 GWe, which is slightly more than six times the existing installed electricity generation capacity of 210 GWe in India. Despite the fact that at present India is the fifth largest electricity generating country, India has to increase total electricity generation to almost 10 times the present generation level (about 875 billion kWh). It is against this backdrop, that we cannot afford to ignore any source of energy production including the nuclear option, since no single source alone, or not even a combination of only a couple of sources, can ever meet the entire energy needs of our country in a reliable and sustainable manner. (author)

  13. Energy-Efficient Power Allocation for MIMO-SVD Systems

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we address the problem of energyefficient power allocation in MIMO systems. In fact, the widely adopted water-filling power allocation does not ensure the maximization of the energy efficiency (EE). Since the EE maximization is a non

  14. Long term energy performance analysis of Egbin thermal power ...

    African Journals Online (AJOL)

    This study is aimed at providing an energy performance analysis of Egbin thermal power plant. The plant operates on Regenerative Rankine cycle with steam as its working fluid .The model equations were formulated based on some performance parameters used in power plant analysis. The considered criteria were plant ...

  15. Energy-Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2017-03-20

    Due to the massive data traffic in wireless networks, energy consumption has become a crucial concern, especially with the limited power supply of the mobile terminals and the increasing CO2 emission of the cellular industry. In this context, we study the energy efficiency (EE) of MIMO spectrum sharing cognitive radio (CR) systems under power and interference constraints. We present an energy-efficient power allocation framework based on maximizing the average EE per parallel channel resulting from the singular value decomposition (SVD) eigenmode transmission. We also present a sub-optimal low-complexity power allocation scheme based on the water-filling power allocation. In the numerical results, we show that the sub-optimal power allocation achieves at least 95% of the optimal performance. In addition, we show that adopting more antennas is more energy efficient for a given power budget. Finally, we show that the interference threshold has a significant effect on both the EE and the spectral efficiency at high-power regime.

  16. Ambient RF energy scavenging: GSM and WLAN power density measurements

    NARCIS (Netherlands)

    Visser, H.J.; Reniers, A.C.F.; Theeuwes, J.A.C.

    2009-01-01

    To assess the feasibility of ambient RF energy scavenging, a survey of expected power density levels distant from GSM-900 and GSM-1800 base stations has been conducted and power density measurements have been performed in a WLAN environment. It appears that for distances ranging from 25 m to 100 m

  17. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  18. The Power Makers' Challenge And the Need for Fission Energy

    CERN Document Server

    Nicholson, Martin

    2012-01-01

    The Power Makers - the producers of our electricity - must meet the demands of their customers while also addressing the threat of climate change. There are widely differing views about solutions to electricity generation in an emission constrained world. Some see the problem as relatively straight forward, requiring deep cuts in emissions now by improving energy efficiency, energy conservation and using only renewable resources. Many electricity industry engineers and scientists see the problem as being much more involved.   The Power Makers ’ Challenge: and the need for Fission Energy looks at why using only conventional renewable energy sources is not quite as simple as it seems. Following a general introduction to electricity and its distribution, the author quantifies the reductions needed in greenhouse gas emissions from the power sector in the face of ever increasing world demands for electricity. It provides some much needed background on the many energy sources available for producing electricity ...

  19. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  20. mobile nuclear energy power plants for Turkey and III. world

    International Nuclear Information System (INIS)

    Oezden, H.

    2001-01-01

    It is estimated that if there is no alternative energy source, there will be increase in building nuclear energy power plants. This source of energy and know how along with technology must be put into the possession of Turkey. Since almost all of Turkey is 1 st degree earthquake region and in view of the regional political instability, the requirement of ample amount of water for prolonged times, the density of settlement, environmental problems, high cost of building nuclear energy power plants it becomes necessary to think about their application techniques. In this study, mobile nuclear energy power plants having a wide area of use in conditions prevailing in Turkey , their draft drawings for making them by using metal/steel are shown. The positive-negative aspects of the topic is presented for discussions

  1. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  2. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  3. Distributed energy store powered railguns for hypervelocity launch

    Science.gov (United States)

    Maas, Brian L.; Bauer, David P.; Marshall, Richard A.

    1993-01-01

    Highly distributed power supplies are proposed as a basis for current difficulties with hypervelocity railgun power-supply compactness. This distributed power supply configuration reduces rail-to-rail voltage behind the main armature, thereby reducing the tendency for secondary armature current formation; secondary current elimination is essential for achieving the efficiencies associated with muzzle velocity above 6 km/sec. Attention is given to analytical and experimental results for two distributed energy storage schemes.

  4. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....

  5. 75 FR 6378 - Covanta Pylmouth Renewable Energy Limited Partnership Covanta Energy Marketing LLC Covanta Power...

    Science.gov (United States)

    2010-02-09

    ..., ER10-410-000] Covanta Pylmouth Renewable Energy Limited Partnership Covanta Energy Marketing LLC... Pylmouth Renewable Energy Limited Partnership, Covanta Energy Marketing LLC, and Covanta Power, LLC filed... assistance with any FERC Online service, please e-mail [email protected] , or call (866) 208-3676...

  6. Energy and exergy analysis of solar power tower plants

    International Nuclear Information System (INIS)

    Xu Chao; Wang Zhifeng; Li Xin; Sun Feihu

    2011-01-01

    Establishing the renewable electricity contribution from solar thermal power systems based on energy analysis alone cannot legitimately be complete unless the exergy concept becomes a part of that analysis. This paper presents a theoretical framework for the energy analysis and exergy analysis of the solar power tower system using molten salt as the heat transfer fluid. Both the energy losses and exergy losses in each component and in the overall system are evaluated to identify the causes and locations of the thermodynamic imperfection. Several design parameters including the direct normal irradiation (DNI), the concentration ratio, and the type of power cycle are also tested to evaluate their effects on the energy and exergy performance. The results show that the maximum exergy loss occurs in the receiver system, followed by the heliostat field system, although main energy loss occurs in the power cycle system. The energy and exergy efficiencies of the receiver and the overall system can be increased by increasing the DNI and the concentration ratio, but that increment in the efficiencies varies with the values of DNI and the concentration ratio. It is also found that the overall energy and exergy efficiencies of the solar tower system can be increased to some extent by integrating advanced power cycles including reheat Rankine cycles and supercritical Rankine cycles. - Highlights: →We presented a theoretical framework for the energy and exergy analysis of the solar tower system. →We tested the effects of several design parameters on the energy and exergy performance. →The maximum exergy loss occurs in the receiver system, followed by the heliostat field system. →Integrating advanced power cycles leads to increases in the overall energy and exergy efficiencies.

  7. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  8. Effective policies for renewable energy - the example of China's wind power - lessons for China's photovoltaic power

    International Nuclear Information System (INIS)

    Wang, Qiang

    2010-01-01

    China, one of the global biggest emitter of CO 2 , needs promotion renewable energy to reduce air pollution from its surging fossil fuel use, and to increase its energy supply security. Renewable energy in its infancy needs policy support and market cultivation. Wind power installed capacity has boomed in recent year in China, as a series of effective support policies were adopted. In this paper, I review the main renewable energy policies regarding to China's wind power, including the Wind Power Concession Program, Renewable Energy Law, and a couple of additional laws and regulations. Such policies have effectively reduced the cost of wind power installed capacity, stimulated the localization of wind power manufacture, and driven the company investment in wind power. China is success in wind power installed capacity, however, success in wind-generated electricity has yet achieved, mainly due to the backward grid system and lack of quota system. The paper ends with the recommended best practice of the China's wind power installed capacity might be transferable to China's photovoltaic power generation. (author)

  9. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  10. Net-energy analysis of nuclear and wind power systems

    International Nuclear Information System (INIS)

    Tyner, G.T. Sr.

    1985-01-01

    The following question is addressed: can nuclear power and wind power (a form of solar energy) systems yield enough energy to replicate themselves out of their own energy and leave a residual of net energy in order to provide society with its needs and wants. Evidence is provided showing that there is a proportionality between the real monetary cost and energy inputs. The life-cycle, economic cost of the energy-transformation entity is the basis for calculating the amount of energy needed, as inputs, to sustain energy transformation. This study is unique as follows: others were based on preliminary cost and performance estimates. This study takes advantage of updated cost and performance data. Second, most prior studies did not include the energy cost of labor, government, and financial services, transmission and distribution, and overhead in arriving at energy inputs. This study includes all economic costs as a basis for calculating energy-input estimates. Both static (single-entity analysis) and dynamic (total systems over time) analyses were done and the procedures are shown in detail. It was found that the net-energy yield will be very small and most likely negative. System costs must be substantially lowered or efficiencies materially improved before these systems can become sources of enough net energy to drive the United States economic system at even the present level of economic output

  11. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  12. Coupled energy and reactive power market clearing considering power system security

    International Nuclear Information System (INIS)

    Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima

    2009-01-01

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System

  13. Coupled energy and reactive power market clearing considering power system security

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)

    2009-04-15

    In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)

  14. Renewable Energy Essentials: Concentrating Solar Thermal Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Concentrated solar thermal power (CSP) is a re-emerging market. The Luz Company built 354 MWe of commercial plants in California, still in operations today, during 1984-1991. Activity re-started with the construction of an 11-MW plant in Spain, and a 64-MW plant in Nevada, by 2006. There are currently hundreds of MW under construction, and thousands of MW under development worldwide. Spain and the United States together represent 90% of the market. Algeria, Egypt and Morocco are building integrated solar combined cycle plants, while Australia, China, India, Iran, Israel, Italy, Jordan, Mexico, South Africa and the United Arab Emirates are finalising or considering projects. While trough technology remains the dominant technology, several important innovations took place over 2007-2009: the first commercial solar towers, the first commercial plants with multi-hour capacities, the first Linear Fresnel Reflector plants went into line.

  15. Wind energy in electric power production. Preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Lento, R; Peltola, E

    1984-01-15

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics also estimates on the available wind energy were made. 800 wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics include is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions causes extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of a plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  16. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  17. Nuclear energy perspectives for electric power generation. 2004 vision

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, Joao Roberto Loureiro de; Vasconcelos, Vanderley de; Jordao, Elizabete

    2004-01-01

    This document is based on the forecasting of the Energy Information Administration/US Department of Energy (EIA/DOE) for the period of 2001-2025 which indicates a growing of 9,800 billions of kWh (73.6 per cent) in the world electric power consumption in that period

  18. Electrical Power and Illumination Systems. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  19. Overview of village scale, renewable energy powered desalination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  20. Solar Power Plants: Dark Horse in the Energy Stable

    Science.gov (United States)

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  1. Capital goods for energy development: power equipment for developing countries

    International Nuclear Information System (INIS)

    Parikh, J.K.

    1986-01-01

    Questions of energy policy in developing countries are considered, with the goal of 'evolution from exports to indigenization' i.e. independence. Levels of technologies are considered in relation to the resources of each country. Nuclear power is considered among other energy sources. (G.Q.)

  2. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    Science.gov (United States)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  3. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  4. Energy-efficient power control for OFDMA cellular networks

    KAUST Repository

    Sboui, Lokman

    2016-12-24

    In this paper, we study the energy efficiency (EE) of orthogonal frequency-division multiple access (OFDMA) cellular networks. Our objective is to present a power allocation scheme that maximizes the EE of downlink communications. We propose a novel explicit expression of the optimal power allocation to each subcarrier. We also present the power control when the transmit power is limited by power budget constraint or/and minimal rate constraint and we highlight the occurrence of some transmission outage events depending on the constraints\\' parameters. In the numerical results, we show that our proposed power control improves the EE especially at high power budget regime and low minimal rate regime. In addition, we show that having a higher number of subcarriers enhances the OFDMA EE.

  5. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    Directory of Open Access Journals (Sweden)

    Vlad MARSIC

    2013-01-01

    Full Text Available This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimization ensure the system’s energy autonomous capability demonstrated in this paper by presenting the promising testing results achieved following its integration with structural health monitoring and body area network applications.

  6. Synthesizing modeling of power generation and power limits in energy systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2015-01-01

    Applying the common mathematical procedure of thermodynamic optimization the paper offers a synthesizing or generalizing modeling of power production in various energy generators, such as thermal, solar and electrochemical engines (fuel cells). Static and dynamical power systems are investigated. Dynamical models take into account the gradual downgrading of a resource, caused by power delivery. Analytical modeling includes conversion efficiencies expressed in terms of driving fluxes. Products of efficiencies and driving fluxes determine the power yield and power maxima. While optimization of static systems requires using of differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting mixtures balances of mass and energy serve to derive power yield in terms of an active part of chemical affinity. Power maximization approach is also applied to fuel cells treated as flow engines driven by heat flux and fluxes of chemical reagents. The results of power maxima provide limiting indicators for thermal, solar and SOFC generators. They are more exact than classical reversible limits of energy transformation. - Highlights: • Systematic evaluation of power limits by optimization. • Common thermodynamic methodology for engine systems. • Original, in-depth study of power maxima. • Inclusion of fuel cells to a class of thermodynamic power systems

  7. Energy and environmental efficiency in competitive power markets

    International Nuclear Information System (INIS)

    Warwick, W.M.

    1995-02-01

    For years the electric utility industry operated as a regulated monopoly, largely immune to market forces except those of competing fuels. That era came to an end with the Public Utilities Regulatory Policy Act (PURPA) of 1974, which created a market for non-utility generated power. Within twenty years, non-regulated, non-utility generators had become the primary supplier of new energy resources. Their market power is matched by their political power, as evidenced in the Energy Policy Act of 1994 (EPAct), which requires open access to utility transmission lines to facilitate inter-utility bulk power sales. The conventional wisdom is that active wholesale power markets with competition among alternative generators will lead to lower power-development costs and cheaper retail power prices. The trend towards alternative bulk power sources at low prices intersects with large retail power customers' interest in accessing alternative power supplies. In most cases, these alternatives to local utilities are at a lower cost than retail rates. For the most part, proponents of generation competition have remained silent about potential environmental consequences. However, skeptics of increased competition, including major environmental groups, cite environmental impacts among their concerns. This report examines these concerns

  8. The importance of nuclear power to energy supply in Switzerland

    International Nuclear Information System (INIS)

    Kiener, E.

    2001-01-01

    The use of nuclear power is a matter of dispute also in Switzerland. The first opposition to plans for the Kaiseraugst nuclear power station near Basel sprang up in the seventies. In Switzerland, referenda are a popular expression of political disputes. On a federal level, a total of six referenda have been conducted about nuclear power since 1979. As a rule, antinuclear projects were rejected by a slim majority, except for the 1990 moratorium initiative. As a consequence, there was a ten-year ban on the construction of new nuclear power plants. Despite efforts by many parties it was not possible to develop a general consensus on an energy supply strategy. Because of the considerable importance to the power economy, and the economy at large, of nuclear power in Switzerland, where the five nuclear power plants in operation generate approx. 38% of the country's electricity, while 58% is produced in hydroelectric plants, a new Nuclear Power Act was adopted by Parliament in late February 2001. It constitutes the framework for the continued safe operation of nuclear power plants, keeps the nuclear option open for future planning, and handles spent fuel and waste management, final storage, and decommissioning. Also possible international solutions of final storage outside of Switzerland are taken into account. In this way, the Swiss government and parliament have advocated the continued use of nuclear power as one element of energy supply. (orig.) [de

  9. Distributed continuous energy scheduling for dynamic virtual power plants

    International Nuclear Information System (INIS)

    Niesse, Astrid

    2015-01-01

    This thesis presents DynaSCOPE as distributed control method for continuous energy scheduling for dynamic virtual power plants (DVPP). DVPPs aggregate the flexibility of distributed energy units to address current energy markets. As an extension of the Virtual Power Plant concept they show high dynamics in aggregation and operation of energy units. Whereas operation schedules are set up for all energy units in a day-ahead planning procedure, incidents may render these schedules infeasible during execution, like deviation from prognoses or outages. Thus, a continuous scheduling process is needed to ensure product fulfillment. With DynaSCOPE, software agents representing single energy units solve this problem in a completely distributed heuristic approach. Using a stepped concept, several damping mechanisms are applied to allow minimum disturbance while continuously trying to fulfill the product as contracted at the market.

  10. Wind Power Today: 2000 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, W.

    2001-05-08

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

  11. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  12. The Importance of Reliable Nuclear Power For Energy Supply

    International Nuclear Information System (INIS)

    Blix, Hans

    1989-01-01

    The severe accident at Chernobyl in 1986 caused a setback in public acceptance of nuclear power practically everywhere in the world. In some countries, the media even give the impression that nuclear power is on the way out worldwide, because of concerns about safety, radioactive waste disposal, and the risk of proliferation of nuclear weapons. Let me give you a more accurate picture of the situation. At the beginning of this year there were about 430 nuclear power reactors in operation in 26 countries around the world and they produced more than 16% of the world's electric energy. That amount of electricity is equal to the total amount of electric energy that was produced in the world in 1956. I mention this because, when we concentrate on the problems which nuclear power is facing, we tend to forget that among all the major energy sources? coal, oil, gas, hydro and nuclear- it is nuclear which has experienced the fastest rise in relative importance for the global energy supply. Its contribution to global energy supply has increased from just under 1% in 1974 to about 5% in 1987. On the positive side we can note the continuation of strong nuclear power programmes with construction starts in France and Japan, the start of construction at Sizewell B, which marks a new departure for nuclear power in the United Kingdom, and the orders for the Korean units 11 and 12

  13. Optimal energy management strategy for battery powered electric vehicles

    International Nuclear Information System (INIS)

    Xi, Jiaqi; Li, Mian; Xu, Min

    2014-01-01

    Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios

  14. Energy audit: thermal power, combined cycle, and cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Abbi, Yash Pal

    2012-07-01

    The availability of fossil fuels required for power plants is reducing and their costs increasing rapidly. This gives rise to increase in the cost of generation of electricity. But electricity regulators have to control the price of electricity so that consumers are not stressed with high costs. In addition, environmental considerations are forcing power plants to reduce CO2 emissions. Under these circumstances, power plants are constantly under pressure to improve the efficiency of operating plants, and to reduce fuel consumption. In order to progress in this direction, it is important that power plants regularly audit their energy use in terms of the operating plant heat rate and auxiliary power consumption. The author attempts to refresh the fundamentals of the science and engineering of thermal power plants, establish its link with the real power plant performance data through case studies, and further develop techno-economics of the energy efficiency improvement measures. This book will rekindle interest in energy audits and analysis of the data for designing and implementation of energy conservation measures on a continuous basis.

  15. Low energy, high power injection in JT-60 NBI

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Dairaku, Masayuki; Horiike, Hiroshi

    1988-05-01

    JT-60 neutral beam injector (JT-60 NBI) is designed to inject 20 MW neutral hydrogen beam at energies of 70 ∼ 100 keV and the injection power decreases significantly at low energies (∼40 keV). For the extention of operation region aiming at the low density plasma heating and achieving H-mode by plasma periphery heating, increment of the injection power at low beam energies was required. The single-stage acceleration system was investigated in advance at the Prototype Injector Unit. From this result, the total injection power of 17 MW at 40 keV, 48 A per source was expected at the JT-60 NBI. This system was adopted in the JT-60 NBI from June, 1987 to July, 1987 and 17.6 MW neutral beam injection power was achieved. In the NB heating experiment, the H-mode transition phenomena was observed in JT-60 plasma. (author)

  16. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...... as a full-scale example. Different project examples will be given as well as important laboratories for adjustable speed drives and renewable energy systems which are used at the university are described.......Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices...

  17. Description of the electric power and energy trade in Finland

    International Nuclear Information System (INIS)

    Komulainen, K.

    1992-01-01

    The Finnish State has traditionally controlled the import of electricity, larger related investments and pricing. Lately, a market orientated economic policy has influenced energy policy and the amount of state control has gradually decreased. Decisions have yet to be made with regard to the fifth nuclear power reactor. The paper deals briefly with the subjects of the electric power, natural gas and oil markets. Finland's transmission network has connections to the former Russia and the Baltic countries. According to agreements within the European Community, Finland must now make changes in its electric power supply structure. Competition will be encouraged and monopolies discouraged. Pricing shall be transparent, and power plants must present written documentation for their management system, price regulations etc. A law must be passed to legitimate trade across the country's borders. Emphasis will be laid on energy conservation and energy research and consultant services. It is claimed that Finland's level of technology in this area lives up to international standards. (AB)

  18. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  19. A Remote Power Management Strategy for the Solar Energy Powered Bicycle

    Directory of Open Access Journals (Sweden)

    Chung-Hsing Chao

    2011-12-01

    Full Text Available In this paper, a solar energy powered bicycle by a wireless sensor network (WSN far-end network monitoring solar energy to transfer the electrical energy storage and the effectiveness analysis is proposed. In order to achieve this goal, an embarked ZigBee by a solar-powered bicycle the far-end wireless network supervisory system is setup. Experimental results prove that our prototype, the solar energy powered bicycle, can manage the solar energy for charging two Lead-Acid batteries pack. As a result, the user by the wireless network in parking period knows the data on the amount of immediate solar radiation, the degree of illumination, the ambient temperature, and electrical energy storage capacity information by the internet interface.

  20. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  1. Carbon auctions, energy markets and market power: An experimental analysis

    International Nuclear Information System (INIS)

    Dormady, Noah C.

    2014-01-01

    This paper provides an experimental analysis of a simultaneous energy-emissions market under conditions of market power. The experimental design employs real-world institutional features; including stochastic demand, permit banking, inter-temporal (multi-round) dynamics, a tightening cap, and resale. The results suggest that dominant firms can utilize energy-emissions market linkages to simultaneously inflate the price of energy and suppress the price of emissions allowances. Whereas under prior market designs, regulators were concerned with dominant firms exercising their market power over the emissions market to exclude rivals and manipulate the permit market by hoarding permits; the results of this paper suggest that this strategy is less profitable to dominant firms in contemporary auction-based markets than strategic capacity withholding in the energy market and associated demand reduction in the emissions market. - Highlights: • Laboratory simulation of joint energy-emissions market. • Evaluates market power under collusion and real-world institutional features. • Dominant firms can exercise market power to inflate energy prices. • Dominant firms can exercise market power to suppress emissions prices. • Supply withholding is an implicit demand reduction in the emissions market

  2. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  3. First observations of power MOSFET burnout with high energy neutrons

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.; Normand, E.; Majewski, P.P.; Wender, S.A.

    1996-01-01

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage ≥400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed

  4. Nuclear power a viable energy choice for the future

    International Nuclear Information System (INIS)

    Omoto, Akira

    2005-01-01

    Global energy use will most likely increase to more than double by 2050, which is e.g. the medium value of the projection in the Intergovernmentals Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). How to reconcile the projections with the current nuclear status? In its first fifty years, nuclear power has grown from 5 MWe of power production to an installed worldwide capacity of 360 GWe in 30 countries. Nuclear power provides about 16% of the total electricity in the world and is contributing to the reduction of the emission of greenhouse gases from the power sector. The SRES scenarios identify a gap between the current electricity generation capacity and the capacity requirements in 2050 of 360 GWe and 1 500 GWe. Three key factors will determine the future contribution of nuclear power: - improved economics, - national energy choice and supporting infrastructure as well as institutional arrangement, and - the degree to which advances are implemented in evolutionary and innovative reactor and fuel cycle technologies, to address safety, waste and proliferation concerns, as well as economic competitiveness. The economics of nuclear power are one main topic in industrial countries. A Japanese case study on energy security credit shows that nuclear power will eventually be a winner in the long term perspective due to amortisation and stable fuel prices. Nuclear power is also a part of nuclear technologies to address daunting challenges in the developing countries - hunger, disease, poverty, and shortage of drinking water and electricity. (orig.)

  5. Energy saved neon sign lighting power supply for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanitteerapan, T.; Dokpikul, S.; Arunrungrasmi, S. [King Mongkut Univ. of Technology Thonburi, Bangmod, Tungkru, Bangkok (Thailand). Dept. of Electrical Technology Education, Faculty of Industrial Education

    2007-07-01

    Petroleum oil, natural gas and fossil fuels are commonly used in power plants for electrical power generation. However, because of their negative environmental impacts, energy and environmental savings from renewable energy resources are necessary choices. Solar energy can be converted to the electrical voltage by using solar arrays. This process can be used in many electrical applications. This paper introduced a neon sign lighting power supply for a small photovoltaic powered stand-alone commercial advertising board for a remote area in Thailand. The circuit implementation was very simple, consisting of an active switch device, a resonant capacitor and high frequency transformer. The control also operated as a fixed frequency and fixed duty ratio controller. The paper discussed the principle of neon sign lighting, power circuit operation, and control circuit operation. To verify the proposed power supply, the circuit experiment of the proposed power supply for the neon sign lighting was applied to a 10 foot long, 10 millimeter diameter bulb. The neon sign was ignited smoothly with little power consumption. 2 refs., 1 tab., 10 figs.

  6. Own power: Motives of having electricity without the energy company

    International Nuclear Information System (INIS)

    Leenheer, Jorna; Nooij, Michiel de; Sheikh, Omer

    2011-01-01

    New technologies will enable households to generate an increasing amount of their own electricity. Intentions to generate own power are a preliminary step towards actual behavior. Because own generation is still very limited and the behavior of early adopters may not be representative for the complete population, our study focuses on intentions rather than actual behavior. A consumer survey among 2047 Dutch households reveals that environmental concerns are the most important driver of a household's intention to generate its own power. Affinity with technology and energy and the reputation of electricity companies are also significant drivers, but financial factors and power outages are not. About 40% of Dutch households have an intention to generate their own power, with an overrepresentation of young households. This group falls apart in two sub segments; for the 'generating savers' (21%) a high intention to generate own power coincides with a high intention to save energy, whereas generating users (18%) combine a high intention to generate own power with a low intention to save energy. - Highlights: → A consumer survey studies household intentions to generate own power. → Environmental concerns are the most important motive for generating own power. → Other drivers are affinity with technology and reputation of electricity companies. → About 40% of Dutch households feel a need to generate their own electricity.

  7. Energy efficiency of computer power supply units - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, B. [cepe - Centre for Energy Policy and Economics, Swiss Federal Institute of Technology Zuerich, Zuerich (Switzerland); Huser, H. [Encontrol GmbH, Niederrohrdorf (Switzerland)

    2002-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the efficiency of computer power supply units, which decreases rapidly during average computer use. The background and the purpose of the project are examined. The power supplies for personal computers are discussed and the testing arrangement used is described. Efficiency, power-factor and operating points of the units are examined. Potentials for improvement and measures to be taken are discussed. Also, action to be taken by those involved in the design and operation of such power units is proposed. Finally, recommendations for further work are made.

  8. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  9. British Energy - nuclear power in the private sector

    International Nuclear Information System (INIS)

    Hawley, R.

    1997-01-01

    The first four months of the operation of British Energy as a privatised nuclear utility are briefly reviewed. Operational and financial performance have been good as exemplified by the figures for power output and financial return. Freedom from government control means that the options open to the company are much wider but the need to meet the expectations of shareholders is a major consideration. Added to this, the competitive nature of the electricity industry means that the cost reduction is important, though this cannot be at the expense of safety. Shareholder expectations make the funding of new nuclear power stations unrealistic at present. Increasingly, however, markets are opening up in the maintenance of existing plant and the decommissioning of older plant. The British Energy Group also has considerable expertise in the design, operation and management of power stations and of acting in a competitive energy market that could be exported. British Energy's International Division is in place to develop this potential. (UK)

  10. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  11. Role of nuclear power in energy policy of Japan

    International Nuclear Information System (INIS)

    Ikuta, Toyoaki

    1984-01-01

    About 62 % of the energy supply in Japan depends on petroleum, and about 65 % of oil import comes from Persian Gulf. It is very important to ensure the supply of oil for the energy policy of Japan. For the purpose, the conversation between oil producing countries and oil consuming countries is necessary, but all the conversation carried out so far failed. The oil consumption in the world continued to decline, and the situation of oil market changed. The future situation of oil market largely depends on the development of substitute energy resources for oil. In order to ensure the supply of oil, the buyer's market must continue, therefore, effort must be continued to expand substitute energy and to promote energy saving. As the energy policy hereafter, various energy resources should be most effectively used in combination. In this compound energy age, the importance of nuclear power increases. The stable supply and economical efficiency of energy must be taken in consideration with the same weight. The only method to reduce the dependence on import is nuclear power, and this feature should be evaluated high. Nuclear power generation must be expanded hereafter. (Kako, I.)

  12. Energy Outlook and the role of nuclear power

    International Nuclear Information System (INIS)

    Rosen, Morris

    1998-01-01

    With projections of sharply rising energy consumption and continuing global dependence on fossil fuel sources, environmental pollution and greenhouse gas emission could reach severe damaging levels. The global challenge is to develop strategies that foster a sustainable energy future less dependent on fossil fuels. Low environmental impacts and a vast fuel resource potential should allow nuclear power to have a meaningful role in the supply of energy during the next century. Nuclear power for over 40 years has contributed significantly to world energy needs, currently providing more than 6% of primary energy and 17% of global electricity. Low environmental impacts and a vast fuel resource potential should allowed to contribute substantially to meeting the sustainable energy challenge.. Although there is some awareness on both the technical and political level of nuclear power's advantages, it is not a globally favored option in a sustainable energy future. A sizeable sector of public opinion remains hesitant or opposed to its increased use, some even to a continuation at present levels. This paper, after some discussion of the rising energy consumption, concentrates on a comparison of the environmental impacts of the available energy options. (author)

  13. Energy Storage in Power System Operation: The Power Nodes Modeling Framework

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2010-01-01

    for designing operation strategies for power systems based on ubiquitous energy storage, for example to buer non-dispatchable generation, as well as for the evaluation of the operational performance in terms of energy eciency, reliability and cost. After introducing the modeling approach and a categorization......In this paper, a novel concept for the description of energy storage in power systems with dispatchable and non-dispatchable generators and loads is presented. It is based on a system-perspective consideration of energy storage, generation and consumption. This means that grid-relevant aspects...

  14. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  15. The state of nuclear power two years after Fukushima – The ASEAN perspective

    International Nuclear Information System (INIS)

    Nian, Victor; Chou, S.K.

    2014-01-01

    Highlights: • This paper provides a holistic analysis on the importance of nuclear power. • This paper examines the drivers for nuclear power post-Fukushima. • This paper studies the responses towards “safer nuclear”. • Nuclear remains a reliable and clean base-load technology. • Pronouncing the demise of nuclear power will not be sustainable. - Abstract: Given the need to rein in the rise in the global average temperature, decarbonizing the electricity sector, which accounts for nearly 50% of global greenhouse gas (GHG) emissions, is crucial. The suitability of nuclear power as a base-load technology and its relatively negligible GHG emissions raised expectations of a nuclear renaissance, until the Fukushima disaster brought discussions about nuclear power’s potential to a standstill. However, completely ruling out nuclear may not be sustainable owing to the realities of rising energy demand, climate change considerations, and the need for reliable base-load supply technology, especially in the case of fast growing economies in the Association of South East Asian Nations (ASEAN). The Fukushima disaster was a wake-up call for both governments and the nuclear industry. Led by the International Atomic Energy Agency, the more advanced economies conducted stringent reviews of safety standards and emergency response procedures in the event of a catastrophe. Meanwhile the industry responded with strong commitments towards “Fukushima proof” designs, alongside other advancements towards “safer” fission power. In the ASEAN context, we argue in this paper that in addition to the economic advantage, nuclear power can help address the twin objectives of energy security and mitigating climate change effects. In ASEAN, there is still a strong momentum towards nuclear power development due to strategic considerations. In this paper, we reviewed in a holistic approach the various factors influencing decision making on nuclear power. Using ASEAN as a case

  16. Energy-Efficient Power Allocation for MIMO-SVD Systems

    KAUST Repository

    Sboui, Lokman

    2017-05-24

    In this paper, we address the problem of energyefficient power allocation in MIMO systems. In fact, the widely adopted water-filling power allocation does not ensure the maximization of the energy efficiency (EE). Since the EE maximization is a non-convex problem, numerical methods based on fractional programming were introduced to find the optimal power solutions. In this paper, we present a novel and simple power allocation scheme based on the explicit expressions of the optimal power. We also present a low-complexity algorithm that complements the proposed scheme for low circuit-power regime. Furthermore, we analyze power-constrained and rate-constrained systems and present the corresponding optimal power control. In the numerical results, we show that the presented analytical expressions are accurate and that the algorithm converges within two iterations. We also show that as the number of antenna increases, the system becomes more energy-efficient. Also, a saturation of the EE is observed at high power budget and low minimal rate regimes.

  17. SUBWAY POWER SYSTEMS WITH MODERN SEMICONDUCTOR CONVERTERS AND ENERGY STORAGE DEVICES

    Directory of Open Access Journals (Sweden)

    O.I. Kholod

    2013-02-01

    Full Text Available Five subway power systems, a traditional power system and power systems with an active rectifier and an energy storage device, are considered. Estimation of energy loss in the analyzed subway power systems circuits is made.

  18. Assessing Power Monitoring Approaches for Energy and Power Analysis of Computers

    OpenAIRE

    El Mehdi Diouria, Mohammed; Dolz Zaragozá, Manuel Francisco; Glückc, Olivier; Lefèvre, Laurent; Alonso, Pedro; Catalán Pallarés, Sandra; Mayo, Rafael; Quintana Ortí, Enrique S.

    2014-01-01

    Large-scale distributed systems (e.g., datacenters, HPC systems, clouds, large-scale networks, etc.) consume and will consume enormous amounts of energy. Therefore, accurately monitoring the power dissipation and energy consumption of these systems is more unavoidable. The main novelty of this contribution is the analysis and evaluation of different external and internal power monitoring devices tested using two different computing systems, a server and a desktop machine. Furthermore, we prov...

  19. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  20. Does wind energy mitigate market power in deregulated electricity markets?

    International Nuclear Information System (INIS)

    Ben-Moshe, Ori; Rubin, Ofir D.

    2015-01-01

    A rich body of literature suggests that there is an inverse relationship between wind power penetration rate into the electricity market and electricity prices, but it is unclear whether these observations can be generalized. Therefore, in this paper we seek to analytically characterize market conditions that give rise to this inverse relationship. For this purpose, we expand a recently developed theoretical framework to facilitate flexibility in modeling the structure of the electric industry with respect to the degree of market concentration and diversification in the ownership of wind power capacity. The analytical results and their attendant numerical illustrations indicate that the introduction of wind energy into the market does not always depress electricity prices. Such a drop in electricity prices is likely to occur when the number of firms is large enough or the ownership of wind energy is sufficiently diversified, or most often a combination of the two. Importantly, our study defines the circumstances in which the question of which type of firm invests in wind power capacity is crucial for market prices. - Highlights: • Studies show that electricity prices decrease with increased wind power capacity. • We investigate market conditions that give rise to this inverse relationship. • Average prices for wind energy are systematically lower than average market prices. • Conventional generation firms may increase market power by investing in wind farms. • Energy policy should seek to diversify the ownership of wind power capacity

  1. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  2. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  3. Green power: A renewable energy resources marketing plan

    International Nuclear Information System (INIS)

    Barr, R.C.

    1997-01-01

    Green power is electricity generated from renewable energy sources such as power generated from the sun, the wind, the heat of the earth, and biomass. Green pricing is the marketing strategy to sell green power to customers who voluntarily pay a premium for it. Green pricing is evolving from the deregulation of the electric industry, the need for clean air, reflected in part as concern over global warming, and technology advances. The goal of the renewable energy marketing plan is to generate enough revenues for a utility to fund power purchase agreements (PPAs) with renewable energy developers or construct its own renewable facilities. Long-term, fixed price PPAs enable developers to obtain financing to construct new facilities, sometimes taking technological risks which a utility might not take otherwise. The marketing plan is built around different rate premiums for different categories of ratepayers, volunteer customer participation, customer participation recognition, and budget allocations between project costs and power marketing costs. Green prices are higher than those for conventional sources, particularly prices from natural gas fired plants. Natural gas is abundant relative to oil in price per British thermal unit (Btu). Green pricing can help bridge the gap between the current oversupply of gas and the time, not far off, when all petroleum prices will exceed those for renewable energy. The rapid implementation of green pricing is important. New marketing programs will bolster the growing demand for renewable energy evidenced in many national surveys thus decreasing the consumption of power now generated by burning hydrocarbons. This paper sets forth a framework to implement a green power marketing plan for renewable energy developers and utilities working together

  4. National energy policy provides scant power direction. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-07

    More federal direction on electric power developments was expected than actually materialized in the national energy policy released recently by Energy, Mines, and Resources. None of the primary objectives was specifically geared to improving the sagging power outlook. The five targets mentioned would have varying positive influences on Canadian power security if achieved, but oil and gas problems stole the spotlight. Failure of a national energy grid to make the top priority list was a disappointment. Observers had been expecting more prominent treatment for grid schemes in light of comments made by energy minister Alastair Gillespie at the recent energy conservation conference in Ottawa. But the strategy paper merely endorses the strengthening of regional interconnections, particularly in eastern Canada, and urges closer coordination among provincial utilities in planning and development. It reveals no new move to spur grid action and only reiterates the federal offer to back 50 percent of interconnection studies and capital costs. The paper does recognize that strengthened regional ties would lead to a form of integrated national system permitting more efficient systems growth, mutual assistance in the event of power failures, and some averaging out of peak and off-peak loads. They would economize on the need for stand-by power and enhance more rational expansion.

  5. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  6. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  7. MITI revises outlooks for energy and power demand

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The Ministry of International Trade and Industry has revised downward its long-term outlook on energy supply and demand, lowering the estimated primary energy demand for fiscal 2000 from 600 million tons in oil equivalent to 540 MTOE, and reducing total power demand for fiscal 2000 from 899.1 billion kWh to 838 billion. In this content, the outlook for installed nuclear capacity has been revised downward from 62,000 MW to 53,500 MW. This revision of the power supply-demand outlook was reported on Oct. 1 to the supply and demand committee (Chairman - Yoshihiko Morozumi, Adviser to Nippon Schlum-berger) of the Electric Utility Industry Council; the energy supply-demand outlook was decided on Oct. 14 by the MITI Supply and Demand Subcommittee of the Advisory Committee for Energy and reported on Oct. 16 to the conference of ministers concerned with energy. (author)

  8. The Energy Processing by Power Electronics and its Impact on Power Quality

    OpenAIRE

    J.E. Rocha; W.D.C Sanchez

    2012-01-01

    This paper discusses the electrical architectures adopted in wind turbines and its impact on the harmonic flux at the connected electric network. The integration of wind electric generators with the power grid needs energy processing by power electronics. It shows that different types of wind turbine generator systems use different types of electronic converters. This work provides a discussion on harmonic distortion taking place on the generator side, as well as in the power grid side. Key...

  9. Applications of energy harvesting for ultralow power technology

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Barz, C.; Chiver, O.

    2015-06-01

    Ultra-low-power (ULP) technology is enabling a wide range of new applications that harvest ambient energy in very small amounts and need little or no maintenance - self-sustaining devices that are capable of perpetual or nearly perpetual operation. These new systems, which are now appearing in industrial and consumer electronics, also promise great changes in medicine and health. Until recently, the idea of micro-scale energy harvesting, and collecting miniscule amounts of ambient energy to power electronic systems, was still limited to research proposals and laboratory experiments.Today an increasing number of systems are appearing that take advantage of light, vibrations and other forms of previously wasted environmental energy for applications where providing line power or maintaining batteries is inconvenient. In the industrial world, where sensors gather information from remote equipment and hazardous processes; in consumer electronics, where mobility and convenience are served; and in medical systems, with unique requirements for prosthetics and non-invasive monitoring, energy harvesting is rapidly expanding into new applications.This paper serves as a survey for applications of energy harvesting for ultra low power technology based on various technical papers available in the public domain.

  10. Experiment of Power Supply Method for WLAN Sensor Using Both Energy Harvesting and Microwave Power Transmission

    International Nuclear Information System (INIS)

    Sakaguchi, K; Yamashita, S; Yamamoto, K; Nishio, T; Morikura, M; Huang, Y; Shinohara, N

    2014-01-01

    This paper proposes to improve effectiveness of supplying a sensor with energy using microwave power transmission (MPT) and energy harvesting (EH). The MPT duration should be as short as possible to avoid serious interference between the MPT and wireless local area network data transmission when co-channel operation of both microwave power transmission (MPT) and wireless data transmissions is performed. To shorten the MPT duration, we use multiple power sources such as an MPT source and an EH source to supply a sensor with power. Here, an overcharge or an energy shortage could occur at the sensor if the power supplied by both the MPT and EH sources is not adjusted appropriately. To solve this problem, the power supplied by multiple sources should be estimated precisely. In this paper, we propose a scheme for estimating the power supplied by multiple sources on the basis of an existing MPT scheduling system and then conducted an experiment using the scheme. From the experimental results, it is confirmed to estimate the power supplied by multiple sources successfully. In addition, the required MPT duration when the EH source is used is reduced compared to that when it is not used. Moreover, it is confirmed that the sensor station successfully estimates the power supplied by an MPT source and that by an EH source and adequately configures the MPT duration

  11. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Rose, Ian

    1998-01-01

    The position of coal as the preferred fossil fuel for power generation is being challenged by gas. The total cost of production in $/kW/annum of coal generation compared with combined cycle gas turbine plant is illustrated for a range of annual capacity factors and fuel costs in the Australian context. lt is shown that plant capacity factors over 80%are required for coal-fired plants to be price competitive with gas. Unlike other fossil fuel energy types, the high capital cost of coal-fired plant means that new coal-fired plant will generally need to be base-loaded throughout their operating life to be competitive. However, experience shows that having installed the plant, it will operate as base-loaded, intermediate or peaking duty depending on market circumstances. Existing plants In New South Wales, Victoria and Queensland are generally operating at annual capacity factors that are below optimum levels. It is concluded that the coal-fired energy industry can be strongly challenged for the foreseeable future

  12. Power from the seas - Wave energy has a big future

    International Nuclear Information System (INIS)

    Schenler, W.

    2008-01-01

    This article takes a look at how the energy of the oceans' waves can become an important source of energy. The generation of the energy contained in waves as an indirect form of solar energy is described. The energy potential offered is quoted as being high in the Atlantic near England and Scotland. The article goes on the discuss the technical potential of this form of renewable energy and provides a map showing this. Financial aspects and economic potentials are discussed. Effects on the environment are also discussed. The on-shore and off-shore technologies that can be used to capture wave energy are described and discussed, as is the combination of power production from wind and waves

  13. Power from Perspective: Potential future United States energy portfolios

    International Nuclear Information System (INIS)

    Tonn, Bruce; Healy, K.C.; Gibson, Amy; Ashish, Ashutosh; Cody, Preston; Beres, Drew; Lulla, Sam; Mazur, Jim; Ritter, A.J.

    2009-01-01

    This paper presents United States energy portfolios for the year 2030, developed from seven different Perspectives. The Perspectives are characterized by different weights placed on fourteen defining values (e.g., cost, social acceptance). The portfolios were constructed to achieve three primary goals, energy independence, energy security, and greenhouse gas reductions. The portfolios are also evaluated over a comprehensive set of secondary criteria (e.g., economic growth, technical feasibility). It is found that very different portfolios based on very different defining values can achieve the three primary goals. Commonalities among the portfolios include reliance upon cellulosic ethanol, nuclear power, and energy efficiency to meet year 2030 energy demands. It is concluded that the US energy portfolio must be diverse and to achieve national energy goals will require an explicit statement of goals, a strong role for government, and coordinated action across society

  14. International comparison of energy price using a purchasing power parity

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Hun; Jo, Sung Han [Korea Energy Economics Institute, Euiwang (Korea)

    1999-05-01

    The price control of government results in price distortion as well as lowering efficiency of energy market and distortion of allocating resources. Consequently, such a price policy leads to energy overconsumption and has negative influences on other policies trying to reduce environmental burden resulted from energy consumption. When the energy price does not reflect the market price properly, it results in inefficiency of energy industry and it makes very difficult to supply investment funds. Therefore, the government is planning to implement liberalization of energy price step by step. The purpose of this study is to provide basic materials for establishing a reasonable energy price policy through the international comparison among OECD countries on major products price focusing on petroleum products. To overcome problems of exchange rate, a purchasing power indicator from OECD was used for comparative analysis with OECD countries. 11 refs. 1 fig., 23 tabs.

  15. Nuclear power component in foresight on energy in Poland

    International Nuclear Information System (INIS)

    Szczurek, J.; Chwaszczewski, S.; Czerski, P.; Luszcz, M.

    2007-01-01

    On behalf of Ministry of Science and Higher Education, the first technology foresight study on future developments in the energy sector is being conducted in Poland. The study aimed to identify energy-related technologies, scenarios, and a mix of energy sources and infrastructure developments that will ensure security of energy supply for Poland. This paper provides a short description of the methodology applied as well as preliminary results and findings of all subtasks of the foresight study referring to the perspective of nuclear power option in Poland, embracing a time horizon of 24 years. (author)

  16. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  17. Management of a power system based on renewable energy

    Directory of Open Access Journals (Sweden)

    Ronay Karoly

    2012-06-01

    Full Text Available This article main purpose is to highlight the main advantage of the hardware and software implementation for an energy management system based on renewable energy sources. By using implemented and dedicated hardware and software the evolution of energy production and consumption can be monitored. The advantages of such system are highlighted by the results obtained from experimental simulations. An experimental model for the power system based on renewable energy sources was implemented, where the actual status of the system in different situations when the equipments change their own statuses can be shown.

  18. Construction costs of nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Mandel, H

    1976-03-01

    It is assumed that the demand for electrical energy will continue to rise and that nuclear power will increasingly supply the base-load of electricity generation in the industrialized world. The author identifies areas where techniques and practices to control costs can be improved. Nuclear power offers an alternative to liquid and gaseous fossil fuels and contributes to a relative stability in the price of electric energy. Nuclear power plants can now generate power more cheaply than other thermal power plants down into the upper middle load sector, as indicated in calculations based on a construction time of six years for nuclear plants and four years for others. Special legal provisions, different conditions of financing and taxation, varying methods of power generation cost accounting, and the nonuniform layout of the plant in the various countries make it difficult to compare power generation costs. The author uses mostly experiences gained in the Federal Republic of Germany for some calculations for comparison; he cites lack of standardization and over-long licensing times as major factors in the recent rapid escalation of nuclear power costs and suggests that adoption of standard reactor designs, encouragement of a vigorous and competitive European nuclear industry, and streamlining of licensing procedures to improve the situation. (MCW)

  19. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  20. Self-powered integrated systems-on-chip (energy chip)

    Science.gov (United States)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  1. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  2. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  3. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  4. Energy scavenging sensors for ultra-low power sensor networks

    Science.gov (United States)

    O'Brien, Dominic C.; Liu, Jing Jing; Faulkner, Grahame E.; Vachiramon, Pithawat; Collins, Steve; Elston, Steven J.

    2010-08-01

    The 'internet of things' will require very low power wireless communications, preferably using sensors that scavenge power from their environment. Free space optics allows communications over long ranges, with simple transceivers at each end, offering the possibility of low energy consumption. In addition there can be sufficient energy in the communications beam to power simple terminals. In this paper we report experimental results from an architecture that achieves this. A base station that tracks sensors in its coverage area and communicates with them using low divergence optical beams is presented. Sensor nodes use modulated retro-reflectors to communicate with the base station, and the nodes are powered by the illuminating beam. The paper presents design and implementation details, as well as future directions for this work.

  5. Energy and ancillary service dispatch through dynamic optimal power flow

    International Nuclear Information System (INIS)

    Costa, A.L.; Costa, A. Simoes

    2007-01-01

    This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)

  6. Review of power quality applications of energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-05-01

    Under the sponsorship of the US Department of Energy (DOE) Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories contracted Sentech, Inc., to assess the impact of power quality problems on the electricity supply system. This report contains the results of several studies that have identified the cost of power quality events for electricity users and providers. The large annual cost of poor power quality represents a national inefficiency and is reflected in the cost of goods sold, reducing US competitiveness. The Energy Storage Systems (ESS) Program takes the position that mitigation merits the attention of not only the DOE but affected industries as well as businesses capable of assisting in developing solutions to these problems. This study represents the preliminary stages of an overall strategy by the ESS Program to understand the magnitude of these problems so as to begin the process of engaging industry partners in developing solutions.

  7. np elastic scattering analyzing power characteristics at intermediate energies

    International Nuclear Information System (INIS)

    Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Rodning, N.L.; Wait, G.D.; Ahmad, M.; Cairns, E.B.; Coombes, G.H.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Roy, G.; Soukup, J.; Tkachuk, R.R.; Ye, Y.; Watson, J.W.

    1989-06-01

    Recent measurements of charge symmetry breaking in the np system at 477 MeV, and of A oonn for np elastic scattering at 220, 325 and 425 MeV also yield accurate analyzing power data. These data allow the energy dependence of the analyzing power zero-crossing angle and the slope of the analyzing power at the zero-crossing to be determined. The incident neutron energies span a region where the zero-crossing angle is strongly energy dependent (Ε n n > 350 MeV). The results are compared to current phase shift analysis predictions, recently published LAMPF data, and the predictions of the Bonn and Paris potentials. (Author) 13 refs., 2 tabs., 2 figs

  8. Planning of a Quadgeneration power plant for Jammerbugt energy system

    DEFF Research Database (Denmark)

    Rudra, Souman; Hoffmann, Jessica; Rosendahl, Lasse

    2011-01-01

    Quadgeneration is the simultaneous production of power, heat and cooling and different fuels from flexible feedstocks such as biomass, waste, refinery residue etc. In order to accommodate more renewable energy into the energy system, it is extremely necessary to develop new flexible power plants...... of some equipments in the Quadgeneration power plant. This paper presents two models for the investment planning of a Quadgeneration energy system in Jammerbugt municipality, and uses these models for different case studies addressing the system for production of heat, cooling, liquid fuels...... that can quickly increase or decrease the production of electricity. Such plants should be ultra flexible in terms of production and able to run on many different types of fuels, with one of its major outputs being liquid fuels for the transport sector. The aim of this paper is to integrate district...

  9. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  10. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  11. Energy strategies and the case of nuclear power

    International Nuclear Information System (INIS)

    Haefele, W.

    1976-01-01

    The future of nuclear energy is widely discussed with emphasis on the compatibility with social structure. Projected growth of nuclear power generation, demands for nuclear fuel resources and services, and comparison of power generation costs with other energy sources are presented and discussed based on the published data. As one of the processing problems in fuel cycle industry, the problem of reprocessing plant is discussed mainly from the view point of managing radioactive wastes including trans-actinides. Here the importance of establishing regulating standards is emphasized. A logical decision process for regulating large scale nuclear power development is proposed and explained and it is concluded that the largest obstacle for large scale development is the lack of decisions about regulation. In other words, the problem is not of technological feature but of software. Other problems discussed in this paper include, the multipurpose utilization of nuclear energy with the combination of LWR, FBR, and HTR, plutonium physical protection, the problem of energy park, and multi-national energy center. Finally, a historical review is given of the relations between the scale of energy utilization and the social structure and technological innovations. It is deduced that a new social pattern will be required for the large scale utilization of nuclear energy. (Aoki, K.)

  12. Nuclear power and sustainable energy supply for Europe

    International Nuclear Information System (INIS)

    Hilden, W.

    2006-01-01

    Developing and promoting a farsighted energy policy is a key aspect in achieving sustainable development in the European Union. Factors to be coped with in this context are the Union's increasing dependence on energy imports, and the threats facing the climate. Moreover, it is imperative that the Lisbon strategy be pursued, according to which Europe is to be made the world's most dynamic knowledge-based economic region by 2010. As early as in 2000, the EU Commission published its Green Paper, ''Towards a European Strategy of Continuity in Power Supply.'' Continuity of supply, in this context, not only stands for maximized self-sufficiency or minimized dependencies. What is at stake is a reduction of the risks stemming from dependence on imports and from changes in the environment. This goal can be achieved through a balanced and diverse structure both of energy resources and of the geographic origins of fuels. The right energy mix is decisive. The European Commission feels that nuclear power can make an important contribution towards sustainable energy supply in Europe. Nuclear power should keep its place in the European energy mix. One important aspect in this regard is improved public acceptance through communication, transparency, and confidence building. High safety standards and a credible approach to the safe long-term management of radioactive waste are major components of this sustainable energy source. (orig.)

  13. Power Control Optimization of an Underwater Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Iñigo Aramendia

    2018-03-01

    Full Text Available Over the past few years, it has been established that vibration energy harvesters with intentionally designed components can be used for frequency bandwidth enhancement under excitation for sufficiently high vibration amplitudes. Pipelines are often necessary means of transporting important resources such as water, gas, and oil. A self-powered wireless sensor network could be a sustainable alternative for in-pipe monitoring applications. A new control algorithm has been developed and implemented into an underwater energy harvester. Firstly, a computational study of a piezoelectric energy harvester for underwater applications has been studied for using the kinetic energy of water flow at four different Reynolds numbers Re = 3000, 6000, 9000, and 12,000. The device consists of a piezoelectric beam assembled to an oscillating cylinder inside the water of pipes from 2 to 5 inches in diameter. Therefore, unsteady simulations have been performed to study the dynamic forces under different water speeds. Secondly, a new control law strategy based on the computational results has been developed to extract as much energy as possible from the energy harvester. The results show that the harvester can efficiently extract the power from the kinetic energy of the fluid. The maximum power output is 996.25 µW and corresponds to the case with Re = 12,000.

  14. Energy strategies and the case of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [International Inst. for Applied Systems Analysis, Laxenburg (Austria)

    1976-01-01

    The future of nuclear energy is widely discussed with emphasis on the compatibility with social structure. Projected growth of nuclear power generation, demands for nuclear fuel resources and services, and comparison of power generation costs with other energy sources are presented and discussed based on the published data. As one of the processing problems in fuel cycle industry, the problem of reprocessing plant is discussed mainly from the view point of managing radioactive wastes including trans-actinides. Here the importance of establishing regulating standards is emphasized. A logical decision process for regulating large scale nuclear power development is proposed and explained and it is concluded that the largest obstacle for large scale development is the lack of decisions about regulation. In other words, the problem is not of technological feature but of software. Other problems discussed in this paper include, the multipurpose utilization of nuclear energy with the combination of LWR, FBR, and HTR, plutonium physical protection, the problem of energy park, and multi-national energy center. Finally, a historical review is given of the relations between the scale of energy utilization and the social structure and technological innovations. It is deduced that a new social pattern will be required for the large scale utilization of nuclear energy.

  15. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  16. Stopping power of K electrons at extreme relativistic energies

    International Nuclear Information System (INIS)

    Leung, P.T.; Rustgi, M.L.

    1983-01-01

    The recent work of Anholt on K-vacancy production by relativistic projectiles has been applied to calculate the stopping power of the K electrons. The results show that for protons of energy approx.10 3 GeV and heavy target elements, the relativistic contributions to the stopping power amount to several times the resuls due to the longitudinal terms obtained from Walske's work

  17. Russian Energy Strategy and development of renewable power industry

    OpenAIRE

    Bazhanov, Andrei; Tyukhov, Igor

    2008-01-01

    We consider two scenarios of the development of renewable power industry in Russia on an example of the Dasgupta-Heal-Solow-Stiglitz model. We assume that the resource rent is being invested into capital in the form of renewable power technologies according to the standard Hartwick saving rule. We use the modified Hotelling rule that reflects externalities implying, in particular, growing rates of oil extraction. We have shown that the growing extraction, prescribed by the Russian Energy Stra...

  18. The economics of energy storage in 14 deregulated power markets

    International Nuclear Information System (INIS)

    Figueiredo, F.C.; Flynn, P.C.; Cabral, E.A.

    2006-01-01

    In regulated power markets, electricity is stored to better utilize existing generation and to defer costly investment in generation. The justification is a reduction in the overall regulated price of power compared to the alternative investment in new primary generation. However, any storage of electrical power also involves a capital investment and incurs the cost of inefficiency. In deregulated energy markets, the sale of electricity or ancillary services from pumped storage can be evaluated based on each individual project. The economic basis for power storage is that power is purchased during periods of low price and resold during periods of high price. This study used historical power price data from 14 deregulated markets around the world to evaluate the economic incentive to use pumped storage for electrical energy. Each market was shown to have a unique average diurnal power price profile that results in a unique price spread for pumped storage. The diurnal price pattern and efficiency of storage was used to assess the net income potential from energy sales from pumped storage for each market. The markets were ranked in terms of the incentive to invest in pumped energy storage as well as on available revenue, and on potential return on investment. An optimal operating profile was illustrated in detail based on historical price patterns for one of the markets. The net income potential was then combined with the capital and operating cost of pumped storage. The adequacy of return on investment for pumped storage was analyzed by two different methods. The differences between markets stem from different diurnal power price patterns that reflect the generation mix, market design and participant behaviours. 17 refs., 7 tabs., 7 figs., 1 appendix

  19. Clean Energy for the Commonwealth Powered by UMass

    Science.gov (United States)

    2009-04-15

    Nanomagnetics Zeolite membranes Polymer-inorganic nanocomposites MEMS Nanostructured catalysts Plant Biotechnology Biochem., Cell wall struct., Agronomy Crambe...power management Low-power device networks Energy scavenging Flame Modeling Combustion chemistry Molecular-beam mass spectrometry Building Design...Thayumanavan, PhD. UMass Amherst Professor of Chemistry and Director, Fueling the Future Center for Chemical Innovation – Paul Osenar, PhD. Chief

  20. Malaysian public perception towards nuclear power energy-related issues

    Science.gov (United States)

    Misnon, Fauzan Amin; Hu, Yeoh Siong; Rahman, Irman Abd.; Yasir, Muhamad Samudi

    2017-01-01

    Malaysia had considered nuclear energy as an option for future electricity generation during the 9th Malaysia Development Plan. Since 2009, Malaysia had implemented a number of important preparatory steps towards this goal, including the establishment of Nuclear Power Corporation of Malaysia (MNPC) as first Nuclear Energy Programme Implementing Organization (NEPIO) in Malaysia. In light of the establishment of MNPC, the National Nuclear Policy was formulated in 2010 and a new comprehensive nuclear law to replace the existing Atomic Energy Licensing Act (Act 304) is currently in the pipeline. Internationally, public acceptance is generally used to gauge the acceptance of nuclear energy by the public whenever a government decides to engage in nuclear energy. A public survey was conducted in between 14 March 2016 to 10 May 2016 focusing on the Malaysian public acceptance and perception towards the implementation of nuclear energy in Malaysia. The methodology of this research was aim on finding an overview of the general knowledge, public-relation recommendation, perception and acceptance of Malaysian towards the nuclear power development program. The combination of information gathered from this study can be interpreted as an indication of the complexity surrounding the development of nuclear energy and its relationship with the unique background of Malaysian demography. This paper will focus mainly on energy-related section in the survey in comparison with nuclear energy.

  1. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  2. Demands on thermal power plants in the liberalised energy market

    International Nuclear Information System (INIS)

    Hein, D.; Kwanka, K.; Fischer, T.

    2005-01-01

    In the liberalised energy market, a diversified set (''mix'') of power plants will be needed. By investigating present and anticipated future criteria in detail, available technologies and outlines of further development are identified and discussed. Among them, concepts for efficiency-optimised base load plants as well as units with an improved cycling operation capability are both attributed to a specific valued benefit. Following the demand for a significant reduction of the overall greenhouse gas emissions, centralised power plants fed by fossil fuels and modified for retention of CO 2 are needed to guarantee a supply of energy at moderate costs in the 21st century. (author)

  3. Water Use in the US Electric Power Sector: Energy Systems ...

    Science.gov (United States)

    This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? It also looks at research addressing the electricity generation water demand from a life cycle perspective, such as water use for the fuel cycle (natural gas, coal, uranium, etc.) and water use for the materials/equipment/manufacturing of new power plants. The presentation is part of panel session on the Water-Energy Nexus at the World Energy Engineering Congress

  4. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  5. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    . CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities...... in Denmark; conversion of pulverised fuel plants from coal to wood pellets and a circulating fluidised bed (CFB) plant for wood chips. From scientific research projects another solution is suggested as the most feasible; the combined cycle gas turbine (CCGT) plant. In this study a four scenarios...

  6. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  7. A stochastic MILP energy planning model incorporating power market dynamics

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Nazos, Konstantinos

    2017-01-01

    Highlights: •Stochastic MILP model for the optimal energy planning of a power system. •Power market dynamics (offers/bids) are incorporated in the proposed model. •Monte Carlo method for capturing the uncertainty of some key parameters. •Analytical supply cost composition per power producer and activity. •Clean dark and spark spreads are calculated for each power unit. -- Abstract: This paper presents an optimization-based methodological approach to address the problem of the optimal planning of a power system at an annual level in competitive and uncertain power markets. More specifically, a stochastic mixed integer linear programming model (MILP) has been developed, combining advanced optimization techniques with Monte Carlo method in order to deal with uncertainty issues. The main focus of the proposed framework is the dynamic formulation of the strategy followed by all market participants in volatile market conditions, as well as detailed economic assessment of the power system’s operation. The applicability of the proposed approach has been tested on a real case study of the interconnected Greek power system, quantifying in detail all the relevant technical and economic aspects of the system’s operation. The proposed work identifies in the form of probability distributions the optimal power generation mix, electricity trade at a regional level, carbon footprint, as well as detailed total supply cost composition, according to the assumed market structure. The paper demonstrates that the proposed optimization approach is able to provide important insights into the appropriate energy strategies designed by market participants, as well as on the strategic long-term decisions to be made by investors and/or policy makers at a national and/or regional level, underscoring potential risks and providing appropriate price signals on critical energy projects under real market operating conditions.

  8. Efficient energy utilization and environmental issues applied to power planning

    International Nuclear Information System (INIS)

    Campbell, Hector; Montero, Gisela; Perez, Carlos; Lambert, Alejandro

    2011-01-01

    This document shows the importance of policies for electric energy savings and efficient energy utilization in power planning. The contributions of economic, social, and environmental items were evaluated according to their financial effects in the delay of investments, reduction of production costs and decrement of environmental emissions. The case study is Baja California, Mexico; this system has a unique primary source: geothermal energy. Whether analyzing the planning as usual or planning from the supply side, the forecast for 2005-2025 indicates that 4500 MW additional installed capacity will be required (3-times current capacity), representing an investment that will emit 12.7 Mton per year of CO 2 to the atmosphere and will cost US$2.8 billion. Systemic planning that incorporates polices of energy savings and efficiency allows the reduction of investments and pollutant emissions. For example, a reduction of 20% in the growth trend of the electricity consumption in the industrial customers would save US$10.4 billion over the next 20 years, with a potential reduction of 1.6 Mton/year of CO 2 . The increase in geothermal power generation is also attractive, and it can be combined with the reduction of use and energy losses of utilities, which would save US$13.5 billion and prevent the discharge of 8.5 Mton/year of CO 2 . - Highlights: → We contrast power planning methods for supply electricity for economy development. → Importance of policies for electricity savings and efficient use in power planning. → Systemic planning facilitates decision-making process for electricity optimization. → Supply-side planning will cause climb in prices and loss of energy self-sufficiency. → Power planning should be immersed in an environment of appropriate energy policies.

  9. Market potential of IGCC for domestic power production

    International Nuclear Information System (INIS)

    Gray, D.; Tomlinson, G.; Hawk, E.; Maskew, J.

    1999-01-01

    Mitretek Systems and CONSOL Inc. have completed the first phase of a market potential study for Integrated Coal Gasification Combined Cycle (IGCC) domestic power production. The U. S. Department of Energy (DOE) funded this study. The objective of this study is to provide DOE with data to estimate the future domestic market potential of IGCC for electricity generation. Major drivers in this study are the state of technology development, feedstock costs, environmental control costs, demand growth, and dispatchability. This study examines IGCC potential for baseload power production in the Northeast U. S., an important market area by virtue of existing coal infrastructure and proximity to coal producing regions. IGCC market potential was examined for two levels of technology development as a function of natural gas price and carbon tax. This paper discusses the results of this study, including the levels of performance and cost necessary to insure competitiveness with natural gas combined cycle plants

  10. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Webber, M.

    2016-12-01

    Energy, food and water are precious resources, and they are interconnected. The energy sector uses a lot of water, the food sector uses a lot of energy and water, the water sector uses a lot of energy, and as a nation we are contemplating a biofuels policy that uses food for energy. The thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. The food system uses over ten percent of national energy consumption. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt, while energy and water challenges pose constraints to our food system. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global food, energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  11. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  12. Conference on renewable energies integration to power grids

    International Nuclear Information System (INIS)

    Laffaille, Didier; Bischoff, Torsten; Merkel, Marcus; Rohrig, Kurt; Glatigny, Alain; Quitmann, Eckard; Lehec, Guillaume; Teirlynck, Thierry; Stahl, Oliver

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on renewable energies integration to power grids. In the framework of this French-German exchange of experience, more than 150 participants exchanged views on the perspectives and possible solutions of this integration in order to warrant the security of supplies and the grid stability in a context of increasing injection and decentralization of renewable power sources. This document brings together the available presentations (slides) made during this event: 1 - French distribution grids - Overview and perspectives (Didier Laffaille); 2 - Distribution Grids in Germany - Overview and Perspective (Torsten Bischoff); 3 - Integration of renewable energies into distribution grids - a case example from Germany (Marcus Merkel); 4 - Regeneratives Kombikraftwerk Deutschland: System Services with 100 % Renewable energies (Kurt Rohrig); 5 - Overview of the different grid instrumentation-control and automation tools (Alain Glatigny); 6 - Which Ancillary Services needs the Power System? The contribution from Wind Power Plants (Eckard Quitmann); 7 - The Flexibility Aggregator - the example of the GreenLys Project (Guillaume Lehec); 8 - Energy Pool - Providing flexibility to the electric system. Consumption cut-off solutions in France (Thierry Teirlynck); 9 - Demand Response experiences from Germany (Oliver Stahl)

  13. Evolution of China's power dispatch principle and the new energy saving power dispatch policy

    International Nuclear Information System (INIS)

    Ciwei, Gao; Yang, Li

    2010-01-01

    With social economic reform in the past decades, the power industry of China is gradually evolving from a highly integrated one toward an electricity market, which can be characterized based on the transition of the power dispatch principle. To attract investment in the power generating industry, China introduced non-state-owned power plants to the original system of a highly vertically integrated power industry with annual power generation quota guarantees, which makes the traditional economic dispatch principle not applicable. The newly debuted energy saving power dispatch (ESPD) is an attempt to fully exploit the maximum energy savings and was implemented by an administrative code. Starting in August 2007, the pilot operation of the ESPD was implemented in five provinces, but after two years, it is still not widely applied all over the country. This paper details the transition of China's power dispatch principle with particular attention to its origin and content. Moreover, the factors that influence the ESPD's actual energy saving effect are discussed, as well as the sustainability of the policy. (author)

  14. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  15. Power management circuits for self-powered systems based on micro-scale solar energy harvesting

    Science.gov (United States)

    Yoon, Eun-Jung; Yu, Chong-Gun

    2016-03-01

    In this paper, two types of power management circuits for self-powered systems based on micro-scale solar energy harvesting are proposed. First, if a solar cell outputs a very low voltage, less than 0.5 V, as in miniature solar cells or monolithic integrated solar cells, such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then a power management unit (PMU) delivers the boosted voltage to the load. Second, if the output voltage of a solar cell is enough to drive the load, the PMU directly supplies the load with solar energy. The proposed power management systems are designed and fabricated in a 0.18-μm complementary metal-oxide-semiconductor process, and their performances are compared and analysed through measurements.

  16. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  17. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  18. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  19. The role of hydroelectric power in energy economy

    International Nuclear Information System (INIS)

    Allet, B.

    1989-01-01

    The state of development and the technical potential of hydroelectric power worldwide, in Europe and in Switzerland are briefly compared with each other. Afterwards, the most important types of hydroelectric power stations and their function in the electricity-distribution network, are put forward. The realistic possibilities of development in Switzerland, up to the year 2025, of each type of hydroelectric power station is judged with regard to the currently valid regulations. The effects of the peoples' initiative - 'towards the salvation of our waters' or for stricter regulations for the protection of water - on the chances of realisation of these possibilities of development are shown. The forseeable decrease in the production of energy by the existing hydroelectric power stations, as a result of the regulation planned for rest water, is judged. Various forecasts for the future quantity of hydroelectric power production in Switzerland are put forward. 6 figs., 7 tabs., 12 refs

  20. Auxetic piezoelectric energy harvesters for increased electric power output

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2017-01-01

    Full Text Available This letter presents a piezoelectric bimorph with auxetic (negative Poisson’s ratio behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  1. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  2. Hamaoka Atomic Energy Hall, Chubu Electric Power Co. , Inc

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Y [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1979-10-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m/sup 2/ surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m/sup 2/ total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979.

  3. Hamaoka Atomic Energy Hall, Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kawasaki, Yukio

    1979-01-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m 2 surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m 2 total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979. (Kako, I.)

  4. Modern Topics in Energy and Power Technical Meeting

    Science.gov (United States)

    2016-09-01

    of the meeting started with 2 talks on plasma and nuclear physics in a session chaired by Mr Morris Berman (ARL). In the first talk, “Energy and...and Nuclear Physics, Chair: Mr. Morris Berman 8:30 Energy and Pulsed Power for National Security Applications: A Naval Perspective Dr. Thomas...merit of the ideas expressed. Tuesday , 14 July, 9:00 Photoelectrochemical Water Splitting, from Fundamentals to Devices John A. Turner

  5. About connection between atomic and hydrogen energy power

    International Nuclear Information System (INIS)

    Avdeeva, M.Zh.; Vecher, A.A.; Pan'kov, V.V.

    2008-01-01

    Possible interaction between atomic and hydrogen energy power has been discussed. The analysis of the result held shows that the electrical energy produced by the atomic reactor during the of-load hours can be involved into the process of obtaining hydrogen by electrolysis. In order to optimize the transportation and storage of hydrogen it is proposed to convert it into ammonia. The direct uses of ammonia as a fuel into the internal combustion engine and fuel cells are examined. (authors)

  6. Energy storage and power conditioning system for the Shiva laser

    International Nuclear Information System (INIS)

    Allen, G.R.; Gagnon, W.L.; Rupert, P.R.; Trenholme, J.B.

    1975-01-01

    An optimal energy delivery system for the world's largest glass laser system has been designed based on computer modeling and operation of laser hardware. Components of the system have been tested on operating lasers at LLL. The Shiva system is now under construction and will be completed in 1977. The energy supply described here will provide cost-effective, reliable power and facilitate the gathering of data in pursuit of controlled thermonuclear reactions

  7. Nuclear power issue as seen by the International Energy Agency

    International Nuclear Information System (INIS)

    Kelly, P.

    1976-01-01

    An account is given of the work of the International Energy Agency towards reducing the dependence of member states on imported oil. Forecasts of energy consumption are discussed, and the contributions that could be made by various energy sources, and by energy conservation, are examined. It is concluded that nuclear power is essential to a reduced dependence policy. The constraints on full realization of national nuclear programmes are stated as follows: licensing delays, waste disposal, financing, uranium supply, and fuel services. Ways in which these could be overcome by national and international action are suggested. Reference is made to the work of other atomic energy agencies: IAEA and OECD Nuclear Energy Agency. (U.K.)

  8. Coal, an alternative to nuclear power in Europe's energy future

    International Nuclear Information System (INIS)

    Paillard, Christophe-Alexandre

    2012-01-01

    The impending demise of nuclear power in several European countries and the projected strong increase in world energy requirements are placing coal in the forefront again. From being the primary energy source in the 19. century, coal is making a quite remarkable come-back in the 21. century with the advent of 'clean coal' and with its dominance in the energy mix of rapidly emerging countries such as China. New mines should open in Europe. In France, the last mine closed in 2004, but there is potential for new ones in the centre of France in areas such as Auvergne and Bourgogne, as well as Midi Pyrenees. These could create new jobs and reduce France's energy dependency. Far from the topical scenes of the past described in books such as Germinal, with its tips and misery, coal is again a promising energy source, with potential to satisfy a rising share of Europe's energy demand. (author)

  9. Renewable energy and decentralized power generation in Russia: an opportunity for German-Russian energy cooperation

    OpenAIRE

    Chukanov, Denis; Opitz, Petra; Pastukhova, Maria; Piani, Gianguido; Westphal, Kirsten

    2017-01-01

    Renewable and decentralized power generation are a centerpiece of Germany's domestic energy transition (Energiewende) and a major element of its international efforts to promote this goal. Recently, the renewables sector has also been advancing in Russia, albeit from a lower level. Thus, it is time to explore the status quo and analyze the potential for sustainable energy cooperation. In the context of the current deterioration in EURussian (energy) relations, crafting a sustainable energy pa...

  10. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  11. GasFair/PowerFair/EnergyUser '98 : Presentations

    International Nuclear Information System (INIS)

    1998-01-01

    Papers presented at three conferences, reviewing recent activities in the natural gas and electric power industries and matters of concern to energy consumers in North America are contained on this single CD-ROM. Seven presentations relate to the natural gas industry, nine to electric power generation and transmission, and ten to a wide range of topics dealing with various concerns relating to the environment, financial and cost management aspects of energy utilization. Speakers at the GasFair sessions discussed recent developments in natural gas supply, marketing, purchasing, risk management and the impact of energy convergence on natural gas. Presentations at the PowerFair segment dealt with issues in electricity deregulation, supply and financing, purchasing and marketing. Issues discussed at the EnergyUser sessions included presentations dealing with ways to save costs with energy technology and integrated services, environmental performance contracting and engineering and energy cost control. The CD-ROM also contains the summary of a round table discussion and five individual presentations made at the Natural Gas Pipeline Forum. This pre-conference institute dealt with the likely effects of new pipelines and pipeline extensions on North American natural gas consumers. . tabs., figs

  12. Four essays on market power in energy economics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Petter Vegard

    2008-07-01

    Market power in energy markets is discussed intensively in both academic and public arenas. There has been an intense energy debate on market power at least since the Organization of Petroleum Exporting Countries (OPEC) exercised its market power and caused the 'oil crisis' of the 1970s, and again following the deregulation of electricity markets at the beginning of the 1990s. However, this debate is not new. In 1911, for example, the US Supreme Court divided Standard Oil into 34 separate companies using antitrust law. With increasing energy prices and the ongoing process of liberalization of electricity markets throughout the world, the topic is still relevant for future markets. The four essays in this dissertation discuss specific aspects of market power in energy markets. The first essay concerns the crude oil market, and the remaining three essays relate to market power in the Nordic and Norwegian electricity markets. In the first essay, a multi-equation dynamic econometric model tests whether the behaviour of OPEC, as a whole or as different subgroups, is consistent with the behaviour of dominant producers in the world crude oil market. The second essay is a theoretical work that introduces uncertainty in inflow to the discussion of market power in hydropower markets by analysing the effects of uncertainty in inflow on market performance under alternative assumptions about market structure. In the third essay, high-frequency data are used to analyse how price signals from the spot market affect end-user demand in the Norwegian and Swedish electricity markets. Finally, in the fourth essay, retailer and household behaviour in the Norwegian electricity market are analysed using detailed information on prices and other market characteristics. In the following section, I provide highlights from a general discussion of market power in order to set the essays included in this dissertation in context. (Author). refs., figs., tabs

  13. Energy harvesting for self-powered aerostructure actuation

    Science.gov (United States)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  14. A renaissance in nuclear power

    International Nuclear Information System (INIS)

    Lambertini, Antonio C.F.

    2009-01-01

    This paper presents an analysis of the worldwide evolution of the fleet of nuclear power plants until the 1980s; the reasons why in the same era this contingent was rejected in various developed countries due to a complete lack of public acceptance, being condemned to a phaseout planned to eliminate more than half of the operating power plants by 2020; and finally, what are the reasons for this competent base-load power source to silently resist for more than a quarter of a century, having been the focus of studies and improvements in the most renowned research centers in the world and the most traditional universities of the developed countries, resurging as one of the main allies of worldwide sustainable development, even with all the difficulties of deployment, ecological risks, and nuclear proliferation. However, after more than 30 years of intense debates involving a wide variety of interrelated problems, scientists have collected irrefutable proof that the actions of humankind have caused climate changes that represent an imminent threat to the survival of the human species on Earth, requiring coordinated international action that seeks to determine the economic aspects of the stabilization of levels of GHGs (greenhouse gases) in the atmosphere. The transition to a worldwide low-carbon economy presents political challenges, where, the most complex political question, is the supply of energy which would depends on a change in the supply of energy from fossil fuels to renewable, hydro and nuclear. Undoubtedly the nuclear power plants are, by far, the most controversial. (author)

  15. Energy Storage System Control Algorithm by Operating Target Power to Improve Energy Sustainability of Smart Home

    Directory of Open Access Journals (Sweden)

    Byeongkwan Kang

    2018-01-01

    Full Text Available As energy issues are emerging around the world, a variety of smart home technologies aimed at realizing zero energy houses are being introduced. Energy storage system (ESS for smart home energy independence is increasingly gaining interest. However, limitations exist in that most of them are controlled according to time schedules or used in conjunction with photovoltaic (PV generation systems. In consideration of load usage patterns and PV generation of smart home, this study proposes an ESS control algorithm that uses constant energy of energy network while making maximum use of ESS. Constant energy means that the load consumes a certain amount of power under all conditions, which translates to low variability. The proposed algorithm makes a smart home a load of energy network with low uncertainty and complexity. The simulation results show that the optimal ESS operating target power not only makes the smart home use power constantly from the energy network, but also maximizes utilization of the ESS. In addition, since the smart home is a load that uses constant energy, it has the advantage of being able to operate an efficient energy network from the viewpoint of energy providers.

  16. Low power interface IC's for electrostatic energy harvesting applications

    Science.gov (United States)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of

  17. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  18. Peel-and-Stick Sensors Powered by Directed RF Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph; Schwartz, David

    2017-08-30

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost by eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm

  19. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  20. Power for the poor; Energie fuer die Armen

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Kirsten

    2011-05-31

    What does decentral power supply contribute to the fight against poverty, and in what boundary conditions? This question and others were discussed at a conference, 'Micro Perspectives for Decentralized Energy Supply', held in April at TU Berlin University.

  1. Energy-Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Salem, Ahmed Sultan; Alouini, Mohamed-Slim

    2017-01-01

    achieves at least 95% of the optimal performance. In addition, we show that adopting more antennas is more energy efficient for a given power budget. Finally, we show that the interference threshold has a significant effect on both the EE and the spectral

  2. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  3. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  4. Marketing conception interaction between power system and electric energy loads

    International Nuclear Information System (INIS)

    Bagiev, G.L.; Shneerova, G.V.; Taratin, V.A.; Barykin, E.E.; Zajtsev, O.V.

    1993-01-01

    New concept of functioning fuel-power complex, based on the marketing system is, is presented in brief form. This system includes demand management program, working policy program, active energy-saving policy program and advertisment-service organization program. Methods for realization of demand management and working policy programs are considered

  5. Active Power Deficit Estimation in Presence of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2015-01-01

    The inertia of the power system is reduced in the presence of Renewable Energy Sources (RESs) due to their low or even no contribution in the inertial response as it is inherently available in the Synchronous Machines (SMs). The total inertia of the grid becomes unknown or at least uncertain...

  6. Small wind power systems: market, applications, architectures and energy management

    International Nuclear Information System (INIS)

    Roboam, X.

    2005-01-01

    Context and stakes of small wind power systems are described in this paper by situating both supply and demand as well as the main application fields. Technical issues are then concerned in terms of system structure, energy management and network connection. (author)

  7. Energy and Economic Losses Due to Constant Power Outages in ...

    African Journals Online (AJOL)

    This study assesses the economic implication of electricity self-generation in Nigeria. In this regard, energy and exergetic utilization efficiencies of 19 representative generators and gas turbines from Afam power station were assessed based on real data obtained through survey of companies, oral interview, individuals and ...

  8. Energy Efficient Power Allocation for Cognitive MIMO Channels

    KAUST Repository

    Sboui, Lokman

    2016-01-06

    Two major issues are facing today s wireless communications evolution: -Spectrum scarcity: Need for more bandwidth. As a solution, the Cognitive Radio (CR) paradigm, where secondary users (unlicensed) share the spectrum with licensed users, was introduced. -Energy consumption and CO2 emission: The ICT produces 2% of global CO2 emission (equivalent to the aviation industry emission). The cellular networks produces 0.2%. As solution energy efficient systems should be designed rather than traditional spectral efficient systems. In this work, an energy efficient power allocation framework based on maximizing the average EE per parallel channel is presented.

  9. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  10. Energy-Efficient Power Allocation for Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2015-09-01

    We present a power allocation framework for spectrum sharing Cognitive Radio (CR) systems based on maximizing the energy efficiency (EE). First, we show that the relation between the EE and the spectral efficiency (SE) is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and explicitly derive the optimal power for the proposed average EE under either a peak or an average power constraint. We apply our results to the underlay CR systems where the power is limited by an additional interference constraint. When the instantaneous channel is not available, we provide a necessary and sufficient condition for the optimal power and present a simple sub-optimal power. In the numerical results, we show that the proposed EE corresponds to a higher SE at mid-range and high power regime compared to the classical EE. We also show that the sup-optimal solution is very close to the optimal solution. In addition, we deduce that the absence of instantaneous CSI affects the EE and the SE at high power regime compared to full CSI. In the CR context, we show that the interference threshold has a minimal effect on the EE compared to the SE.

  11. Energy-Efficient Power Allocation for Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We present a power allocation framework for spectrum sharing Cognitive Radio (CR) systems based on maximizing the energy efficiency (EE). First, we show that the relation between the EE and the spectral efficiency (SE) is strictly increasing in contrast with the SE-EE trade-off discussed in the literature. We also solve a non-convex problem and explicitly derive the optimal power for the proposed average EE under either a peak or an average power constraint. We apply our results to the underlay CR systems where the power is limited by an additional interference constraint. When the instantaneous channel is not available, we provide a necessary and sufficient condition for the optimal power and present a simple sub-optimal power. In the numerical results, we show that the proposed EE corresponds to a higher SE at mid-range and high power regime compared to the classical EE. We also show that the sup-optimal solution is very close to the optimal solution. In addition, we deduce that the absence of instantaneous CSI affects the EE and the SE at high power regime compared to full CSI. In the CR context, we show that the interference threshold has a minimal effect on the EE compared to the SE.

  12. Perspectives in nuclear power, energy and the environment

    International Nuclear Information System (INIS)

    Gerholm, T.R.

    1975-01-01

    An experiment in informing the public on the pros and cons of nuclear power was carried out in Sweden during the autumn and winter of 1974. Study groups were arranged in collaboration with various organisations involved in adult education. The Ministry for Industry provided the background material, consisting of various official publications and a literature list, and general information. Almost 100,000 persons participated in these study circles. Neither protagonists or antagonists of nuclear power were satisfied with the material provided. A subjective conclusion is that the public opinion requires continued economic growth and increased consumption of energy, though conservation is to be strived for. There are considerable doubts regarding nuclear energy and a majority are probably opposed, but there is also opposition to dependence on imported fuel. Further hydroelectric construction would be accepted but there is scepsis regarding wind, solar and geothermal power. (JIW)

  13. Feedback Linearization Controller for a Wind Energy Power System

    Directory of Open Access Journals (Sweden)

    Muthana Alrifai

    2016-09-01

    Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.

  14. Energy saver A-sector power test results

    International Nuclear Information System (INIS)

    Martin, P.; Flora, R.; Tool, G.; Wolff, D.

    1982-01-01

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied by three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply

  15. A wireless soil moisture sensor powered by solar energy.

    Directory of Open Access Journals (Sweden)

    Mingliang Jiang

    Full Text Available In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  16. Transmission Power and Antenna Allocation for Energy-Efficient RF Energy Harvesting Networks with Massive MIMO

    Directory of Open Access Journals (Sweden)

    Yu Min Hwang

    2017-06-01

    Full Text Available The optimum transmission strategy for maximizing energy efficiency (EE of a multi-user massive multiple-input multiple-output (MIMO system in radio frequency energy harvesting networks is investigated. We focus on dynamic time-switching (TS antennas, to avoid the practical problems of power-splitting antennas, such as complex architectures, power loss and signal distortion when splitting the power of the received signal into power for information decoding (ID and energy harvesting (EH. However, since a single TS antenna cannot serve ID and EH simultaneously, the MIMO system is considered in this paper. We thus formulate an EE optimization problem and propose an iterative algorithm as a tractable solution, including an antenna selection strategy to optimally switch each TS antenna between ID mode and EH mode using nonlinear fractional programming and the Lagrange dual method. Further, the problem is solved under practical constraints of maximum transmission power and outage probabilities for a minimum amount of harvested power and rate capacity for each user. Simulation results show that the proposed algorithm is more energy-efficient than that of baseline schemes, and demonstrates the trade-off between the required amount of harvested power and energy efficiency.

  17. Energy, exergy, and economic analysis of a geothermal power plant

    Directory of Open Access Journals (Sweden)

    Hamid Kazemi

    2018-04-01

    Full Text Available The current study aimed at designing a geothermal power plant in the Nonal area in Damavand district for simultaneous generation of thermal energy the electric power in the network of Damavand City and a part of Tehran province, the organic working fluid for the above cycle is R245fa which is a non-flammable fluid of dry type. The values of energy efficiency, exergy, the net rate of entropy change, and the specific output power were calculated as 18.2%, 21.3%, 172.97 kW/K, and 31.43 kJ/kg, respectively. The cost of drilling a well, as well as designing and construction of Damavand’s geothermal power plant, were calculated to be 4.2 and 521.5 million (USD, respectively. Also, the cost per generation of each kW/h of power in Damavand power plant was 17 cents. The estimated payback time is calculated as 15 years. The analysis of the cycle in different months of the year showed that exergy efficiency has little change. The only significant effect of temperature changes was on the exergy efficiency as approximately a change of 2% can be seen during a year.

  18. The use of energy analysis and indexes of energy efficiency in nuclear power

    International Nuclear Information System (INIS)

    D'yakonov, E.I.; Ignatenko, E.I.

    1991-01-01

    The results of calculating the indexes of energy efficiency for NPPs with the WWER-1000 and RBMK-1000 reactors, heat and power NPPs with the WWER-1000 and dictrict heating NPPs with the AST-500 reactor in three fuel cycles, namely, the open one and with uranium and plutonium recycles, are considered. Complex account for the quantity and quality of produced and consumed energy provides for objective evaluation of the indexes of energy efficiency during comparative analysis of nuclear power plants with different types of reactors. It is shown that complex use of the energy produced at a NPP provides for increase of indexes of energy efficiency. The highest indexes are obtained for heat and power NPP with the WWER-1000 reactor in the open fuel cycle, with uranium and plutonium recycle and for NPP with the WWER-1000 reactor with plutonium recycle

  19. Energy-autonomous wireless sensor nodes for automotive applications, powered by thermoelectric energy harvesting

    International Nuclear Information System (INIS)

    Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.

    2016-01-01

    In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi. (paper)

  20. Energy-autonomous wireless sensor nodes for automotive applications, powered by thermoelectric energy harvesting

    Science.gov (United States)

    Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.

    2016-11-01

    In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.