WorldWideScience

Sample records for energy bands concept

  1. Fundamental concepts on energy

    International Nuclear Information System (INIS)

    Rodriguez, M.H.

    1998-01-01

    The fundamental concepts on energy and the different forms in which it is manifested are presented. Since it is possible to transform energy in a way to other, the laws that govern these transformations are discussed. The energy transformation processes are an essential compound in the capacity humanizes to survive and be developed. The energy use brings important economic aspects, technical and political. Because this, any decision to administer energy system will be key for our future life

  2. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  3. Energy correlations for mixed rotational bands

    International Nuclear Information System (INIS)

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  4. Zero energy Tunnel-concept

    NARCIS (Netherlands)

    Dzhusupova, R.

    2012-01-01

    Creating a zero energy environment is a hot topic. The developments in this field are based on the concept of the "Trias Energetica": reducing energy consumption, using renewable energy sources, and efficiently using fossil fuels. A zero energy concept can also be applied to road tunnels to improve

  5. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  6. Energy Literacy : Essential Principles and Fundamental Concepts for Energy Education

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-03-01

    Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education presents energy concepts that, if understood and applied, will help individuals and communities make informed energy decisions.

  7. Energy Literacy : Essential Principles and Fundamental Concepts for Energy Education

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education presents energy concepts that, if understood and applied, will help individuals and communities make informed energy decisions.

  8. Efficient Energy-Storage Concept

    Science.gov (United States)

    Brantley, L. W. J.; Rupp, C.

    1982-01-01

    Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

  9. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  10. Conservation of topological quantum numbers in energy bands

    International Nuclear Information System (INIS)

    Chang, L.N.; Liang, Y.

    1988-01-01

    Quantum systems described by parametrized Hamiltinians are studied in a general context. Within this context, the classification scheme of Avron-Seiler-Simon for non-degenerate energy bands is extended to cover general parameter spaces, whole their sum rule is generalized to cover cases with degenerate bands as well. Additive topological quantum numbers are defined, and these are shown to be conserved in energy band ''collisions''. The conservation laws dictate that when some invariants are non-vanishing, no energy gap can develop in a set of degenerate bands. This gives rise to a series of splitting rules

  11. Interpolation of band-limited discrete-time signals by minimising out-of-band energy

    NARCIS (Netherlands)

    Janssen, A.J.E.M.; Vries, L.B.

    1984-01-01

    An interpolation method for restoring burst errors in discrete—time, band—limited signals is presented. The restoration is such that the restored signal has minimal out—of—band energy. The filter coefficients depend Only on the burst length and on the size of the band to which the signal is assumed

  12. Quantitative analysis on electric dipole energy in Rashba band splitting.

    Science.gov (United States)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  13. Concept for Energy Security Matrix

    International Nuclear Information System (INIS)

    Kisel, Einari; Hamburg, Arvi; Härm, Mihkel; Leppiman, Ando; Ots, Märt

    2016-01-01

    The following paper presents a discussion of short- and long-term energy security assessment methods and indicators. The aim of the current paper is to describe diversity of approaches to energy security, to structure energy security indicators used by different institutions and papers, and to discuss several indicators that also play important role in the design of energy policy of a state. Based on this analysis the paper presents a novel Energy Security Matrix that structures relevant energy security indicators from the aspects of Technical Resilience and Vulnerability, Economic Dependence and Political Affectability for electricity, heat and transport fuel sectors. Earlier publications by different authors have presented energy security assessment methodologies that use publicly available indicators from different databases. Current paper challenges viability of some of these indicators and introduces new indicators that would deliver stronger energy security policy assessments. Energy Security Matrix and its indicators are based on experiences that the authors have gathered as high-level energy policymakers in Estonia, where all different aspects of energy security can be observed. - Highlights: •Energy security should be analysed in technical, economic and political terms; •Energy Security Matrix provides a framework for energy security analyses; •Applicability of Matrix is limited due to the lack of statistical data and sensitivity of output.

  14. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  15. Hole energy and momentum distributions in valence bands

    International Nuclear Information System (INIS)

    Laan, G. van der.

    1982-01-01

    In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)

  16. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  17. Validity of the concept of band edge in organic semiconductors

    Science.gov (United States)

    Horowitz, Gilles

    2015-09-01

    Because most organic semiconductors are disordered, the more appropriate function to describe their density of states (DOS) is the Gaussian distribution. A striking difference between the Gaussian DOS and the parabolic DOS found in conventional inorganic semiconductors is the fact that it does not allow for a simple and straightforward definition of the band edge. The most usual way found in the literature to define the band edge of a Gaussian DOS consists of extrapolating the tangent to the inflection point of the Gaussian curve. The aim of this paper is to discuss the validity of such a way of conduct. An analysis of data found in the literature shows that the width of the Gaussian distribution is significantly larger than what usually retained in transport models. It is also shown that the validity of the usual definition for the band edge is questioned by the fact that the density of charge carriers behave as a degenerate distribution, even at relatively low doping levels.

  18. Energies of conduction bands in dielectric liquids

    International Nuclear Information System (INIS)

    Holroyd, R.

    1975-01-01

    The properties of excess electrons in non-polar liquids depend on the relative energies of the trapped and conducting states. We have measured the energies of the conducting states, denoted V 0 , for about twenty non-polar liquids. Two methods were used: In one the work functions of metals immersed in the liquid were measured. In the other, solutes (TMPD) were photoionized in the liquid and V 0 calculated from the wavelength at which ionization onsets occur. A wide variation in conduction state energies is observed from a high of +0.21 eV for tetradecane to a low of --0.60 eV for tetramethylsilane. In general V 0 shifts to more negative values with increasing molecular symmetry, and correlates well with electron mobility. The photoionization results indicate that V 0 decreases with increasing temperature. In mixtures V 0 is linearly dependent on mole fraction. It was found empirically for n-hexane-neopentane mixtures that μ = 0.34 exp [--15.2(V 0 )]. This equation relating V 0 to the electron mobility also applies approximately to pure hydrocarbons. Thus the role of the conduction state energy in influencing electron mobilities and photoionization onsets is established and recent evidence indicates V 0 also influences the rates of electron reactions in these liquids

  19. Energy Blocks--A Physical Model for Teaching Energy Concepts

    Science.gov (United States)

    Hertting, Scott

    2016-01-01

    Most physics educators would agree that energy is a very useful, albeit abstract topic. It is therefore important to use various methods to help the student internalize the concept of energy itself and its related ideas. These methods include using representations such as energy bar graphs, energy pie charts, or energy tracking diagrams.…

  20. Implementation of Industrial Narrow Band Communication System into SDR Concept

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2008-12-01

    Full Text Available The rapid expansion of the digital signal processing has penetrated recently into a sphere of high performance industrial narrow band communication systems which had been for long years dominated by the traditional analog circuit design. Although it brings new potential to even increase the efficiency of the radio channel usage it also forces new challenges and compromises radio designers have to face. In this article we describe the design of the IF sampling industrial narrowband radio receiver, optimize a digital receiver structure implemented in a single FPGA circuit and study the performance of such radio receiver architecture. As an evaluation criterion the communication efficiency in form of maximum usable receiver sensitivity, co-channel rejection, adjacent channel selectivity and radio blocking measurement have been selected.

  1. Risk concepts and energy systems

    International Nuclear Information System (INIS)

    Otway, H.J.

    1975-01-01

    Many countries are experiencing a period in which traditional values are being questioned; plans for further technological progress are being met by a variety of demands for a closer examination of the benefits and risks of large-scale technologies. In this paper the concepts of risk assessment are introduced and a model is proposed which illustrates the importance of socio-psychological mechanisms in the societal acceptance of technological risks. The research plan of the joint IAEA/IIASA Research Project is outlined: this work is directed toward gaining an improved understanding of how societies judge the acceptability of technologies and how societal attitudes and anticipated responses may be better integrated into the decision-making process. Some preliminary results are reported [fr

  2. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  3. Resonant Wave Energy Converters: Concept development

    International Nuclear Information System (INIS)

    Arena, Felice; Barbaro, Giuseppe; Fiamma, Vincenzo; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati, Federica Mara

    2015-01-01

    The Resonant Wave Energy Converter (REWEC) is a device for converting sea wave energy to electrical energy. It belongs to the family of Oscillating Water Columns and is composed by an absorbing chamber connected to the open sea via a vertical duct. The paper gives a holistic view on the concept development of the device, starting from its implementation in the context of submerged breakwaters to the recently developed vertical breakwaters. [it

  4. Energy Concepts for the Shahre Javan Community

    OpenAIRE

    Huber, Jörg; Nytsch-Geusen, Christoph

    2013-01-01

    Zugleich gedruckt veröffentlicht im Universitätsverlag der TU Berlin unter der ISBN 978-3-7983-2548-7. The aim of the Young Cities Team 2 sub-project “Energy Infrastructure systems” consists of the development and the design of energy efficient buildings and energy supply systems for new Towns in Iran. This document gives an overview over the design and the development of the energy supply systems for the 35 ha pilot area in Hashtgerd New Town. In general, these energy concepts are suitabl...

  5. Experimental study of energy harvesting in UHF band

    International Nuclear Information System (INIS)

    Bernacki, Ł; Gozdur, R; Salamon, N

    2016-01-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)

  6. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  7. Hot Brakes and Energy-Related Concepts: Is Energy Lost?

    Science.gov (United States)

    Lopez, V.; Pinto, R.

    2012-01-01

    This paper describes a secondary school experience which is intended to help students to think profoundly about some energy-related concepts. It is quite different to other experiences of mechanics because the focus is not on the quantitative calculation of energy conservation but on the qualitative understanding of energy degradation. We first…

  8. Energy saving and energy efficiency concepts for policy making

    NARCIS (Netherlands)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between

  9. Calculation of the band gap energy of ionic crystals

    International Nuclear Information System (INIS)

    Aguado, A.; Lopez, J.M.; Alonso, J.A.; Ayuela, A.; Rivas S, J.F.; Berrondo, M.

    1998-01-01

    The band gap of alkali halides, alkaline-earth oxides, Al 2 O 3 and SiO 2 crystals has been calculated using the perturbed-ion model supplemented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calculations, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials. (Author)

  10. The systematics of emerging nuclear energy concepts

    International Nuclear Information System (INIS)

    Harms, A.A.; Ligou, J.

    1980-01-01

    The basic systematics pertaining to emerging nuclear energy concepts are examined from a historical and categorical perspective. For this purpose a complementary formulation of the interdependence of the vital fission-fusion-acceleration processes is established and then developed to accommodate explicitly recent developments for advanced synergetic nuclear energy proposals. The papers presented at the conference which form these proceeding are shown to integrate well and thus ecluidate the generalized systematics of this formulation. (orig.) [de

  11. A novel bistable energy harvesting concept

    International Nuclear Information System (INIS)

    Scarselli, G; Nicassio, F; Pinto, F; Ciampa, F; Iervolino, O; Meo, M

    2016-01-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%–6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments. (paper)

  12. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  13. New types of nuclear energy concepts

    International Nuclear Information System (INIS)

    Ledinegg, E.; Heindler, M.

    1978-10-01

    The article summarises the results of a conference on new concepts of nuclear energy, held from 29 - 31 March 1978. Principles of known systems are briefly outlined, mainly from the standpoint of neutron formation by fission, blanket breeding etc, and power production by plasma focussing and thermonuclear fusion. The new concepts include the Migma system and micro-explosions. A section is included on 'hybrid' reactors using a electronuclear source (ENQ) as neutron supply, and 'symbiotic' reactors using ENQ for fuel supply. (G.C.)

  14. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  15. ''Neighbourhood'' as an international energy policy concept

    International Nuclear Information System (INIS)

    Noel, Pierre; Campaner, Nadia

    2005-01-01

    Since 2002, the concept of ''neighbourhood'' has been central to the EU thinking about the emergence of a European foreign and security policy. The relations between the EU and the countries that share - or could share in the future - a border with it, but have little or no prospects for full membership, are supposed to be structured by the emerging ''European Neighbourhood Policy'' (ENP). On the receiving end of this policy proposal are a number of countries on the Eastern edge of the Union, in the South Caucasus, East and South of the Mediterranean. The ENP is very much a ''transformationist'' agenda, with very ambitious goals of bringing about long term political and economic reforms in the neighbour countries. The ultimate goal is to promote stability and prosperity on the edges of the Union. The means for that is to exchange gradual integration into the EU common market and direct economic aid against verifiable commitments of political and economic reforms. Many neighbour countries are of great significance as energy producers, energy exporters, or transit countries to the EU. Hence the following two questions: 1) Is there an explicit energy security component - or energy motive - in the ENP. If yes, how is it structured. 2) What are the potential energy security implications of the ENP. In other words: To what extent, and through which mechanisms, would EU energy security be served by a process of economic and political reforms in the neighbour countries. It's worth extending the questioning to the study of the ''neighbourhood'' dimension in the existing EU international energy policy. It appears that the energy security thinking of the EU Commission has long been structured by the concept of ''neighbourhood''. It is then of some importance to study how the development of this policy will be affected by the implementation of the ENP. Beyond that, we develop a critical assessment of ''neighbourhood'' as a concept for energy security policies. Based on a

  16. Energy saving and energy efficiency concepts for policy making

    International Nuclear Information System (INIS)

    Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D.

    2009-01-01

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies.

  17. Energy saving and energy efficiency concepts for policy making

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, V. [SOM, University of Groningen, PO Box 800, 9700 AV Groningen (Netherlands); Becchis, F. [POLIS Department, University of East Piedmont, via Duomo, 6-13100 Vercelli (Italy); Steg, L. [Faculty of Behavioural and Social Sciences, University of Groningen, P.O. Box 72 9700 AB (Netherlands); Russolillo, D. [Fondazione per l' Ambiente ' T. Fenoglio' , Via Gaudenzio Ferrari 1, I-10124 Torino (Italy)

    2009-11-15

    Departing from the concept of rational use of energy, the paper outlines the microeconomics of end-use energy saving as a result of frugality or efficiency measures. Frugality refers to the behaviour that is aimed at energy conservation, and with efficiency we refer to the technical ratio between energy input and output services that can be modified with technical improvements (e.g. technology substitution). Changing behaviour from one side and technology from the other are key issues for public energy policy. In this paper, we attempt to identify the effects of parameters that determine energy saving behaviour with the use of the microeconomic theory. The role of these parameters is crucial and can determine the outcome of energy efficiency policies; therefore policymakers should properly address them when designing policies. (author)

  18. CZTS stoichiometry effects on the band gap energy

    International Nuclear Information System (INIS)

    Malerba, Claudia; Biccari, Francesco; Azanza Ricardo, Cristy Leonor; Valentini, Matteo; Chierchia, Rosa; Müller, Melanie; Santoni, Antonino; Esposito, Emilia; Mangiapane, Pietro; Scardi, Paolo; Mittiga, Alberto

    2014-01-01

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu 2 ZnSnS 4 (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased

  19. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  20. Energy Star Concepts for Highway Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  1. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    Directory of Open Access Journals (Sweden)

    Ning Cui

    2012-06-01

    Full Text Available Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs. In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  2. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  3. The concept of energy justice across the disciplines

    International Nuclear Information System (INIS)

    Heffron, Raphael J.; McCauley, Darren

    2017-01-01

    Over the last decade, ‘Energy Justice’ is a concept that has emerged in research across many disciplines. This research explores the role and value of the energy justice concept across the disciplines. It provides the first critical account of the emergence of the energy justice concept in both research and practice. A diagrammatical image for examining the energy justice concepts is presented and this is a tool for interdisciplinary engagement with the concept. In this context, restorative justice is introduced and how it results in energy justice applying in practice is detailed. Energy research scholarship at universities is assessed and it is clear that through universities there is a platform for energy justice scholarship to build on the interdisciplinary energy scholarship at universities. Further, the role of education is vital to policy-making, and the understanding and development of the energy justice concept. Finally, in analysing how the energy justice concept can impact on policy-making, there is a critical examination of the energy justice and its relationship with economics, and how it can transfer directly into practice by assisting in balancing the competing aims of the energy trilemma. - Highlights: • Presents the value of the energy justice concept itself. • Introduces restorative justice as having a key role across the energy justice concept. • Expresses the need to develop a ‘common approach’ for the energy justice concept Advances the conceptual framework for energy justice – from theory to practice.

  4. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.

    Science.gov (United States)

    Opalka, Daniel; Pham, Tuan Anh; Sprik, Michiel; Galli, Giulia

    2015-07-30

    Electronic energy levels in phenol and phenolate solutions have been computed using density functional theory and many-body perturbation theory. The valence and conduction bands of the solvent and the ionization energies of the solutes have been aligned with respect to the vacuum level based on the concept of a computational standard hydrogen electrode. We have found significant quantitative differences between the generalized-gradient approximation, calculations with the HSE hybrid functional, and many-body perturbation theory in the G0W0 approximation. For phenol, two ionization energies below the photoionization threshold of bulk water have been assigned in the spectrum of Kohn-Sham eigenvalues of the solution. Deprotonation to phenolate was found to lift a third occupied energy level above the valence band maximum of the solvent which is characterized by an electronic lone pair at the hydroxyl group. The second and third ionization energies of phenolate were found to be very similar and explain the intensity pattern observed in recent experiments using liquid-microjet photoemission spectroscopy.

  5. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  6. L-Band Digital Aeronautical Communications System Engineering - Concepts of Use, Systems Performance, Requirements, and Architectures

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2010-01-01

    This NASA Contractor Report summarizes and documents the work performed to develop concepts of use (ConUse) and high-level system requirements and architecture for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. This work was completed as a follow-on to the technology assessment conducted by NASA Glenn Research Center and ITT for the Future Communications Study (FCS). ITT assessed air-to-ground (A/G) communications concepts of use and operations presented in relevant NAS-level, international, and NAS-system-level documents to derive the appropriate ConUse relevant to potential A/G communications applications and services for domestic continental airspace. ITT also leveraged prior concepts of use developed during the earlier phases of the FCS. A middle-out functional architecture was adopted by merging the functional system requirements identified in the bottom-up assessment of existing requirements with those derived as a result of the top-down analysis of ConUse and higher level functional requirements. Initial end-to-end system performance requirements were derived to define system capabilities based on the functional requirements and on NAS-SR-1000 and the Operational Performance Assessment conducted as part of the COCR. A high-level notional architecture of the L-DACS supporting A/G communication was derived from the functional architecture and requirements.

  7. Measurement of the band gap by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)

    2016-10-15

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  8. Measurement of the band gap by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Vos, Maarten; King, Sean W.; French, Benjamin L.

    2016-01-01

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  9. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  10. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  11. Reconsidering relations between nuclear energy and security concepts

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2004-01-01

    Relations between nuclear energy and security concepts can be clarified through investigation into the multivocal nature of security concepts. While military uses of nuclear energy significantly influence national security, peaceful uses of nuclear energy contribute energy security, which is an expanded concept of national security. Military and peaceful uses of nuclear energy have reciprocal actions, thus influencing national security and energy security, respectively. Nuclear security, which means security of nuclear systems themselves, recently attracts the attention of the international society. Nuclear security directly influences national security issues. On the other hand, along with nuclear safety, nuclear security becomes a prerequisite for energy security through peaceful uses of nuclear energy. In investigating into relations between nuclear energy and security concepts, the difficulty of translating the English word of 'nuclear security' into Japanese as well as other languages is found. (author)

  12. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  13. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    Science.gov (United States)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  14. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  15. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  16. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  17. Calculation of Energy Band Diagram of a Photoelectrochemical Water Splitting Cell

    OpenAIRE

    Cendula, P.; Tilley, S. D.; Gimenez, S.; Schmid, M.; Bisquert, J.; Graetzel, M.; Schumacher, J. O.

    2014-01-01

    A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The model is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semic...

  18. Essential aspects and concepts of the energy debate

    International Nuclear Information System (INIS)

    Kotte, U.

    1985-01-01

    The paper abstracted intends to elucidate the structures of modern energy supply and explains a number of concepts arising in the energy debate. Among others, the paper discusses the different energy sources, the relation between per capita income and primary energy consumption, the development of primary energy consumption classified by energy sources, economic growth and electric power consumption in the Federal Republic of Germany and end use energy consumption classified by different groups of consumers. (DG) [de

  19. Concepts. Environmental care through energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1987-04-01

    Energy saving is an important ingredient of a preventive energy policy. It helps to reduce pollutants which are one essential source of damage done to air, water and soil. But even the environmentally damaging side effects of energy production, storage and distribution can be cut down through energy saving.

  20. Swiss Federal Energy Research Concept 2008 - 2011

    International Nuclear Information System (INIS)

    2007-04-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at

  1. Institutional aspects of the energy centers concept

    International Nuclear Information System (INIS)

    1977-03-01

    Information is presented concerning the socio-economic impacts of nuclear energy centers; equity considerations relating to taxation and revenue distribution; report on jurisdictional authorities of state and local government related to centralized and decentralized alternative energy systems; federal-state conflicts and cooperation in the siting of nuclear energy facilities; the energy park experience in Pennsylvania; and a socio-economic institution summary of energy centers in Washington State

  2. Institutional aspects of the energy centers concept

    Energy Technology Data Exchange (ETDEWEB)

    Esser, George H.

    1977-03-01

    Information is presented concerning the socio-economic impacts of nuclear energy centers; equity considerations relating to taxation and revenue distribution; report on jurisdictional authorities of state and local government related to centralized and decentralized alternative energy systems; federal-state conflicts and cooperation in the siting of nuclear energy facilities; the energy park experience in Pennsylvania; and a socio-economic institution summary of energy centers in Washington State.

  3. On the Concept of Energy: Eclecticism and Rationality

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2014-06-01

    In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with those concepts of heat. Mayer's characterisation of force reappears in the very common textbook definition `energy cannot be created or destroyed but only transformed' and his theory led to a phenomenological approach to energy. Joule and Thomson's concept of heat led to a mechanistic approach to energy and to the common definition `energy is the capacity of doing work'. One and the same term `energy' subsumed these two approaches. The problematic concept of energy, energy as a substance, appears then as a result of an eclectic development of the concept. Another approach, which appeared in the 1860s, is directly based on the mechanical equivalent of heat and can be characterized by the use of `principle of equivalence' instead of `principle of energy conservation'. Unlike the others, this approach, which has been lost, poses no problems with the concept of energy. The problems with the energy concept as to the kind of phenomena dealt with in the present paper can, however, be overcome, as we shall see, in distinguishing between that which comes from experiments and that which is an interpretation of the experimental results within a conceptual framework.

  4. Conception for economical energy utilization and supply

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H; Canzler, B

    1977-10-01

    This study was performed to study the factors which determine energy consumption within buildings and how to optimize such energy use. The parameters of the principal energy consumers, i.e., HVAC and lighting systems, were analyzed. Possibilities for obtaining economical energy supplies and for reducing energy consumption were studied with emphasis on adapting the building mechanical equipment and the building design and construction to each other. It was concluded that planning for energy conservation in buildings will decrease the cost of constructing and operating buildings if the architect, building contractor and building operator work together from the initial planning stages.

  5. A new perspective of ground band energy formulae

    Indian Academy of Sciences (India)

    J B GUPTA

    2017-08-07

    Aug 7, 2017 ... Nuclear structure; ground band; moment of inertia; softness parameter. PACS Nos 21.60 ... mary data on the spectral properties of atomic nuclei. ... poorer at higher spins and for shape transitional (in ... 25 and figure 4.11 on p.

  6. Building concepts for a transition towards energy neutrality in 2050

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, B.J.; Paauw, J. [TNO Built Environment and Geosciences, Delft (Netherlands); Opstelten, I.J.; Bakker, E.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands)

    2007-03-15

    In this paper building concepts for the near future are described which enable the transition towards a net energy neutral building sector in the Netherlands by the year 2050. With 'net energy neutrality' is meant that, on a yearly basis, the total energy consumption in the built environment is compensated by local renewable energy production e.g. by using solar thermal (T), photovoltaic (PV), PVT and/or wind. A study concerning the feasibility of a 'net energy neutral built environment by 2050' set the energetic ambitions for the building concepts to be developed. This resulted in different concepts for residential buildings and for office-buildings. The building concepts are based on passive house technology to minimise the heating and cooling demand, and make optimal use of active and passive solar energy. Concepts for new to build domestic buildings are in fact energy producing to compensate for the remaining energy demand of existing, renovated dwellings. In all concepts the 'trias energetica' or 'energy pyramid' served as a general guideline, striving for minimisation of energy demand, maximal usage of renewable energy and usage of fossil fuels as efficiently as possible. Different full roof integrated options for using solar energy (PV, T or PVT) with variable storage options have been compared by making simulations with a dynamic simulation programme, to gain insight on their impact on energy, building engineering and economic impact. Also different possibilities for installations to fulfil the heating demand for the space heating and DHW demand are compared. For each concept, the resulting primary energy profiles for space heating and cooling, domestic hot water, electricity consumption for lighting, ventilation and household appliances are given.

  7. An energy balance concept for habitability.

    Science.gov (United States)

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  8. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  9. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  10. Modeling Energy and Development : An Evaluation of Models and Concepts

    NARCIS (Netherlands)

    Ruijven, Bas van; Urban, Frauke; Benders, René M.J.; Moll, Henri C.; Sluijs, Jeroen P. van der; Vries, Bert de; Vuuren, Detlef P. van

    2008-01-01

    Most global energy models are developed by institutes from developed countries focusing primarily oil issues that are important in industrialized countries. Evaluation of the results for Asia of the IPCC/SRES models shows that broad concepts of energy and development. the energy ladder and the

  11. Development of concepts for a zero-fossil-energy greenhouse

    NARCIS (Netherlands)

    Ooster, A. van 't; Henten, E.J. van; Janssen, E.G.O.N.; Bot, G.P.A.; Dekker, E.

    2008-01-01

    Dutch government and greenhouse horticultural practice aim for strongly reduced fossil energy use and of environmental loads in 2010 and energy neutral greenhouses in 2020. This research aims to design a greenhouse concept with minimal use of fossil energy and independent of nearby greenhouses. The

  12. Department of Energy low-level radioactive waste disposal concepts

    International Nuclear Information System (INIS)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites

  13. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  14. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  15. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  16. Concept Study of Foundation Systems for Wave Energy Converters

    DEFF Research Database (Denmark)

    Molina, Salvador Devant; Vaitkunaite, Evelina; Ibsen, Lars Bo

    Analysis of possible foundation solution for Wave Energy Converters (WEC) is presented by investigating and optimizing novel foundation systems recently developed for offshore wind turbines. Gravity based, pile and bucket foundations are innovative foundation systems that are analyzed. Concept...

  17. Ionization Energy: Implications of Preservice Teachers' Conceptions

    Science.gov (United States)

    Tan, Kim Chwee Daniel; Taber, Keith S.

    2009-01-01

    The results from a study to explore pre-service teachers' understanding of ionization energy, a topic that features in A-level (grade 11 and 12) chemistry courses. in Singapore , is described. A previous study using a two-tier multiple choice diagnostic test has shown that Singapore A-level students have considerable difficulty understanding the…

  18. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors

    International Nuclear Information System (INIS)

    Grigorishin, Konstantin V.

    2016-01-01

    Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  19. Status report of the energy amplifier concept

    CERN Document Server

    Rubbia, Carlo

    1997-01-01

    We report the main results of study performed at CERN over the last three years by few people and with shoe-string funding on the potential impact of new Accelerators technologies in the field of Energy production from nuclei. Accelerators have been universal tools to nuclear reactions : why not using them to produce practical, sizeable amounts of nuclear transmutations, i.e. to: 1. eliminate unwanted long-lived, radioactive Waste from LWR's; 2. (eventually to produce energy in non-critical conditions, similar to the promises of Fusion and 3. as a substitution of Reactors for the neutron activation of short-lived radioactive elements for industrial and medical applications. - We have studied at the CERN-PS both the energy (heat) produced in nuclear cascades in a sub-critical environment (k=0.90) and the transmutation of unwanted waste in a small lethargy, transparent medium (lead). These experiments have been driven by conceptual studies and elaborate computer simulations of nuclear cascades and extend the we...

  20. Application of energies of optimal frequency bands for fault diagnosis based on modified distance function

    Energy Technology Data Exchange (ETDEWEB)

    Zamanian, Amir Hosein [Southern Methodist University, Dallas (United States); Ohadi, Abdolreza [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2017-06-15

    Low-dimensional relevant feature sets are ideal to avoid extra data mining for classification. The current work investigates the feasibility of utilizing energies of vibration signals in optimal frequency bands as features for machine fault diagnosis application. Energies in different frequency bands were derived based on Parseval's theorem. The optimal feature sets were extracted by optimization of the related frequency bands using genetic algorithm and a Modified distance function (MDF). The frequency bands and the number of bands were optimized based on the MDF. The MDF is designed to a) maximize the distance between centers of classes, b) minimize the dispersion of features in each class separately, and c) minimize dimension of extracted feature sets. The experimental signals in two different gearboxes were used to demonstrate the efficiency of the presented technique. The results show the effectiveness of the presented technique in gear fault diagnosis application.

  1. Superlattice band structure: New and simple energy quantification condition

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  2. Experimental observation on asymmetric energy flux within the forbidden frequency band in the LC transmission line

    International Nuclear Information System (INIS)

    Tao Feng; Chen Weizhong; Pan Junting; Xu Wen; Du Sidan

    2012-01-01

    We study the energy flux in a nonlinear electrical transmission line consisting of two coupled segments which are identical in structure and different in parameters. The asymmetry of energy flux caused by nonlinear wave has been observed experimentally in the forbidden band of the line. The experiment shows whether the energy can flow through the transmission line depends on the amplitude of the boundary driving voltages, which can be well explained in the theoretical framework of nonlinear supratransmission. The numerical simulation based on Kirchhoff’s laws further verifies the existence of the asymmetric energy flux in the forbidden band.

  3. Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Man, Isabela-Costinela; Soriga, Stefan-Gabriel

    2017-01-01

    on semiconductors. We propose here a correlation between the cooperative interaction energy, i.e., the energy difference between the adsorption energies of coadsorbed electron donor–acceptor pair and isolated fragments and the band gap of the clean oxide surface. We demonstrate this effect for a number of oxides...... and donor–acceptor pairs and explain it with the shift in the Fermi level before and after the adsorption. The conclusion is that the adsorption of acceptor–donor pairs is considerably more favorable compared to unpaired fragments,and this energy difference is approximately equal to the value of the band...

  4. Improved cache performance in Monte Carlo transport calculations using energy banding

    Science.gov (United States)

    Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.

    2014-04-01

    We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.

  5. Multiple-choice test of energy and momentum concepts

    OpenAIRE

    Singh, Chandralekha; Rosengrant, David

    2016-01-01

    We investigate student understanding of energy and momentum concepts at the level of introductory physics by designing and administering a 25-item multiple choice test and conducting individual interviews. We find that most students have difficulty in qualitatively interpreting basic principles related to energy and momentum and in applying them in physical situations.

  6. Students' Conceptions about Energy and the Human Body

    Science.gov (United States)

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  7. A concept for a new Energy Efficient Actuator

    NARCIS (Netherlands)

    Stramigioli, Stefano; van Oort, Gijs; Dertien, Edwin Christian

    2008-01-01

    In this paper a novel concept of embedded robotic actuator is presented which has been named the Very Versatile Energy Efficient (V2E2) actuator. This actuator stores energy during any force profile which generates negative work on the load and it does therefore have unprecedented potentials for

  8. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Directory of Open Access Journals (Sweden)

    F. L. Freitas

    2016-08-01

    Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  9. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)

    2016-08-15

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  10. Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems

    Science.gov (United States)

    Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.

    Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.

  11. ICT - Energy Concepts for Energy Efficiency and Sustainability

    NARCIS (Netherlands)

    Pesch, D.; Rea, S.; Torrens Galdiz, J.I.; Zavrel, V.; Hensen, J.L.M.; Grimes, D.; O'Sullivan, B.; Scherer, T.; Birke, R.; Chen, L.; Engbersen, T.; Lopez, L.; Pages, E.; Mehta, D.; Townley, J.; Tsachouridis, V.

    2017-01-01

    Data centres are part of today's critical information and communication infrastructure, and the majority of business transactions as well as much of our digital life now depend on them. At the same time, data centres are large primary energy consumers, with energy consumed by IT and server room air

  12. Integral energy concepts for housing estates; Integrale Energiekonzepte fuer Wohnsiedlungen

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, M.N.; Kuehl, L. [Technische Univ. Braunschweig (Germany)

    1998-06-01

    Integral energy concepts for housing estates require an early cooperation between architects, planners, and specialist engineers on the basis of a holistic planning approach. This is how future-oriented, sustainable concepts evolve which do justice to the multifarious requirements on the integral energy system of a housing estate. The present paper elucidates different approaches to optimising the energy efficiency of buildings such as the implementation of low-energy house concepts, building site and architectural planning, and detailed planning of heat insulation concepts, ventilation and air tightness concepts, and adapted heating systems. The solarisation of development plans has an influence on the arrangement of buildings, which are now planned to give the greatest possible passive and active solar energy gains. The authors also describe solar-assisted district heating systems for housing estates. [Deutsch] Integrale Energiekonzepte fuer Wohnsiedlungen erfordern die fruehe Zusammenarbeit von Architekten, Planern und Fachingenieuren im Rahmen einer ganzheitlichen Planung. So entstehen zukunftsweisende und tragfaehige Konzepte, die den vielschichtigen Anforderungen des Gesamtenergiesystems ``Wohnsiedlung`` gerecht werden. Im Folgenden wird die energetische Optimierung von Gebaeuden wie die Umsetzung von Niedrigenergiehaus-Konzepten, Standort und Gebaeudeplanung sowie Detailplanung in Bezug auf das Waermedaemmkonzept, Lueftungs-/Dichtheitskonzept und auf angepasste Waermeversorgungssysteme erl autert. Die Solarisierung von Bebauungsplaenen beeinflusste Anordnung der Gebaeude hinsichtlich der Nutzung passivsolarer Gewinne sowie des Einsatzes von Systemen der aktiven Solarenergienutzung. Solarunterstuetzte Nahwaermenetze fuer Wohnsiedlungen werden ebenfalls beschrieben.

  13. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment

    International Nuclear Information System (INIS)

    Facci, Andrea L.; Sánchez, David; Jannelli, Elio; Ubertini, Stefano

    2015-01-01

    Highlights: • The trigenerative-CAES concept is introduced. • The thermodynamic feasibility of the trigenerative-CAES is assessed. • The effects of the relevant parameter on the system performances are dissected. • Technological issues on the trigenerative-CAES are highlighted. - Abstract: Energy storage is a cutting edge front for renewable and sustainable energy research. In fact, a massive exploitation of intermittent renewable sources, such as wind and sun, requires the introduction of effective mechanical energy storage systems. In this paper we introduce the concept of a trigenerative energy storage based on a compressed air system. The plant in study is a simplified design of the adiabatic compressed air energy storage and accumulates mechanical and thermal (both hot and cold) energy at the same time. We envisage the possibility to realize a relatively small size trigenerative compressed air energy storage to be placed close to the energy demand, according to the distributed generation paradigm. Here, we describe the plant concept and we identify all the relevant parameters influencing its thermodynamic behavior. Their effects are dissected through an accurate thermodynamic model. The most relevant technological issues, such as the guidelines for a proper choice of the compressor, expander and heat exchangers are also addressed. Our results show that T-CAES may have an interesting potential as a distributed system that combines electricity storage with heat and cooling energy production. We also show that the performances are significantly influenced by some operating and design parameters, whose feasibility in real applications must be considered.

  14. The concept of energy security: Beyond the four As

    International Nuclear Information System (INIS)

    Cherp, Aleh; Jewell, Jessica

    2014-01-01

    Energy security studies have expanded from their classic beginnings following the 1970s oil crises to encompass various energy sectors and increasingly diverse issues. This viewpoint contributes to the re-examination of the meaning of energy security that has accompanied this expansion. Our starting point is that energy security is an instance of security in general and thus any concept of it should address three questions: “Security for whom?”, “Security for which values?” and “Security from what threats?” We examine an influential approach – the ‘four As of energy security’ (availability, accessibility, affordability, and acceptability) and related literature of energy security – to show it does not address these questions. We subsequently summarize recent insights which propose a different concept of energy security as ‘low vulnerability of vital energy systems’. This approach opens the road for detailed exploration of vulnerabilities as a combination of exposure to risks and resilience and of the links between vital energy systems and critical social functions. The examination of energy security framed by this concept involves several scientific disciplines and provides a useful platform for scholarly analysis and policy learning. - Highlights: • Energy security should be conceptualized as an instance of security in general. • 4As of energy security and related approaches do not address security questions. • We define energy security as low vulnerability of vital energy systems (VES). • VES support critical social functions and can be drawn sectorally or geographically. • Vulnerability is a combination of exposure to risks and resilience capacities

  15. Influence of energy bands on the Hall effect in degenerate semiconductors

    International Nuclear Information System (INIS)

    Wu, Chhi-Chong; Tsai, Jensan

    1989-01-01

    The influence of energy bands on the Hall effect and transverse magnetoresistance has been investigated according to the scattering processes of carriers in degenerate semiconductors such as InSb. Results show that the Hall angle, Hall coefficient, and transverse magnetoresistance depend on the dc magnetic field for both parabolic and nonparabolic band structures of semiconductors and also depend on the scattering processes of carriers in semiconductors due to the energy-dependent relaxation time. From their numerical analysis for the Hall effect, it is shown that the conduction electrons in degenerate semiconductors play a major role for the carrier transport phenomenon. By comparing with experimental data of the transverse magnetoresistance, it shows that the nonparabolic band model is better in agreement with the experimental work than the parabolic band model of semiconductors

  16. Fully inkjet printed wide band cantor fractal antenna for RF energy harvesting application

    KAUST Repository

    Bakytbekov, Azamat

    2017-06-07

    Energy harvesting from ambient RF signals is feasible, particularly from the GSM bands such as 900MHz, 1800MHz and the 3G band at 2.1GHz. This requires a wideband receive antenna which can cover all these bands with decent gain performance and an omnidirectional radiation pattern. In this work, a novel Cantor fractal antenna has been designed which fulfills the above mentioned performance requirements. Antenna has been realized through a combination of 3D inkjet printing of plastic substrate and 2D inkjet printing of metallic nanoparticles based ink. The stable impedance and radiation performance of the antenna over a bandwidth of 0.8GHz to 2.2GHz (93 %) shows the feasibility of its employment in wide band energy harvesting applications.

  17. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  18. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  19. Concept Design of a Multi-Band Shared Aperture Reflectarray/Reflector Antenna

    Science.gov (United States)

    Spence, Thomas; Cooley, Michael; Stenger, Peter; Park, Richard; Li, Lihua; Racette, Paul; Heymsfield, Gerald; Mclinden, Matthew

    2016-01-01

    A scalable dual-band (KaW) shared-aperture antenna system design has been developed as a proposed solution to meet the needs of the planned NASA Earth Science Aerosol, Clouds, and Ecosystem (ACE) mission. The design is comprised of a compact Cassegrain reflector/reflectarray with a fixed pointing W-band feed and a cross track scanned Ka-band Active Electronically Scanned Array (AESA). Critical Sub-scale prototype testing and flight tests have validated some of the key aspects of this innovative antenna design, including the low loss reflector/reflectarray surface.More recently the science community has expressed interest in a mission that offers the ability to measure precipitation in addition to clouds and aerosols. In this paper we present summaries of multiple designs that explore options for realizing a tri-frequency (KuKaW), shared-aperture antenna system to meet these science objectives. Design considerations include meeting performance requirements while emphasizing payload size, weight, prime power, and cost. The extensive trades and lessons learned from our previous dual-band ACE system development were utilized as the foundation for this work.

  20. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  1. Renewable energy. Sustainable concepts for the energy change. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Wengenmayr, Roland; Buehrke, Thomas (eds.)

    2013-02-01

    In the years since the publication of the first edition of this book, the world has undergone drastic changes in terms of energy sources. This is reflected in the expansion of this second edition from 20 to 26 chapters. The most dramatic occurrence was the Tsunami which struck Japan in March of 2011 and set off a reactor catastrophe at the nuclear power plants in Fukushima. On the other hand fossil fuel technology drives the climate change to a threatening level. So, renewable energy sources are essential for the 21st century. The increasing number of wind power plants, solar collectors and photovoltaic installations demonstrates perceptibly that many innovations for tapping renewable energy sources have matured: very few other technologies have developed so dynamically in the past years. Nearly all the chapters were written by professionals in the respective fields. That makes this book an especially valuable and reliable source of information. The second edition is extended by several new chapters such as tidal power stations, the Desertec project, thermography of buildings and more. Furthermore, the critical debate about ?current first generation ''bio-''fuels is carefully reflected, and the book presents promising solutions that do not trade in food for fuel.

  2. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    International Nuclear Information System (INIS)

    Gürkan, Gül; Langestraat, Romeo

    2014-01-01

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies

  3. Marketing conception interaction between power system and electric energy loads

    International Nuclear Information System (INIS)

    Bagiev, G.L.; Shneerova, G.V.; Taratin, V.A.; Barykin, E.E.; Zajtsev, O.V.

    1993-01-01

    New concept of functioning fuel-power complex, based on the marketing system is, is presented in brief form. This system includes demand management program, working policy program, active energy-saving policy program and advertisment-service organization program. Methods for realization of demand management and working policy programs are considered

  4. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  5. Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire

    Science.gov (United States)

    Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.

    2015-02-01

    To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.

  6. Basic concepts in dosimetry. A critical analysis of the concepts of ionizing radiation and energy imparted

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The concepts of ionizing radiation and energy imparted defined by the ICRU in 1971 (Radiation Quantities and Units, Report 19, International Commission on Radiation Units and Measurements, Washington, D.C., 1971) are critically analyzed. It is found that the definitions become more consistent by changing them at two points. Charged particles with insufficient kinetic energy to ionize by collision but which are capable of initiating nuclear and elementary particle transformations are suggested to be classified as ionizing particles. In addition, the expressions ''the energy released'' or the ''energy expended'' in a nuclear or elementary particle transformation are suggested to be specified as ''the change in rest-mass energy of nuclei and elementary particles.'' Then the ionization caused by, for instance, nuclear reactions contributes to the energy imparted and the Q-value of an excitation or deexcitation of the electron structure, regarded as an elementary particle transformation, is zero

  7. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Lars [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Smythe, Louisa [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Sarquilla, Lindsey [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Ferguson, Kelly [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States)

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  8. Concept for Specific Lines of Business, Energy Saving Tourism

    International Nuclear Information System (INIS)

    Jilek, W.

    1998-01-01

    In the spirit of the objectives of the Energy Plan 1995 in order to make more efficient use of energy and thus to reduce energy requirements, to promote the use of renewable energies, and to attach maximum importance to the ecological compatibility of the energy systems, among other project the provincial government of Styria is pursuing the option of consulting small and medium-sized enterprises in a target manner. Three years after being launched, this Ecological Company Consulting scheme for various lines of business is now producing successful results, demonstrating that energy saving, business profit and ecology can go hand in hand by example of numerous pilot projects. Trade-specific concepts have been elaborated for foodstuffs, carpenters and car repair and sales firms, bakeries and hairdressers and, most recently, for tourist industry business /hotels, bars, restaurants, etc.). The province of Styria, represented by the Energy Commissioner and the department of waste management, is co-operating closely in the Ecological Company Consulting scheme with the Styrian Chamber of Commerce and the Economy Promotion Institute (Wirtschaftsfoerderungsinstitut). In several cases, other provinces, the Federal Ministry of Environmental, Youth and Family Affairs, and the Federal Chamber of Commerce have adopted the results of this co-operation, while in some cases subsidy schemes are linked to these trade-specific concepts. In the course of the scheme, the aim is to investigate energy requirements, saving potentials and questions of waste management. (author)

  9. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  10. Temperature Dependence of the Energy Band Diagram of AlGaN/GaN Heterostructure

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2018-01-01

    Full Text Available Temperature dependence of the energy band diagram of AlGaN/GaN heterostructure was investigated by theoretical calculation and experiment. Through solving Schrodinger and Poisson equations self-consistently by using the Silvaco Atlas software, the energy band diagram with varying temperature was calculated. The results indicate that the conduction band offset of AlGaN/GaN heterostructure decreases with increasing temperature in the range of 7 K to 200 K, which means that the depth of quantum well at AlGaN/GaN interface becomes shallower and the confinement of that on two-dimensional electron gas reduces. The theoretical calculation results are verified by the investigation of temperature dependent photoluminescence of AlGaN/GaN heterostructure. This work provides important theoretical and experimental basis for the performance degradation of AlGaN/GaN HEMT with increasing temperature.

  11. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    NARCIS (Netherlands)

    Gurkan, G.; Langestraat, R.

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of

  12. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  13. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  14. CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)

    2012-09-20

    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.

  15. Energy band structure of Cr by the Slater-Koster interpolation scheme

    International Nuclear Information System (INIS)

    Seifu, D.; Mikusik, P.

    1986-04-01

    The matrix elements of the Hamiltonian between nine localized wave-functions in tight-binding formalism are derived. The symmetry adapted wave-functions and the secular equations are formed by the group theory method for high symmetry points in the Brillouin zone. A set of interaction integrals is chosen on physical ground and fitted via the Slater-Koster interpolation scheme to the abinito band structure of chromium calculated by the Green function method. Then the energy band structure of chromium is interpolated and extrapolated in the Brillouin zone. (author)

  16. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  17. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  18. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    International Nuclear Information System (INIS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-01-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (ε F ). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper. (paper)

  19. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.

  20. Nonparametric regression using the concept of minimum energy

    International Nuclear Information System (INIS)

    Williams, Mike

    2011-01-01

    It has recently been shown that an unbinned distance-based statistic, the energy, can be used to construct an extremely powerful nonparametric multivariate two sample goodness-of-fit test. An extension to this method that makes it possible to perform nonparametric regression using multiple multivariate data sets is presented in this paper. The technique, which is based on the concept of minimizing the energy of the system, permits determination of parameters of interest without the need for parametric expressions of the parent distributions of the data sets. The application and performance of this new method is discussed in the context of some simple example analyses.

  1. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  2. Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, D.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.

  3. Relativistic band-structure calculations for CeTIn sub 5 (T=Ir and Co) and analysis of the energy bands by using tight-binding method

    CERN Document Server

    Maehira, T; Ueda, K; Hasegawa, A

    2003-01-01

    In order to investigate electronic properties of recently discovered heavy fermion superconductors CeTIn sub 5 (T=Ir and Co), we employ the relativistic linear augmented-plane-wave (RLAPW) method to clarify the energy band structures and Fermi surfaces of those materials. The obtained energy bands mainly due to the large hybridization between Ce 4 f and In 5 p states well reproduce the Fermi surfaces consistent with the de Haas-van Alphen experimental results. However, when we attempt to understand magnetism and superconductively in CeTIn sub 5 from the microscopic viewpoint, the energy bands obtained in the RLAPW method are too complicated to analyze the system by further including electron correlations. Thus, it is necessary to prepare a more simplified model, keeping correctly the essential characters of the energy bands obtained in the band-structure calculation. For the purpose, we construct a tight-binding model for CeTIn sub 5 by including f-f and p-p hoppings as well as f-p hybridization, which are ex...

  4. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  5. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  6. Law on the peaceful uses of nuclear energy: key concepts

    International Nuclear Information System (INIS)

    Pompignan, D. de

    2005-01-01

    The key concepts which ought to be included in legislation governing the peaceful uses of nuclear energy can be divided into two categories depending on whether they derive from the fundamental principles of nuclear law or reflect categories of general law. Their inclusion results in compliance with a shared obligation when they derive from a binding international instrument. It also permits the transposition into law of broader nuclear concepts and principles, and the more specific characteristics of a general nuclear law, which is to lay down priorities. When the resulting classification is tested in reality, we can see that it is difficult to measure the effectiveness of the two concept categories inasmuch as this depends not only on quantifiable and controllable legal elements but also on non-legal behavioural factors, an obvious example of which is safety culture. Once the difficulties of defining a legal framework for nuclear activities and selecting the key concepts to guide them are known, the inclusion of a concept in a general nuclear law is determined by national legal and ethical considerations. Thus, a general nuclear law should indicate the way in which the legal principles which reflect various prevailing ethical imperatives with regard to the environment, participation, and public interest, are applicable to the development of the peaceful uses of nuclear energy, having regard to the national specificities of each country and the particular nature of these activities. This means that there is a need to find original legal solutions reconciling the constraints of a specific law with the requirements of the ordinary law, i.e. the key concepts deriving from the principles of nuclear law. Given the possible reluctance of lawmakers to commit themselves for the future by formulating detailed provisions valid over the long term, it has been suggested that a code of good practice for the nuclear industry should be introduced which would go beyond the

  7. E2 = Energy concept x final storage [+ the law?

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    The world is changing all the time, opinions and evaluations assume new shapes. It is the function of the law to ensure reliability and confidence by its very continuity. However, it is not only the revisions of the law which are subject to the zeitgeist; also the interpretations and applications of the law are not exempt from current trends of thought. The coalition agreement signed by the CDU/CSU and FDP parties on October 26, 2009 announced an energy concept encompassing life extension of nuclear power plants and a continued exploration of the Gorleben salt dome as a repository for high-level waste producting heat. The Deutsche Umwelthilfe (DUH) tries to prove in a legal opinion that an extension of nuclear power plant life was illegal and unconstitutional because the problem of the back end of the fuel cycle was not likely to be solved in a foreseeable time. Continuing exploration of the Gorleben salt dome is based on mining law. The agency responsible for filing an application under the German Atomic Energy Act is the Federal Office for Radiation Protection (BfS). In Germany, the final storage issue has always been an area of violent political debate. Given the strategic purpose of the DUH legal opinion as a tool furthering opt-out of the use of nuclear power, several points are presented and discussed in this article which were overlooked in that opinion. The equation, 'energy concept x final storage =..?', seems to be open today. The law can support results. Existing legal regulations especially about the nuclear power sector must be used as starting points for new ideas: The existence of legal norms is to ensure reliability and confidence. Consequently, changes in the law must be prepared very thoroughly and weighed comprehensively. In current thinking, after all, transparency is part of political action, especially so in defining and implementing goals in topics such as the energy concept and final storage. Yet, unnecessary delays would not be justified

  8. Embedding Sustainability and Renewable Energy Concepts into Undergraduate Curriculum

    Science.gov (United States)

    Belu, R.; Cioca, L.

    2017-12-01

    Human society is facing an uncertain future due to the present unsustainable use of natural resources and the growing imbalance with our natural environment. Creation of a sustainable society is a complex multi-disciplinary and multi-stage project, believed to dominate our century, requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions. Sustainable development means technological progress meeting the present needs without compromising future generation ability to meet its needs and aspirations. It has four aspects: environment, technology, economy, and societal organizations. Students are often taught to deal with technological developments and economic analysis to assess the process or product viability, but are not fully familiar with sustainability and optimization of technology development benefits and the environment. Schools in many disciplines are working to include sustainability concepts into their curricula. Teaching sustainability and renewable energy has become an essential feature today higher education. Sustainable and green design is about designs recognizing the constraints of the natural resource uses and the environment. It applies to all of engineering and science areas, as all systems interact with the environment in complex and important ways. Our project goals are to provide students with multiple and comprehensive exposures to sustainability and renewable energy concepts, facilitating the development of passion and skills to integrate them into practice. The expected outcomes include an increased social responsibility; development of innovative thinking skills; understanding of sustainability issues, and increasing student interests in the engineering and science programs. The project aims to incorporate sustainability and renewable energy concepts into our undergraduate curricula, employing the existing course resources, and developing new courses and laboratory experiments

  9. A Model for Infusing Energy Concepts into Vocational Education Programs. Solar Energy Curriculum Guide.

    Science.gov (United States)

    Delta Vocational Technical School, Marked Tree, AR.

    This solar energy curriculum guide is designed to assist teachers in infusing energy concepts into vocational education programs. It consists of 31 competency-based instructional units organized into 10 sections. Covered in the sections are the following topics: related instructions (history and development; human relations; general safety;…

  10. Energy policy. Technical developments, political strategies, and concepts of action regarding renewable energy sources and rational energy use

    International Nuclear Information System (INIS)

    Brauch, H.G.

    1997-01-01

    This interdisciplinary study book deals with problems from the history of energy, energy sytems, energy engineering, and the potential of renewable energy sources: hydro and wind power, biomass, geothermal energy, photovoltaics and solar thermal conversion; the improvement of boundary conditions for their transfer to market; concepts of action and project funding preferences of the EU, USA and Japan in this sector; relevant activities of the federal German government and proposals by non-governmental players in the field as well as strategies for rational energy use; methods for building an energy consensus and criteria for valuating energy systems; concepts of action and proposals for extending solar energy use in the Mediterranean and Afrika, as well as political factors governing the market introduction and export promotion of renewable energy technologies in this triad: the USA, Japan, and the European Union. Seven of the papers contained in the book are individually recorded. (orig./RHM). 76 figs., 100 tabs [de

  11. Quantitative operando visualization of the energy band depth profile in solar cells.

    Science.gov (United States)

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  12. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  13. Energy of the 4(+) isomer and new bands in the odd-odd nucleus 74Br

    International Nuclear Information System (INIS)

    Doering, J.; Holcomb, J.W.; Johnson, T.D.; Riley, M.A.; Tabor, S.L.; Womble, P.C.; Winter, G.

    1993-01-01

    High-spin states of the odd-odd nucleus 74 Br were investigated via the reactions 58 Ni ( 19 F,2pn) 74 Br and 65 Cu( 12 C,3n) 74 Br at beam energies of 62 and 50 MeV, respectively. On the basis of coincidence data new levels have been introduced and partly grouped into rotational bands. Some of these new states decay to known levels of negative-parity bands built on both the ground state and the long-lived 4 (+) isomer. Thus, an excitation energy of 13.8 keV has been deduced for the long-lived isomer in 74 Br. The level sequences observed are interpreted in terms of Nilsson configurations in conjunction with collective excitations

  14. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    Science.gov (United States)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  15. Augustine Band of Cahuilla Indians Energy Conservation and Options Analysis - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Paul Turner

    2008-07-11

    The Augustine Band of Cahuilla Indians was awarded a grant through the Department of Energy First Steps program in June of 2006. The primary purpose of the grant was to enable the Tribe to develop energy conservation policies and a strategy for alternative energy resource development. All of the work contemplated by the grant agreement has been completed and the Tribe has begun implementing the resource development strategy through the construction of a 1.0 MW grid-connected photovoltaic system designed to offset a portion of the energy demand generated by current and projected land uses on the Tribe’s Reservation. Implementation of proposed energy conservation policies will proceed more deliberately as the Tribe acquires economic development experience sufficient to evaluate more systematically the interrelationships between conservation and its economic development goals.

  16. Energy and supply concepts. Pt. 3. Energie- und Versorgungskonzepte. T. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziejczyk, K

    1989-01-01

    Part three deals with the classification of energy and supply concepts (primary and secondary energy sources, energy conversion processes). A discussion of classification criteria (4 criteria, different process levels) is followed by a description of process and energy flows (flowsheet showing the energy flow of an interconnected system combining electric power/steam/heat supplies and refrigeration), a presentation of concrete energy and supply concepts (flow sheet, selection and evaluation criteria, situation and process analysis, cost-benefit analysis, use of computers, system value analysis), approaches and solutions (decisions). The complex task of finding appropriate supply solutions is found to be depending on the knowledge, creativity, and methodical skill of those in charge. (HWJ).

  17. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  18. The energy inside the concept of the sustainable development

    International Nuclear Information System (INIS)

    Szauer, Maria Teresa

    1999-01-01

    The intimately bound of two thematic basic conceptual schemes are shown: The climatic change and the paper of the energy inside the concept of sustainable development. It is presented a description of the green house effect, their causes and consequences. They are analyzed, making emphasis in the differences among the countries of the north and of the south, the consumption of natural resources, the population's growth, and the deforestation like main causes of the climatic change. Lastly is discussed the international negotiations related with the topic

  19. Triaxial energy relation to describe rotational band in 98-112Ru nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.

    2010-01-01

    In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasi-γ band, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei

  20. Development of a new concept automatic frequency controller for an ultrasmall C-band linear accelerator guide

    International Nuclear Information System (INIS)

    Kamino, Yuichiro; Tsukuda, Kazuhiro; Kokubo, Masaki; Miura, Sadao; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-01-01

    We are developing a four-dimensional, image-guided radiotherapy system with a gimbaled x-ray head. The system has pursuing irradiation capability in addition to precise irradiation capability, owing to its agile x-ray head. The moving x-ray head requires a very small C-band accelerator guide. The heat intensity of the accelerator guide is much higher than that of conventional S-band medical linear accelerators. The resonance frequency varies over almost 1.0 MHz with a thermal time constant of about 30 s. An automatic frequency controller (AFC) is employed to compensate for this variation in resonance frequency. Furthermore, we noted that fast AFC response is important for step-and-shoot intensity modulation radiotherapy (IMRT), in which the beam is turned on and off frequently. Therefore, we invented a digital AFC, based on a new concept, to provide effective compensation for the thermal characteristics of the accelerator guide and to ensure stable and optimized x-ray treatment. An important aspect of the performance of the AFC is the capture-frequency range over which the AFC can seek, lock on to, and track the resonance frequency. The conventional, analog AFC used in S-band medical linear accelerators would have a capture-frequency range of about 0.9 MHz, if applied to our accelerator guide, and would be inappropriate. Conversely, our new AFC has a capture-frequency range of 24 MHz, which is well suited to our accelerator guide. The design concept behind this new AFC has been developed and verified. A full prototype system was constructed and tested on an existing accelerator guide at the rated x-ray output (500 cGy/min) of our radiotherapy system, with a pulse-repetition frequency of 300 Hz. The AFC acquired the resonance frequency of the accelerator guide within 0.15 s after beam-on, and provided stable tracking and adjustment of the frequency of the microwave source to the resonance frequency of the accelerator guide. With a planned improvement of the

  1. Crystal structure and energy band and optical properties of phosphate Sr3P4O13

    International Nuclear Information System (INIS)

    Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone

  2. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  3. Proposal on concept of security of energy supply with nuclear energy

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Yamada, Eiji

    2009-01-01

    Security of energy supply (SoS) was a major concern for OECD governments in the early 1970s. Since then, successive oil crises, volatility of hydrocarbon prices, as well as terrorist risks and natural disasters, have brought the issue back to the centre stage of policy agendas. SoS concept has been proposed which is defined by time frame and space frame as well. Wide meaning SoS consists of narrow meaning SoS of short-term energy crisis, which is the traditional concept, and long-term global energy problem, which has become important recently. Three models have been proposed here for evaluating SoS. A method to estimate energy security level in a quantitative manner by comparing with various measures has been also proposed, in which nuclear energy contribution onto SoS can be further measured. (author)

  4. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  5. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  6. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  7. Praxeological analysis of the teaching conditions of the energy concept

    Directory of Open Access Journals (Sweden)

    Mehmet Altan Kurnaz

    2010-12-01

    Full Text Available Since there is disagreement with regard to a single definition of energy in the literature, knowing how a discipline introducesenergy, because of the direct effects of teaching conditions on students’ learning, maintains its importance. From this point ofview, the objective of this research is to determine the teaching conditions with regard to energy of a discipline in a universityin Turkey. In order to achieve this, an institutional analysis was conducted based on the Praxeological Approach. Severalimportant results were obtained from the study such as the fact that the teaching of energy processes at the year 1 level in aTurkish University is performed from a restricted perspective, using an operational approach. The results of this studyemphasize the need for an interdisciplinary approach and multiple representations, including conceptual activities as a meansof introducing energy concepts. As a general recommendation, it is also recommended that the analysis of the interactionbetween teaching and learning conditions may be useful for the development of a new approach with regard to energyconcepts.

  8. Water-energy-food nexus: concepts, questions and methodologies

    Science.gov (United States)

    Li, Y.; Chen, X.; Ding, W.; Zhang, C.; Fu, G.

    2017-12-01

    The term of water-energy -food nexus has gained increasing attention in the research and policy making communities as the security of water, energy and food becomes severe under changing environment. Ignorance of their closely interlinkages accompanied by their availability and service may result in unforeseeable, adverse consequences. This paper comprehensively reviews the state-of-the-art in the field of water-energy-food, with a focus on concepts, research questions and methodologies. First, two types of nexus definition are compared and discussed to understand the essence of nexus research issues. Then, three kinds of nexus research questions are presented, including internal relationship analysis, external impact analysis, and evaluation of the nexus system. Five nexus modelling approaches are discussed in terms of their advantages, disadvantages and application, with an aim to identify research gaps in current nexus methods. Finally, future research areas and challenges are discussed, including system boundary, data uncertainty and modelling, underlying mechanism of nexus issues and system performance evaluation. This study helps bring research efforts together to address the challenging questions in the nexus and develop the consensus on building resilient water, energy and food systems.

  9. Touching points in the energy band structure of bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C Huy; Nguyen, V Lien

    2014-01-01

    The energy band structure of the bilayer graphene superlattices with zero-averaged periodic δ-function potentials are studied within the four-band continuum model. Using the transfer matrix method, the study is mainly focused on examining the touching points between adjacent minibands. For the zero-energy touching points the dispersion relation derived shows a Dirac-like double-cone shape with the group velocity which is periodic in the potential strength P with the period of π and becomes anisotropic at relatively large P. From the finite-energy touching points we have identified those located at zero wave-number. It was shown that for these finite-energy touching points the dispersion is direction-dependent in the sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice direction, respectively. We have also calculated the density of states and the conductivity which demonstrates a manifestation of the touching points examined. (paper)

  10. To teach the concept of energy; Enseignement de l`energie

    Energy Technology Data Exchange (ETDEWEB)

    Besson, G. [Lycee Louis Aragon, 69 - Givors (France); Clavel, Ch. [Lycee Condorcet, 69 - Saint-Priest (France); Gaidioz, P. [Lycee Edouard Branly, 69 - Lyon (France); Tiberghien, A. [CNRS UMR GRIC, equipe COAST Ecole Normale Superieure, 69 - Lyon (France)

    1998-04-01

    This article presents the work made by a team of sciences teachers and pedagogy experts to explain the concept of energy to a grammar-school audience. Energy can be another way to interpret a phenomenon: an electric circuit can be studied in terms of electrokinetics but also from a point of view of energy as a system interacting with its surroundings.The necessity to define the main actors of the energy interpretation: energy tank, transformers and receptors comes naturally. The conservation of energy is a powerful tool to draw relations and links between macroscopic parameters such as voltage, intensity or temperature. The notion of power appears as a rate of energy transfer. Some examples of practical works about the energetic interpretations of different systems are given. (A.C.) 5 refs.

  11. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  12. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  13. Ocean thermal energy: concept and resources, history and perspectives

    International Nuclear Information System (INIS)

    Nihous, Gerard

    2015-10-01

    Two articles address the possibility of exploiting a higher than 20 degrees temperature difference between ocean surfaces and 1 km deep waters to produce electricity. The first article describes the operation principle in closed cycle and briefly presents the open cycle approach. The global energetic assessment is discussed. The author analyses available thermal resources in relationship with the main ocean streams. He outlines that the design of an ocean thermal energy project requires the acquisition and knowledge of a lot of data, modelling and simulations. In the second article, the author notices that past experiments highlighted the difficulties of implementation of the concept. He notably evokes works performed by Georges Claude during the 1920's, projects elaborated at the end of the 20. century, the realisation of a mini OTEC (Ocean Thermal Energy Conversion) station in Hawaii, the OTEC-1 project, a Japanese project in Nauru, the test of a suspended cold water duct, the net power producing experiment in the USA. Perspectives and costs are finally briefly discussed, and recent and promising projects briefly evoked (notably that by DCNS and Akuo Energy in Martinique)

  14. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    Science.gov (United States)

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  15. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    Science.gov (United States)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  16. Solar Energy: Energy Conservation and Passive Design Concepts: Student Material. First Edition.

    Science.gov (United States)

    Younger, Charles; Orsak, Charles G., Jr.

    Designed for student use in "Energy Conservation and Passive Design Concepts," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, bibliographies, and illustrations for seven course modules. The manual, which corresponds to an instructor guide for the same course, covers the…

  17. Energy and technology for our life: Concept, execution, results

    International Nuclear Information System (INIS)

    Morell, Frank W.

    1989-01-01

    The VDI is a technological-scientific association, with almost 100 000 members it is the biggest in Europe. Its aim is to supply all professional engineers with 'state of the art' information. Its organisatory mode is decisive for the success of the task at hand: non-aligned as far as economic interests are concerned, unsalaried and with statutory consensus requirement it offers its services not only to members but indeed to all engineers, no matter wether they are still undergoing professional training or are already in full employment. The main services for this target group are: conferences, congresses, symposia, workshops; VDI guidelines and an individual membership service. The range of VDI tasks includes practically all spheres of technology and hence also nuclear energy. This presentation deals with tree points: Concept of the campaign wenergy and technology for our life, the main points of the measures taken between 1983 and 1987; and the results achieved, verified by demoscopic surveys

  18. Energy and technology for our life: Concept, execution, results

    Energy Technology Data Exchange (ETDEWEB)

    Morell, Frank W

    1989-07-01

    The VDI is a technological-scientific association, with almost 100 000 members it is the biggest in Europe. Its aim is to supply all professional engineers with 'state of the art' information. Its organisatory mode is decisive for the success of the task at hand: non-aligned as far as economic interests are concerned, unsalaried and with statutory consensus requirement it offers its services not only to members but indeed to all engineers, no matter wether they are still undergoing professional training or are already in full employment. The main services for this target group are: conferences, congresses, symposia, workshops; VDI guidelines and an individual membership service. The range of VDI tasks includes practically all spheres of technology and hence also nuclear energy. This presentation deals with tree points: Concept of the campaign wenergy and technology for our life, the main points of the measures taken between 1983 and 1987; and the results achieved, verified by demoscopic surveys.

  19. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  20. A novel approach for characterizing broad-band radio spectral energy distributions

    Science.gov (United States)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  1. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.

    Science.gov (United States)

    Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang

    2014-05-14

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

  2. Proof of concept for a banding scheme to support risk assessments related to multi-product biologics manufacturing.

    Science.gov (United States)

    Card, Jeffrey W; Fikree, Hana; Haighton, Lois A; Blackwell, James; Felice, Brian; Wright, Teresa L

    2015-11-01

    A banding scheme theory has been proposed to assess the potency/toxicity of biologics and assist with decisions regarding the introduction of new biologic products into existing manufacturing facilities. The current work was conducted to provide a practical example of how this scheme could be applied. Information was identified for representatives from the following four proposed bands: Band A (lethal toxins); Band B (toxins and apoptosis signals); Band C (cytokines and growth factors); and Band D (antibodies, antibody fragments, scaffold molecules, and insulins). The potency/toxicity of the representative substances was confirmed as follows: Band A, low nanogram quantities exert lethal effects; Band B, repeated administration of microgram quantities is tolerated in humans; Band C, endogenous substances and recombinant versions administered to patients in low (interferons), intermediate (growth factors), and high (interleukins) microgram doses, often on a chronic basis; and Band D, endogenous substances present or produced in the body in milligram quantities per day (insulin, collagen) or protein therapeutics administered in milligram quantities per dose (mAbs). This work confirms that substances in Bands A, B, C, and D represent very high, high, medium, and low concern with regard to risk of cross-contamination in manufacturing facilities, thus supporting the proposed banding scheme. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    Directory of Open Access Journals (Sweden)

    Enric Valencia

    2008-07-01

    Full Text Available The Passive Advanced Unit (PAU for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD and a GPS reflectometer (PAU-GNSS/R. These instruments in conjunction with an infra-red radiometer (PAU-IR will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4x4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR. PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR’s radiometer calibration algorithms and their performance.

  4. Novel concept of nonimaging single reflection solar energy concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovsky, D.

    2004-07-01

    Many solar applications require temperatures higher than those that can be achieved by common flat-plate collectors. Temperatures over 100 C are necessary e.g. for industrial process heat. Such temperatures can be obtained by means of solar energy concentrators. Advantages of concentrating the solar radiation can bring in addition to higher temperatures also decrease in heat losses and material savings due to smaller size of absorber, if taking into account that costs for material absorber per square meter can be possibly higher than costs for e.g. concentrating mirrors. On the other hand, using the concentration, two other kinds of losses will raise: losses of diffuse radiation and optical losses. There exist a variety of solar energy concentrators for different purposes. For lowtemperature applications, inexpensive concentrators of diffuse radiation can be used. For these concentrators, acceptance angle A defines the ability to concentrate the diffuse radiation and also its concentration factor C. To this class of concentrators belongs e.g. nonimaging types like CPC (Compound Parabolic Concentrator), V-trough types, cylindrical concentrators etc. This paper deals with development of a new type of concentrator, novel concept of which is based on functionality of CPC by means of flat mirrors, primarily designed for needs of SME's (Small and Medium Enterprises). The CLON project is being ellaborated under the 5th Framework Programme of the EU. (orig.)

  5. HydroCube mission concept: P-Band signals of opportunity for remote sensing of snow and root zone soil moisture

    Science.gov (United States)

    Yueh, Simon; Shah, Rashmi; Xu, Xiaolan; Elder, Kelly; Chae, Chun Sik; Margulis, Steve; Liston, Glen; Durand, Michael; Derksen, Chris

    2017-09-01

    We have developed the HydroCube mission concept with a constellation of small satellites to remotely sense Snow Water Equivalent (SWE) and Root Zone Soil Moisture (RZSM). The HydroCube satellites would operate at sun-synchronous 3- day repeat polar orbits with a spatial resolution of about 1-3 Km. The mission goals would be to improve the estimation of terrestrial water storage and weather forecasts. Root-zone soil moisture and snow water storage in land are critical parameters of the water cycle. The HydroCube Signals of Opportunity (SoOp) concept utilizes passive receivers to detect the reflection of strong existing P-band radio signals from geostationary Mobile Use Objective System (MUOS) communication satellites. The SWE remote sensing measurement principle using the P-band SoOp is based on the propagation delay (or phase change) of radio signals through the snowpack. The time delay of the reflected signal due to the snowpack with respect to snow-free conditions is directly proportional to the snowpack SWE. To address the ionospheric delay at P-band frequencies, the signals from both MUOS bands (360-380 MHz and 250-270 MHz) would be used. We have conducted an analysis to trade off the spatial resolution for a space-based sensor and measurement accuracy. Through modeling analysis, we find that the dual-band MUOS signals would allow estimation of soil moisture and surface roughness together. From the two MUOS frequencies at 260 MHz and 370 MHz, we can retrieve the soil moisture from the reflectivity ratio scaled by wavenumbers using the two P-band frequencies for MUOS. A modeling analysis using layered stratified model has been completed to determine the sensitivity requirements of HydroCube measurements. For mission concept demonstration, a field campaign has been conducted at the Fraser Experimental Forest in Colorado since February 2016. The data acquired has provided support to the HydroCube concept.

  6. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  7. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    Directory of Open Access Journals (Sweden)

    Otto Blehr

    1997-04-01

    Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.

  8. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    International Nuclear Information System (INIS)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I; Su, Yu-Chuan

    2014-01-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300∼600 kPa and extreme piezoelectricity of d 33 >2000 pC/N and d 31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d 31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ∼200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices

  9. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    Science.gov (United States)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I.; Su, Yu-Chuan

    2014-11-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300~600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ~200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.

  10. Chamber technology concepts for inertial fusion energy: Three recent examples

    International Nuclear Information System (INIS)

    Meier, W.R.; Moir, R.W.; Abdou, M.A.

    1997-01-01

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed

  11. Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry

    Science.gov (United States)

    Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.

    2014-01-01

    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…

  12. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  13. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  14. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  15. A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz

    Directory of Open Access Journals (Sweden)

    Dinh Khanh Ho

    2017-06-01

    Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.

  16. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  17. Broad band energy distribution of UV-bright BL Lac objects

    International Nuclear Information System (INIS)

    Maraschi, L.; Tanzi, E.G.; Treves, A.

    1984-01-01

    IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references

  18. Broad band energy distribution of UV-bright BL Lac objects

    Energy Technology Data Exchange (ETDEWEB)

    Maraschi, L.; Tanzi, E.G.; Treves, A.

    1984-01-01

    IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references.

  19. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    Science.gov (United States)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  20. Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; El-Awady, J.; Woodward, C.; Uchic, M.D.

    2011-01-01

    The nudged elastic band (NEB) method is used to evaluate activation energies for dislocation intersection cross-slip in face-centered cubic (fcc) nickel and copper, to extend our prior work which used an approximate method. In this work we also extend the study by including Hirth locks (HL) in addition to Lomer-Cottrell locks and glide locks (GL). Using atomistic (molecular statics) simulations with embedded atom potentials we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on the cross-slip plane when intersecting a 120 o forest dislocation in both Ni and Cu. The initial separation between the screw and the intersecting dislocation on the (1 1 1) glide plane is varied to find a minimum in the activation energy. The NEB method gives energies that are ∼10% lower than those reported in our prior work. It is estimated that the activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 o intersection forming GL in Ni and Cu are ∼0.47 and ∼0.65 eV, respectively, and from the fully cross-slip plane state to the partially cross-slipped state forming LC are ∼0.68 and ∼0.67 eV. The activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 o intersection forming HL in Ni and Cu are estimated to be ∼0.09 and ∼0.31 eV, respectively. These values are a factor of 3-20 lower than the activation energy for bulk cross-slip in Ni and, a factor of 2-6 lower than the activation energy for cross-slip in Cu estimated by Friedel-Escaig analysis. These results suggest that cross-slip should nucleate preferentially at selected screw dislocation intersections in fcc materials and the activation energies for such mechanisms are also a function of stacking fault energy.

  1. Forbidden energy band gap in diluted a-Ge1−xSix:N films

    International Nuclear Information System (INIS)

    Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.

    2012-01-01

    By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.

  2. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  3. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  4. Energy shift and conduction-to-valence band transition mediated by a time-dependent potential barrier in graphene

    Science.gov (United States)

    Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.

    2015-09-01

    We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.

  5. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    Science.gov (United States)

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Sustainable Design and Renewable Energy Concepts in Practice

    Science.gov (United States)

    Maxwell, Lawrence

    2009-07-01

    The energy use of residential and non-residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability, energy consumption, environment impacts, and the potential for climate change.

  7. Concepts for fabrication of inertial fusion energy targets

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, A. (Arthur), Jr.; Hoffer, J. K. (James K.); Gobby, P. L. (Peter L.); Steckle, W. P. (Warren P.), Jr.; Goodin, D. T. (Daniel T.); Besenbruch, G. E. (Gottfried E.); Schultz, K. R. (Kenneth R.)

    2001-01-01

    Future inertial fusion energy (IFE) power plants will have a Target Fabrication Facility (TFF) that must produce approximately 500,000 targets per day. To achieve a relatively low cost of electricity, the cost to produce these targets will need to be less than approximately $0.25 per target. In this paper the status on the development of concepts for a TFF to produce targets for a heavy ion fusion (HIF) reactor, such as HYLIFE II, and a laser direct drive fusion reactor such as Sombrero, is discussed. The baseline target that is produced in the HIF TFF is similar to the close-coupled indirect drive target designed by Callahan-Miller and Tabak at Lawrence Livermore Laboratory. This target consists of a cryogenic hohlraum that is made of a metal case and a variety of metal foams and metal-doped organic foams. The target contains a DT-filled CH capsule. The baseline direct drive target is the design developed by Bodner and coworkers at Naval Research Laboratory. HIF targets can be filled with DT before or after assembly of the capsule into the hohlraum. Assembly of targets before filling allows assembly operations to be done at room temperature, but tritium inventories are much larger due to the large volume that the hohlraum occupies in the fill system. Assembly of targets cold after filling allows substantial reduction in tritium inventory, but this requires assembly of targets at cryogenic temperature. A model being developed to evaluate the tritium inventories associated with each of the assembly and fill options indicates that filling targets before assembling the capsule into the hohlraum, filling at temperatures as high as possible, and reducing dead-volumes in the fill system as much as possible offers the potential to reduce tritium inventories to acceptable levels. Use of enhanced DT ice layering techniques, such as infrared layering can reduce tritium inventories significantly by reducing the layering time and therefore the number of capsules being layered

  8. Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and ab initio calculations

    Science.gov (United States)

    Gadret, E. G.; Dias, G. O.; Dacal, L. C. O.; de Lima, M. M., Jr.; Ruffo, C. V. R. S.; Iikawa, F.; Brasil, M. J. S. P.; Chiaramonte, T.; Cotta, M. A.; Tizei, L. H. G.; Ugarte, D.; Cantarero, A.

    2010-09-01

    We investigated experimentally and theoretically the valence-band structure of wurtzite InP nanowires. The wurtzite phase, which usually is not stable for III-V phosphide compounds, has been observed in InP nanowires. We present results on the electronic properties of these nanowires using the photoluminescence excitation technique. Spectra from an ensemble of nanowires show three clear absorption edges separated by 44 meV and 143 meV, respectively. The band edges are attributed to excitonic absorptions involving three distinct valence-bands labeled: A, B, and C. Theoretical results based on “ab initio” calculation gives corresponding valence-band energy separations of 50 meV and 200 meV, respectively, which are in good agreement with the experimental results.

  9. Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot

    International Nuclear Information System (INIS)

    Sivakami, A.; Mahendran, M.

    2010-01-01

    The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.

  10. A concept of cartographic support for alternative energy

    Directory of Open Access Journals (Sweden)

    Олена Агапова

    2016-10-01

    Internet services. The article presents a list of maps for alternative energy in Ukraine and the algorithm of their compilation. The regional cartographic products system comprises a series of alternative energy resources maps (wind, solar, small hydro, biomass and geothermal energy; map series of natural, social, economic, technical and environmental conditions and factors that affect the placement of objects belonging to different branches of alternative energy; a series of maps showing the level of alternative energy development in Ukraine, including an inventory of existing in Ukraine thermal and power plants that use alternative energy sources, as well as enterprises for the production of alternative fuels. In addition, the cartographic system includes a recommendation and forecast maps showing perspective regions of alternative energy industries development and projected production of energy from alternative sources.

  11. A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin.

    Science.gov (United States)

    Lee, Soobum; Youn, Byeng D

    2011-03-01

    This paper presents an advanced design concept for a piezoelectric energy harvesting (EH), referred to as multimodal EH skin. This EH design facilitates the use of multimodal vibration and enhances power harvesting efficiency. The multimodal EH skin is an extension of our previous work, EH skin, which was an innovative design paradigm for a piezoelectric energy harvester: a vibrating skin structure and an additional thin piezoelectric layer in one device. A computational (finite element) model of the multilayered assembly - the vibrating skin structure and piezoelectric layer - is constructed and the optimal topology and/or shape of the piezoelectric layer is found for maximum power generation from multiple vibration modes. A design rationale for the multimodal EH skin was proposed: designing a piezoelectric material distribution and external resistors. In the material design step, the piezoelectric material is segmented by inflection lines from multiple vibration modes of interests to minimize voltage cancellation. The inflection lines are detected using the voltage phase. In the external resistor design step, the resistor values are found for each segment to maximize power output. The presented design concept, which can be applied to any engineering system with multimodal harmonic-vibrating skins, was applied to two case studies: an aircraft skin and a power transformer panel. The excellent performance of multimodal EH skin was demonstrated, showing larger power generation than EH skin without segmentation or unimodal EH skin.

  12. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies.

    Science.gov (United States)

    Kaweeteerawat, Chitrada; Ivask, Angela; Liu, Rong; Zhang, Haiyuan; Chang, Chong Hyun; Low-Kam, Cecile; Fischer, Heidi; Ji, Zhaoxia; Pokhrel, Suman; Cohen, Yoram; Telesca, Donatello; Zink, Jeffrey; Mädler, Lutz; Holden, Patricia A; Nel, Andre; Godwin, Hilary

    2015-01-20

    Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.

  13. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  14. On the Concept of Energy: Eclecticism and Rationality

    Science.gov (United States)

    Coelho, Ricardo Lopes

    2014-01-01

    In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with…

  15. Diagnosing Alternative Conceptions of Fermi Energy among Undergraduate Students

    Science.gov (United States)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-01-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher…

  16. Concept of the Interactive Platform for Real Time Energy Consumption Analysis in the Complex Urban Environment

    Directory of Open Access Journals (Sweden)

    Ales Podgornik

    2015-03-01

    Full Text Available This paper presents a concept of interactive and comprehensive platform based on advanced metering infrastructure for exchanging information on energy consumption and consequently on energy efficiency in urban and industrial environment which can serve as powerful tool for monitoring of progress in transition toward low carbon society. Proposed concept aims at supporting energy utilities in optimizing energy performance of both supply and demand side aspect of their work and have a potential to fill the gap and help in harmonization of interests between the energy utilities, energy service providers, local energy agencies and citizens. The proposed concept should be realized as a platform with the modular architecture, allowing future expansion of user’s portfolio and inventory management (new energy efficiency measures, technologies, different industries, urban districts and regions.

  17. Neurotoxins: Current Concepts in Cosmetic Use on the Face and Neck--Jawline Contouring/Platysma Bands/Necklace Lines.

    Science.gov (United States)

    Levy, Phillip M

    2015-11-01

    The platysma muscle acts as a major depressor in the lower face with subsequent inaesthetic implications. Botulinum toxin-A can be very useful to reverse some of these and this chapter describes how to (1) sharpen the jawline with the Nefertiti Lift, (2) treat anterior neck bands, and (3) soften necklace lines.

  18. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  19. Designing sustainable energy landscapes : concepts, principles and procedures

    NARCIS (Netherlands)

    Stremke, S.

    2010-01-01

    The depletion of fossil fuels, in combination with climate change, necessitates a transition to sustainable energy systems. Such systems are characterized by a decreased energy demand and an increase in the use of renewables. The objective of this dissertation is to advance the planning and design

  20. Design Concepts for Optimum Energy Use in HVAC Systems.

    Science.gov (United States)

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  1. A New Hybrid Bathroom System Based on Energy Saving Concept

    Directory of Open Access Journals (Sweden)

    Cui Bo-wen

    2016-01-01

    Full Text Available Based on the characteristics of hot water supply in bathroom, this article proposes a new hybrid energy hot water supply system. The programmable logic controller(PLC as the master controller was adopted in this system, which could automatically detect and storage main thermal physical of the system, such as temperature, water level, solar radiation intensity, power consumption and so on. The active thermal utilization technology of solar energy, air-source heat pump technology, solar energy intensive natural ventilation technology and low temperature hot water floor radiant heating technology were organically integrated in this system, which has the advantages of energy conservation and environment protection, high automation, safe and reliable operation, etc. At the same time, it can make good use of electric power cost between on-peak and off-peak, and promote the optimal allocation of power resources and reduce the cost, which can achieve the goal of intelligent control and energy saving.

  2. Some new conceptions in the approach to harnessing tidal energy

    Science.gov (United States)

    Gorlov, A. M.

    A method of converting ocean tide energy into compressed air energy for subsequent conversion to electrical and other forms of industrial energy is presented. The tidal energy is converted to compressed air energy by means of specialized chambers which are put on the ocean bed. Ocean water from the dammed region passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. The compressed air can be expanded through high speed compact gas turbines or any type of reciprocating engine. The flexible reinforced plastic barrier should be substantially cheaper than a conventional rigid dam and can be designed so that by means of special floats it becomes a self-supported and self-regulated weightless structural system which can dam a large shallow space of ocean without having to be connected to special bays.

  3. The Concept of a New Wave Energy Converter - the CECO

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Rosa Santos

    2014-06-01

    The proof of concept of this patented WEC was carried out at the Hydraulics Laboratory of the Faculty of Engineering of the University of Porto, on a geometrical scale of 1:20. The paper presents some results of those tests and analyses the CECO response for different wave conditions and modes of operation (power take-off damping level and WEC inclination. Two different techniques were used to evaluate the power absorbed. The analysis is based on the measured motion, velocity and acceleration time series, the mean absorbed power and corresponding relative capture widths. The potential of this new concept was confirmed, as relative capture widths of up to 30% were obtained. In addition, these results are expected to improve after optimizing some components of this WEC. Figure 1. Representation of CECO (a and its mode of operation: (b upward motion - the wave crest passes by the LMM; (c downward motion - the wave trough passes by LMM.

  4. Efficient, equitable and sustainable energy policy in a small open economy: Concepts and assessments

    International Nuclear Information System (INIS)

    Chang, Youngho; Fang, Zheng

    2017-01-01

    This study aims to develop three broadly defined concepts of designing and evaluating energy policy of a small open economy, namely, efficiency, equity, and sustainability which are applied to Singapore. By analysing the historical energy and economic data and examining energy policies and programs implemented, this study finds that (1) energy intensity improves over time and three strategies employed to improve energy efficiency - tariffs, deregulation and setting energy standards - are found to have some positive effects. (2) A utility rebate programme is implemented and revised continuously to achieve equity in energy consumption across Singapore households. (3) By the weak concept of sustainability, Singapore is considered marginally sustainable. Institutional, technological and market-based approaches are being implemented to increase energy efficiency, improve energy equity and secure sustainability. - Highlights: • Three concepts of designing and evaluating energy policy are developed. • Efficiency, equity and sustainability are the three concepts. • Three strategies are identified in improving energy efficiency. • A utility rebate programme is to achieve equity in energy consumption across households. • Institutional and market-based approaches are to secure sustainable energy supply.

  5. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  6. Energy band structure and electrical properties of Ga-oxide/GaN interface formed by remote oxygen plasma

    Science.gov (United States)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.

  7. China's conception of energy security : sources and international impacts

    International Nuclear Information System (INIS)

    Constantin, C.

    2005-01-01

    The unique challenges and opportunities associated with China's rapid economic growth were discussed with reference to the potential risk of political disruption or destabilizing international markets. The author notes that two common mistakes are typically made when assessing the evolution of China's energy policy. The first is that China's future path is assimilated with that of developed countries, thereby dismissing evidence that might point toward a different relationship with energy. Second, analysts tend to focus on the external expression of China's energy needs, its oil imports, while overlooking other energy-related issues such as insufficient electricity supplies or environmental degradation. The author argues that Chinese leadership is redefining its understanding of what constitutes energy security for the country. This report assesses the international impacts of such a redefinition along with the international aspects of a business-as-usual scenario in which China pursues its traditional model of energy security. It was emphasized that two different views of energy security lead to different sets of challenges and opportunities for western governments and businesses. 101 refs., 2 figs

  8. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  9. Energy harvesting concepts for small electric unmanned systems

    Science.gov (United States)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  10. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Science.gov (United States)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  11. Architectural design and energy performance; Conception architecturale et performance energetique

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, Ph. [Agence de l' Environnement et de la Maitrise de l' Energie, (ADEME), 06 - Valbonne (France); Pouget, A. [Bureau Etude Thermique, 75 - Paris (France); Sesolis, B. [TRIBU, 75 - Paris (France)] [and others

    2000-07-01

    This day was organized around the energy performance of the architecture in three parts. A first time dealt with the design of new buildings and private houses. Simulation tools for the energy optimization and practice of design are discussed. The second part was devoted to the new 2000 regulation with an open discussion on the regulatory costs. The last part forecasted the evolution until 2015 taking into account the french program of fight against the greenhouse effect, the limitation of the air conditioning consumption and the definition of a quality label concerning the energy performances. (A.L.B.)

  12. Functionally graded biomimetic energy absorption concept development for transportation systems.

    Science.gov (United States)

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  13. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  14. Advanced storage concepts for solar and low energy buildings, IEA-SHC Task 32. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.M.; Andersen, Elsa; Furbo, S.

    2008-01-15

    This report reports on the results of the activities carried through in connection with the Danish part of the IEA SHC Task 32 project: Advanced Storage Concepts for Solar and Low Energy Buildings. The Danish involvement has focused on Subtask C: Storage Concepts Based on Phase Change Materials and Subtask D: Storage Concepts Based on Advanced Water Tanks and Special Devices. The report describes activities concerning heat-of-fusion storage and advanced water storage. (BA)

  15. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.

    Science.gov (United States)

    Zhang, Daoyu; Yang, Minnan; Dong, Shuai

    2015-11-21

    Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.

  16. An Examination of Cross Sectional Change in Student's Metaphorical Perceptions towards Heat, Temperature and Energy Concepts

    Science.gov (United States)

    Celik, Harun

    2016-01-01

    In science teaching, metaphors are important tools for understanding meaningful learning and conceptual formation by the help of daily life language. This study aims to evaluate how the concepts of heat, temperature and energy are perceived by students in secondary school science classes and how the perceptions of these concepts vary in terms of…

  17. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  18. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    International Nuclear Information System (INIS)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    Research highlights: → In conventional buildings thermal mass is a permanent building characteristic. → Permanent thermal mass concepts are not optimal in all operational conditions. → We propose a concept that combines the benefits of low and high thermal mass. → Building simulation shows the concept is able to reduce the energy demand with 35%. → Furthermore, the concept increases the performance robustness of the building. -- Abstract: In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal variations and future climate changes. Building performance simulation is used to investigate the potential of the novel concept for reducing heating energy demand and increasing thermal comfort. Simulation results of a case study in the Netherlands show that the optimal quantity of the thermal mass is sensitive to the change of seasons. This implies that the building performance will benefit from implementing HATS. Furthermore, the potential of HATS is quantified using a simplified HATS model. Calculations show heating energy demand reductions of up to 35% and increased thermal comfort compared to conventional thermal mass concepts.

  19. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 1. Technical report

    National Research Council Canada - National Science Library

    Clyman, Milton

    1980-01-01

    .... The search addressed the technologies necessary to support next generation (IOC 1990+) air vehicle design and operation concepts that will reduce the requirement for natural petroleum-derived energy...

  20. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    International Nuclear Information System (INIS)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-01-01

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  1. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Brönnimann, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Cardelli, F. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Ficcadenti, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Gallo, A. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Kalt, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lollo, V. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Palumbo, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Piersanti, L., E-mail: luca.piersanti@lnf.infn.it [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Schilcher, T. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2016-11-21

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  2. Early conceptions of the liberation and exploitation of atomic energy

    International Nuclear Information System (INIS)

    Peterson, Alf.

    1990-01-01

    In this report the early ideas about the use of nuclear energy are reviewed and compared with the historic development. The social responsibility of scientists is also discussed in this context. Since the development of nuclear reactors historically was closely connected to the nuclear weapons program in the US, there is also a review on this latter project. (107 refs.) (L.E.)

  3. Synergies for a Wave-Wind Energy Concept

    DEFF Research Database (Denmark)

    Pérez-Collazo, Carlos; Jakobsen, Morten Møller; Chozas, Julia Fernandez

    2013-01-01

    , this work outlines the risks and challenges that arise when combining these energies. To some extent WECs increase the uncertainty of the project, leading to a higher project cost and an increase the associated financial risk. In third place three case studies are proposed to illustrate different...

  4. Energy management control concepts with preview for hybrid commercial vehicles

    NARCIS (Netherlands)

    Reeven, van V.; Huisman, R.G.M.; Pesgens, M.F.M.; Koffrie, R.

    2010-01-01

    In a Hybrid Electric Vehicle (HEV), the main task of an Energy Management Strategy (EMS) is to determine the power-split of the total power demand into a power requests to the internal combustion engine and the electro motor. In this work, real-time implementable previewing strategies (utilizing

  5. Intelligent Energy concepts in executive education for oil & gas professionals

    NARCIS (Netherlands)

    Currie, P.K.; Bos, C.F.M.; Berkhout, A.J.; Weijermars, R.

    2010-01-01

    The Intelligent Energy vision is particularly relevant to mid-career professionals with strong management potential. As aspiring asset or service managers, this group has a strong need to improve their analytic and integrative skills, and adopt the holistic view of the industry which characterises

  6. Consumer-oriented Sustainable Energy Concepts; Consumentgerichte Duurzame Energieconcepten

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, H.J. [Universiteit Twente UT, Enschede (Netherlands)

    2009-10-15

    A study on the willingness of potential buyers of newly built houses to invest in energy efficient systems in order to realize a sustainable dwelling [Dutch] Een onder zoek naar de bereidheid van potentiele kopers van nieuwbouw woningen tot het investeren in energetische systemen om te komen tot een duurzame woning.

  7. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jun [University of Denver; Gao, Wenzhong [University of Denver; Zheng, Xinhu [University of Minnesota; Yang, Liuqing [Colorado State University; Hao, Jun [University of Denver; Dai, Xiaoxiao [University of Denver

    2017-09-01

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logic and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.

  8. Energy Concept Understanding of High School Students: A Cross-Grade Study

    Science.gov (United States)

    Takaoglu, Zeynep Baskan

    2018-01-01

    Energy is a difficult concept to be understood by students of all levels. Thus, the aim of the study is to determine how high school students at different levels perceive the energy and related concepts. In line with this purpose, 173 students in total of which 57 ones of the 9th grade, 94 ones of the 10th grade and 22 ones of the 11th grade…

  9. ENERGY CONCEPT ALIVE. NEW APPROACH IN THE FIGHT AGAINST CANCER

    Directory of Open Access Journals (Sweden)

    V. S. Shchukin

    2015-10-01

    Full Text Available New approach to the problem of struggle with malignant tumors based on the suggested by the authors energetic concept of living matter considering a human organism as an open non-self-organizing biological system that is the part of organism of a higher level of organization - Biosphere, and that is under full control of geophysical factors - first of all electromagnetic field of the Earth and composition of atmospheric air is set forth. The mentioned factors fatefully determine length of life - specific and individual - of any living organism, including human being. On the basis of the set forth approach a new means of prevention and removal from the human organism of malignant tumors was suggested.

  10. Biomass energy projects in Central and Eastern Europe. General information, favorable concepts and financing possibilities

    International Nuclear Information System (INIS)

    Ellenbroek, R.; Ballard-Tremeer, G.; Koeks, R.; Venendaal, R.

    2000-08-01

    The purpose of this guide is to provide information on the possibilities to invest and carry out biomass energy projects in Central and Eastern Europe. In the first part of the guide background information is given on countries in Central and Eastern Europe, focusing on bio-energy. A few cases are presented to illustrate different biomass energy concepts. Based on economic calculations an indication is given of the feasibility of those concepts. Also the most relevant sources of information are listed. In the second part an overview is given of Dutch, European and international financial tools that can be used in biomass energy projects in Central and Eastern Europe

  11. Energy summit Hessen. Implementation concept of the state government Hessen; Hessischer Energiegipfel. Umsetzungskonzept der Hessischen Landesregierung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    By means of the concept under consideration, the state government of Hessen (Federal Republic of Germany) has pursued the possible and realistic course for the implementation of the targets of the energy summit. The main aspects of this contribution are the implementation of the energy policy of Hessen into the European and national framework; Status quo of the energy consumption in Hessen; Areas of action and measures of the state government of Hessen; Actors of the energy policy turnaround; Monitoring.

  12. Influence of linear-energy-dependent density of states on two-band superconductors: Three-square-well model approach

    International Nuclear Information System (INIS)

    Ogbuu, O.A.; Abah, O.C.; Asomba, G.C.; Okoye, C.M.I.

    2011-01-01

    We derived the transition temperature and the isotope exponent of two-band superconductor. We employed Bogoliubov-Valatin formalism assuming a three-square-well potential. The effect of linear-energy-dependent electronic DOS in superconductors is considered. The relevance of the studies to MgB 2 is analyzed. We have derived the expressions for the transition temperature and the isotope effect exponent within the framework of Bogoliubov-Valatin two-band formalism using a linear-energy-dependent electronic density of states assuming a three-square-well potentials model. Our results show that the approach could be used to account for a wide range of values of the transition temperature and isotope effect exponent. The relevance of the present calculations to MgB 2 is analyzed.

  13. A Method against Interrupted-Sampling Repeater Jamming Based on Energy Function Detection and Band-Pass Filtering

    Directory of Open Access Journals (Sweden)

    Hui Yuan

    2017-01-01

    Full Text Available Interrupted-sampling repeater jamming (ISRJ is a new kind of coherent jamming to the large time-bandwidth linear frequency modulation (LFM signal. Many jamming modes, such as lifelike multiple false targets and dense false targets, can be made through setting up different parameters. According to the “storage-repeater-storage-repeater” characteristics of the ISRJ and the differences in the time-frequency-energy domain between the ISRJ signal and the target echo signal, one new method based on the energy function detection and band-pass filtering is proposed to suppress the ISRJ. The methods mainly consist of two parts: extracting the signal segments without ISRJ and constructing band-pass filtering function with low sidelobe. The simulation results show that the method is effective in the ISRJ with different parameters.

  14. Institutional options for rural energy access: Exploring the concept of the multifunctional platform in West Africa

    DEFF Research Database (Denmark)

    Nygaard, Ivan

    2010-01-01

    The concept of the multifunctional platform for rural energy access has increasingly been supported by donors in five West African countries since 1994. While it is often referred to as a highly successful concept, recent reviews and interviews with local stakeholders in Mali and Burkina Faso...... in the dominant discourse of development, and how including concerns, such as poverty alleviation, gender equity, local democracy, decentralisation and the environment, have attracted donors outside the energy sector. The paper thus argues that, while the integration of multiple technical functions, preconceived...... practical programmes provides an argument for building development aid on existing structures instead of inventing new complicated concepts and approaches....

  15. D-mu-A new concept in industrial low-energy electron dosimetry

    DEFF Research Database (Denmark)

    Helt-Hansen, Jakob; Miller, Arne; Sharpe, Peter

    2010-01-01

    , resulting in difficulties in providing traceable dose measurements using reference dosimeters. In order to overcome these problems a new concept is introduced of correcting all measured doses to the average dose in the first micrometer—Dμ. We have applied this concept to dose measurements with dosimeters...... of different thickness at two electron accelerators operating over a range of energies. The uncertainties of the dose measurements were evaluated, and it was shown that the dose in terms of Dμ was the same at each energy for all dosimeters within the measurement uncertainty. Using the concept of Dμ...

  16. Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.

    Science.gov (United States)

    Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen

    2018-02-02

    The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.

  17. Differentiation of energy concepts through speech and gesture in interaction

    Science.gov (United States)

    Close, Hunter G.; Scherr, Rachel E.

    2012-02-01

    Through microanalysis of speech and gesture in one interaction between learners (in a course on energy for in-service teachers), we observe coherent states of conceptual differentiation of different learners. We observe that the interaction among learners across different states of differentiation is not in itself sufficient to accomplish differentiation; however, the real-time receptivity of the learners to conceptually relevant details in each other's actions suggests that future instruction that focuses explicitly on such actions and their meaning in context may assist differentiation.

  18. High-energy test of proton radiography concepts

    International Nuclear Information System (INIS)

    Amann, J.F.; Atencio, L.G.; Espinoza, C.J.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this work was to demonstrate the use of high energy protons to produce radiographs of heavy metal test objects. The authors executed a proof-of-principle experiment using GeV proton beams available at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). The experiment produced proton radiographs of a suitably dense, unclassified test object. The experiment tested capabilities in data collection, image reconstruction, and hydro-code simulation and validated models of high-energy proton radiography. A lens was designed using existing quadrupole magnets, constructed on the A1 beam line of the AGS and used to image 10-GeV protons. The results include: (1) images made with an integrating detector, (2) measurements of the background and measurements of the resolution functions, and (3) forward model fits to the transmission data. In all cases the results agree with initial estimates and provide strong support for the utility of proton radiography as a new hydrotest diagnostic

  19. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  20. Energy concept, mathematics and dubious expectations; Energiekonzept, Mathematik und zweifelhafte Erwartungen

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, Knut

    2013-01-15

    The German federal government has laid down 30 quantitative goals in its energy concept and in doing so has determined the road to Germany's future energy supply system. One target which will be decisive for the success or failure of the energy turnaround, little discussed though it may be, is for Germany to lower its use of primary energy by 50% in the time from 2008 to 2050. In order to achieve this and other goals the federal government is pursuing a policy for a ''state-programmed energy supply''. The implications of this policy can easily be derived by performing some basic as well as more intricate calculations on the figures given in the energy concept. On doing so one finds that the energy concept has decided on the fate of every single energy carrier. It also becomes clear that rising energy prices will not only be a consequence but in fact a prerequisite for the success of the energy turnaround. This article advocates an energy policy that will permit changes of course if new facts and figures should so demand without departing from its overarching goals.

  1. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  2. Conception d'un dispositif de récupération d'énergie vibratoire large bande

    OpenAIRE

    Liu , Weiqun

    2014-01-01

    As scavenging the energy from the vibration sources has the wide adaptability and the easy feasibility of integration with other sources, it becomes one of the hottest topic in the energy harvesting field. Numerous works have been done to enhance the harvested power by optimizing the interface circuit and the mechanical structure. The variability of the environmental vibrations introduces a challenge to the conventional linear harvesters and calls for the development of wideband vibration gen...

  3. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...

  4. New Method for the Development of Plasmonic Metal-Semiconductor Interface Layer: Polymer Composites with Reduced Energy Band Gap

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2017-01-01

    Full Text Available Silver nanoparticles within a host polymer of chitosan were synthesized by using in situ method. Ultraviolet-visible spectroscopy was then carried out for the prepared chitosan : silver triflate (CS : AgTf samples, showing a surface plasmonic resonance (SPR peak at 420 nm. To prepare polymer composites with reduced energy band gap, different amounts of alumina nanoparticles were incorporated into the CS : AgTf solution. In the present work, the results showed that the reduced silver nanoparticles and their adsorption on wide band gap alumina (Al2O3 particles are an excellent approach for the preparation of polymer composites with small optical band gaps. The optical dielectric loss parameter has been used to determine the band gap experimentally. The physics behind the optical dielectric loss were interpreted from the viewpoint of quantum mechanics. From the quantum-mechanics viewpoint, optical dielectric loss was also found to be a complex equation and required lengthy numerical computation. From the TEM investigation, the adsorption of silver nanoparticles on alumina has been observed. The optical micrograph images showed white spots (silver specks with different sizes on the surface of the films. The second semicircle in impedance Cole-Cole plots was found and attributed to the silver particles.

  5. Investigation of level energies and B(E2) values for rotation-aligned bands in Hg isotopes

    International Nuclear Information System (INIS)

    Mertin, D.; Tischler, R.; Kleinrahm, A.; Kroth, R.; Huebel, H.; Guenther, C.

    1978-01-01

    High spin states in 191 192 193 195 197 199 Hg were investigated by observing γ-rays and conversion electrons in the compound reactions 192 194 198 Pt(α,xn) and 192 Pt ( 3 He,4n). In 197 Hg the decoupled band built on the 13/2 + state and the semi-decoupled negative-parity band are observed up to Isup(π)=41/2 + and 33/2 - , respectively. A careful investigation of 199 Hg revealed no new high spin states above the previously known levels with Isup(π)=25/2 + and 31/2 - . Half-lives were determined for the 10 + , 7 - , 8 - and 16 - states in 192 Hg, the 33/2 states in 191 193 Hg and the 25/2 - states in 191 193 195 197 Hg. The systematics of the level energies and B(E2) values for the positive parity ground and 13/2 + bands and the negative-parity semi-decoupled bands in 190-200 Hg is discussed. (Auth.)

  6. Assessment of Students' Scientific and Alternative Conceptions of Energy and Momentum Using Concentration Analysis

    Science.gov (United States)

    Dega, Bekele Gashe; Govender, Nadaraj

    2016-01-01

    This study compares the scientific and alternative conceptions of energy and momentum of university first-year science students in Ethiopia and the US. Written data were collected using the Energy and Momentum Conceptual Survey developed by Singh and Rosengrant. The Concentration Analysis statistical method was used for analysing the Ethiopian…

  7. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  8. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  9. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  10. Scenarios for an energy policy concept of the German Government

    International Nuclear Information System (INIS)

    Nagl, Stephan; Fuersch, Michaela; Paulus, Moritz; Richter, Jan; Trueby, Johannes; Lindenberger, Dietmar

    2010-01-01

    In this article we demonstrate how challenging greenhouse gas reduction targets of up to 95% until 2050 can be achieved in the German electricity sector. In the analysis, we focus on the main requirements to reach such challenging targets. To account for interdependencies between the electricity market and the rest of the economy, different models were used to account for feedback loops with all other sectors. We include scenarios with different runtimes and retrofit costs for existing nuclear plants to determine the effects of a prolongation of nuclear power plants in Germany. Key findings for the electricity sector include the importance of a European-wide coordinated electricity grid extension and the exploitation of regional comparative cost effects for renewable sites. Due to political restrictions, nuclear energy will not be available in Germany in 2050. However, the nuclear life time extension has a positive impact on end consumer electricity prices as well as economic growth in the medium term, if retrofit costs do not exceed certain limits. (orig.)

  11. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2014-08-01

    Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  12. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  13. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  14. Lac du Flambeau Band of Lake Superior Chippewa Indians Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bryan Hoover

    2009-11-16

    This plan discusses the current energy use on the Lac du Flambeau Reservation, the current status of the Tribe's energy program, as well as the issues and concerns with energy on the reservation. This plan also identifies and outlines energy opportunities, goals, and objectives for the Tribe to accomplish. The overall goal of this plan is to address the energy situation of the reservation in a holistic manner for the maximum benefit to the Tribe. This plan is an evolving document that will be re-evaluated as the Tribe's energy situation changes.

  15. Application of Energy Window Concept in Doppler Broadening of {sup 238}U Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Khassnov, Azamat; Choi, Soo Young; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Currently, the NJOY code is used for construction and Doppler broadening of microscopic cross sections. There exist several methods or formalisms to produce microscopic cross sections and there are also different methods of Doppler broadening. In this paper, Multi-Level Breit-Wigner (MLBW) formalism and the Psi method are used for generation and Doppler broadening of the resonance cross section. Accuracy of the energy window concept applied MLBW (EW MLBW) Doppler broadened cross section was compared with that of the cross section generated by conventional MLBW (Con MLBW) formalism for {sup 2}38U isotope using MATLAB. The conventional method requires Doppler broadening of all resonances, including resonances far from the target energy point, which do not change much with respect to the temperature change. The energy window concept makes Doppler broadening possible with a smaller number of resonances neighboring to the energy point we are interested in, and just adds up 0 K temperature cross sections of other resonances. Multi-level Breit-Wigner formalism and the Doppler broadening method were used to construct microscopic cross sections of {sup 238}U at different temperatures. The energy window concept was applied only for the 1st resonance energy region (4.5∼11.2 eV). The energy window concept demonstrates high competitiveness because the relative differences were less than 0.0016% for all types of cross sections. The advantage of the energy window concept is that the number of resonances broadened for every energy point is significantly reduced, which allows a reduction of computation time by almost 45 % of Doppler broadening time of the cross section generation at temperatures higher than 0 K.

  16. New life styles to accompany the transition. Energy and territories: Toward the concept 'Energy 2.0' with local authorities

    International Nuclear Information System (INIS)

    Magnin, Gerard

    2011-01-01

    There has never really been a policy for heating, which represents 40 % of needs, even though a policy has existed for a long time now for electricity, which represents only 20 %. The latter has overdetermined the country's total energy system, thus leading to a national, centralized approach focused on macro-level quantitative needs in energy and on a single product. In contrast, a local, decentralized, more qualitative approach should focus on needs in relation to heating as well as electricity and on tapping local energy potentials, including saving energy. The concept of 'energy subsidiarity' is proposed. In its general acceptation, 'subsidiarity' implies that the search for solutions be conducted as closely as possible to the problems to be solved. In relation to energy, it implies systematically mobilizing locally available energy potentials

  17. Energy, Entropy and Exergy Concepts and Their Roles in Thermal Engineering

    OpenAIRE

    Dincer, Ibrahim; Cengel, Yunus A.

    2001-01-01

    Abstract: Energy, entropy and exergy concepts come from thermodynamics and are applicable to all fields of science and engineering. Therefore, this article intends to provide background for better understanding of these concepts and their differences among various classes of life support systems with a diverse coverage. It also covers the basic principles, general definitions and practical applications and implications. Some illustrative examples are presented to highlight the importance of t...

  18. A Guided Re-invention Path Towards a More Versatile Concept of Energy Conservation For Secondary School Students

    NARCIS (Netherlands)

    Logman, P.S.W.M.; Kaper, W.H.; Ellermeijer, A.L.; Taşar, M.F.

    2014-01-01

    Traditionally the concept of energy conservation is introduced as an undisputable physical law that helps us describe many processes. However the usefulness and the validity of the concept of energy conservation evades many students. We intend to make the concept more useful and less abstract to

  19. Renewable energy for sustainable urban development: Redefining the concept of energisation

    International Nuclear Information System (INIS)

    Nissing, Christian; Blottnitz, Harro von

    2010-01-01

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development.

  20. Renewable energy for sustainable urban development: Redefining the concept of energisation

    Energy Technology Data Exchange (ETDEWEB)

    Nissing, Christian [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); Blottnitz, Harro von, E-mail: Harro.vonBlottnitz@uct.ac.z [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); African Centre for Cities, University of Cape Town (South Africa)

    2010-05-15

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development.

  1. Renewable energy for sustainable urban development. Redefining the concept of energisation

    Energy Technology Data Exchange (ETDEWEB)

    Nissing, Christian [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); Von Blottnitz, Harro [Environmental and Process Systems Engineering Research Group, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town (South Africa); African Centre for Cities, University of Cape Town (South Africa)

    2010-05-15

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea; however, there is no unified definition at the point of writing. In this paper, the aim is to propose a new and comprehensive definition of the concept of energisation. The chronological development of this concept is investigated by means of a literature review, and a subsequent critique is offered of current definitions and usage of the concept. Building upon these first insights, two planned cases of energisation in post-apartheid South Africa are contrasted to an unplanned one: they are the national electrification programme, the integrated energy centres initiative, and a wood fuelled local economy in Khayelitsha, Cape Town's biggest township. Especially the latter case, based on original data collection by the authors, provides a new understanding of specific elements affecting energisation. Finally, a new and detailed definition of the concept of sustainable energisation is developed by systematically reiterating three key elements: the target group, the concept of energy services, and sustainable development. (author)

  2. The Swiss Federal Energy Research Concept for the Years 2000-2003

    International Nuclear Information System (INIS)

    1999-05-01

    The Swiss Federal Energy Research Concept provides details within the framework set by the Swiss Parliament and the Swiss Federal Council (Government). It maps out how publicly supported research shall be used to achieve politically decided energy goals. Information is provided on the manner in which energy education, research and technology developments will be supported during the period from 2000-2003. The Concept facilitates coordination among federal and cantonal decision makers as well as municipal authorities. Swiss energy research is dedicated to sustainable development, including the massive reduction of CO 2 emissions. This is also implicit in the concept of the '2000 W society'. A two-pronged approach strives to reduce pollution by energy systems and increase system efficiencies. Technical progress is buttressed by socio-economic measures. Priorities for publicly funded energy research have been set in the context of long-term perspectives, harmonized with European and worldwide goals. Swiss energy research must be high-level research and this requires adequate means being made available to assure both quality and continuity. It is important that the attractiveness and competitiveness of Switzerland as a home for science and technology be maintained, indeed strengthened. It has been proved worldwide that energy research needs public funding. Particularly favored is application oriented research, including pilot and demonstration projects. (author)

  3. The Swiss Federal Energy Research Concept for the Years 2000-2003

    International Nuclear Information System (INIS)

    1999-05-01

    The Swiss Federal Energy Research Concept provides details within the framework set by the Swiss Parliament and the Swiss Federal Council (Government). It maps out how publicly supported research shall be used to achieve politically decided energy goals. Information is provided on the manner in which energy education, research and technology developments will be supported during the period from 2000-2003. The concept facilitates coordination among federal and cantonal decision makers as well as municipal authorities. Swiss energy research is dedicated to sustainable development, including the massive reduction of CO 2 emissions. This is also implicit in the concept of the '2000 W society'. A two-pronged approach strives to reduce pollution by energy systems and increase system efficiencies. Technical progress is buttressed by socio-economic measures. Priorities for publicly funded energy research have been set in the context of long-term perspectives, harmonized with European and worldwide goals. Swiss energy research must be high-level research and this requires adequate means being made available to assure both quality and continuity. It is important that the attractiveness and competitiveness of Switzerland as a home for science and technology be maintained, indeed strengthened. It has been proved worldwide that energy research needs public funding. Particularly favored is application oriented research, including pilot and demonstration projects. (author)

  4. Toward a low-energy development concept for the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Heierli, U

    1976-02-01

    The author discusses the perspectives of development concepts after the energy crisis, which caused a considerable rise in energy prices, including prices of fertilizers and other energy-intensive products, and shattered the dream of the ''industrialization of the whole world.'' He outlines approaches--for the sake of both greater efficiency in terms of input-output ratio of energy in different technologies and more equality, which cannot be achieved by energy-intensive development strategies--to a low-energy development strategy, which, of course, also implies a reduction of energy consumption in highly industrialized countries. The accent in low-energy development strategies has to be on decentralization so as to check urbanization and the consequent infrastructural demand, especially relating to transportation, and ecological disequilibrium.

  5. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    Science.gov (United States)

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  6. Energy band alignment at ferroelectric/electrode interface determined by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Chen Feng; Wu Wen-Bin; Li Shun-Yi; Klein Andreas

    2014-01-01

    The most important interface-related quantities determined by band alignment are the barrier heights for charge transport, given by the Fermi level position at the interface. Taking Pb(Zr,Ti)O 3 (PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy (XPS), we briefly review the interface formation and barrier heights at the interfaces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  7. Relocation of the disulfonic stilbene sites of AE1 (band 3) on the basis of fluorescence energy transfer measurements.

    Science.gov (United States)

    Knauf, Philip A; Law, Foon-Yee; Leung, Tze-Wah Vivian; Atherton, Stephen J

    2004-09-28

    Previous fluorescence resonance energy transfer (FRET) measurements, using BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) as a label for the disulfonic stilbene site and FM (fluorescein-5-maleimide) as a label for the cytoplasmic SH groups on band 3 (AE1), combined with data showing that the cytoplasmic SH groups lie about 40 A from the cytoplasmic surface of the lipid bilayer, would place the BIDS sites very near the membrane's inner surface, a location that seems to be inconsistent with current models of AE1 structure and mechanism. We reinvestigated the BIDS-FM distance, using laser single photon counting techniques as well as steady-state fluorescence of AE1, in its native membrane environment. Both techniques agree that there is very little energy transfer from BIDS to FM. The mean energy transfer (E), based on three-exponential fits to the fluorescence decay data, is 2.5 +/- 0.7% (SEM, N = 12). Steady-state fluorescence measurements also indicate BIDS to FM. These data indicate that the BIDS sites are probably over 63 A from the cytoplasmic SH groups, placing them near the middle or the external half of the lipid bilayer. This relocation of the BIDS sites fits with other evidence that the disulfonic stilbene sites are located farther toward the external membrane surface than Glu-681, a residue near the inner membrane surface whose modification affects the pH dependence and anion selectivity of band 3. The involvement of two relatively distant parts of the AE1 protein in transport function suggests that the transport mechanism requires coordinated large-scale conformational changes in the band 3 protein.

  8. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L; Murphy, Arthur T; Rosenthal, Daniel I

    1987-01-01

    Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes introduces the reader to the concepts, systems, and applications of nuclear processes. It provides a factual description of basic nuclear phenomena, as well as devices and processes that involve nuclear reactions. The problems and opportunities that are inherent in a nuclear age are also highlighted.Comprised of 27 chapters, this book begins with an overview of fundamental facts and principles, with emphasis on energy and states of matter, atoms and nuclei, and nuclear reactions. Radioactivi

  9. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  10. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    Howard Bender; Dave Schwellenbach; Ron Sturges; Rusty Trainham

    2008-01-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials

  11. Calculations of Energy Shift of the Conduction Band-Edge in Doped and Compensated GaP

    OpenAIRE

    Endo, Tamio; Itoh, Nobuhiko; Okino, Yasushi; 遠藤, 民生; 伊藤, 伸彦; 沖野, 祥[他

    1989-01-01

    The energy shifts of the parabolic conduction band-edge at 77 and 300K with doping the Te-donor in GaP were calculated in the nondegenerate system for the two cases ; unintentional and intentional compensations, using the two models proposed by Hwang abd by Mahan. The total parabolic shift △EM(△EH), and the contributions of the exchangeinteraction △μex(△Ee) and of the Coulomb interaction △μed(△Ec) calculated by the Mahan's model (Hwang's model), increase with increasing donor concentration in...

  12. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-01-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials

  13. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  14. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities......, as responsible entities for physical planning, can hold a key role in transforming energy systems towards carbon-neutrality, based on renewable energies. The implementation should be approached at community scale, which has advantages compared to only focusing on buildings or cities. But community energy...... planning can be a complex and time-consuming process. Many municipalities hesitate to initiate such a process, because of missing guidelines and uncertainty about possible energy potentials. Case studies help to understand applied methodologies and could show available energy potentials in different local...

  15. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  16. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  17. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  18. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  19. Term value/band-gap energy correlations for solid rare gas excitons

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Term value/ionization energy correlation algorithms have proven to be of considerable utility in the assignment of atomic and molecular Rydberg states. Many examples of empirical term value/ionization energy correlations are known for diverse classes of atoms and molecules. The purpose of this paper is to demonstrate that similar correlations are also obtained for excitons in rare gas solids

  20. The Concept of EV’s Intelligent Integrated Station and Its Energy Flow

    OpenAIRE

    Da Xie; Haoxiang Chu; Yupu Lu; Chenghong Gu; Furong Li; Yu Zhang

    2015-01-01

    The increasing number of electric vehicles (EVs) connected to existing distribution networks as time-variant loads cause significant distortions in line current and voltage. A novel EV's intelligent integrated station (IIS) making full use of retired batteries is introduced in this paper to offer a potential solution for accommodating the charging demand of EVs. It proposes the concept of generalized energy in IIS, based on the energy/power flow between IIS and EVs, and between IIS and the po...

  1. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    Science.gov (United States)

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  2. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    International Nuclear Information System (INIS)

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development

  3. Energy concepts for self-supplying communities based on local and renewable energy sources

    DEFF Research Database (Denmark)

    Petersen, Jens-Phillip

    2016-01-01

    The reduction of GHG emissions in buildings is a focus area of national energy policies, because buildings are responsible for a major share of energy consumption. Policies to increase the share of renewable energies and energy efficiency measures are implemented at local scale. Municipalities...... that virtually allow a heating energy and electricity supply fully based on local, renewable energy resources. The most feasible and cost-efficient variant is the use of local food production waste in a CHP plant feeding a district heating grid. The overall aim is to show that a self-sufficient heat......- and electricity supply of typical urban communities is possible and can be implemented in a cost-efficient way, if the energy planning is done systematically and in coherence with urban planning....

  4. Manipulation of resonant tunneling by substrate-induced inhomogeneous energy band gaps in graphene with square superlattice potentials

    International Nuclear Information System (INIS)

    Li, Guanqiang; Chen, Guangde; Peng, Ping; Cao, Zhenzhou; Ye, Honggang

    2013-01-01

    We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene with square superlattice potentials by transfer matrix method. The effects of the incident angle of the electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for the practical application of graphene-based electronic devices

  5. Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value

    Science.gov (United States)

    Besson, Ugo; De Ambrosis, Anna

    2014-01-01

    Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy…

  6. Energy, the subtle concept the discovery of Feynman's blocks from Leibniz to Einstein

    CERN Document Server

    Coopersmith, Jennifer

    2015-01-01

    This title explains the idea of energy by tracing the story of its discovery, from Galileo through to Einstein. It explains the physics using the minimum of mathematics, presenting both a gripping historical narrative and a fascinating introduction to an elusive physical concept.

  7. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  8. Determination of energy band diagram and charge carrier mobility of white emitting polymer from optical, electrical and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Sarjidan, M.A., E-mail: mohd.arif@um.edu.my; Mohd Mokhtar, H.A.; Abd Majid, W.H., E-mail: q3haliza@um.edu.my

    2015-03-15

    A single-layer white polymer light-emitting device (WPLED) has been fabricated using spin coating technique. The device was constructed as ITO/PEDOT:PSS(50 nm)/SPW-111(50 nm)/LiF(1 nm)/Al(100 nm). Indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS) are used as the transparent anode. SPW-111 is fabricated as a white emissive layer and lithium fluoride (LiF) and aluminum (Al) are used as reflecting cathode. Energy band diagram of the device was estimated from a combination of ultraviolet–visible (UV–vis) and current–voltage (J–V) analyses. Charge carrier mobility (μ) of PLED was evaluated using negative differential susceptance (−ΔB) method from impedance spectroscopy (IS) analysis. The calculated μ of the SPW-111 device is in the magnitude of 10{sup −6} cm{sup 2}/V/s. - Highlights: • Single layer PLED has been fabricated with spin-coating technique and device performance has been evaluated. • Energy band diagram of the SPW-111 is estimated from optical and electrical analyses. • Charge carrier mobility of the SPW-111 materials is obtained by impedance spectroscopy.

  9. Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure

    Directory of Open Access Journals (Sweden)

    Eul Noh

    2013-01-01

    Full Text Available The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode.

  10. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  11. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  12. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saion, E.B.; Watt, D.E. (Saint Andrews Univ. (UK). Dept. of Physics); East, B.W. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Colautti, P. (Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against {gamma} ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author).

  13. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.; Colautti, P.

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against γ ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author)

  14. Study on ground state energy band of even 114-124Cd isotopes under the framework of interacting boson model (IBM-1)

    International Nuclear Information System (INIS)

    Hossain, I.; Abdullah, Hewa Y.; Ahmed, I.M.; Saeed, M.A.; Ahmad, S.T.

    2012-01-01

    In this research, the ground state gamma ray bands of even 114-124 Cd isotopes are calculated using interacting boson model (IBM-1). The theoretical energy levels for Z = 48, N = 66–76 up to spin-parity 8 + have been obtained by using PHINT computer program. The values of the parameters in the IBM-1 Hamiltonian yield the best fit to the experimental energy spectrum. The calculated results of the ground state energy band are compared to the previous experimental results and the obtained theoretical calculations in IBM-1 are in good agreement with the experimental energy level. (author)

  15. Offshore wind energy storage concept for cost-of-rated-power savings

    International Nuclear Information System (INIS)

    Qin, Chao; Saunders, Gordon; Loth, Eric

    2017-01-01

    Highlights: •Investigated CAES + HPT system concept for offshore wind energy; •Validated cost model for offshore wind farm including CAPEX and OPEX items; •Quantified cost-of-rated-power savings associated with CAES + HPT concept; •Estimated savings of 21.6% with CAES + HPT for a sample $2.92 billion project. -- Abstract: The size and number of off-shore wind turbines over the next decade is expected to rapidly increase due to the high wind energy potential and the ability of such farms to provide utility-scale energy. In this future, inexpensive and efficient on-site wind energy storage can be critical to address short-time (hourly) mismatches between wind supply and energy demand. This study investigates a compressed air energy storage (CAES) and hydraulic power transmission (HPT) system concept. To assess cost impact, the NREL Cost and Scaling Model was modified to improve accuracy and robustness for offshore wind farms with large turbines. Special attention was paid to the support structure, installation, electrical interface and connections, land leasing, and operations and maintenance cost items as well as specific increased/reduced costs reductions associated with CAES + HPT systems. This cost model was validated and applied to a sample $2.92 billion project Virginia Offshore case It was found that adaption of CAES + HPT can lead to a substantial savings of 21.6% of this 20-year lifetime cost by dramatically reducing capital and operating cost of the generator and power transmission components. However, there are several additional variables that can impact the off-shore energy policy and planning for this new CAES + HPT concept. Furthermore, these cost-savings are only first-order estimates based on linear mass-cost relationships, and thus detailed engineering and economic analysis are recommended.

  16. Energy technology of tomorrow. Strategies and concepts. Conference contributions; Energietechnik von morgen. Strategien und Konzepte. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the meeting 'Energy technology of tomorrow - Strategies and concepts' at 12th June, 2007 in Nuremberg (Federal Republic of Germany) the following lectures were held: (1) Cluster energy technology (Klaus Hassmann); (2) Dimension of future energy supply - prognoses/strategies/concepts (Ludger Mohrbach); (3) Future technologies for a CO{sub 2} reduced energy supply (Helmut Tschaffon); (4) Energy research - New specific targets and results (Hartmut Spliethoff); (5) Technological progress for future power plants at RWE (Frank Schwending); (6) Future potential of the generation of syngas with different energy sources (Sebastian Muschelknautz); (7) Innovations in plant engineering - on the way to a CO{sub 2} free power plant (Tobias Jockenhoevel); (8) Solar thermal power plants - status and prospects (Robert Piltz-Paal); (9) Perspectives of the generation of liquid hydrocarbons using nuclear energy (Kurt Kugeler); (10) Application of the MPG gasification technology in the refining of Canadian tar sands (Matthias Mueller-Hagedorn); (11) Perspectives for a sustainable supply with energy carriers (Ulrich Balfanz).

  17. Concept of large scale PV-WT-PSH energy sources coupled with the national power system

    Directory of Open Access Journals (Sweden)

    Jurasz Jakub

    2017-01-01

    Full Text Available Intermittent/non-dispatchable energy sources are characterized by a significant variation of their energy yield over time. In majority of cases their role in energy systems is marginalized. However, even in Poland which is strongly dedicated to its hard and brown coal fired power plants, the wind generation in terms of installed capacity starts to play a significant role. This paper briefly introduces a concept of wind (WT and solar (PV powered pumped storage hydroelectricity (PSH which seems to be a viable option for solving the problem of the variable nature of PV and WT generation. Additionally we summarize the results of our so far conducted research on the integration of variable renewable energy sources (VRES to the energy systems and present conclusions which strictly refer to the prospects of large scale PV-WT-PSH operating as a part of the polish energy system.

  18. Comparative numerical and experimental study of two combined wind and wave energy concepts

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2016-01-01

    Full Text Available With a successful and rapid development of offshore wind industry and increased research activities on wave energy conversion in recent years, there is an interest in investigating the technological and economic feasibility of combining offshore wind turbines (WTs with wave energy converters (WECs. In the EU FP7 MARINA Platform project, three floating combined concepts, namely the spar torus combination (STC, the semi-submersible flap combination (SFC and the oscillating water column (OWC array with a wind turbine, were selected and studied in detail by numerical and experimental methods. This paper summarizes the numerical modeling and analysis of the two concepts: STC and SFC, the model tests at a 1:50 scale under simultaneous wave and wind excitation, as well as the comparison between the numerical and experimental results. Both operational and survival wind and wave conditions were considered. The numerical analysis was based on a time-domain global model using potential flow theory for hydrodynamics and blade element momentum theory (for SFC or simplified thrust force model (for STC for aerodynamics. Different techniques for model testing of combined wind and wave concepts were discussed with focus on modeling of wind turbines by disk or redesigned small-scale rotor and modeling of power take-off (PTO system for wave energy conversion by pneumatic damper or hydraulic rotary damper. In order to reduce the uncertainty due to scaling, the numerical analysis was performed at model scale and both the numerical and experimental results were then up-scaled to full scale for comparison. The comparison shows that the current numerical model can well predict the responses (motions, PTO forces, power production of the combined concepts for most of the cases. However, the linear hydrodynamic model is not adequate for the STC concept in extreme wave conditions with the torus fixed to the spar at the mean water level for which the wave slamming on the

  19. Description of occupant behaviour in building energy simulation: state-of-art and concepts for improvements

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Vinther; Corgnati, Stefano Paolo

    2011-01-01

    of basic assumptions that affect the results. Therefore, the calculated energy performance may differ significantly from the real energy consumption. One of the key reasons is the current inability to properly model occupant behaviour and to quantify the associated uncertainties in building performance...... predictions. By consequence, a better description of parameters related to occupant behaviour is highly required. In this paper, the state of art in occupant behaviour modelling within energy simulation tools is analysed and some concepts related to possible improvements of simulation tools are proposed...

  20. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond L

    1993-01-01

    This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, r

  1. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  2. Integral energy concepts for office and residential buildings; Integrale Energiekonzepte fuer Buero- und Wohngebaeude

    Energy Technology Data Exchange (ETDEWEB)

    Velten, W.

    1998-06-01

    It has been confirmed by practical project experience that integral energy concepts are an excellent basis for the construction of energy-efficient buildings. In the extreme case buildings can even be self-sufficient in their energy supply. Uniting the responsibility for the overall energy and technology concept in the hands of a single contractor can help reduce frictional losses between those involved in the planning as well costs. A good example of this is the use of a simulation calculation for the prescribed demonstration of proper heat insulation. The presented projects show that it is possible to construct ecologically answerable buildings at attractively low costs. The presented concepts appear particularly convincing from the viewpoint of long-term maintenance of value and user-specific advantages such as agreeable working conditions. [Deutsch] Die konkreten Projekterfahrungen bestaetigen, dass durch integrale Energiekonzepte sowohl im Verwaltungs- als auch im Wohnungsbau hervorragende Voraussetzungen fuer energiesparende Gebaeude geschaffen werden koennen. Im Extremfall kann sogar eine autarke Energieversorgung erreicht werden. Durch Zusammenfassung der Gesamtverantwortung fuer das Energie- und Technikkonzept in einer Hand koennen Reibungsverluste zwischen den Planungsbeteiligten reduziert und Kosten gesenkt werden. Ein Beispiel hierfuer ist die Verbindung des vorgeschriebenen Waermeschutznachweises mit einer fuer alle Beteiligten wesentlich aussagekraeftigeren Simulationsrechnung. Die vorgestellten Projekte zeigen, dass oekologisch sinnvolle Gebaeude auch zu oekonomisch attraktiven Kosten erstellt werden koennen, wobei insbesondere der Aspekt des langfristigen Werterhalts und die nutzerspezifischen Vorteile, z.B. durch angenehmere Arbeitsbedingungen, fuer die vorgestellten Konzepte spricht. (orig.)

  3. Dμ-A new concept in industrial low-energy electron dosimetry

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Miller, Arne; Sharpe, Peter; Laurell, Bengt; Weiss, Doug; Pageau, Gary

    2010-01-01

    Irradiation with low-energy electrons (100-300 keV) results in dose gradients across the thickness of the dosimeters that are typically used for dose measurement at these energies. This leads to different doses being measured with different thickness dosimeters irradiated at the same electron beam, resulting in difficulties in providing traceable dose measurements using reference dosimeters. In order to overcome these problems a new concept is introduced of correcting all measured doses to the average dose in the first micrometer-D μ . We have applied this concept to dose measurements with dosimeters of different thickness at two electron accelerators operating over a range of energies. The uncertainties of the dose measurements were evaluated, and it was shown that the dose in terms of D μ was the same at each energy for all dosimeters within the measurement uncertainty. Using the concept of D μ it is therefore possible to calibrate and measure doses from low-energy electron irradiations with measurement traceability to national standards.

  4. Barriers and opportunities in realising sustainable energy concepts--an analysis of two Swiss case studies

    International Nuclear Information System (INIS)

    Pohl, Christian; Gisler, Priska

    2003-01-01

    What assists and what hinders sustainable energy use in being put into effect? Two case studies of sustainable energy concepts--the Zurich Solarstromboerse, where electricity can be purchased that is produced by solar panels, and the Swiss CO 2 -law, a consensus oriented implementation of the Kyoto-protocol--were analysed in order to investigate this question. In both case studies the unfolding of the sustainable energy concepts is reconstructed as a process starting with an abstract idea moving to a concrete realisation. This process passes through a series of different social worlds and is, in turn, affected by them. These social worlds are e.g. those of the concerned scientists, the professional investors, energy suppliers or governmental agencies. The case studies reveal three neuralgic challenges that have to be met when a concept advances from idea to realisation through the social worlds: Firstly, the translation between social worlds changes the content of the idea. Secondly, the way each social world looks at things (socially) constructs best solutions to problems and hides others. Thirdly, the actual dynamics of the social world within which it is finally implemented must be adopted by the idea. In order to integrate these neuralgic points, scientists as well as other inventors have to retain responsibility for their sustainable energy ideas and are requested to follow them through the social worlds in order to critically survey and eventually influence their 'content in flux'

  5. Student ability to apply the concepts of work and energy to extended systems

    Science.gov (United States)

    Lindsey, Beth A.; Heron, Paula R. L.; Shaffer, Peter S.

    2009-11-01

    We report results from an investigation of student ability to apply the concepts of work and energy to situations in which the internal structure of a system cannot be ignored, that is, the system cannot be treated as a particle. Students in introductory calculus-based physics courses were asked written and online questions after relevant instruction by lectures, textbook, and laboratory. Several difficulties were identified. Some related to student ability to calculate the work done on a system. Failure to associate work with the change in energy of a system was also widespread. The results have implications for instruction that aims for a rigorous treatment of energy concepts that is consistent with the first law of thermodynamics. The findings are guiding the development of two tutorials to supplement instruction.

  6. Simple vertex correction improves GW band energies of bulk and two-dimensional crystals

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt; Patrick, Christopher E.; Thygesen, Kristian Sommer

    2017-01-01

    The GW self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situ......The GW self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy...

  7. Institutional options for rural energy access: Exploring the concept of the multifunctional platform in West Africa

    International Nuclear Information System (INIS)

    Nygaard, Ivan

    2010-01-01

    The concept of the multifunctional platform for rural energy access has increasingly been supported by donors in five West African countries since 1994. While it is often referred to as a highly successful concept, recent reviews and interviews with local stakeholders in Mali and Burkina Faso indicate that the high aspirations to be found in project descriptions and early evaluations are only partly reflected in activities on the ground. This paper illustrates how the multipurpose aspects of the platform have made the concept a nexus of potential achievements that are highly valued in the dominant discourse of development, and how including concerns, such as poverty alleviation, gender equity, local democracy, decentralisation and the environment, have attracted donors outside the energy sector. The paper thus argues that, while the integration of multiple technical functions, preconceived organisational set-ups and local fuel production have in fact had limited or even adverse effects on the outcome of the multifunctional platform programme, these virtues have proved essential in presenting the concept at the policy level. This analysis of the dilemma between mobilizing funding and implementing practical programmes provides an argument for building development aid on existing structures instead of inventing new complicated concepts and approaches.

  8. Energy Band Structure Studies Of Zinc-Blende GaAs and InAs ...

    African Journals Online (AJOL)

    A self-consistent calculation of the structural and electronic properties of zinc blende GaAs and InAs has been carried out. The calculations were done using the full potential-linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). The exchange-correlation energy used is the ...

  9. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  10. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Pfafferott, Jens; Sesana, Marta Maria

    2013-01-01

    Highlights: • Impact of five cooling technologies are simulated in six European climate zones with Trnsys 17. • The ventilation strategies reduce the cooling energy need even in South Europe climate. • Constant ventilation controller can lead to a poor cooling performance. • Comparing radiant strategies with air conditioning scenario, the energy saving is predicted to within 5–35%. - Abstract: Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption

  11. Concept of energy policy toward the 21st century; 21 seiki wo mezasu energy seisaku no yomikata

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, T. [The Institute of Energy Economics, Tokyo (Japan)

    1994-10-01

    The present report mainly explained the new concept of `long-term energy supply and demand prospects` for Japan`s energy policy. The most important point for the energy planning is the stable growth of economy. Having the trade problem, Japan needs a high growth rate of economy. In the latest revision, it is estimated to be annually 3% on average. In the global environment problem, Japan is to fix the CO2 emission per populational person at its level of 1990. The elastic modules of energy consumption came to be controlled to 0.3 with an excessive expectance of energy saving to satisfy the contradictory premise. As important political measures, the nuclear energy is most highly expected next to the energy saving. In Japan, its share will be 50% at the highest. As a conclusion, oil, natural gas and coal will be important energy resources as before. The environment tax and carbon tax are conceptually to control the consumption by heightening the oil price. The easing of regulation aims at lowering it to its worldwide level, which yields a contradictory debate.

  12. Composition-tuned band gap energy and refractive index in GaS{sub x}Se{sub 1−x} layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836, Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148, Baku (Azerbaijan)

    2017-04-01

    Transmission and reflection measurements on GaS{sub x}Se{sub 1−x} mixed crystals (0 ≤ x ≤ 1) were carried out in the 400–1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaS{sub x}Se{sub 1−x} mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. - Highlights: • Transmission and reflection experiments were performed on GaS{sub x}Se{sub 1−x} mixed crystals. • Derivative spectra of transmittance and reflectance were used for analyses. • Compositional dependence of band gap energy and refractive index were reported.

  13. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Østergaard, Dorte Skaarup; Yang, Xiaochen

    2017-01-01

    renewable energy systems. This study compares three alternative concepts for DH temperature level: Low temperature (55/25 °C), Ultra-low temperature with electric boosting (45/25 °C), and Ultra-low temperature with heat pump boosting (35/20 °C) taking into account the grid losses, production efficiencies......District heating (DH) systems are important components in an energy efficient heat supply. With increasing amounts of renewable energy, the foundation for DH is changing and the approach to its planning will have to change. Reduced temperatures of DH are proposed as a solution to adapt it to future...... and building requirements. The scenarios are modelled and analysed in the analysis tool EnergyPLAN and compared on primary energy supply and socioeconomic costs. The results show that the low temperature solution (55/25°C) has the lowest costs, reducing the total costs by about 100 M€/year in 2050....

  14. Concepts, tools/methods, and practices of water-energy-food NEXUS

    Science.gov (United States)

    Endo, A.; Tsurita, I.; Orencio, P. M.; Taniguchi, M.

    2014-12-01

    The needs to consider the NEXUS on food and water were emphasized in international dialogues and publications around the end of the 20th century. In fact, in 1983, the United Nations University already launched a Food-Energy Nexus Programme to fill the gaps between the issues of food and energy. The term "NEXUS" to link water, food, and trade was also used in the World Bank during 1990s. The idea of NEXUS is likely to have further developed under the discussion of "virtual water" and "water footprints". With experiencing several international discussions such as Kyoto World Water Forum 2003, scholars and practitioners around the globe acknowledged the need to include energy for the pillars of NEXUS. Finally, the importance of three NEXUS pillars, "water, energy, and food" was officially announced in the BONN 2011 NEXUS Conference, which is a turning point of NEXUS idea in the international community , in order to contribute to the United Nations Conference on Sustainable Development (Rio+20) in 2012 that highlighted the concept of "green economy". The concept of NEXUS is becoming a requisite to achieve sustainable development due to the global concerns embedded in society, economy, and environment. The concept stresses to promote the cooperation with the sectors such as water, energy, food, and climate change since these complex global issues are dependent and inter-connected, which can no longer be solved by the sectorial approaches. The NEXUS practices are currently shared among different stakeholders through various modes including literatures, conferences, workshops, and research projects. However, since the NEXUS practices are not led by a particular organization, its concept, theory, policy, tools, methods, and applications are diverse and incoherent. In terms of tools/methods, the potential of integrated modeling approach is introduced to avoid pressures and to promote interactions among water, energy and food. This paper explores the concepts, tools

  15. Exchange interaction in the heavy rare-earth metals calculated from energy bands

    International Nuclear Information System (INIS)

    Lindgard, P.A.; Liu, S.H.

    1973-01-01

    The exchange interaction in the ordered phases was calculated and found to be significantly influenced by the magnetic perturbation of the conduction electron states. The exchange interaction is intrinsically temperature dependent and is anisotropic. The effect explains how it is possible to have a spiral phase of Tb, although spin wave measurements show no maximum in J/sub q/ for q not equal to 0. The energy difference between the ferromagnetic and spiral phases is of correct order of magnitude to be counterbalanced by the magnetoelastic energy. The wave vector dependent matrix element is found to be similar for Gd, Tb, Dy, and Er with a narrow central conduction electron contribution and a flat region. (U.S.)

  16. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...excellent agreement with experimental findings. The energy filtering has been applied to single-electron transport and clear Coulomb staircases and... Coulomb oscillations have been demonstrated at room temperature. A new architecture of energy-filtered cold electron transistors has been designed and

  17. Concepts for dynamic modelling of energy-related flows in manufacturing

    International Nuclear Information System (INIS)

    Wright, A.J.; Oates, M.R.; Greenough, R.

    2013-01-01

    Highlights: ► Modelling of the thermal flows in factories and processes is usually separate. ► We propose a set of key features for an integrated thermal model. ► Such models can be used to improve the efficiency of manufacturing processes. - Abstract: Industry uses around one third of the world’s energy, and accounts for about 40% of global carbon dioxide emissions. There is increasing economic and social pressure to improve efficiency and create closed-loop industrial systems, in which energy efficiency plays a key role. This paper describes some of the key concepts involved in modelling the energy flows in manufacturing, both for the building services and the industrial processes. Detailed dynamic energy simulation of buildings is well established and routinely used, working on a time series basis – but current tools are inadequate to model the energy flows of many industrial processes. There are also well-established models of manufacturing flows, used to optimise production efficiency, but typically not modelling energy, and usually representing production and material flows as event-driven processes. The THERM project has developed new software tools to model energy-related and other utility flows in manufacturing, incorporating these into existing thermal models of factory buildings. This makes it possible to map out the whole energy system, and hence to test efficiency measures, to understand the effect of processes on building energy use, to investigate recycling of heat or cooling into other processes or building conditioning, and so on. The paper describes some of the key concepts and modelling approaches involved in developing these models, and gives examples of some real processes modelled in factories. It concludes that such models are entirely feasible and potentially very useful, although to develop a tool which comprehensively models both energy and manufacturing flows would be a major undertaking

  18. Concept and properties of an infrared hybrid single-beam spectrum and its application to eliminate solvent bands and other background interferences.

    Science.gov (United States)

    Chen, Yujing; Wang, Hai-Shui; Morisawa, Yusuke; Ozaki, Yukihiro

    2014-02-01

    For infrared (IR) spectral measurements, if a quality single-beam background spectrum with desired intensity could be obtained, the contributions from solvent and other background components could be completely suppressed and their bands would not appear in a final transmittance/absorbance spectrum. In order to achieve this ideal but difficult goal, the concept of hybrid single-beam spectrum is introduced in this paper. The hybrid single-beam spectrum (φ h) is defined as a mixture of two single-beam spectra (φ b1 and φ b2) of the same sample but with different pathlengths (b1 and b2), namely, φ h = αφ b1+(1-α)φ b2, where α (0 ≤ α ≤ 1) is the component factor. The properties of the hybrid spectrum have been investigated. Under conditions of b2 > b1 ≥ 0.7 b2 and A max ≤ 0.60 (Amax is the maximum absorbance of b2 sample in the spectral range of interest), all the synthesized hybrid spectra are free from significant distortion regardless of the component factor. Therefore, the hybrid single-beam spectrum with desired intensity can be easily obtained simply by choosing an appropriate component factor. The proposed methodology has been demonstrated experimentally by the complete removal of the interference from the atmospheric water vapor and solvent. © 2013 Elsevier B.V. All rights reserved.

  19. Municipal energy concepts. A service task for electric utility companies; Kommunale Energiekonzepte. Eine Dienstleistungsaufgabe fuer Energieversorgungsuntemehmen

    Energy Technology Data Exchange (ETDEWEB)

    Just, W. [Stadtwerke Gelsenkirchen GmbH (Germany)

    1994-11-01

    The article explains to what extent suitable measures can be realized and supported in a municipality with municipal energy concepts or even climate protection concepts. The target is to attain with limited financial means the most favourable economic and ecological effects in the municipality or in the region. Many electric utilities have in the last years forced the realization of energy conservation measures and have become energy service companies. With their expert knowledge they are ideal partners for politics, public adminstration and citizens. They have the best qualificatons for the development and realization of municipal concepts. In many cases it shows that with detailed studies the target can be quicker and more effectively attained as with extensive, time-consuming and expensive studies which are not particularly realization-oriented. The report is to give examples which might be helpful for the development of a concept. (orig./UA) [Deutsch] Der Beitrag erlaeutert, inwieweit umfangreiche kommunale Energiekonzepte oder sogar Klimaschutzkonzepte geeignete Massnahmen in der Kommune realisieren und foerdern koennen. Ziel sollte sein, mit begrenztem Mitteleinsatz die oekonomisch-oekologisch groessten Effekte in der Kommune bzw. in der Region zu erzielen. Viele Energie-Versorgungsunternehmen haben in den letzten Jahren die Realisierung von Energieparmassnahmen vorangetrieben und sich zu Energie-Dienstleistungsunternehmen entwickelt. Mit ihrer Sachkompetenz sind sie der ideale Partner fuer Politik, oeffentliche Verwaltung und Buerger/innen. Sie bringen die besten Voraussetzungen mit bei der Erarbeitung und Umsetzung von kommunalen Konzepten. Vielfach zeigt sich, dass Detailkonzepte schneller und wirkungsvoller zum Ziel fuehren, als umfachreiche, zeitaufwendige und teure Studien, die wenig umsetzungsorientiert sind. Die nachfolgenden Ausfuehrungen sind als Beispiele gedacht. Sie koennen Anregungen fuer die Erstellung eines Konzeptes vermitteln. (orig./UA)

  20. Sustainability of utility-scale solar energy – critical ecological concepts

    Science.gov (United States)

    Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.

    2017-01-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  1. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    Science.gov (United States)

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  2. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    Energy Technology Data Exchange (ETDEWEB)

    Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  3. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-01-01

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d max is at 2.15 cm for a 10 × 10 cm 2 field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  4. New HTGR plant concept with inherently safe features aimed at small energy users needs

    International Nuclear Information System (INIS)

    McDonald, C.F.; Silady, F.S.; Shenoy, A.S.

    1982-01-01

    A small high-temperature gas-cooled reactor (HTGR) concept is proposed which could provide the energy needs for certain sectors of industrialized nations and the developing countries. The key to the economic success for small reactors, which have potential benefits for special markets, lies in altering the traditional scaling laws. Toward this goal, a small HTGR concept embodying passive decay heat removal features is currently being evaluated. This paper emphasizes the safety-related aspects of a small HTGR. The proposed small reactor concept is new and still in the design development stage, and a significant effort must be expended to establish a design which is technically and economically feasible and will meet the increasingly demanding safety and licensing goals for reactors of the future

  5. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.

    2015-01-01

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature

  6. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  7. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  8. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  9. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos

    2017-07-01

    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  10. Full-service concept for energy efficient renovation of single-family houses

    DEFF Research Database (Denmark)

    Vanhoutteghem, Lies; Tommerup, Henrik M.; Svendsen, Svend

    2011-01-01

    the solutions. Such one-stop-shops in the form of full-service providers of energy efficient renovation of single-family house are missing in the Nordic countries, although this service is vital to open up the market. As part of the Nordic research project `SuccesFamilies´ with the purpose to change...... houses. A one-stop-shop in the form of a full-service concept could be seen as a possibility to make it easy for the homeowner to comply with possible future requirements to realize far-reaching energy savings in connection with extensive renovations, provided that the building sector offers...... includes an ideal full-service concept and technical renovation solutions targeted to different types of single-family houses....

  11. The European single market of energy faced with conventional supply safety concepts

    International Nuclear Information System (INIS)

    Belyi, A.

    2004-01-01

    By analysing the context of the creation of the Single Energy Market, this article tries to understand the logic behind the coexistence of two energy safety concepts: (1) the financial gains of international trading; (2) the protection against supply shortage risks using domestic self-sufficiency policies. Both concepts are based on an informative context conditioned by the two crises, which mainly impact the security perceptions of today: the oil crisis in the seventies and the Californian crisis in 2001. They are based on opposite factors: anti-market behaviour in the first case and excessive competition in the second case. The nature of liberalization, of the relation-ship with non-EU producing countries and the perception of the dangers are inherent to such an informative context. (author)

  12. Photoelectric effect experiment for understanding the concept of quantization of radiation energy

    Directory of Open Access Journals (Sweden)

    Yeimy Gerardine Berrios Saavedra

    2016-09-01

    Full Text Available This study forms part of research on the teaching of physics. The question that directed it was: How a proposed classroom, based on the photoelectric effect experiment helps pres-service teachers of physics of the Universidad Pedagógica Nacional to expand their understanding of the concept of quantization energy of radiation? The construction of the theoretical framework developed on the one hand, with scientific ideas about the quantization of energy, and moreover, with the educational proposals of teaching for understanding. This pedagogical approach was guided by the investigative gaze of the study methodology based on design, taking as main element the use of learning tools such as the task to Predict, Experiment and Explain (PEE. It was found that these tasks fomented the initial understandings of students about the concept, while they enriched and transformed progressively their models and scientific ideas, promoting aspects of scientific work in developing curiosity, imagination and motivation.

  13. A low-cost hybrid drivetrain concept based on compressed air energy storage

    International Nuclear Information System (INIS)

    Brown, T.L.; Atluri, V.P.; Schmiedeler, J.P.

    2014-01-01

    Highlights: • A new pneumatic hybrid concept is introduced. • A proof-of-concept prototype system is built and tested. • The experimental system has a round-trip efficiency of just under 10%. • A thermodynamics model is used to predict the performance of modified designs. • An efficiency of nearly 50% is possible with reasonable design changes. - Abstract: This paper introduces a new low-cost hybrid drivetrain concept based on compressed air energy storage. In contrast to most contemporary approaches to pneumatic hybridization, which require modification to the primary power plant, this concept is based on a stand-alone pneumatic system that could be readily integrated with existing vehicles. The pneumatic system consists of an air tank and a compressor–expander that is coupled to the rest of the drivetrain via an infinitely variable transmission. Rather than incorporating more expensive technologies such as variable valve timing or a variable compression ratio compressor, a fixed valve system consisting of a rotary valve and passive check valves is optimized to operate efficiently over a range of tank pressures. The feasibility of this approach is established by thermodynamic modeling and the construction of a proof-of-concept prototype, which is also used to fine tune model parameters. While the proof-of-concept system shows a round trip efficiency of just under 10%, modeling shows that a round trip efficiency of 26% is possible with a revised design. If waste heat from the engine is used to maintain an elevated tank temperature, efficiencies of nearly 50% may be possible, indicating that the concept could be effective for practical hybridization of passenger vehicles

  14. Prediction of energies of yrast band in some even-even nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. The researchers found that the values of γ obtained from energies (= γ e ) are nearly equal to the value of γ derived from transition rate (= γ b ) in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov. In the present study, the relatively light mass nuclei (Mo, Ru and Pd) have been taken. As far as γ is concerned, it is known that the Ru chains of nuclei is intermediate between the two having opposite trends for parameter γ, decreasing for Mo and increasing for Pd, and has an irregular behaviour in itself with the increase of neutron number

  15. Nuclear energy. An introduction to the concepts, systems, and applications of nuclear processes. 3. ed.

    International Nuclear Information System (INIS)

    Murray, R.L.

    1988-01-01

    An overview of nuclear energy and its uses is given, aimed at nuclear engineers, plant designers and radiation physicists. The three parts deal with the basic concepts, nuclear systems (including particle accelerators, radiation detectors, breeder reactors and fusion reactors) and nuclear energy and man. This latter section includes chapters on the history of nuclear energy, effects of radiation, isotopes, reactor safety, nuclear propulsion, radiation protection, radioactive waste disposal, laws and regulations economics and nuclear explosions. The final chapter looks to the future of nuclear energy. Each of the 27 chapters has a brief summary and exercises at the end. The appendices give selected references, conversion factors and atomic and nuclear data. (U.K.)

  16. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  17. The economic concept of the elasticity and their incidence in the Colombian energy market

    International Nuclear Information System (INIS)

    Perez Bedoya, Edigson

    1996-01-01

    The topic that is presented denotes a singular importance mainly for those who have to planning and to project the energetic sector. The Colombian energy basket has been increased, from this perspective and now the development and the taking of decisions cannot manage in isolate form, the reason of the report, more than ever it incorporates the concept of economic elasticity. This is not more than the compass that allows decanting, if the variations of the prices in the energy basket will have (x) or (y) result in the final consumer. The elasticity finally measures the reactions that from the offer and demand of energy can be unchained by a certain stimulus politics in the energy market

  18. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)], E-mail: zhxpmark@hotmail.com; Yang Jiakuan; Wang Jinbo; Xiao Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries.

  19. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinping [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Yang, Jiakuan; Wang, Jinbo; Xiao, Bo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road Wuhan, Hubei 430074 (China)

    2009-03-15

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries. (author)

  20. Novel concept for producing energy integrating a solar collector with a man made mountain hollow

    International Nuclear Information System (INIS)

    Zhou Xinping; Yang Jiakuan; Wang Jinbo; Xiao Bo

    2009-01-01

    The concept of the solar chimney thermal power technology was proven with the successful operation of the Manzanares prototype built in the 1980s. However, all previous attempts at producing energy from a commercial solar chimney thermal power plant on a large scale have failed because of bad engineering and safety. A novel concept for producing energy by integrating a solar collector with a mountain hollow is presented and described. Solar energy is collected in the collector and heats the ground, which is used to store heat energy and heat the indoor air. Then, the hot air is forced by the pressure difference between it and the ambient air to move along the tilted segment and up the vertical segment of the 'chimney', driving the turbine generators to generate electricity. The mountain hollow, formed by excavation in a large-elevation mountain, can avoid the safety issues of erecting a gigantic concrete chimney, which is needed for commercial solar chimney thermal power plants. Furthermore, it can also save a great amount of construction materials for constructing a robust chimney structure and reduce the energy cost to a level less than that of a clean coal power plant, providing a good solution to the reclamation and utilization of undeveloped mountains, especially in mountainous countries

  1. Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2016-05-01

    Full Text Available This paper proposes a novel control topology which enables the setup of a low cost analog system leading to the implementation of a modular energy conversion system. The modular concept is based on hybrid renewable energy (solar and wind and uses high voltage inverters already available on the market. An important feature of the proposed topology is a permanently active current loop, which assures short circuit protection and simplifies the control loops compensation. The innovative analogue solution of the control structure is based on a dedicated integrated circuit (IC for power factor correction (PFC circuits, used in a new configuration, to assure an efficient inverter start-up. The energy conversion system (control structure and maximum power point tracking algorithm is simulated using a new macromodel-based concept, which reduces the usual computational burden of the simulator and achieves high processing speed. The proposed novel system is presented in this article from concept, through the design and implementation stages, is verified through simulation and is validated by experimental results.

  2. Inquiries about awareness and knowledge of children and pupils on the concept related with atomic energy

    International Nuclear Information System (INIS)

    Atobe, Kozo; Kobayashi, T.; Matukawa, Tokuo; Honda, Makoto; Awata, Takaaki; Fukuoka, Noboru; Okada, Moritami

    2001-01-01

    There is almost no chance to learn about the words (atomic energy), (radioactivity) and (radiation) in the middle and/or high school educations in Japan, because physics is one of the options in the high school curriculum, and 80-90% of students do not like to choose physics. This inquires aim to know the level of their knowledge on energy resources, atomic energy, radioactivity, radiation, and information sources on their related knowledge. Inquiries are made for the middle and high school students in Tokushima and Tsuruga. There are coal power plants in Tokushima, while atomic power plants in Tsuruga. Fossils energy gets the highest points in Tokushima, while Atomic energy gets the highest points in Tsuruga for a present-day energy source. Solar energy sources get the highest point as a promising 21st century energy source in both prefectures, especially for female students. Radioactivity reminds them of words atomic bomb, disease, injury, and harmful, those give very negative images. Radiation reminds them of words roentgen, radiation therapy, x-ray, and hospital use, those designate a sort of plus-image. More than 50 to 60% of them obtained their knowledge from mass media, particularly, television. In addition, less than a few % of them can give any scientific description about these words. As a whole, authors can say that the students have got a certain concept for these words from information of mass media. Meanwhile the school education has approximately no effect on the formation of their concept. Authors are giving some advises and recommendations for the school education and mass media in Japan. (Y. Tanaka)

  3. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    Science.gov (United States)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  4. Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems

    Science.gov (United States)

    Eltamaly, Ali M.; Mohamed, Mohamed A.; Al-Saud, M. S.; Alolah, Abdulrahman I.

    2017-10-01

    Optimal sizing of hybrid renewable energy systems (HRES) to satisfy load requirements with the highest reliability and lowest cost is a crucial step in building HRESs to supply electricity to remote areas. Applying smart grid concepts such as load management can reduce the size of HRES components and reduce the cost of generated energy considerably. In this article, sizing of HRES is carried out by dividing the load into high- and low-priority parts. The proposed system is formed by a photovoltaic array, wind turbines, batteries, fuel cells and a diesel generator as a back-up energy source. A smart particle swarm optimization (PSO) algorithm using MATLAB is introduced to determine the optimal size of the HRES. The simulation was carried out with and without division of the load to compare these concepts. HOMER software was also used to simulate the proposed system without dividing the loads to verify the results obtained from the proposed PSO algorithm. The results show that the percentage of division of the load is inversely proportional to the cost of the generated energy.

  5. The Integral Fast Reactor concept: Today's hope for tomorrow's electrical energy needs

    International Nuclear Information System (INIS)

    Dwight, C.C.; Phipps, R.D.

    1989-01-01

    Acid rain and the greenhouse effect are getting more attention as their impacts on the environment become evident around the world. Substantial evidence indicates that fossil fuel combustion for electrical energy production activities is a key cause of those problems. A change in electrical energy production policy is essential to a stable, healthy environment. That change is inevitable, it's just a matter of when and at what cost. Vision now, instead of reaction later, both in technological development and public perception, will help to limit the costs of change. The Integral Fast Reactor (IFR) is a visionary concept developed by Argonne National Laboratory that involves electrical energy production through fissioning of heavy metals by fast neutrons in a reactor cooled by liquid sodium. Physical characteristics of the coolant and fuel give the reactor impressive characteristics of inherent and passive safety. Spent fuel is pyrochemically reprocessed and returned to the reactor in the IFR's closed fuel cycle. Advantages in waste management are realized, and the reactor has the potential for breeding, i.e., producing as much or more fuel than it uses. This paper describes the IFR concept and shows how it is today's hope for tomorrow's electrical energy needs. 14 refs., 1 fig., 1 tab

  6. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  7. Cooling concept with energy storage for ICT; Koelconcept met energieopslag voor ICT

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wilt, P. [Compertius, Amsterdam (Netherlands)

    2009-12-15

    Renewable energy concepts with energy storage in the soil are not only about technique. To ensure successful implementation of energy storage in the soil for various branches cooperation needs to be sought with parties who know specific branches very well. In addition to the technical aspects, it is at least as important that the needs and working methods of a market segment are thoroughly known to ensure optimal linkage of source systems to the systems and operational processes of the client. [Dutch] Bij ontwikkelde duurzame energieconcepten met inzet van energieopslag in de bodem gaat het niet alleen om techniek, Om energieopslag in de bodem voor verschillende branches met succes in te zetten, is samenwerking nodig met partijen die een specifieke branche goed kennen. Naast de techniek is het minstens zo belangrijk ook de behoeftes en werkwijzen van een marktsegment door en door te kennen, om bronsystemen zo optimaal te koppelen aan de systemen en bedrijfsprocessen van de klant.

  8. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  9. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO

    Science.gov (United States)

    Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.

    2013-01-01

    The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.

  10. Feasibility study on application of new concept of environmental assessment to nuclear energy

    International Nuclear Information System (INIS)

    Lee, Young Eal; Lee, Kun Jai

    2000-01-01

    The existing environmental assessments of nuclear energy are focused on the two kinds of issues such as prevention of green house gas emission and radiological impact assessment. So, the comparative assessment of the other resources such as fossil fuels has been the main part and this result has been the side of nuclear power as the clean energy resource. However, now is when to develop the methodology that approaches to environmental assessment of energy in terms of the various environmental categories. Life Cycle Assessment (LCA) would be the effective environmental assessment tool, which is able to meet the necessity mentioned above. Also classification of the radiological impact and calculation of the environmental impact from the radioactive substances are indispensable as long as the nuclear energy is considered in the application of LCA for the utilization of energy in the industry. However, direct introduction of LCA to the nuclear energy is difficult more or less due to the absence of the methodology for the radiological impact assessment within the LCA framework. Therefore, this study suggests the new concept of environmental assessment. Also current status of development for the classification factor of radiological impact is introduced and investigates the feasibility of application of it to nuclear power generation system

  11. The Concept of EV’s Intelligent Integrated Station and Its Energy Flow

    Directory of Open Access Journals (Sweden)

    Da Xie

    2015-05-01

    Full Text Available The increasing number of electric vehicles (EVs connected to existing distribution networks as time-variant loads cause significant distortions in line current and voltage. A novel EV’s intelligent integrated station (IIS making full use of retired batteries is introduced in this paper to offer a potential solution for accommodating the charging demand of EVs. It proposes the concept of generalized energy in IIS, based on the energy/power flow between IIS and EVs, and between IIS and the power grid, to systematically evaluate the energy capacity of IIS. In order to derive a unique and satisfactory operation mode, information from both the grid (in terms of load level and IIS (in terms of its energy capacity and EVs battery charging/exchanging requests is merged. Then, based on the generalized energy of different systems, a novel charging/discharging control strategy is presented and whereby the operating status of the grid and energy capacity of IIS are monitored to make reasonable operation plans for IIS. Simulation results suggest that the proposed IIS offers peak load shifting when EV battery charging/exchanging requests are satisfied compared to existing charging stations.

  12. New Concept for Assessment of Tidal Current Energy in Jiangsu Coast, China

    Directory of Open Access Journals (Sweden)

    Ji-Sheng Zhang

    2013-01-01

    Full Text Available Tidal current energy has attracted more and more attentions of coastal engineers in recent years, mainly due to its advantages of low environmental impact, long-term predictability, and large energy potential. In this study, a two-dimensional hydrodynamic model is applied to predict the distribution of mean density of tidal current energy and to determine a suitable site for energy exploitation in Jiangsu Coast. The simulation results including water elevation and tidal current (speed and direction were validated with measured data, showing a reasonable agreement. Then, the model was used to evaluate the distribution of mean density of tidal current energy during springtide and neap tide in Jiangsu Coast. Considering the discontinuous performance of tidal current turbine, a new concept for assessing tidal current energy is introduced with three parameters: total operating time, dispersion of operating time, and mean operating time of tidal current turbine. The operating efficiency of tidal current turbine at three locations around radial submarine sand ridges was taken as examples for comparison, determining suitable sites for development of tidal current farm.

  13. Research based ecological concepts of energy management for the Baltic States in transition

    International Nuclear Information System (INIS)

    Kapala, J.; Michna, J.; Ekmanis, Yu.; Zeltinsh, N.

    1998-01-01

    The methodological concept outlined in the paper concerns ecological aspects of energy management and efficiency. Based on this concept, some common principles were elaborated that can be applied not only of the centralised planned economy but also to free market conditions. To improve these principles, co-ordination contacts have been established between representatives from Central and Eastern Europe - on one hand and those from USA, Great Britain and Germany - on the other, thus forming basis for further investigations. Wide expert knowledge has been accumulated due to exchange of information, which allows improving efficiency of investigation into management in the field of energetics and environmental control. Basing on the methodology of criteria analysis, adaption to changes in politics and economy in different countries as well as elucidation of environmental and social issues have become possible. (author)

  14. Solar High-energy Astrophysical Plasmas Explorer (SHAPE). Volume 1: Proposed concept, statement of work and cost plan

    Science.gov (United States)

    Dennis, Brian R.; Martin, Franklin D.; Prince, T.; Lin, R.; Bruner, M.; Culhane, L.; Ramaty, R.; Doschek, G.; Emslie, G.; Lingenfelter, R.

    1986-01-01

    The concept of the Solar High-Energy Astrophysical Plasmas Explorer (SHAPE) is studied. The primary goal is to understand the impulsive release of energy, efficient acceleration of particles to high energies, and rapid transport of energy. Solar flare studies are the centerpieces of the investigation because in flares these high energy processes can be studied in unmatched detail at most wavelenth regions of the electromagnetic spectrum as well as in energetic charged particles and neutrons.

  15. Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Ioan Aschilean

    2018-05-01

    Full Text Available Bio-organic greenhouses that are based on alternative resources for producing heat and electricity stand out as an efficient option for the sustainable development of agriculture, thus ensuring good growth and development of plants in all seasons, especially during the cold season. Greenhouses can be used with maximum efficiency in various agricultural lands, providing ideal conditions of temperature and humidity for short-term plant growing, thereby increasing the local production of fruit and vegetables. This paper presents the development of a durable greenhouse concept that is based on complex energy system integrating fuel cells and solar panels. Approaching this innovative concept encountered a major problem in terms of local implementation of this type of greenhouses because of the difficulty in providing electrical and thermal energy from conventional sources to ensure an optimal climate for plant growing. The project result consists in the design and implementation of a sustainable greenhouse energy system that is based on fuel cells and solar panels.

  16. Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Collar

    2017-07-01

    Full Text Available We investigate the change of the valence band energy of GaAs1-xBix (0band energy per addition of 1 % Bi is determined for strained and unstrained thin films using a linear approximation applicable to the dilute regime. Spectroscopic ellipsometry (SE was used as a complementary technique to determine the change in GaAsBi bandgap resulting from Bi addition. Analysis of SE and XPS data together supports the conclusion that ∼75% of the reduction in the bandgap is in the valence band for a compressively strained, dilute GaAsBi thin film at room temperature.

  17. Energy policy in Baden-Wuerttemberg. Short version of the energy concept for 2020; Energiepolitik in Baden-Wuerttemberg. Kurzfassung des Energiekonzepts 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    The realisation of an energy supply that is safe, economically efficient and environmentally friendly presupposes committed, non-judgemental cooperation between the economy, the public at large and the political realm. For this purpose the state government of Baden Wuerttemberg has summarised the key points of what constitutes a sustainable energy policy in its ''Energy concept for Baden-Wuerttemberg until 2020'', which was passed by the state cabinet on 27 July 2009. The present brochure is a short version of this energy concept. Its purpose is to inform the public at large about the principles of Baden-Wuerttemberg's energy policy.

  18. Illustrating the use of concepts from the discipline of policy studies in energy research : An explorative literature review

    NARCIS (Netherlands)

    Hoppe, T.; Coenen, Frans; van den Berg, Maya

    2016-01-01

    With the increasing challenges the energy sector faces, energy policy strategies and instruments are becoming ever more relevant. The discipline of policy studies might offer relevant concepts to enrich multidisciplinary energy research. The main research question of this article is: How can

  19. Illustrating the use of concepts from the discipline of policy studies in energy research: An explorative literature review

    NARCIS (Netherlands)

    Hoppe, Thomas; Coenen, Franciscus H.J.M.; van den Berg, Maya Marieke

    2016-01-01

    With the increasing challenges the energy sector faces, energy policy strategies and instruments are becoming ever more relevant. The discipline of policy studies might offer relevant concepts to enrich multidisciplinary energy research. The main research question of this article is: How can policy

  20. Forbidden energy band gap in diluted a-Ge{sub 1-x}Si{sub x}:N films

    Energy Technology Data Exchange (ETDEWEB)

    Guarneros, C.; Rebollo-Plata, B. [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Lozada-Morales, R., E-mail: rlozada@fcfm.buap.mx [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Espinosa-Rosales, J.E. [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Portillo-Moreno, J. [Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Zelaya-Angel, O. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, PO Box 14-740, Mexico 07360 D.F. (Mexico)

    2012-06-01

    By means of electron gun evaporation Ge{sub 1-x}Si{sub x}:N thin films, in the entire range 0 {<=} x {<=} 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 Multiplication-Sign 10{sup -4} Pa, then a pressure of 2.7 Multiplication-Sign 10{sup -2} Pa of high purity N{sub 2} was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge{sub 1-x}Si{sub x}:N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E{sub g}) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E{sub g}) as a function of x in the entire range 0 {<=} x {<=} 1 shows two well defined regions: 0 {<=} x {<=} 0.67 and 0.67 {<=} x {<=} 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E{sub g}(x). In this case E{sub g}(x) versus x is different to the variation of E{sub g} in a-Ge{sub 1-x}Si{sub x} and a-Ge{sub 1-x}Si{sub x}:H. This fact can be related to the formation of Ge{sub 3}N{sub 4} and GeSi{sub 2}N{sub 4} when x {<=} 0.67, and to the formation of Si{sub 3}N{sub 4} and GeSi{sub 2}N{sub 4} for 0.67 {<=} x. - Highlights: Black-Right-Pointing-Pointer Nitrogen doped amorphous Ge{sub 1-x}Si{sub x} thin films are grown by electron gun technique. Black-Right-Pointing-Pointer Nitrogen atoms on E{sub g} of the a-Ge{sub 1-x}Si{sub x} films in the 0 Pound-Sign x Pound-Sign 1 range are analyzed. Black-Right-Pointing-Pointer Variation in 0 Pound-Sign x Pound-Sign 1 range shows a warped change of E{sub g} in 1.0 - 3.6 eV range. Black-Right-Pointing-Pointer The change in E{sub g}(x) behavior when x {approx} 0.67 was associated with Ge{sub 2}SiN{sub 4

  1. Least-cost planning as a concept of control. New economic strategies for the rational use of electric energy

    International Nuclear Information System (INIS)

    Leprich, U.

    1994-01-01

    In the face of imminent climate change, reform concepts that are based on energy conservation are bound to prevail over other approaches. One such concept is that of Least Cost Planning (LCP). LCP aims at an unbiased choice among the options on the supply side (power plants, networks) and those on the demand side (energy conservation and substitution programmes). While today LCP is often discussed in a rather abbreviated sense as a concept for corporate strategies of power supply companies, the present paper develops it as a new concept for public control of power supply companies. An example of US American practice is analysed to determine to what extent the concept of LCP is compatible, in principle and practice, with a control system over power supply companies. This is used to develop elements for the reform of the German control system which would provide the economic dimension to the power supply companies' task of efficient energy utilisation. (orig.) [de

  2. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  3. Constructing qualitative energy concepts in a formal educational context with 6 – 7 year old students

    Directory of Open Access Journals (Sweden)

    DIMITRIS KOLIOPOULOS

    2011-07-01

    Full Text Available The research presented in this paper is a preliminary empirical study of primary school children’s ability to construct a qualitative explanatory model for the ‘energy’ concept. The research results are particularly encouraging since it seems that 6-7 year old children are able, following a relevant teaching intervention, to utilize a linear causal reasoning and construct a preliminary energy model. Through the use of this model, the children are able to describe natural phenomena, such as the lighting of a lamp or the movement of a small motor using a battery or a photovoltaic cell.

  4. Program for Plasma-Based Concepts for Future High Energy Accelerators

    International Nuclear Information System (INIS)

    Katsouleas, Thomas C.; Muggli, Patric

    2003-01-01

    OAK B204 Program for Plasma-Based Concepts for Future High Energy Accelerators. The progress made under this program in the period since November 15, 2002 is reflected in this report. The main activities for this period were to conduct the first run of the E-164 high-gradient wakefield experiment at SLAC, to prepare for run 2 and to continue our collaborative effort with CERN to model electron cloud interactions in circular accelerators. Each of these is described. Also attached to this report are papers that were prepared or appeared during this period

  5. Exciton spectra and energy band structure of Cu{sub 2}ZnSiSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guc, M., E-mail: gmax@phys.asm.md [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Levcenko, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Dermenji, L. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Gurieva, G. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Schorr, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Syrbu, N.N. [Technical University of Moldova, Chisinau MD-2004, Republic of Moldova (Moldova, Republic of); Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of)

    2014-02-25

    Highlights: • Reflection spectra of Cu{sub 2}ZnSiSe{sub 4} were studied for E ⊥ c and E || c light polarizations. • Four excitonic series are revealed in the reflection spectra at 10 K. • Model of exciton dispersion and the presence of a dead-layer. • Exciton Rydberg energies and free carriers effective masses were calculated. • Reflectivity for E ⊥ c and E || c were analyzed in the region 3–6 eV at 300 K. -- Abstract: Exciton spectra are studied in Cu{sub 2}ZnSiSe{sub 4} single crystals at 10 and 300 K by means of reflection spectroscopy. The exciton parameters, dielectric constant and free carriers effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The structure found in the reflectivity was analyzed and related to the theoretical electronic band structure of close related Cu{sub 2}ZnSiS{sub 4} semiconductor.

  6. ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2016-10-01

    Full Text Available Nanostructured ZnO thin films with high transparency have been grown on glass substrate by atomic layer deposition at various temperatures ranging from 100 °C to 300 °C. Efforts have been made to observe the effect of substrate temperature on the thickness of the deposited thin films and its consequences on the energy band gap. A remarkably high growth rate of 0.56 nm per cycle at a substrate temperature of 200 °C for ZnO thin films have been achieved. This is the maximum growth rate for ALD deposited ZnO thin films ever reported so far to the best of our knowledge. The studies of field emission scanning electron microscopy and X-ray diffractometry patterns confirm the deposition of uniform and high quality nanosturtured ZnO thin films which have a polycrystalline nature with preferential orientation along (100 plane. The thickness of the films deposited at different substrate temperatures was measured by ellipsometry and surface profiling system while the UV–visible and photoluminescence spectroscopy studies have been used to evaluate the optical properties of the respective thin films. It has been observed that the thickness of the thin film depends on the substrate temperatures which ultimately affect the optical and structural parameters of the thin films.

  7. International Conference on Future Energy Concepts, 3rd, London, England, January 27-30, 1981, Proceedings

    Science.gov (United States)

    Electric cars are considered along with questions regarding solar energy as alternative or complementary energy concept, aspects of high temperature heat storage, wind turbine response and system integration, the development of the coal fired combined cycle and gas turbine cycle for power generation, the performance characteristics of a variable speed heat pump, and the economics of satellite solar power system operation. Attention is also given to the generation and transmission of electricity from wave energy schemes, the effect of building construction on the value of solar radiation to reduce heat needs, the performance optimization of photovoltaic converters using a microprocessor, power transmission from offshore wind generation systems, and the properties of the polyol fuel cell. Other subjects explored are related to the performance of a Wells turbine for use in a wave energy system, the combustion of low-grade fuels in a fluidized bed, coal gasification for combined cycle power generation, the cost of power recovery from waste heat, and energy from biomass.

  8. Healing, Mental Energy in the Physics Classroom: Energy Conceptions and Trust in Complementary and Alternative Medicine in Grade 10-12 Students

    Science.gov (United States)

    Svedholm, Annika M.; Lindeman, Marjaana

    2013-03-01

    Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused conceptions (OCC) were associated with trust in complementary and alternative medicine (CAM), and independent of scientifically valid conceptions. Substance-based energy conceptions followed the correlational pattern of OCC, rather than scientific conceptions. OCC and CAM decreased both during the regular school physics curriculum and after a lesson targeted at the ontological confusions. OCC and CAM were slightly less common among students with high actively open-minded thinking, low trust in intuition and high need for cognition. The findings are discussed in relation to the goals of scientific education.

  9. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs

  10. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  11. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  12. Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

    NARCIS (Netherlands)

    Le Thi Ngoc, Loan; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin

    2015-01-01

    Two distinct single-photon plasmon-modulated photoluminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X-and

  13. Structure and optical band-gap energies of Ba0.5Sr0.5TiO3 thin films fabricated by RF magnetron plasma sputtering

    International Nuclear Information System (INIS)

    Xu, Zhimou; Suzuki, Masato; Yokoyama, Shin

    2005-01-01

    The structure and optical band-gap energies of Ba 0.5 Sr 0.5 TiO 3 (BST0.5) thin films prepared on SiO 2 /Si and fused quartz substrates by RF magnetron plasma sputtering were studied in terms of deposition temperature and film thickness. Highly (100)-oriented BST0.5 thin films were successfully sputtered on a Si substrate with an approximately 1.0-μm-thick SiO 2 layer at a deposition temperature of above 450degC. The optical transmittance of BST0.5 thin films weakly depended on the magnitude of X-ray diffraction (XRD) peak intensity. This is very helpful for monolithic integration of BST0.5 films for electrooptical functions directly onto a SiO 2 /Si substrate. The band-gap energies showed a strong dependence on the deposition temperature and film thickness. It was mainly related to the quantum size effect and the influence of the crystallinity of thin films, such as grain boundaries, grain size, oriented growth, and the existence of an amorphous phase. The band-gap energy values, which were much larger than those of single crystals, decreased with the increase in the deposition temperature and the thickness of BST0.5 thin films. The band-gap energy of 311-nm-thick amorphous BST0.5 thin film was about 4.45 eV and that of (100)-oriented BST0.5 thin film with a thickness of 447 nm was about 3.89 eV. It is believed that the dependence of the band-gap energies of the thin films on the crystallinity for various values of deposition temperature and film thickness means that there could be application in integrated optical devices. (author)

  14. Study of Unwanted Emissions in the CENELEC-A Band Generated by Distributed Energy Resources and Their Influence over Narrow Band Power Line Communications

    Directory of Open Access Journals (Sweden)

    Noelia Uribe-Pérez

    2016-11-01

    Full Text Available Distributed Energy Resources might have a severe influence on Power Line Communications, as they can generate interfering signals and high frequency emissions or supraharmonics that may cause loss of metering and control data. In this paper, the influence of various energy resources on Narrowband Power Line Communications is described and analyzed through several test measurements performed in a real microgrid. Accordingly, the paper describes the effects on smart metering communications through the Medium Access Control (MAC layer analysis. Results show that the switching frequency of inverters and the presence of battery chargers are remarkable sources of disturbance in low voltage distribution networks. In this sense, the results presented can contribute to efforts towards standardization and normative of emissions at higher frequencies higher, such as CENELEC EN 50160 and IEC/TS 62749.

  15. National Roadmaps for promotion of very low-energy house concepts

    Energy Technology Data Exchange (ETDEWEB)

    Buvik, Karin

    2012-07-01

    This report is meant to contribute to the preparation of National Energy Efficiency Action Plans (NEEAPs), which are tools supporting the implementation of energy efficiency improvement policies. The NEEAPs are considered one of the cornerstones of the Energy End-use Efficiency and Energy Services Directive. Previous publications from the NorthPass project report from studies of existing concepts and building standards in the participating countries, and analyses of main challenges in aiming to increase the market share of very low-energy houses. In this report a short overview of the current situation is given, and measures are proposed to support the implementation of the nearly Zero-Energy Building level, as described in the recast of the Energy Performance of Building Directive. Necessary steps towards a successful implementation will vary within the participating countries; involving technological, financial and policy implications in various degrees. The eight North European countries, participating in the NorthPass project, have similarities and differences. The four Nordic countries have several similarities regarding market penetration of very low-energy houses, as well as activities implemented by the authorities. Poland and the Baltic States have similarities in terms of market situation which is different from the Nordic countries. In the Nordic countries, the path towards the EU 2020 targets has, to a large extent, been chosen, focusing on step by step tightening of building codes, financial incentives and training of actors in the building sector. A discussion is going on about how to affect changes in customers' preferences, which would lead to a growing demand for very low-energy residential buildings. The situation in Poland and the Baltic countries is more problematic, as only few very low energy houses have been built so far. However, a growing interest in energy savings seems to arise, as the energy consumption is considerably high and the

  16. SECOND1. Security concept for DER (Distributed Energy Resources). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Secure communication is becoming increasingly more relevant in a power system where there is a high impact of distributed energy resources (DER). The purpose of this project has been to analyse and develop a proof of concept implementation for a security concept that can be used in a power system with a high degree of decentralized production and with many actors (BRP, DSO, TSO, utilities, retailers) in an unbundled market. One way to maintain flexibility in the communication system for the power grid is to assign access roles to specific operations and not just to a network or server. Security then becomes a matter of verification, namely that an applicant holds a role with privileges to perform the action applied for. The SECOND1 project has investigated various forms of role based access control (RBAC) as well as the underlying security mechanism identification and verification of the actor identity. The project analysed the needs for communication between energy operators and match these needs with a design for secure role based access control. (LN)

  17. Equivalent Energy Density concept: A preliminary reexamination of a technique for equating thermal loads

    International Nuclear Information System (INIS)

    Ryder, E.E.

    1992-08-01

    Historical and projected inventories of spent fuel from commercial light-water nuclear reactors exhibit diverse decay characteristics and ages. This report summarizes a preliminary reexamination of a method for determining equivalent thermal loads for the range of spent fuel expected at a potential underground repository. The method, known at the Equivalent Energy Density (EED) concept, bases its equivalence criteria on the assumption that a given waste will produce worst-case thermomechanical effects equal to worst-case thermomechanical effects produced by a baseline waste, provided that the thermal energy deposited in the host rock over a specified deposition period is the same for both waste descriptions. To test this assumption, temperature histories at representative locations within the host rock were calculated using layouts defined by the EED concept and four deposition periods (20, 50, 100, and 300 years). It was found that the peak temperatures at near-field locations were best matched by the shorter deposition periods of 20 and 50 years. However, due to the sensitivity of the near-field environment to short-term canister-to-canister interactions, caution,should be used when choosing a near-field deposition period. At the location chosen to represent the far-field, a 300-year deposition period provided reasonable correspondence of peak temperature responses for all waste descriptions examined

  18. Crash Test of an MD-500 Helicopter with a Deployable Energy Absorber Concept

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Kellas, Sotiris

    2010-01-01

    On December 2, 2009, a full scale crash test was successfully conducted of a MD-500 helicopter at the NASA Langley Research Center Landing and Impact Research Facility . The purpose of this test was to evaluate a novel composite honeycomb deployable energy absorbing (DEA) concept for attenuation of structural and crew loads during helicopter crashes under realistic crash conditions. The DEA concept is an alternative to external airbags, and absorbs impact energy through crushing. In the test, the helicopter impacted the concrete surface with 11.83 m/s (38.8 ft/s) horizontal, 7.80 m/s (25.6 ft/s) vertical and 0.15 m/s (0.5 ft/s) lateral velocities; corresponding to a resultant velocity of 14.2 m/s (46.5 ft/s). The airframe and skid gear were instrumented with accelerometers and strain gages to determine structural integrity and load attenuation, while the skin of the airframe was covered with targets for use by photogrammetry to record gross vehicle motion before, during, and after the impact. Along with the collection of airframe data, one Hybrid III 50th percentile anthropomorphic test device (ATD), two Hybrid II 50th percentile ATDs and a specialized human surrogate torso model (HSTM) occupant were seated in the airframe and instrumented for the collection of occupant loads. Resultant occupant data showed that by using the DEA, the loads on the Hybrid II and Hybrid III ATDs were in the Low Risk regime for the injury criteria, while structural data showed the airframe retained its structural integrity post crash. Preliminary results show that the DEA is a viable concept for the attenuation of impact loads.

  19. Golf-course and funnel energy landscapes: Protein folding concepts in martensites

    Science.gov (United States)

    Shankaraiah, N.

    2017-06-01

    We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.

  20. Concept and design of charged particle optics using energy Fourier plane collimation

    Science.gov (United States)

    Yang, Guojun; Wei, Tao; Zhang, Zhuo; He, Xiaozhong; Zhang, Xiaoding; Li, Yiding; Shi, Jinshui

    2014-09-01

    Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  1. Concept and design of charged particle optics using energy Fourier plane collimation

    Directory of Open Access Journals (Sweden)

    Guojun Yang

    2014-09-01

    Full Text Available Charged particle radiography has become a promising new approach in the field of transmission radiography because of the invention of the magnetic imaging lens. The using of the imaging lens makes it possible for thick objects to get significantly improved transmission radiography. Currently, the conventional charged particle radiography only uses the information of the flux attenuation and the angular scattering of the transmitted particles to determine the properties of the sample. However, the energy loss of the incident particles introduced by ionizations throughout the object limits the spatial resolution of the image because of the chromatic blur. In this paper a new concept of imaging lens that uses the information of the energy loss is proposed. With a specially designed imaging lens, the information of the energy loss could result in apparent contrast in the final image. This design procedure of the energy loss imaging lens is presented, and a preliminary design is verified by numerical simulations. Experimental demonstration is also expected on a cyclotron at the Institute of Fluid Physics, CAEP.

  2. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    Science.gov (United States)

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  3. Partially filled intermediate band of Cr-doped GaN films

    International Nuclear Information System (INIS)

    Sonoda, S.

    2012-01-01

    We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

  4. Lessons that non-scientists can teach us about the concept of energy: a human-centred approach

    Science.gov (United States)

    Leggett, Monica

    2003-03-01

    Energy is not only a core concept in physics but also a major issue in our post-Kyoto world. When using a constructivist approach to teaching, we need to be aware of students' preconceptions. A palette of alternative frameworks, which includes those used by adults within the community, can facilitate this. An exploration of energy issues with non-scientists within the community has generated some relevant insights. Participants' concepts of energy were multifaceted. Most had a strong personal component, but also social, technical and cosmic dimensions. Although many participants were uncomfortable with the terms `renewable' and `sustainable', they clearly articulated the social and technical requirements for a shift away from current fossil fuel dependency. However, the law of conservation of energy, a core belief of physicists, appeared to be totally absent from their concept of energy.

  5. Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The 'flexy-energy' concept

    International Nuclear Information System (INIS)

    Azoumah, Y.; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, P.

    2011-01-01

    Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original 'flexy-energy' concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage. - Research highlights: → Design and load management Optimization are big concerns for hybrid systems. → Hybrid solar PV/Diesel is economically viable for remote areas and environmental friendly. → 'Flexy-energy' concept is a flexible hybrid solar PV/diesel/biomass suitable for remote areas. → 'Flexy-energy' concept is a flexible hybrid solar PV/diesel/biomass suitable for remote areas.

  6. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  7. Excitation of the 4.3-μm bands of CO2 by low-energy electrons

    International Nuclear Information System (INIS)

    Bulos, R.R.; Phelps, A.V.

    1976-01-01

    Rate coefficients for the excitation of the 4.3-μm bands of CO 2 by low-energy electrons in CO 2 have been measured using a drift-tube technique. The CO 2 density [(1.5 to 7) x 10 17 molecules/cm 3 ] was chosen to maximize the radiation reaching the detector. Line-by-line transmission calculations were used to take into account the absorption of 4.3-μm radiation. A small fraction of the approximately 10 -8 W of the 4.3-μm radiation produced by the approximately 10 -7 -A electron current was incident on an InSb photovoltaic detector. The detector calibration and absorption calculations were checked by measuring the readily calculated excitation coefficients for vibrational excitation of N 2 containing a small concentration of CO 2 . For pure CO 2 the number of molecules capable of emitting 4.3-μm radiation produced per cm of electron drift and per CO 2 molecule varied from 10 -17 cm -2 at E/N = 6 x 10 -17 V cm 2 to 5.4 x 10 -16 cm -2 at E/N = 4 x 10 -16 V cm 2 . Here E is the electric field and N is total gas density. The excitation coefficients at lower E/N are much larger than estimated previously. A set of vibrational excitation cross sections is obtained for CO 2 which is consistent with the excitation coefficient data and with most of the published electron-beam data

  8. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Science.gov (United States)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  9. Energy distributions in a diesel engine using low heat rejection (LHR) concepts

    International Nuclear Information System (INIS)

    Li, Tingting; Caton, Jerald A.; Jacobs, Timothy J.

    2016-01-01

    Highlights: • Altering coolant temperature was employed to devise low heat rejection concept. • The energy distributions at different engine coolant temperatures were analyzed. • Raising coolant temperature yields improvements in fuel conversion efficiency. • The exhaust energy is highly sensitive to the variations in exhaust temperature. • Effects of coolant temperature on mechanical efficiency were examined. - Abstract: The energy balance analysis is recognized as a useful method for aiding the characterization of the performance and efficiency of internal combustion (IC) engines. Approximately one-third of the total fuel energy is converted to useful work in a conventional IC engine, whereas the major part of the energy input is rejected to the exhaust gas and the cooling system. The idea of a low heat rejection (LHR) engine (also called “adiabatic engine”) was extensively developed in the 1980s due to its potential in improving engine thermal efficiency via reducing the heat losses. In this study, the LHR operating condition is implemented by increasing the engine coolant temperature (ECT). Experimentally, the engine is overcooled to low ECTs and then increased to 100 °C in an effort to get trend-wise behavior without exceeding safe ECTs. The study then uses an engine simulation of the conventional multi-cylinder, four-stroke, 1.9 L diesel engine operating at 1500 rpm to examine the five cases having different ECTs. A comparison between experimental and simulation results show the effects of ECT on fuel conversion efficiency. The results demonstrate that increasing ECT yields slight improvements in net indicated fuel conversion efficiency, with larger improvements observed in brake fuel conversion efficiency.

  10. Current and future competitiveness of renewable energy carriers - Conceptions about competitiveness

    International Nuclear Information System (INIS)

    Lundgren, K.

    1998-01-01

    The dissertation draws attention to the fact that in the world today 80% of the resources that are used are limited - non renewable energy carriers - and because of the long time between planning and doing (carrying out) within the energy sector, it is worthwhile from the long-term perspective to steer early on towards more sustainable solutions, such as renewable energy carriers. The State and the market have begun to adjust to concepts such as 'competitiveness', which can be viewed as containing both feasibility and legitimacy aspects - the state through different regulations and environmental taxes and environmental fees, and actors on the market that marginally produce/choose renewable energy carriers. The overlying methodology in the dissertation is an actor's viewpoint. This viewpoint brings forth, in turn, two different views, the analytical and the interpretative. The dissertation presents different stances within the energy sector: commercial production logic, commercial sustainability logic, and the socio-economic sustainability logic. By drawing one's attention to how one has the possibility to create (enact) his own reality, it is possible to highlight how organisations can increase their competitiveness by being conscious of their own view and others, logic, which in turn forms their views about competitiveness, which in turn determines which projects will materialize. Enterprises and individuals create a description of reality together through a dialectic process, i.e. by developing an environmental management system that contains elements of environmental auditing, environmental performance indicators, and environmental labelling, which 'reveal' the production conditions that lie behind the actualization of the final product. An example is the product, 'green' electricity, which, in spite of the fact that the final product - electricity - is identical irrespective of the production method, just at the moment can be sold at different prices according

  11. Games That Teach Concepts Around the Nexus of Energy, Water, and Climate

    Science.gov (United States)

    Mayhew, M. A.; Hall, M.; Balaban, S.

    2013-12-01

    Three manifestations of the extreme amplification of the human population--exploding worldwide demand for energy, increasing exploitation of and competition for water resources, and alteration of the planet's climate--are tightly intertwined. All processes for generating energy require consumption of water, for some processes enormous quantities. It takes water to get energy. The inverse is also true: it takes energy to get water. It takes energy to move water from where it is stored to where it is needed. Burning fossil fuels for energy has increased greenhouse gasses in the atmosphere, resulting in increases in the average temperature of the Earth. But the response of the climate system is exceedingly complex. Changes in atmospheric circulation due to global warming are altering weather patterns and changing the distribution of water on the planet. Climate-related weather events alter availability of water and impact energy supply and demand. This is the nexus of energy, water, and climate. We have created two lively card games that convey the nexus concepts. They have been extensively play-tested with groups from middle school to adult; they have been found to be both educational and fun. A distinguished advisory committee, including representatives of the national labs, has insured the scientific accuracy of the games. In the first game, Thirst For Power, each player is the governor of a region; a GOAL card specifies the amount of General and Transportation energy needed for the region, achieved via ENERGY SOURCE cards. WATER cards are used as currency for obtaining energy sources. Each energy source has an associated 'environmental impact' penalty, meaning greenhouse gas emissions, but also other things like water and air pollution. ACTION cards (TECHNOLOGY, POLICY, AND CLIMATE) act much like 'Chance' cards in Monopoly to change the course of the game. The first player to achieve energy goals without exceeding an environmental impact limit for the region wins

  12. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    2010-12-15

    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developed an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In

  13. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  14. A Low Cost Concept for Data Acquisition Systems Applied to Decentralized Renewable Energy Plants

    Directory of Open Access Journals (Sweden)

    Fábio T. Brito

    2011-01-01

    Full Text Available The present paper describes experiences of the use of monitoring and data acquisition systems (DAS and proposes a new concept of a low cost DAS applied to decentralized renewable energy (RE plants with an USB interface. The use of such systems contributes to disseminate these plants, recognizing in real time local energy resources, monitoring energy conversion efficiency and sending information concerning failures. These aspects are important, mainly for developing countries, where decentralized power plants based on renewable sources are in some cases the best option for supplying electricity to rural areas. Nevertheless, the cost of commercial DAS is still a barrier for a greater dissemination of such systems in developing countries. The proposed USB based DAS presents a new dual clock operation philosophy, in which the acquisition system contains two clock sources for parallel information processing from different communication protocols. To ensure the low cost of the DAS and to promote the dissemination of this technology in developing countries, the proposed data acquisition firmware and the software for USB microcontrollers programming is a free and open source software, executable in the Linux and Windows® operating systems.

  15. Mathematical Challenges to Secondary School Students in a Guided Reinvention Teaching-Learning Strategy towards the Concept of Energy Conservation

    NARCIS (Netherlands)

    Logman, P.S.W.M.; Kaper, W.H.; Ellermeijer, A.L.; Taşar, M.F.

    2014-01-01

    Guiding sixteen-year-old students to rediscover the concept of energy conservation may be done in three distinct learning steps. First, we have chosen for the students to reinvent what we call partial laws of energy conservation (e.g. Σm∙g∙h = k1). Secondly, the students are asked to combine these

  16. Second Annual Transformative Vertical Flight Concepts Workshop: Enabling New Flight Concepts Through Novel Propulsion and Energy Architectures

    Science.gov (United States)

    Dudley, Michael R. (Editor); Duffy, Michael; Hirschberg, Michael; Moore, Mark; German, Brian; Goodrich, Ken; Gunnarson, Tom; Petermaier,Korbinian; Stoll, Alex; Fredericks, Bill; hide

    2015-01-01

    On August 3rd and 4th, 2015, a workshop was held at the NASA Ames Research Center, located at the Moffett Federal Airfield in California to explore the aviation communities interest in Transformative Vertical Flight (TVF) Concepts. The Workshop was sponsored by the AHS International (AHS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), and hosted by the NASA Aeronautics Research Institute (NARI). This second annual workshop built on the success and enthusiasm generated by the first TVF Workshop held in Washington, DC in August of 2014. The previous Workshop identified the existence of a multi-disciplinary community interested in this topic and established a consensus among the participants that opportunities to establish further collaborations in this area are warranted. The desire to conduct a series of annual workshops augmented by online virtual technical seminars to strengthen the TVF community and continue planning for advocacy and collaboration was a direct outcome of the first Workshop. The second Workshop organizers focused on four desired action-oriented outcomes. The first was to establish and document common stakeholder needs and areas of potential collaborations. This includes advocacy strategies to encourage the future success of unconventional vertiport capable flight concept solutions that are enabled by emerging technologies. The second was to assemble a community that can collaborate on new conceptual design and analysis tools to permit novel configuration paths with far greater multi-disciplinary coupling (i.e., aero-propulsive-control) to be investigated. The third was to establish a community to develop and deploy regulatory guidelines. This community would have the potential to initiate formation of an American Society for Testing and Materials (ASTM) F44 Committee Subgroup for the development of consensus-based certification standards for General Aviation scale vertiport

  17. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts.

    Science.gov (United States)

    Hernández Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2010-12-01

    Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving a final concentration of 7.2 g COD L(-1). Large fractions of suspended COD were recovered in the concentrate (57%, 81% and 82% at SRT/HRT ratios of 3, 8 and 12, respectively) indicating a strong bioflocculation of grey water. A maximum of 11% of COD mineralization of grey water was measured at the longest SRT tested (1 d). The integration of bioflocculation of grey water in decentralized sanitation concepts may increase the overall production of methane by 73%, based on the biogas produced by black water only. Therefore, bioflocculation is a promising grey water pre-treatment step for energy recovery within decentralized sanitation concepts. 2010 Elsevier Ltd. All rights reserved.

  18. Healing, Mental Energy in the Physics Classroom: Energy Conceptions and Trust in Complementary and Alternative Medicine in Grade 10-12 Students

    Science.gov (United States)

    Svedholm, Annika M.; Lindeman, Marjaana

    2013-01-01

    Lay conceptions of energy often conflict with scientific knowledge, hinder science learning and scientific literacy, and provide a basis for ungrounded beliefs. In a sample of Finnish upper secondary school students, energy was attributed with features of living and animate beings and thought of as a mental property. These ontologically confused…

  19. Facing global environmental change. Environmental, human, energy, food, health and water security concepts

    Energy Technology Data Exchange (ETDEWEB)

    Brauch, Hans Guenter [Freie Univ. Berlin (Germany). Dept. of Political and Social Sciences; United Nations Univ., Bonn (DE). Inst. for Environment and Human Security (UNU-EHS); AFES-Press, Mosbach (Germany); Oswald Spring, Ursula [National Univ. of Mexico (UNAM), Cuernavaca, MOR (MX). Centro Regional de Investigaciones Multidiscipinarias (CRIM); United Nations Univ., Bonn (DE). Inst. for Environment and Human Security (UNU-EHS); Grin, John [Amsterdam Univ. (Netherlands). Amsterdam School for Social Science Research; Mesjasz, Czeslaw [Cracow Univ. of Economics (Poland). Faculty of Management; Kameri-Mbote, Patricia [Nairobi Univ. (Kenya). School of Law; International Environmental Law Research Centre, Nairobi (Kenya); Behera, Navnita Chadha [Jamia Millia Islamia Univ., New Delhi (India). Nelson Mandela Center for Peace and Conflict Resolution; Chourou, Bechir [Tunis-Carthage Univ., Hammam-Chatt (Tunisia); Krummenacher, Heinz (eds.) [swisspeace, Bern (Switzerland). FAST International

    2009-07-01

    This policy-focused, global and multidisciplinary security handbook on Facing Global Environmental Change addresses new security threats of the 21st century posed by climate change, desertification, water stress, population growth and urbanization. These security dangers and concerns lead to migration, crises and conflicts. They are on the agenda of the UN, OECD, OSCE, NATO and EU. In 100 chapters, 132 authors from 49 countries analyze the global debate on environmental, human and gender, energy, food, livelihood, health and water security concepts and policy problems. In 10 parts they discuss the context and the securitization of global environmental change and of extreme natural and societal outcomes. They suggest a new research programme to move from knowledge to action, from reactive to proactive policies and to explore the opportunities of environ-mental cooperation for a new peace policy. (orig.)

  20. On the concept of sloped motion for free-floating wave energy converters.

    Science.gov (United States)

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  1. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    Science.gov (United States)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  2. Volume 42, Issue5 (May 2005)Articles in the Current Issue:Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database

    Science.gov (United States)

    Liu, Xiufeng; McKeough, Anne

    2005-05-01

    The aim of this study was to develop a model of students' energy concept development. Applying Case's (1985, 1992) structural theory of cognitive development, we hypothesized that students' concept of energy undergoes a series of transitions, corresponding to systematic increases in working memory capacity. The US national sample from the Third International Mathematics and Science Study (TIMSS) database was used to test our hypothesis. Items relevant to the energy concept in the TIMSS test booklets for three populations were identified. Item difficulty from Rasch modeling was used to test the hypothesized developmental sequence, and percentage of students' correct responses was used to test the correspondence between students' age/grade level and level of the energy concepts. The analysis supported our hypothesized sequence of energy concept development and suggested mixed effects of maturation and schooling on energy concept development. Further, the results suggest that curriculum and instruction design take into consideration the developmental progression of students' concept of energy.

  3. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  4. ENTNEA: A concept for enhancing regional atomic energy cooperation for securing nuclear transparency in northeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. T. [Korea Institute for Defence Analyses, Seoul (Korea)

    2000-11-01

    Nuclear energy continues to be a strong and growing component of economic development in Northeast Asia. A broad range of nuclear energy systems already exists across the region and vigorous growth is projected. Associated with these capabilities and plans are various concerns about operational safety, environmental protection, and accumulation of spent fuel and other nuclear materials. We consider cooperative measures that might address these concerns. The confidence building measures suggested here center on the sharing of information to lessen concerns about nuclear activities or to solve technical problems. These activities are encompassed by an Enhanced Nuclear Transparency in Northeast Asia (ENTNEA) concept that would be composed of near-term, information-sharing activities and an eventual regional institution. The near-term activities would address specific concerns and build a tradition of cooperation; examples include radiation measurements for public safety and emergency response, demonstration of safe operations at facilities and in transportation, and material security in the back end of the fuel cycle. Linkages to existing efforts and organizations would be sought to maximize the benefits of cooperation. In the longer term, the new cooperative tradition might evolve into an ENTNEA institution. In institutional form, ENTNEA could combine the near-term activities and new cooperative activities, which might require an institutional basis, for the mutual benefit and security of regional parties. 28 refs., 23 figs., 5 tabs. (Author)

  5. Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team

    Science.gov (United States)

    Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.

  6. Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon

    Science.gov (United States)

    Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars

    2018-01-01

    The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.

  7. Concept of effective atomic number and effective mass density in dual-energy X-ray computed tomography

    International Nuclear Information System (INIS)

    Bonnin, Anne; Duvauchelle, Philippe; Kaftandjian, Valérie; Ponard, Pascal

    2014-01-01

    This paper focuses on dual-energy X-ray computed tomography and especially the decomposition of the measured attenuation coefficient in a mass density and atomic number basis. In particular, the concept of effective atomic number is discussed. Although the atomic number is well defined for chemical elements, the definition of an effective atomic number for any compound is not an easy task. After reviewing different definitions available in literature, a definition related to the method of measurement and X-ray energy, is suggested. A new concept of effective mass density is then introduced in order to characterize material from dual-energy computed tomography. Finally, this new concept and definition are applied on a simulated case, focusing on explosives identification in luggage

  8. Structural parameter based modification of energy conscious ESPAR antenna system through optimization for WLAN’s dual-band operability

    CSIR Research Space (South Africa)

    Bembe, MJ

    2010-11-01

    Full Text Available single device. In this study the focus is on the modification of the antenna designs for dual-band functionality which is limited on the ESPAR antenna’s structural parameter. This modification should result in an antenna system which operates in both 2...

  9. FACTORS AFFECTING TEACHING THE CONCEPT of RENEWABLE ENERGY in TECHNOLOGY ASSISTED ENVIRONMENTS AND DESIGNING PROCESSES in THE DISTANCE EDUCATION MODEL

    Directory of Open Access Journals (Sweden)

    A. Seda YUCEL

    2007-01-01

    Full Text Available The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out what to take into account in creating renewable energy awareness. In this study, certain factors thought to affect the development of renewable energy awareness were investigated. The awareness was created through a technology-assisted renewable energy module and assessed using a renewable energy assessment tool. The effects of the students’ self-directed learning readiness with Guglielmino (1977, inner-individual orientation, and anxiety orientation on the awareness were examined. These three factors were found to have significant effects on renewable energy, which was developed through technology utilization. In addition, based on the finding that delivering the subject of renewable energy in technology assisted environments is more effective, the criteria that should be taken into consideration in transforming this subject into a design model that is more suitable for distance education were identified.

  10. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    Science.gov (United States)

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information

  11. Shark, new motor design concept for energy saving applied to switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Tataru Kjaer, A.M.

    2005-07-01

    The aim of this thesis is to document and promote a relatively new concept of designing electrical machine with improved efficiency, without using more or better material. The concept, called Shark, consists in replacing the cylindrical air gap by a non-linear shape obtained by translating specific geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap shapes and of their influence on the magnetic performance has been reported. Due to a simple geometry, the Switched Reluctance Machine has been selected for demonstration of the Shark principle. Initially, linear and finite element analyses are considered. They provide the basic knowledge of the manner in which various Shark air gap, having different dimensions, influence the energy conversion in the machine. The saturation mechanisms, specific to each Shark profile are analysed and optimum Shark profile and its dimensions are selected for implementation in a demonstration machine. Due to the lack of quick analysis tools, an analytical model of the Shark Switched Reluctance Machine is also proposed in this thesis. This model is conceived by modifying one of the existing models of cylindrical air gap Switched Reluctance Machines, such as to account for the presence of the Shark profiles in the air gap. The calculations are verified by measurement on two demonstration machines, having cylindrical and Shark air gaps. The measurement proved the theory right and

  12. Investigation of an energy-gap model for photoacoustic O2A-band spectra: H2O calibration near 7180 cm−1

    International Nuclear Information System (INIS)

    Vess, E.M.; Anderson, C.N.; Awadalla, V.E.; Estes, E.J.; Jeon, C.; Wallace, C.J.; Hu, X.F.; Havey, D.K.

    2012-01-01

    Highlights: ► We investigate an energy transfer model for photoacoustic measurements of the O 2 A-band. ► We measure the response of a photoacoustic spectrometer for known quantities of H 2 O and O 2 . ► We fit multiple theoretical spectral line profiles to the data. ► We bind the relative uncertainty of the energy transfer model to less than 1%. ► We demonstrate that speed-dependence is an important line shape effect for these experiments. - Abstract: A photoacoustic spectrometer is used to evaluate the accuracy of an energy-gap model for collisional energy transfer. For photoacoustic measurements involving the b 1 Σ g + ←X 3 Σ g - transition of molecular oxygen the conversion of photon energy to thermal energy is inefficient and proceeds through the a 1 Δ g state. This results in attenuation of the photoacoustic signal. The magnitude of the attenuation can be predicted with an energy-gap model whose accuracy has been previously confirmed to within 3 ± 5%. However, this prior result does not rule out incomplete rotational relaxation of O 2 in the a 1 Δ g state. In this study, high-resolution spectra of H 2 O in air are used to calibrate the photoacoustic spectrometer. This work binds the relative uncertainty in the energy-gap relaxation factor for O 2 A-band photoacoustic signals to be approximately 1%. During one acoustic cycle, this result implies negligible collisional relaxation to the X 3 Σ g - state of O 2 and nearly complete collisional relaxation to the a 1 Δ g state.

  13. Energy Gap in the Aetiology of Body Weight Gain and Obesity: A Challenging Concept with a Complex Evaluation and Pitfalls

    Directory of Open Access Journals (Sweden)

    Yves Schutz

    2014-01-01

    Full Text Available The concept of energy gap(s is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity is not constant, may fade out with time if the initial conditions are maintained, and depends on the ‘efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s can be estimated by at least two methods, i.e. i assessment by longitudinal overfeeding studies, imposing (by design an initial positive energy imbalance gap; ii retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both is clouded by a high level of uncertainty.

  14. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone

    Science.gov (United States)

    Polyansky, Oleg L.; Zobov, Nikolai F.; Mizus, Irina I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-05-01

    Monitoring ozone concentrations in the Earth's atmosphere using spectroscopic methods is a major activity which undertaken both from the ground and from space. However there are long-running issues of consistency between measurements made at infrared (IR) and ultraviolet (UV) wavelengths. In addition, key O3 IR bands at 10 μm, 5 μm and 3 μm also yield results which differ by a few percent when used for retrievals. These problems stem from the underlying laboratory measurements of the line intensities. Here we use quantum chemical techniques, first principles electronic structure and variational nuclear-motion calculations, to address this problem. A new high-accuracy ab initio dipole moment surface (DMS) is computed. Several spectroscopically-determined potential energy surfaces (PESs) are constructed by fitting to empirical energy levels in the region below 7000 cm-1 starting from an ab initio PES. Nuclear motion calculations using these new surfaces allow the unambiguous determination of the intensities of 10 μm band transitions, and the computation of the intensities of 10 μm and 5 μm bands within their experimental error. A decrease in intensities within the 3 μm is predicted which appears consistent with atmospheric retrievals. The PES and DMS form a suitable starting point both for the computation of comprehensive ozone line lists and for future calculations of electronic transition intensities.

  15. Concept for energy and climate protection for Asslar, Leun, Solms and Wetzlar. Final Report; Energie- und Klimaschutzkonzept fuer Asslar, Leun, Solms und Wetzlar. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-27

    The contribution under consideration reports on the concept for energy and climate protection for the German towns Asslar, Leun, Solms and Wetzlar. An energy balance sheet was created for the time period between 1990 and 2011. From this, the CO{sub 2} emission were calculated. Based on these data, the author of this contribution describes an extrapolated trend up to the year 2022 under consideration of demographic and economic forecasts as well as known legal regulations. Two scenarios are developed in order to show how the energy conservation as well as power generation from renewable energy sources significantly can be increased compared with trend levels.

  16. Evaluation of the basic concepts of approaches for the coexistence of nuclear energy and people/local community

    International Nuclear Information System (INIS)

    Kondo, Shunsuke; Kuroki, Shinichi; Nakagiri, Yuko

    2007-01-01

    In November 2007, the Policy Evaluation Committee compiled the report, which evaluated the basic concepts of approaches to the coexistence of nuclear energy and people/local community, specified in the Framework for Nuclear Energy Policy. The report states that the 'concerned administrative bodies are carrying out measures related to the coexistence of nuclear energy and people/local communities in line with these basic concept' and summarizes fifteen proposals conductive to the betterment and improvement of these measures, which were classified as 1) secure transparency and promotion of mutual understanding with the public, 2) development and enrichment of learning opportunities and public participation, 3) relationship between the government and local governments and 4) coexistence with local residents. The Japan Atomic Energy Commission (JAEC) considers this report to be reasonable. This article presented an overview of this activity. (T. Tanaka)

  17. Concept of passive safe small reactor for distributed energy supply system

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Nakajima, Nobuya; Sawada, Ken-ichi; Yoritsune, Tsutomu; Shimada, Shoichiro; Nakano, Yoshihiro; Yonomoto, Taisuke; Takahashi, Hiroki

    2003-01-01

    This paper presents a concept of a Passive Safe Small Reactor for Distributed energy supply system (PSRD). The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down. To comply with a severe operation condition of PSRD, material of the ball bearing with graphite retainer has been selected by test. For improvement of economy, simplification of the reactor system and long operation of the core are achieved. Optimization of core design concerning the burnable poison ensures the burn-up of 28 GWd/t for low enriched UO 2 fuel rods. (author)

  18. Study on aerodynamics characteristics an urban concept car for energy-efficient race

    Science.gov (United States)

    Ambarita, H.; Siregar, M. R.; Kawai, H.

    2018-03-01

    "Horas Mesin USU" is a prototype of urban concept vehicle designed by University of Sumatera Utara to participate in the energy-efficient competition. This paper deals with a numerical study on aerodynamic characteristics of the Horas Mesin USU. The numerical analyses are carried out by solving the governing equations using CFD FLUENT commercial code. The turbulent flow is closed using k-epsilon turbulence model. In the results, pathline, velocity vector and pressure distribution are plotted. By using the pressure distributions, drag and lift coefficients are calculated. In order to make a comparison, the aerodynamic characteristics of the present design are compared with commercial city car Ford-Fiesta. The averaged drag coefficients of Horas Mesin USU and Ford-Fiesta are 0.24320 and 0.29598, respectively. On the other hand, the averaged lift coefficients of the Horas Mesin USU and Ford-Fiesta are 0.03192202 and 0.09485621, respectively. This fact suggests that Ford-Fiesta has a better aerodynamic performance in comparison with Horas Mesin USU. The flow field analysis shows that there are many modifications can be proposed to improve the aerodynamic performance of the Horas Mesin USU. It is suggested to perform further analysis to improve the aerodynamic performance of Horas Mesin USU.

  19. Comparative Analysis of Conventional Electronic and OZ Concept Displays for Aircraft Energy Management

    Science.gov (United States)

    Baker, Erik Reese

    A repeated-measures, within-subjects design was conducted on 58 participant pilots to assess mean differences on energy management situation awareness response time and response accuracy between a conventional electronic aircraft display, a primary flight display (PFD), and an ecological interface design aircraft display, the OZ concept display. Participants were associated with a small Midwestern aviation university, including student pilots, flight instructors, and faculty with piloting experience. Testing consisted of observing 15 static screenshots of each cockpit display type and then selecting applicable responses from 27 standardized responses for each screen. A paired samples t-test was computed comparing accuracy and response time for the two displays. There was no significant difference in means between PFD Response Time and OZ Response Time. On average, mean PFD Accuracy was significantly higher than mean OZ Accuracy (MDiff = 13.17, SDDiff = 20.96), t(57) = 4.78, p performance differences were not operationally remarkable. There was no significant correlation between PFD Response Time and PFD Accuracy, but there was a significant correlation between OZ Response Time and OZ Accuracy, r (58) = .353, p performing as well as experienced professional pilots on dynamic flight tasks with the OZ display. A demographic questionnaire and a feedback survey were included in the trial. An equivalent three-quarters majority of participants rated the PFD as "easy" and the OZ as "confusing", yet performance accuracy and response times between the two displays were not operationally different.

  20. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals

    International Nuclear Information System (INIS)

    Cherubini, Francesco

    2010-01-01

    A great fraction of worldwide energy carriers and material products come from fossil fuel refinery. Because of the on-going price increase of fossil resources, their uncertain availability, and their environmental concerns, the feasibility of oil exploitation is predicted to decrease in the near future. Therefore, alternative solutions able to mitigate climate change and reduce the consumption of fossil fuels should be promoted. The replacement of oil with biomass as raw material for fuel and chemical production is an interesting option and is the driving force for the development of biorefinery complexes. In biorefinery, almost all the types of biomass feedstocks can be converted to different classes of biofuels and biochemicals through jointly applied conversion technologies. This paper provides a description of the emerging biorefinery concept, in comparison with the current oil refinery. The focus is on the state of the art in biofuel and biochemical production, as well as discussion of the most important biomass feedstocks, conversion technologies and final products. Through the integration of green chemistry into biorefineries, and the use of low environmental impact technologies, future sustainable production chains of biofuels and high value chemicals from biomass can be established. The aim of this bio-industry is to be competitive in the market and lead to the progressive replacement of oil refinery products. (author)

  1. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    Science.gov (United States)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  2. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  3. Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure

    Institute of Scientific and Technical Information of China (English)

    Tai Wang; Yong-Quan Guo; Shuai Li

    2017-01-01

    The Eu-doped Cu(In,Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CulnTe2.In this paper,the Eu-doped CulnTe2 (Culn1-xEuxTe2,x =0,0.1,0.2,0.3) are studied systemically based on the empirical electron theory (EET).The studies cover crystal structures,bonding regularities,cohesive energies,energy levels,and valence electron structures.The theoretical values fit the experimental results very well.The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions.The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease.The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms,which shows that the 3d electron numbers of Cu atoms change before and after Eu doping.In single phase CuIn1-xEuxTe2,the number of valence electrons changes regularly with increasing Eu content,and the calculated band gap Eg also increases,which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.

  4. Concepts of the First Law of Thermodynamic and of Energy. As analysis methods of energetic system operation

    International Nuclear Information System (INIS)

    Hernandez, L.F.

    1998-01-01

    The technologies developed from 1973 on rational use, conservation and efficiency in the use of energy updated in a framework of sustain ability energetic and environment protection, it has not taken into account the concepts of quality of energy within of any energetic system (Source - Technology - Final Use), neither the favorable economic and technical implications of adopting the concepts of the Exergy and of exegetic efficiency, derivatives from the Second Law of the Thermodynamic, those which should be included as methods in the environmental and economic technical evaluations of an energetic system. This article presents the basic development of the concepts referenced from the Zero Law of the Thermodynamic, illustrating with examples the advantages to incorporate them as valuation and comparison parameters

  5. Improving literacy around energy-related issues: The need for a better understanding of the concepts behind energy intake and expenditure among adolescents and their parents

    OpenAIRE

    Nelson, Melissa C.; Lytle, Leslie A.; Pasch, Keryn E.

    2009-01-01

    Despite the need for effective obesity prevention strategies, little research is currently available to assess adolescents’ knowledge around basic concepts of energy intake, expenditure and balance. Using data from 349 adolescent-caregiver pairs (recruited from Minneapolis/St. Paul metro region, MN, 2006-2007), cross-sectional linear regression was used to assess adolescent and parental knowledge related to energy intake and expenditure as a predictor of adolescent weight-related behaviors an...

  6. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  7. The potential of lightweight low-energy houses with hybrid adaptable thermal storage : comparing the performance of promising concepts

    NARCIS (Netherlands)

    Hoes, P.; Hensen, J.L.M.

    2016-01-01

    The international community set clear goals regarding the reduction of CO2 emissions and energy demand in the built environment. This drives research and building practice to search for solutions and new building concepts that contribute to achieving these goals. The work presented in this paper

  8. Energy Saving Fonds and guarantee of efficiency. An integrative concept for the implemention of the European energy efficiency regulation. Brief study; Energiesparfonds und Effizienzgarantie. Ein integratives Konzept zur Umsetzung der europaeischen Energieeffizienz-Richtlinie. Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Pehnt, Martin; Brischke, Lars-Arvid

    2013-04-15

    The authors of the contribution under consideration report on Energy Saving Fonds and guarantee of efficiency as an integrative concept for the implementation of the European Energy Efficiency Directive. The authors sum up thirteen thesis for this energy efficiency strategy.

  9. The Effects of Set-Points and Dead-Bands of the HVAC System on the Energy Consumption and Occupant Thermal Comfort

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2013-01-01

    A building is a complex system where many components interact with each other therefore the control system plays a key role regarding the energy consumption and the occupant thermal comfort. This study is concerned with a detached, one-storey, single family, energy-plus house. It is equipped...... on the effects of the set-points and dead-bands of different components on the energy consumption together with the occupant thermal comfort. Evaluations are carried out with TRNSYS for Copenhagen and Madrid in order to compare climatic effects....... with a ground heat exchanger, a ground coupled heat pump, embedded pipes in the floor and in the ceiling, a ventilation system (mechanical and natural), a domestic hot water tank and photovoltaic/thermal panels on the roof. Preliminary evaluations showed that for Madrid, change of indoor set-point in cooling...

  10. Energy conservation in urban areas in the framework of a sustainable transportation concept

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, M.

    2001-07-01

    study. In addition, two commercial software programs are used: (1) a computer-aided transport planning called 'VISUM' established at the PTV Systems Software and Constructing GmbH Karlsruhe-Germany, and (2) a computer-aided interactive system called 'DYNAMIS' established at the Institute for Transportation, Railways Construction and Operation of Hannover University, Hannover-Germany. Moreover and for the aim of assisting the developing countries to produce energy and emission models, the German-Swiss emissions model 'Handbuch der Emissionsfaktoren des Strassenverkehrs 1999' is studied, explained and examined. Also, a new approach was developed, within the framework of this study, 'Push-down and Push-up' with the aim of sustainable energy consumption in the transport sector. Finally, the application illustrates the technical, environmental, and economical benefits of the sustainable transport concept. (orig.) [German] Unsere Lebensqualitaet haengt in grossem Masse vom Verkehr ab. Verkehr ermoeglicht eine individuelle Freiheit und Unabhaengigkeit fuer den Transport von Personen und Guetern in modern entwickelten Wirtschaftssystemen. Allerdings treten durch den Verkehr auch eine Vielzahl von unerwnschten Nebenwirkungen auf. Der Verkehrssektor ist einer der groessten Energieverbraucher (hauptsaechlich fossiler Brennstoffe). Die entstehenden Emissionen fuehren sowohl zu negativen lokalen Beeintraechtigungen der Gesundheit wie auch zu einer Erhoehung der CO{sub 2}-Konzentrationen weltweit, die eine entscheidende Rolle fuer das Klima der Erde spielen. Zudem ist der Verkehrssektor weiterhin verantwortlich fuer eine Reihe gesellschaftlicher Probleme, wie beispielsweise Flaechenverbrauch und Verkehrssicherheit. Die steigende Motorisierung in einer bestehendem staedtischen Infrastruktur ist heutzutage nicht nachhaltig. Petroleumtreibstoffe, von denen heute noch fast alle Verkehrssysteme abhaengig sind, sind nicht erneuerbar. Zusammenfassend

  11. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction

    Science.gov (United States)

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-01

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  12. Improving the Energy Performance in Existing Non-residential Buildings in Denmark Using the Total Concept Method

    DEFF Research Database (Denmark)

    Krawczyk, Pawel; Afshari, Alireza; Simonsen, Graves K.

    2016-01-01

    This project is a part of a joint European research project, “Total Concept”, which is a method for improving the energy performance in existing non-Residential buildings. The method focuses on achieving maximum energy savings in a Building within the profitability frames set by a building owner...... was to form a package of measures for an energy performance improvement in the building based on the Total Concept method. This paper presents results from recently analyzed data on two renovated Danish buildings according to the rules of “Total Concept” method. According to the estimation done based...

  13. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa

    2018-01-01

    electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from...... positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area...

  14. Dual-mode, high energy utilization system concept for mars missions

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ∼1-5 kW e for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and I sp >35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kW e prototype are presented and discussed to illustrate the operation and design principles of the proposed system

  15. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    Science.gov (United States)

    Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.

    2017-05-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.

  16. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    International Nuclear Information System (INIS)

    Alfianto, E; Rusydi, F; Aisyah, N D; Dipojono, H K; Martoprawiro, M A; Fadilla, R N

    2017-01-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso. (paper)

  17. Observation of band bending of metal/high-k Si capacitor with high energy x-ray photoemission spectroscopy and its application to interface dipole measurement

    Science.gov (United States)

    Kakushima, K.; Okamoto, K.; Tachi, K.; Song, J.; Sato, S.; Kawanago, T.; Tsutsui, K.; Sugii, N.; Ahmet, P.; Hattori, T.; Iwai, H.

    2008-11-01

    Band bendings of Si substrates have been observed using hard x-ray photoemission spectroscopy. With a capability of collecting photoelectrons generated as deep as 40 nm, the binding energy shift in a core level caused by the potential profile at the surface of the substrate results in a spectrum broadening. The broadening is found to be significant when heavily doped substrates are used owing to its steep potential profile. The surface potential of the substrate can be obtained by deconvolution of the spectrum. This method has been applied to observe the band bending profile of metal-oxide-semiconductor capacitors with high-k gate dielectrics. By comparing the band bending profiles of heavily-doped n+- and p+-Si substrates, the interface dipoles presented at interfaces can be estimated. In the case of W gated La2O3/La-silicate capacitor, an interface dipole to shift the potential of -0.45 V has been estimated at La-silicate/Si interface, which effectively reduces the apparent work function of W. On the other hand, an interface dipole of 0.03-0.07 V has been found to exist at Hf-silicate/SiO2 interface for W gated HfO2/Hf-silicate/SiO2 capacitor.

  18. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2010-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  19. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  20. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment.

    Science.gov (United States)

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa; Vogel, Jörg; Madsen, Henrik Tækker; Hélix-Nielsen, Claus; Jansen, Jes la Cour; Jönsson, Karin

    2018-02-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.

  1. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  2. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  3. The development of a new district heating concept: Network design and optimization for integrating energy conservation and renewable energy use in energy sustainable communities

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Rosa, A.

    2012-07-01

    differently-sized media pipes, embedded in the same insulation and casing pipe), it is possible to cut heat losses by 6% to 12% in comparison to twin pipes without increasing investment costs. Finally, the development of an optimized triple pipe solution is described. The code modelling the transient heat transfer in DH service pipes is proven to be accurate, since it gives results that well represent the outlet temperature profile measured in the experiments with deviations of less than 0.5 deg. C, and it is in good accordance with detailed, finite-volume simulations, for both stepwise and sinusoidal boundary conditions with regard to the inlet temperature profile. The proposed integrated solution consisting of service pipe and heat exchanger unit with a booster pump satisfies the requirement for DHW supply within l0 seconds and achieves heat savings for 200 kWhth/yr with an additional electricity use of approximately 58 kWhel/yr. In Denmark, optimally-designed LTDH networks can be cost-effective in areas with a linear heat density as low as 0.20 MWh/(m.yr). For the cases considered, the levelized cost of energy is between 13.919.3 cEuro/kWh (excl. VAT) and this is approximately 20% lower than the scenario based on ground-source heat pumps. The network designs based on low-temperature operation are superior to the design based on lowflow operation. The total primary energy use in the most energy-efficient design is 14.3% lower than in standard networks and the distribution heat losses are halved. The results indicate that the LTDH concept fits the vision of the future energysustainable heating sector in Denmark. In the investigations of the case studies in Canada, it was found that DH supply to building areas with linear heat density greater than 3.0 MWh/(m.yr) is competitive with the natural gas supply alternative and offers the opportunity to implement the use of RE and low-grade heat sources. The areas with linear heat density below 1.5 MWh/(m.yr) are not economically

  4. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  5. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  6. Energy perspectives 2035 - Volume 1, synthesis; Die Energieperspektiven 2035 - Band 1: Synthese. Modellrechnungen, Vergleiche, Bewertungen und Herausforderungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    This comprehensive report published by the Swiss Federal Office of Energy (SFOE) presents a synthesis of the results of a study that examined four scenarios concerning future developments in Swiss energy supply policy. The four scenarios include the variants entitled 'business as usual', 'increased co-operation', 'new priorities' and 'on the way to a 2000-Watt society'. The four scenarios are presented in detail in a separate paper. Here, for each scenario, policy options, energy demand, electricity offerings and CO{sub 2} emissions are noted. The scenarios are compared with each other and evaluated with respect to energy efficiency and energy demand. Examples are quoted and developments in demand are examined. Their sensitivities with respect to Gross Domestic Product (GDP), climate change and their costs are discussed. Renewable sources of energy for power, heating and motor fuels are discussed and non-renewable sources of energy such as nuclear power, gas-fired power stations, combined heat and power installations and district heating systems are examined. Electricity supply and possible shortages are discussed, as are environmental pollution and nuclear wastes. Finally, a dynamic balance model and effects on consumption, trade, employment and welfare are discussed and challenges placed concerning security of supply, environmental protection, the economy, society, politics and legislation are examined

  7. Controlled passive actuation: concepts for energy efficient actuation using mechanical storage elements and continuously variable transmissions

    NARCIS (Netherlands)

    Dresscher, Douwe

    2016-01-01

    Walking robots consume more energy for locomotion than their wheeled and tracked counterparts. To achieve energy autonomous operation, a robot needs to run on energy that is harvested from its environment. In this light, it is meaningful to address reduction of energy consumption. The contribution

  8. Swiss Federal Energy Research Concept 2008 - 2011; Konzept der Energieforschung des Bundes 2008 bis 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the plan for the activities of the Swiss Federal Commission on Energy Research CORE during the period 2008 - 2011. The motivation behind the state promotion of energy research is discussed. The visions, aims and strategies of the energy research programme are discussed. The main areas of research to be addressed during the period are presented. These include the efficient use of energy in buildings and traffic - batteries and supercaps, electrical technologies, combustion systems, fuel cells and power generation are discussed. Research to be done in the area of renewable sources of energy are listed. Here, solar-thermal, photovoltaics, hydrogen, biomass, geothermal energy, wind energy and ambient heat are among the areas to be examined. Research on nuclear energy and safety aspects are mentioned. Finally, work on the basics of energy economy are looked at and the allocation of funding during the period 2008 - 2011 is looked at.

  9. The Use of History and Philosophy of Science as a Core for a Socioconstructivist Teaching Approach of the Concept of Energy in Primary Education

    Science.gov (United States)

    Rizaki, Aikaterini; Kokkotas, Panagiotis

    2013-01-01

    The present study should be thought as a socioconstructivist teaching approach (a teaching model) for the concept of energy in primary education. It contains important and crucial aspects of the History and Philosophy of Natural Sciences, introduces the concept of energy using the macroscopic framework of thermodynamics, takes into consideration…

  10. Final report of the documentation of the methodology designed by PESENCA for the development of local concepts of energy supply

    International Nuclear Information System (INIS)

    1991-01-01

    A report is presented about the methodology designed by PESENCA for the development of local concepts of energy supply in the Atlantic Costa of Colombia; are includes localization, executor institutions, their organization, the global studies and database in the different projects. It is indicated the selection of investigation and planning areas, the consulted entities and the design of methodological instruments as forms of surveys control. The sampling strategies and the design of preparation of databases are described. It is indicated the selection, training and the specific activities for each area like the delimitation of the work area, the design of the work and the field work; equally the analysis of results in electric power terms, firewood and rest of biomass. An analysis of the socioeconomic situation of the area is made and concepts are elaborated on energy solutions

  11. Using the automata processor for fast pattern recognition in high energy physics experiments—A proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Michael H.L.S., E-mail: mwang@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Cancelo, Gustavo; Green, Christopher [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Guo, Deyuan; Wang, Ke [University of Virginia, Charlottesville, VA 22904 (United States); Zmuda, Ted [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-10-01

    We explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  12. Design and simulation of a short, variable-energy 4 to 10 MV S-band linear accelerator waveguide.

    Science.gov (United States)

    Baillie, Devin; Fallone, B Gino; Steciw, Stephen

    2017-06-01

    To modify a previously designed, short, 10 MV linac waveguide, so that it can produce any energy from 4 to 10 MV. The modified waveguide is designed to be a drop-in replacement for the 6 MV waveguide used in the author's current linear accelerator-magnetic resonance imager (Linac-MR). Using our group's previously designed short 10 MV linac as a starting point, the port was moved to the fourth cavity, the shift to the first coupling cavity was removed and a tuning cylinder added to the first coupling cavity. Each cavity was retuned using finite element method (FEM) simulations to resonate at the desired frequency. FEM simulations were used to determine the RF field distributions for various tuning cylinder depths, and electron trajectories were computed using a particle-in-cell model to determine the required RF power level and tuning cylinder depth to produce electron energy distributions for 4, 6, 8, and 10 MV photon beams. Monte Carlo simulations were then used to compare the depth dose profiles with those produced by published electron beam characteristics for Varian linacs. For each desired photon energy, the electron beam energy was within 0.5% of the target mean energy, the depth of maximum dose was within 1.5 mm of that produced by the Varian linac, and the ratio of dose at 10 cm depth to 20 cm depth was within 1%. A new 27.5 cm linear accelerator waveguide design capable of producing any photon energy between 4 and 10 MV has been simulated, however coupling port design and the implications of increased electron beam current at 10 MV remain to be investigated. For the specific cases of 4, 6, and 10 MV, this linac produces depth dose profiles similar to those produced by published spectra for Varian linacs. © 2017 American Association of Physicists in Medicine.

  13. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, Warawat

    2010-01-01

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  14. C6H6/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    International Nuclear Information System (INIS)

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-01

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  15. Effective energy management system using ISO 9000/14000 concept industries

    International Nuclear Information System (INIS)

    Asfaazam Kasbani; Kamaruzzaman Sopian

    2006-01-01

    Energy management is a system of managing energy utilization wisely and it includes issues such as energy efficiency (conservation), use of renewable energy, use of technology and development of energy policy. Its benefits has been well known for cost reduction and increase competitiveness and also other indirect impact such as preserving the natural resources and reduction of green-house gases. Although various strategies have been formulated by the government for the industries to adopt energy management, the result seems to be minimal and stagnant in some ways due to the various barriers which exists. Industries on the other hand, have successfully welcomed two famous management system namely the Environmental Management System ISO 14000 and the Quality Management System ISO 9000 to be implemented at their premises. This paper shows how energy management system can be effectively implemented by comparing similar generic management elements of energy management to ISO 9000/14000 standards. The seven (7) elements of energy management system discussed are top management commitment, policy establishment, energy management team, energy audit, energy efficiency projects, monitoring and training

  16. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept

    International Nuclear Information System (INIS)

    Thraen, Daniela; DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael

    2016-01-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  17. An Energy Efficient Hydraulic Winch Drive Concept Based on a Speed-variable Switched Differential Pump

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Pedersen, Henrik Clemmensen

    2017-01-01

    controls. Such solutions are typically constituted by many and rather expensive components, and are furthermore often suffering from low frequency dynamics. In this paper an alternative solution is proposed for winch drive operation, which is based on the so-called speed-variable switched differential pump......, originally designed for direct drive of hydraulic differential cylinders. This concept utilizes three pumps, driven by a single electric servo drive. The concept is redesigned for usage in winch drives, driven by flow symmetric hydraulic motors and single directional loads as commonly seen in e.g. active...... heave compensation applications. A general drive configuration approach is presented, along with a proper control strategy and design. The resulting concept is evaluated when applied for active heave compensation. Results demonstrate control performance on level with conventional valve solutions...

  18. Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Park, J. S.; Sasaki, K.; Saito, R.; Izumida, W.; Kalbáč, Martin; Farhat, H.; Dresselhaus, G.; Dresselhaus, M. S.

    2009-01-01

    Roč. 80, č. 8 (2009), 081402-1-081402-4 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fermi energy dependence * Raman spectroscopy * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 3.475, year: 2009

  19. The risks of nuclear energy technology. Safety concepts of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Kern- und Energietechnk (IKET); Kessler, Guenter; Veser, Anke; Schlueter, Franz-Hermann

    2014-11-01

    Analyses the risks of nuclear power stations. Discusses the security concept of reactors. Analyzes possible crash of air planes on a reactor containment. Presents measures against the spread of radioactivity after a severe accident. Written in engaging style for professionals and policy makers. The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on a reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: - A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Chernobyl. These safety concepts are also compared with the experiences of the Fukushima accidents. In addition, the safety design concepts of the future modern European Pressurized Water Reactor (EPR) and of the future modern Boiling Water Reactor SWR-1000 (KERENA) are presented. These are based on new safety research results of the past decades. - In a second, part the possible crash of military or heavy commercial air planes on a reactor containment is analyzed. It is shown that reactor containments can be designed to resist to such an airplane crash. - In a third part, an online decision system is presented. It allows to analyze the distribution of radioactivity in the atmosphere and to the environment after a severe reactor accident. It provides data for decisions to be taken by authorities for the minimization of radiobiological effects to the population. This book appeals to readers who have an interest in save living conditions and some understanding for physics or engineering.

  20. MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; et al.

    2017-12-20

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  1. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  2. The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Waldemar Fedak

    2017-12-01

    Full Text Available Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.

  3. Energy management from the concept to the success; Energiemanagement - vom Konzept bis zum Erfolg

    Energy Technology Data Exchange (ETDEWEB)

    Baenninger, M. [Schweizerische Bankgesellschaft, Zurich (Germany)

    1995-12-31

    In chapter 20 of the anthology about building control the field of energy management is described. The following aspects are discussed: overview and procedure, model and communication, pilot projects, current energy control by building automation, energy levying and characteristic numbers. (BWI) [Deutsch] Kapitel 20 des Sammelbandes ueber Building Control ist dem Themenbereich des Energiemanagements gewidmet. In diesem Zusammenhang wird auf folgende Themen eingegangen: Ueberblick und Vorgehen; Leitbild und Kommunikation; Pilotprojekte; laufende Energiekontrolle via Gebaeudeautomation; Energieerhebung und Kennzahlen. (BWI)

  4. New concept for energy storage: Microwave-induced carbon gasification with CO2

    International Nuclear Information System (INIS)

    Bermúdez, J.M.; Ruisánchez, E.; Arenillas, A.; Moreno, A.H.; Menéndez, J.A.

    2014-01-01

    Highlights: • A new system for energy storage based in microwave-induced gasification is proposed. • From the carbonaceous materials tested, charcoal yielded the best results. • The systems achieved energy efficiencies of about 45% without any optimization. • The system is competitive in terms of efficiency with some conventional systems. - Abstract: Energy storage is a topic of great importance for the development of renewable energy, since it appears to be the only solution to the problem of intermittency of production, inherent to such technologies. In this paper, a new technology for energy storage, based on microwave-induced CO 2 gasification of carbon materials is proposed. The tests carried out in this study on different carbon materials showed that charcoal consumes the least amount of energy. Two microwave heating mechanisms, a single-mode oven and a multimode device, were evaluated with the latter proving itself to be the more efficient in terms of energy consumption and recovery. The initial results obtained showed that this technology is able to achieve energy efficiencies of 45% at laboratory scale with every indication that these results can be improved upon to make this approach highly competitive against other energy storage technologies

  5. Mass Enhancement of Nearly Trivalent Compound EuCo2Si2: Studied by the de Haas-van Alphen Experiments and Energy Band Calculations

    International Nuclear Information System (INIS)

    Ōnuki, Yoshichika; Hedo, Masato; Nakama, Takao; Nakamura, Ai; Aoki, Dai; Boukahil, Mounir; Haga, Yoshinori; Takeuchi, Tetsuya; Harima, Hisatomo

    2015-01-01

    We succeeded in growing single crystals of EuCo 2 Si 2 by the Bridgman method, and carried out the de Haas-van Alphen (dHvA) experiments. EuCo 2 Si 2 was previously studied from a viewpoint of the trivalent electronic state on the basis of the magnetic susceptibility and X-ray absorption experiments, whereas most of the other Eu compounds order magnetically, with the divalent electronic state. The detected dHvA branches in the present experiments are found to be explained by the results of the full potential linearized augmented plane wave energy band calculations on the basis of a local density approximation (LDA) for YCo 2 Si 2 (LDA) and EuCo 2 Si 2 (LDA + U), revealing the trivalent electronic state. The detected cyclotron effective masses are moderately large, ranging from 1.2 to 2.9 m 0

  6. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  7. Absolute generalized oscillator strength for the Lyman--Birge--Hopfield band of N2 as determined by high energy electron impact spectroscopy

    International Nuclear Information System (INIS)

    Wong, T.C.; Lee, J.S.; Wellenstein, H.F.; Bonham, R.A.

    1975-01-01

    The absolute generalized oscillator strength for the dipole forbidden quadrupole allowed Lyman--Birge--Hopfield band a 1 Pi/subg/ reverse arrow X 1 Σ + /subg/ in molecular nitrogen at an energy loss of 9.35 eV is observed by electron impact spectroscopy using 25 keV electrons over the momentum transfer range 0.04less than or equal toK 2 less than or equal to10 a.u. The results agree in the zero angle (zero momentum transfer) limit with the previous observations of Skerbele and Lassettre, but are in disagreement with previous theoretical and experimental results for K 2 >0.5. (auth)

  8. Natural gas heating. The energy saving concept. Topical tasks of consumer guidance

    Energy Technology Data Exchange (ETDEWEB)

    Windfeder, H

    1978-01-01

    Brief comments on natural gas, the technology of using natural gas for heating purposes, consumer psychology, and on energy policies are presented. It is concluded that the more natural gas heating is installed, the more primary energy can be saved. Some fundamental thoughts on consumer guidance are given for discussion.

  9. The investigation of high school student’s energy concept by using analogies

    Science.gov (United States)

    Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    Alternative energy tends to be more widespread in Thailand because the advanced technology, enhance the potential of equipment which becomes more economically rather than setting in laboratory likes in the past. For this reason students should understand profoundly about the characteristic of energy before they learned about alternative energy. To help students get more comprehension about the characteristic of energy, we need to investigate the idea about energy. There are three main reasons for the investigation (1) to know how students use analogy to describe characteristic of energy (2) to find out the most frequent characteristic that student used (3) to classify analogies for energy by using category of misconceptions which helped us to group students if there were any vague content in students’ explanation. Students were given a task to write their analogies after doing the STEM activity (Bungee Jump) in class. The answers were categorized into four terms of scientific contexts: energy can be accounted, can change forms, can be lost and can be transferred.

  10. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    Science.gov (United States)

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  11. Ecological concepts and strategies with relevance to energy-conscious spatial planning and design

    NARCIS (Netherlands)

    Stremke, S.; Koh, J.

    2010-01-01

    Sustainable systems utilise renewable energy sources and recycle materials effectively. In theory, solar radiation provides abundant energy to sustain humanity. Our capacity to utilise available sources, however, is limited and competition for resources is expected to increase in the future. Spatial

  12. Integration of ecological and thermodynamic concepts in the design of sustainable energy landscapes

    NARCIS (Netherlands)

    Stremke, S.; Koh, J.

    2011-01-01

    Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Whereas nature presents strategies to sustain on the basis of renewables, the Laws of Thermodynamics can help to increase efficiency in energy use. In previous

  13. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    Science.gov (United States)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  14. Smart bioenergy technologies and concepts for a more flexible bioenergy provision in future energy systems

    CERN Document Server

    2015-01-01

    Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greater use of renewable energy sources, which has resulted in a significant increase in the amount of biomass used for electricity, heat and transport fuel. The book begins with a review of market and resource base issues, and moves on to analyze the technical options for a more integrated bioenergy use. The analysis spans the ...

  15. Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of 'banded' Renewables Obligation Certificates

    International Nuclear Information System (INIS)

    Allan, Grant; Gilmartin, Michelle; McGregor, Peter; Swales, Kim

    2011-01-01

    In this paper, publicly available cost data are used to calculate the private levelised costs of two marine energy technologies for UK electricity generation: Wave and Tidal Stream power. These estimates are compared to those for ten other electricity generation technologies whose costs were identified by the UK Government (). Under plausible assumptions for costs and performance, point estimates of the levelised costs of Wave and Tidal Stream generation are Pounds 190 and Pounds 81/MWh, respectively. Sensitivity analysis shows how these relative private levelised costs calculations are affected by variation in key parameters, specifically the assumed capital costs, fuel costs and the discount rate. We also consider the impact of the introduction of technology-differentiated financial support for renewable energy on the cost competitiveness of Wave and Tidal Stream power. Further, we compare the impact of the current UK government support level to the more generous degree of assistance for marine technologies that is proposed by the Scottish government. - Research highlights: → Levelised costs of electricity generation from wave and tidal stream in UK calculated. → Comparison to ten renewable and non-renewable technologies demonstrated. → Sensitivity of levelised costs to key assumptions is demonstrated. → Technology-specific financial support revealed to be insufficient at current costs.

  16. New design concepts for ferrite-tuned low-energy-booster cavities

    International Nuclear Information System (INIS)

    Schaffer, G.

    1991-05-01

    The design concepts for ferrite-tuned accelerating cavities discussed in this paper differ from conventional solutions using thick ferrite toroids for frequency tuning. Instead, tuners consisting of an array of ferrite-loaded striplines are investigated. These promise more efficient cooling and higher operational reliability. Layout examples for the SSC-LEB rf system are presented (tuning range 47.5 to 59.8 MHz, repetition frequency 10 Hz). 15 refs., 4 figs., 1 tab

  17. Thouless energy as a unifying concept for Josephson junctions tuned through the Mott metal-insulator transition

    Science.gov (United States)

    Tahvildar-Zadeh, A. N.; Freericks, J. K.; Nikolić, B. K.

    2006-05-01

    The Thouless energy was introduced in the 1970s as a semiclassical energy for electrons diffusing through a finite-sized conductor. It turns out to be an important quantum-mechanical energy scale for many systems ranging from disordered metals to quantum chaos to quantum chromodynamics. In particular, it has been quite successful in describing the properties of Josephson junctions when the barrier is a diffusive normal-state metal. The Thouless energy concept can be generalized to insulating barriers by extracting an energy scale from the two-probe Kubo conductance of a strongly correlated electron system (metallic or insulating) via a generalized definition of the quantum-mechanical level spacing to many-body systems. This energy scale is known to determine the crossover from tunneling to Ohmic (thermally activated) transport in normal tunnel junctions. Here we use it to illustrate how the quasiclassical picture of transport in Josephson junctions is modified as the strongly correlated barrier passes through the Mott transition. Surprisingly, we find the quasiclassical form holds well beyond its putative realm of validity.

  18. Vigorous marketing concepts for the energy supply industry. Products, services, advertising; Markiger Auftritt in der Energiewirtschaft. Produkte, Dienstleistungen, Werbung

    Energy Technology Data Exchange (ETDEWEB)

    Zenke, I.; Ellwanger, N. (eds.)

    2003-07-01

    The authors present a variety of marketing concepts tailored to the needs of electric utilities and gas utilities as marketers in the liberalising energy markets. Concepts for developing particular marketing policies for the 'commodities' and related services are designed and explained in the context of an integrated approach for implementation in compliance with the changing market environment and the legal framework governing the internal market within the European Union. (orig./CB) [German] Das Buch stellt Zusammenhaenge verschiedener Marketing-Massnahmen, die im Einzelnen erlaeutert werden, und deren rechtliche Umsetzung in einem integrierten Ansatz dar und gibt damit vielseitige Hilfestellungen hinsichtlich der Vermarktung von Energieprodukten und Services durch Strom- und Gasversorger im liberalisierten Binnenmarkt der Europaeischen Union. (orig./CB)

  19. China's conception of energy security : sources and international impacts

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, C.

    2005-03-01

    The unique challenges and opportunities associated with China's rapid economic growth were discussed with reference to the potential risk of political disruption or destabilizing international markets. The author notes that two common mistakes are typically made when assessing the evolution of China's energy policy. The first is that China's future path is assimilated with that of developed countries, thereby dismissing evidence that might point toward a different relationship with energy. Second, analysts tend to focus on the external expression of China's energy needs, its oil imports, while overlooking other energy-related issues such as insufficient electricity supplies or environmental degradation. The author argues that Chinese leadership is redefining its understanding of what constitutes energy security for the country. This report assesses the international impacts of such a redefinition along with the international aspects of a business-as-usual scenario in which China pursues its traditional model of energy security. It was emphasized that two different views of energy security lead to different sets of challenges and opportunities for western governments and businesses. 101 refs., 2 figs.

  20. An innovative concept for maximizing the use of coal and nuclear energy for co-generation applications

    International Nuclear Information System (INIS)

    Choong, P.T.S.

    1995-01-01

    Despite the abundance in coal reserves in the world, coal fired power plants are not the desirable long-term solution to the energy shortage in most nations, because of environmental and transportation difficulties. However, nuclear power is inherently inefficient due to low temperature operations. The prudent solution to world's energy crisis should address both the immediate need for electricity and the long-term need for an environmentally sound energy system capable of providing low cost electricity and district heating energy utilizing mainly indigenous energy resources (coal, uranium, and thorium). The new energy utilization system has to be environment friendly. A conceptual solution plan is the subject matter of this presentation. The concept calls for an innovative integration of coal gasification, gas turbine, steam turbine and an intermediate bulk coolant heating nuclear power technologies. The output of the nuclear heated coolant is to cool the syngas output which is to drive the high temperature gas turbine generator. The waste heat from the gas turbine is recovered to drive the steam turbine. The exhaust steam from the steam turbine is used for district heating. The siting of the nuclear power plant is to be near the coal mines and water resources. Bulk of the electricity output is transmitted via HVDC lines to far away population centers. Excess coal gas from the gasification plant is to be piped to surrounding districts to drive remote combined cycle power plants. The thermal efficiency of power cycle can be over 50%. The overall energy utilization efficiency can be as high as 85% when district heating effect included. An example of INCTES (Integrated Nuclear/Coal Total Energy System) for China power/energy infra structure is briefly touched upon

  1. Pipelines - in new concepts of energy supply; Rohrleitungen - in neuen Energieversorgungskonzepten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Piping systems for the district heating, for the supply of natural gas, drinking water and extinguishing water as well as the transport of rain water and waste water - these are the most important tasks which have been fulfilled by the pipelines as a part of the underground infrastructure. Now, the classical distribution of tasks seems to become unstable. Waste water is not only dirty water, but a heat energy source which can be used atractively sometimes.Natural gas supply lines are recognized as energy storages for renewable energy sources in order to being used in times of excess electricity.

  2. BROADBAND CONCEPT OF ENERGY HARVESTING IN BEAM VIBRATING SYSTEMS FOR POWERING SENSORS

    Directory of Open Access Journals (Sweden)

    Andrzej Rysak

    2014-09-01

    Full Text Available Recent demand for powering small sensors for wireless health monitoring triggered activities in the field of small size efficient energy harvesting devices. We examine energy harvesting in an aluminium beam with a piezoceramic patch subjected to kinematic harmonic excitation and impacts. Due to a mechanical stopper applied, inducing a hardening effect in the spring characteristic of the beam resonator, we observed a broader frequency range for the fairly large power output. Impact nonlinearities caused sensitivity to initial conditions and appearance of multiple solutions. The occurrence of resonant solution associated with impacts increased efficiency of the energy harvesting process.

  3. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  4. Renewable Energy and Hydrogen System Concepts for Remote Communities in the West Nordic Region

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein; Moerkved, Andreas

    2008-02-25

    In 2003 the Nordic Council of Ministers granted the funding for the first of several studies on renewable energy and hydrogen (RE/H2) energy systems for remote communities in the West Nordic region. The objective with this report is to summarize the main findings from Phase II and III of the West Nordic project. The island Nolsoy, Faroe Islands, was selected as a case study. The main conclusion is that it makes sense to design a wind/diesel-system with thermal storage, both from a techno-economical and environmental point of view. Such systems can have close to 100% local utilization of the wind energy, and can cover up to 75% of the total annual electricity demand and 35% of the annual heat demand at a cost of energy around 0.07 - 0.09 euro/kWh. The introduction of a hydrogen system is technically feasible, but doubles the overall investment costs

  5. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational

  6. Concept of a Machine Protection System for the High-Energy LHC

    CERN Document Server

    Raginel, Vivien; Wollmann, Daniel

    2018-01-01

    The High-Energy LHC (HE-LHC) is setting new precedents in stored energy in both, the superconducting magnet system (∼ 20 GJ) and the beams (1.34 GJ) as compared to LHC and the LHC upgrade to increase the luminosity (HL-LHC). Therefore, the requirements and performance of the existing machine protection systems have to be reviewed and adapted to the new HE-LHC beam parameters, failure cases and machine availability requirements.

  7. Renewable energy technologies. Plant concepts, applications and practical hints; Regenerative Energietechnologien. Anlagenkonzepte, Anwendungen und Praxistipps

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Eric

    2008-07-01

    This textbook provides a comprehensive outline of renewable energy technologies, prototypes and innovations in technical facilities that are ready for the market. On the basis of current catalogues of technical rules, directives and guidelines, possible system configurations are outlined for each technology which are explained by means of examples, a system description, and a list of reference projects. There is also a glossary for the various technologies and a list of contact addresses. The textbook addresses architects, engineers, energy consultants, and students. (orig.)

  8. Energy system modelling and GIS to build an Integrated Climate Protection Concept for Gauteng Province, South Africa

    International Nuclear Information System (INIS)

    Tomaschek, Jan; Kober, Ralf; Fahl, Ulrich; Lozynskyy, Yuriy

    2016-01-01

    South Africa and specifically its economically dominant province of Gauteng aim to reduce their influence on climate change. Especially the transport sector is seen as one of the key drivers of future greenhouse gas (GHG) emissions. This paper describes the methodology used to combine the application of two models in order to provide a basis for informed policy recommendation for GHG mitigation. The TEMT model provides real world emission factors adapted to local conditions in Gauteng for numerous vehicle technology concepts. Those data feed into the TIMES-GEECO energy system model which identifies future technology use for different alternative scenarios. Finally, the scenario results are illustrated spatially using a GIS programme. The results of the scenario analysis show that under implemented policies GHG emissions in Gauteng are likely to increase substantially. Pollutant emissions are currently high as a result of a comparably old vehicle fleet. The spatial display of these results shows where the traffic network is concentrated and the location of so-called emission hot-spots. Energy efficient policies for the transport sector of Gauteng can achieve a significant reduction of emissions and energy consumption. Alternative powertrains and the use of locally produced biofuels can play a significant role in such policies. - Highlights: • Two models to assess the transport sector have been developed. • The methodology covers the energy system and locational information. • Application to Gauteng to provide input for a Climate Protection Concept. • Energy efficient polices will help to significantly reduce transport emissions. • Local renewable resources and efficient powertrains should be part of this policy.

  9. Improving literacy about energy-related issues: the need for a better understanding of the concepts behind energy intake and expenditure among adolescents and their parents.

    Science.gov (United States)

    Nelson, Melissa C; Lytle, Leslie A; Pasch, Keryn E

    2009-02-01

    Despite the need for effective obesity prevention strategies, little research has assessed adolescents' knowledge about basic concepts of energy intake, expenditure, and balance. Using data from 349 adolescent-caregiver pairs (recruited from Minneapolis/St Paul, MN metro region, 2006-2007), cross-sectional linear regression was used to assess adolescent and parental knowledge related to energy intake and expenditure as a predictor of adolescent weight-related behaviors and outcomes. Findings indicated that knowledge related to energy intake and expenditure was highly variable, with a substantial proportion of participants (particularly adolescents) lacking knowledge on a range of concepts. Adolescent knowledge was positively associated with moderate physical activity and negatively associated with television viewing (Pfast food intake, weight status, and/or body composition. Although overall parental knowledge was a significant predictor of adolescent knowledge (Phealth promotion strategies are insufficient to initiate long-term healthful behavior change. Educational strategies may be effective when combined with those also targeting familial, social, and environmental influences. The examination of interactive effects between individual-level and environmental influences on health behavior is an important area for future obesity-related research.

  10. Conception and development of an adaptive energy mesher for multigroup library generation of the transport codes

    International Nuclear Information System (INIS)

    Mosca, P.

    2009-12-01

    The deterministic transport codes solve the stationary Boltzmann equation in a discretized energy formalism called multigroup. The transformation of continuous data in a multigroup form is obtained by averaging the highly variable cross sections of the resonant isotopes with the solution of the self-shielding models and the remaining ones with the coarse energy spectrum of the reactor type. So far the error of such an approach could only be evaluated retrospectively. To remedy this, we studied in this thesis a set of methods to control a priori the accuracy and the cost of the multigroup transport computation. The energy mesh optimisation is achieved using a two step process: the creation of a reference mesh and its optimized condensation. In the first stage, by refining locally and globally the energy mesh, we seek, on a fine energy mesh with subgroup self-shielding, a solution equivalent to a reference solver (Monte Carlo or pointwise deterministic solver). In the second step, once fixed the number of groups, depending on the acceptable computational cost, and chosen the most appropriate self-shielding models to the reactor type, we look for the best bounds of the reference mesh minimizing reaction rate errors by the particle swarm optimization algorithm. This new approach allows us to define new meshes for fast reactors as accurate as the currently used ones, but with fewer groups. (author)

  11. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    Science.gov (United States)

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  12. Preliminary study about the necessary concepts and nomenclatures for long duration energy studies

    International Nuclear Information System (INIS)

    1999-12-01

    Long duration prospect studies about the worldwide energy demand requires to refer to other, non-economical, disciplines which have different representations of the socio-economic reality and of the evolution dynamics of societies. This study is a multi-disciplinary bibliographic research which aims to identify the categories considered in these disciplines and to show the main elements allowing to answer the questions about energy uses. The bibliographic research is based on a set of key-words which are crossed between each others like: 'categories', 'social behaviour', 'life style', 'energy', 'consumption', 'need', 'development', 'time' etc. The content of each cited bibliographic references is described in a file attached in the appendix of this study. (J.S.)

  13. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography.

    Science.gov (United States)

    Tanaka, Ray; Hayashi, Takafumi; Ike, Makiko; Noto, Yoshiyuki; Goto, Tazuko K

    2013-06-01

    The aim of this study was to evaluate the usefulness of hypothetical monoenergetic images after dual-energy computed tomography (DECT) for assessment of the bone encircling dental implant bodies. Seventy-two axial images of implantation sites clipped out from image data scanned using DECT in dual-energy mode were used. Subjective assessment on reduction of dark-band-like artifacts (R-DBAs) and diagnosability of adjacent bone condition (D-ABC) in 3 sets of DECT images-a fused image set (DE120) and 2 sets of hypothetical monoenergetic images (ME100, ME190)-was performed and the results were statistically analyzed. With regards to R-DBAs and D-ABC, significant differences among DE120, ME100, and ME190 were observed. The ME100 and ME190 images revealed more artifact reduction and diagnosability than those of DE120. DECT imaging followed by hypothetical monoenergetic image construction can cause R-DBAs and increase D-ABC and may be potentially used for the evaluation of postoperative changes in the bone encircling implant bodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Forecasting of future earthquakes in the northeast region of India considering energy released concept

    Science.gov (United States)

    Zarola, Amit; Sil, Arjun

    2018-04-01

    This study presents the forecasting of time and magnitude size of the next earthquake in the northeast India, using four probability distribution models (Gamma, Lognormal, Weibull and Log-logistic) considering updated earthquake catalog of magnitude Mw ≥ 6.0 that occurred from year 1737-2015 in the study area. On the basis of past seismicity of the region, two types of conditional probabilities have been estimated using their best fit model and respective model parameters. The first conditional probability is the probability of seismic energy (e × 1020 ergs), which is expected to release in the future earthquake, exceeding a certain level of seismic energy (E × 1020 ergs). And the second conditional probability is the probability of seismic energy (a × 1020 ergs/year), which is expected to release per year, exceeding a certain level of seismic energy per year (A × 1020 ergs/year). The logarithm likelihood functions (ln L) were also estimated for all four probability distribution models. A higher value of ln L suggests a better model and a lower value shows a worse model. The time of the future earthquake is forecasted by dividing the total seismic energy expected to release in the future earthquake with the total seismic energy expected to release per year. The epicentre of recently occurred 4 January 2016 Manipur earthquake (M 6.7), 13 April 2016 Myanmar earthquake (M 6.9) and the 24 August 2016 Myanmar earthquake (M 6.8) are located in zone Z.12, zone Z.16 and zone Z.15, respectively and that are the identified seismic source zones in the study area which show that the proposed techniques and models yield good forecasting accuracy.

  15. Clean power from deserts. The DESERTEC concept for energy, water and climate security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The main challenge for the future is to reclaim energy from renewable and clean sources in environmentally compatible ways. Here the deserts of the earth can play a key role. They receive about 700 times more energy from the sun than humankind consumes by burning fossil fuels, day by day. Deserts are the places with the best solar radiation conditions and with the least possible impact of collector deployment onto the biosphere on earth. In deserts, clean power can be produced by solar thermal power plants (CSP) in a truly sustainable way and at any volume of conceivable demand. Power can be transmitted with low losses by high voltage direct current (HVDC) lines to more than 90% of the world's population. This gives the deserts a new role: Together with the many other forms of accessible renewable energy the newly utilized desert would enable us to replace fossil fuels and thus end the ongoing destruction of our natural living conditions. To put this into practice, countries with deserts, countries with high energy demand and countries with technology competence must cooperate. This is an opportunity for the Mediterranean riparian regions of Europe, the Middle East and North Africa (EUMENA) to form a community for energy, water and climate security. With the political will, EUMENA countries could now launch 'EUMENA-DESERTEC' Program, to bring humankind back into balance with its environment, by putting deserts and technology into service for energy, water and climate security. This would be an important step towards creating a truly sustainable civilization.

  16. Economic evaluation of operational concepts for electrolysers with high proportions of renewable energies

    International Nuclear Information System (INIS)

    Michaelis, Julia; Wietschel, Martin

    2015-01-01

    This article examines different modes of electrolyzers in two future scenarios of the German energy system. It turns out that hydrolyzers need a high utilization to pay for themselves. An economic operation in 2030 in the scenario of moderate expansion of renewable energies is not possible. At strong expansion the investment is profitable when high revenues from secondary control power provision can be achieved. Generally it is clear that the secondary control power provision and also the direct sales of hydrogen in industry or in the transport sector allows higher revenues than the storage and reconversion. [de

  17. Nuclear energy an introduction to the concepts, systems, and applications of nuclear processes

    CERN Document Server

    Murray, Raymond

    2001-01-01

    Nuclear Energy, Fifth Edition provides nuclear engineers, plant designers and radiation physicists with a comprehensive overview of nuclear energy and its uses, discusses potential problems and provides an outlook for the futureNew and important trends are discussed including probabilistic safety analysis (PSA), deregulation of the electric power industry to permit competition in the supply of electricity; improvements in performance characteristics of nuclear power plants, such as capacity factor, production costs, and safety factors; storage and disposal of all types of radioactive w

  18. Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-01-01

    Highlights: • Composite TiAlO rather than TiO_2-Al_2O_3 laminations is deposited on 4H-SiC by PEALD. • An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC. • TiAlO offers competitive barrier heights (>1 eV) for both electrons and holes. - Abstract: Intermixing of TiO_2 with Al_2O_3 to form TiAlO films on 4H-SiC is expected to simultaneously boost the dielectric constant and achieve sufficient conduction/valence band offsets (CBO/VBO) between dielectrics and 4H-SiC. In this work, a composite TiAlO film rather than TiO_2-Al_2O_3 laminations is deposited on 4H-SiC by plasma enhanced atomic layer deposition (PEALD). X-ray photoelectron spectroscopy (XPS) is performed to systematically analyze the interfacial chemistry and energy band alignment between TiAlO and 4H-SiC. An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC during PEALD process. The VBO and CBO between TiAlO and 4H-SiC are determined to be 1.45 eV and 1.10 eV, respectively, which offer competitive barrier heights (>1 eV) for both electrons and holes and make it suitable for the fabrication of 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  19. Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Zheng, Li, E-mail: zhengli@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Peiyi; Li, Menglu [Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095 (United States); Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2017-07-01

    Highlights: • Composite TiAlO rather than TiO{sub 2}-Al{sub 2}O{sub 3} laminations is deposited on 4H-SiC by PEALD. • An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC. • TiAlO offers competitive barrier heights (>1 eV) for both electrons and holes. - Abstract: Intermixing of TiO{sub 2} with Al{sub 2}O{sub 3} to form TiAlO films on 4H-SiC is expected to simultaneously boost the dielectric constant and achieve sufficient conduction/valence band offsets (CBO/VBO) between dielectrics and 4H-SiC. In this work, a composite TiAlO film rather than TiO{sub 2}-Al{sub 2}O{sub 3} laminations is deposited on 4H-SiC by plasma enhanced atomic layer deposition (PEALD). X-ray photoelectron spectroscopy (XPS) is performed to systematically analyze the interfacial chemistry and energy band alignment between TiAlO and 4H-SiC. An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC during PEALD process. The VBO and CBO between TiAlO and 4H-SiC are determined to be 1.45 eV and 1.10 eV, respectively, which offer competitive barrier heights (>1 eV) for both electrons and holes and make it suitable for the fabrication of 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  20. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    Science.gov (United States)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.